summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/combine.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/combine.rs')
-rw-r--r--compiler/rustc_infer/src/infer/combine.rs1001
1 files changed, 1001 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/combine.rs b/compiler/rustc_infer/src/infer/combine.rs
new file mode 100644
index 000000000..8bf1de34a
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/combine.rs
@@ -0,0 +1,1001 @@
+//! There are four type combiners: [Equate], [Sub], [Lub], and [Glb].
+//! Each implements the trait [TypeRelation] and contains methods for
+//! combining two instances of various things and yielding a new instance.
+//! These combiner methods always yield a `Result<T>`. To relate two
+//! types, you can use `infcx.at(cause, param_env)` which then allows
+//! you to use the relevant methods of [At](super::at::At).
+//!
+//! Combiners mostly do their specific behavior and then hand off the
+//! bulk of the work to [InferCtxt::super_combine_tys] and
+//! [InferCtxt::super_combine_consts].
+//!
+//! Combining two types may have side-effects on the inference contexts
+//! which can be undone by using snapshots. You probably want to use
+//! either [InferCtxt::commit_if_ok] or [InferCtxt::probe].
+//!
+//! On success, the LUB/GLB operations return the appropriate bound. The
+//! return value of `Equate` or `Sub` shouldn't really be used.
+//!
+//! ## Contravariance
+//!
+//! We explicitly track which argument is expected using
+//! [TypeRelation::a_is_expected], so when dealing with contravariance
+//! this should be correctly updated.
+
+use super::equate::Equate;
+use super::glb::Glb;
+use super::lub::Lub;
+use super::sub::Sub;
+use super::type_variable::TypeVariableValue;
+use super::{InferCtxt, MiscVariable, TypeTrace};
+use crate::traits::{Obligation, PredicateObligations};
+use rustc_data_structures::sso::SsoHashMap;
+use rustc_hir::def_id::DefId;
+use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
+use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
+use rustc_middle::traits::ObligationCause;
+use rustc_middle::ty::error::{ExpectedFound, TypeError};
+use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::{self, InferConst, ToPredicate, Ty, TyCtxt, TypeVisitable};
+use rustc_middle::ty::{IntType, UintType};
+use rustc_span::{Span, DUMMY_SP};
+
+#[derive(Clone)]
+pub struct CombineFields<'infcx, 'tcx> {
+ pub infcx: &'infcx InferCtxt<'infcx, 'tcx>,
+ pub trace: TypeTrace<'tcx>,
+ pub cause: Option<ty::relate::Cause>,
+ pub param_env: ty::ParamEnv<'tcx>,
+ pub obligations: PredicateObligations<'tcx>,
+ /// Whether we should define opaque types
+ /// or just treat them opaquely.
+ /// Currently only used to prevent predicate
+ /// matching from matching anything against opaque
+ /// types.
+ pub define_opaque_types: bool,
+}
+
+#[derive(Copy, Clone, Debug)]
+pub enum RelationDir {
+ SubtypeOf,
+ SupertypeOf,
+ EqTo,
+}
+
+impl<'infcx, 'tcx> InferCtxt<'infcx, 'tcx> {
+ pub fn super_combine_tys<R>(
+ &self,
+ relation: &mut R,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ ) -> RelateResult<'tcx, Ty<'tcx>>
+ where
+ R: TypeRelation<'tcx>,
+ {
+ let a_is_expected = relation.a_is_expected();
+
+ match (a.kind(), b.kind()) {
+ // Relate integral variables to other types
+ (&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => {
+ self.inner
+ .borrow_mut()
+ .int_unification_table()
+ .unify_var_var(a_id, b_id)
+ .map_err(|e| int_unification_error(a_is_expected, e))?;
+ Ok(a)
+ }
+ (&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => {
+ self.unify_integral_variable(a_is_expected, v_id, IntType(v))
+ }
+ (&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => {
+ self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
+ }
+ (&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => {
+ self.unify_integral_variable(a_is_expected, v_id, UintType(v))
+ }
+ (&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => {
+ self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
+ }
+
+ // Relate floating-point variables to other types
+ (&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => {
+ self.inner
+ .borrow_mut()
+ .float_unification_table()
+ .unify_var_var(a_id, b_id)
+ .map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
+ Ok(a)
+ }
+ (&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => {
+ self.unify_float_variable(a_is_expected, v_id, v)
+ }
+ (&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => {
+ self.unify_float_variable(!a_is_expected, v_id, v)
+ }
+
+ // All other cases of inference are errors
+ (&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
+ Err(TypeError::Sorts(ty::relate::expected_found(relation, a, b)))
+ }
+
+ _ => ty::relate::super_relate_tys(relation, a, b),
+ }
+ }
+
+ pub fn super_combine_consts<R>(
+ &self,
+ relation: &mut R,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>>
+ where
+ R: ConstEquateRelation<'tcx>,
+ {
+ debug!("{}.consts({:?}, {:?})", relation.tag(), a, b);
+ if a == b {
+ return Ok(a);
+ }
+
+ let a = self.shallow_resolve(a);
+ let b = self.shallow_resolve(b);
+
+ let a_is_expected = relation.a_is_expected();
+
+ match (a.kind(), b.kind()) {
+ (
+ ty::ConstKind::Infer(InferConst::Var(a_vid)),
+ ty::ConstKind::Infer(InferConst::Var(b_vid)),
+ ) => {
+ self.inner
+ .borrow_mut()
+ .const_unification_table()
+ .unify_var_var(a_vid, b_vid)
+ .map_err(|e| const_unification_error(a_is_expected, e))?;
+ return Ok(a);
+ }
+
+ // All other cases of inference with other variables are errors.
+ (ty::ConstKind::Infer(InferConst::Var(_)), ty::ConstKind::Infer(_))
+ | (ty::ConstKind::Infer(_), ty::ConstKind::Infer(InferConst::Var(_))) => {
+ bug!("tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var)")
+ }
+
+ (ty::ConstKind::Infer(InferConst::Var(vid)), _) => {
+ return self.unify_const_variable(relation.param_env(), vid, b, a_is_expected);
+ }
+
+ (_, ty::ConstKind::Infer(InferConst::Var(vid))) => {
+ return self.unify_const_variable(relation.param_env(), vid, a, !a_is_expected);
+ }
+ (ty::ConstKind::Unevaluated(..), _) if self.tcx.lazy_normalization() => {
+ // FIXME(#59490): Need to remove the leak check to accommodate
+ // escaping bound variables here.
+ if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
+ relation.const_equate_obligation(a, b);
+ }
+ return Ok(b);
+ }
+ (_, ty::ConstKind::Unevaluated(..)) if self.tcx.lazy_normalization() => {
+ // FIXME(#59490): Need to remove the leak check to accommodate
+ // escaping bound variables here.
+ if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
+ relation.const_equate_obligation(a, b);
+ }
+ return Ok(a);
+ }
+ _ => {}
+ }
+
+ ty::relate::super_relate_consts(relation, a, b)
+ }
+
+ /// Unifies the const variable `target_vid` with the given constant.
+ ///
+ /// This also tests if the given const `ct` contains an inference variable which was previously
+ /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
+ /// would result in an infinite type as we continuously replace an inference variable
+ /// in `ct` with `ct` itself.
+ ///
+ /// This is especially important as unevaluated consts use their parents generics.
+ /// They therefore often contain unused substs, making these errors far more likely.
+ ///
+ /// A good example of this is the following:
+ ///
+ /// ```compile_fail,E0308
+ /// #![feature(generic_const_exprs)]
+ ///
+ /// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
+ /// todo!()
+ /// }
+ ///
+ /// fn main() {
+ /// let mut arr = Default::default();
+ /// arr = bind(arr);
+ /// }
+ /// ```
+ ///
+ /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
+ /// of `fn bind` (meaning that its substs contain `N`).
+ ///
+ /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
+ /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
+ ///
+ /// As `3 + 4` contains `N` in its substs, this must not succeed.
+ ///
+ /// See `src/test/ui/const-generics/occurs-check/` for more examples where this is relevant.
+ #[instrument(level = "debug", skip(self))]
+ fn unify_const_variable(
+ &self,
+ param_env: ty::ParamEnv<'tcx>,
+ target_vid: ty::ConstVid<'tcx>,
+ ct: ty::Const<'tcx>,
+ vid_is_expected: bool,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ let (for_universe, span) = {
+ let mut inner = self.inner.borrow_mut();
+ let variable_table = &mut inner.const_unification_table();
+ let var_value = variable_table.probe_value(target_vid);
+ match var_value.val {
+ ConstVariableValue::Known { value } => {
+ bug!("instantiating {:?} which has a known value {:?}", target_vid, value)
+ }
+ ConstVariableValue::Unknown { universe } => (universe, var_value.origin.span),
+ }
+ };
+ let value = ConstInferUnifier { infcx: self, span, param_env, for_universe, target_vid }
+ .relate(ct, ct)?;
+
+ self.inner
+ .borrow_mut()
+ .const_unification_table()
+ .unify_var_value(
+ target_vid,
+ ConstVarValue {
+ origin: ConstVariableOrigin {
+ kind: ConstVariableOriginKind::ConstInference,
+ span: DUMMY_SP,
+ },
+ val: ConstVariableValue::Known { value },
+ },
+ )
+ .map(|()| value)
+ .map_err(|e| const_unification_error(vid_is_expected, e))
+ }
+
+ fn unify_integral_variable(
+ &self,
+ vid_is_expected: bool,
+ vid: ty::IntVid,
+ val: ty::IntVarValue,
+ ) -> RelateResult<'tcx, Ty<'tcx>> {
+ self.inner
+ .borrow_mut()
+ .int_unification_table()
+ .unify_var_value(vid, Some(val))
+ .map_err(|e| int_unification_error(vid_is_expected, e))?;
+ match val {
+ IntType(v) => Ok(self.tcx.mk_mach_int(v)),
+ UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
+ }
+ }
+
+ fn unify_float_variable(
+ &self,
+ vid_is_expected: bool,
+ vid: ty::FloatVid,
+ val: ty::FloatTy,
+ ) -> RelateResult<'tcx, Ty<'tcx>> {
+ self.inner
+ .borrow_mut()
+ .float_unification_table()
+ .unify_var_value(vid, Some(ty::FloatVarValue(val)))
+ .map_err(|e| float_unification_error(vid_is_expected, e))?;
+ Ok(self.tcx.mk_mach_float(val))
+ }
+}
+
+impl<'infcx, 'tcx> CombineFields<'infcx, 'tcx> {
+ pub fn tcx(&self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+
+ pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> {
+ Equate::new(self, a_is_expected)
+ }
+
+ pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> {
+ Sub::new(self, a_is_expected)
+ }
+
+ pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'tcx> {
+ Lub::new(self, a_is_expected)
+ }
+
+ pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'tcx> {
+ Glb::new(self, a_is_expected)
+ }
+
+ /// Here, `dir` is either `EqTo`, `SubtypeOf`, or `SupertypeOf`.
+ /// The idea is that we should ensure that the type `a_ty` is equal
+ /// to, a subtype of, or a supertype of (respectively) the type
+ /// to which `b_vid` is bound.
+ ///
+ /// Since `b_vid` has not yet been instantiated with a type, we
+ /// will first instantiate `b_vid` with a *generalized* version
+ /// of `a_ty`. Generalization introduces other inference
+ /// variables wherever subtyping could occur.
+ #[instrument(skip(self), level = "debug")]
+ pub fn instantiate(
+ &mut self,
+ a_ty: Ty<'tcx>,
+ dir: RelationDir,
+ b_vid: ty::TyVid,
+ a_is_expected: bool,
+ ) -> RelateResult<'tcx, ()> {
+ use self::RelationDir::*;
+
+ // Get the actual variable that b_vid has been inferred to
+ debug_assert!(self.infcx.inner.borrow_mut().type_variables().probe(b_vid).is_unknown());
+
+ // Generalize type of `a_ty` appropriately depending on the
+ // direction. As an example, assume:
+ //
+ // - `a_ty == &'x ?1`, where `'x` is some free region and `?1` is an
+ // inference variable,
+ // - and `dir` == `SubtypeOf`.
+ //
+ // Then the generalized form `b_ty` would be `&'?2 ?3`, where
+ // `'?2` and `?3` are fresh region/type inference
+ // variables. (Down below, we will relate `a_ty <: b_ty`,
+ // adding constraints like `'x: '?2` and `?1 <: ?3`.)
+ let Generalization { ty: b_ty, needs_wf } = self.generalize(a_ty, b_vid, dir)?;
+ debug!(?b_ty);
+ self.infcx.inner.borrow_mut().type_variables().instantiate(b_vid, b_ty);
+
+ if needs_wf {
+ self.obligations.push(Obligation::new(
+ self.trace.cause.clone(),
+ self.param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(b_ty.into()))
+ .to_predicate(self.infcx.tcx),
+ ));
+ }
+
+ // Finally, relate `b_ty` to `a_ty`, as described in previous comment.
+ //
+ // FIXME(#16847): This code is non-ideal because all these subtype
+ // relations wind up attributed to the same spans. We need
+ // to associate causes/spans with each of the relations in
+ // the stack to get this right.
+ match dir {
+ EqTo => self.equate(a_is_expected).relate(a_ty, b_ty),
+ SubtypeOf => self.sub(a_is_expected).relate(a_ty, b_ty),
+ SupertypeOf => self.sub(a_is_expected).relate_with_variance(
+ ty::Contravariant,
+ ty::VarianceDiagInfo::default(),
+ a_ty,
+ b_ty,
+ ),
+ }?;
+
+ Ok(())
+ }
+
+ /// Attempts to generalize `ty` for the type variable `for_vid`.
+ /// This checks for cycle -- that is, whether the type `ty`
+ /// references `for_vid`. The `dir` is the "direction" for which we
+ /// a performing the generalization (i.e., are we producing a type
+ /// that can be used as a supertype etc).
+ ///
+ /// Preconditions:
+ ///
+ /// - `for_vid` is a "root vid"
+ #[instrument(skip(self), level = "trace")]
+ fn generalize(
+ &self,
+ ty: Ty<'tcx>,
+ for_vid: ty::TyVid,
+ dir: RelationDir,
+ ) -> RelateResult<'tcx, Generalization<'tcx>> {
+ // Determine the ambient variance within which `ty` appears.
+ // The surrounding equation is:
+ //
+ // ty [op] ty2
+ //
+ // where `op` is either `==`, `<:`, or `:>`. This maps quite
+ // naturally.
+ let ambient_variance = match dir {
+ RelationDir::EqTo => ty::Invariant,
+ RelationDir::SubtypeOf => ty::Covariant,
+ RelationDir::SupertypeOf => ty::Contravariant,
+ };
+
+ trace!(?ambient_variance);
+
+ let for_universe = match self.infcx.inner.borrow_mut().type_variables().probe(for_vid) {
+ v @ TypeVariableValue::Known { .. } => {
+ bug!("instantiating {:?} which has a known value {:?}", for_vid, v,)
+ }
+ TypeVariableValue::Unknown { universe } => universe,
+ };
+
+ trace!(?for_universe);
+ trace!(?self.trace);
+
+ let mut generalize = Generalizer {
+ infcx: self.infcx,
+ cause: &self.trace.cause,
+ for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
+ for_universe,
+ ambient_variance,
+ needs_wf: false,
+ root_ty: ty,
+ param_env: self.param_env,
+ cache: SsoHashMap::new(),
+ };
+
+ let ty = match generalize.relate(ty, ty) {
+ Ok(ty) => ty,
+ Err(e) => {
+ debug!(?e, "failure");
+ return Err(e);
+ }
+ };
+ let needs_wf = generalize.needs_wf;
+ trace!(?ty, ?needs_wf, "success");
+ Ok(Generalization { ty, needs_wf })
+ }
+
+ pub fn add_const_equate_obligation(
+ &mut self,
+ a_is_expected: bool,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) {
+ let predicate = if a_is_expected {
+ ty::PredicateKind::ConstEquate(a, b)
+ } else {
+ ty::PredicateKind::ConstEquate(b, a)
+ };
+ self.obligations.push(Obligation::new(
+ self.trace.cause.clone(),
+ self.param_env,
+ ty::Binder::dummy(predicate).to_predicate(self.tcx()),
+ ));
+ }
+}
+
+struct Generalizer<'cx, 'tcx> {
+ infcx: &'cx InferCtxt<'cx, 'tcx>,
+
+ /// The span, used when creating new type variables and things.
+ cause: &'cx ObligationCause<'tcx>,
+
+ /// The vid of the type variable that is in the process of being
+ /// instantiated; if we find this within the type we are folding,
+ /// that means we would have created a cyclic type.
+ for_vid_sub_root: ty::TyVid,
+
+ /// The universe of the type variable that is in the process of
+ /// being instantiated. Any fresh variables that we create in this
+ /// process should be in that same universe.
+ for_universe: ty::UniverseIndex,
+
+ /// Track the variance as we descend into the type.
+ ambient_variance: ty::Variance,
+
+ /// See the field `needs_wf` in `Generalization`.
+ needs_wf: bool,
+
+ /// The root type that we are generalizing. Used when reporting cycles.
+ root_ty: Ty<'tcx>,
+
+ param_env: ty::ParamEnv<'tcx>,
+
+ cache: SsoHashMap<Ty<'tcx>, RelateResult<'tcx, Ty<'tcx>>>,
+}
+
+/// Result from a generalization operation. This includes
+/// not only the generalized type, but also a bool flag
+/// indicating whether further WF checks are needed.
+struct Generalization<'tcx> {
+ ty: Ty<'tcx>,
+
+ /// If true, then the generalized type may not be well-formed,
+ /// even if the source type is well-formed, so we should add an
+ /// additional check to enforce that it is. This arises in
+ /// particular around 'bivariant' type parameters that are only
+ /// constrained by a where-clause. As an example, imagine a type:
+ ///
+ /// struct Foo<A, B> where A: Iterator<Item = B> {
+ /// data: A
+ /// }
+ ///
+ /// here, `A` will be covariant, but `B` is
+ /// unconstrained. However, whatever it is, for `Foo` to be WF, it
+ /// must be equal to `A::Item`. If we have an input `Foo<?A, ?B>`,
+ /// then after generalization we will wind up with a type like
+ /// `Foo<?C, ?D>`. When we enforce that `Foo<?A, ?B> <: Foo<?C,
+ /// ?D>` (or `>:`), we will wind up with the requirement that `?A
+ /// <: ?C`, but no particular relationship between `?B` and `?D`
+ /// (after all, we do not know the variance of the normalized form
+ /// of `A::Item` with respect to `A`). If we do nothing else, this
+ /// may mean that `?D` goes unconstrained (as in #41677). So, in
+ /// this scenario where we create a new type variable in a
+ /// bivariant context, we set the `needs_wf` flag to true. This
+ /// will force the calling code to check that `WF(Foo<?C, ?D>)`
+ /// holds, which in turn implies that `?C::Item == ?D`. So once
+ /// `?C` is constrained, that should suffice to restrict `?D`.
+ needs_wf: bool,
+}
+
+impl<'tcx> TypeRelation<'tcx> for Generalizer<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+ fn param_env(&self) -> ty::ParamEnv<'tcx> {
+ self.param_env
+ }
+
+ fn tag(&self) -> &'static str {
+ "Generalizer"
+ }
+
+ fn a_is_expected(&self) -> bool {
+ true
+ }
+
+ fn binders<T>(
+ &mut self,
+ a: ty::Binder<'tcx, T>,
+ b: ty::Binder<'tcx, T>,
+ ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
+ where
+ T: Relate<'tcx>,
+ {
+ Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
+ }
+
+ fn relate_item_substs(
+ &mut self,
+ item_def_id: DefId,
+ a_subst: SubstsRef<'tcx>,
+ b_subst: SubstsRef<'tcx>,
+ ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
+ if self.ambient_variance == ty::Variance::Invariant {
+ // Avoid fetching the variance if we are in an invariant
+ // context; no need, and it can induce dependency cycles
+ // (e.g., #41849).
+ relate::relate_substs(self, a_subst, b_subst)
+ } else {
+ let tcx = self.tcx();
+ let opt_variances = tcx.variances_of(item_def_id);
+ relate::relate_substs_with_variances(
+ self,
+ item_def_id,
+ &opt_variances,
+ a_subst,
+ b_subst,
+ )
+ }
+ }
+
+ fn relate_with_variance<T: Relate<'tcx>>(
+ &mut self,
+ variance: ty::Variance,
+ _info: ty::VarianceDiagInfo<'tcx>,
+ a: T,
+ b: T,
+ ) -> RelateResult<'tcx, T> {
+ let old_ambient_variance = self.ambient_variance;
+ self.ambient_variance = self.ambient_variance.xform(variance);
+
+ let result = self.relate(a, b);
+ self.ambient_variance = old_ambient_variance;
+ result
+ }
+
+ fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
+ assert_eq!(t, t2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
+
+ if let Some(result) = self.cache.get(&t) {
+ return result.clone();
+ }
+ debug!("generalize: t={:?}", t);
+
+ // Check to see whether the type we are generalizing references
+ // any other type variable related to `vid` via
+ // subtyping. This is basically our "occurs check", preventing
+ // us from creating infinitely sized types.
+ let result = match *t.kind() {
+ ty::Infer(ty::TyVar(vid)) => {
+ let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
+ let sub_vid = self.infcx.inner.borrow_mut().type_variables().sub_root_var(vid);
+ if sub_vid == self.for_vid_sub_root {
+ // If sub-roots are equal, then `for_vid` and
+ // `vid` are related via subtyping.
+ Err(TypeError::CyclicTy(self.root_ty))
+ } else {
+ let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
+ match probe {
+ TypeVariableValue::Known { value: u } => {
+ debug!("generalize: known value {:?}", u);
+ self.relate(u, u)
+ }
+ TypeVariableValue::Unknown { universe } => {
+ match self.ambient_variance {
+ // Invariant: no need to make a fresh type variable.
+ ty::Invariant => {
+ if self.for_universe.can_name(universe) {
+ return Ok(t);
+ }
+ }
+
+ // Bivariant: make a fresh var, but we
+ // may need a WF predicate. See
+ // comment on `needs_wf` field for
+ // more info.
+ ty::Bivariant => self.needs_wf = true,
+
+ // Co/contravariant: this will be
+ // sufficiently constrained later on.
+ ty::Covariant | ty::Contravariant => (),
+ }
+
+ let origin =
+ *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
+ let new_var_id = self
+ .infcx
+ .inner
+ .borrow_mut()
+ .type_variables()
+ .new_var(self.for_universe, origin);
+ let u = self.tcx().mk_ty_var(new_var_id);
+
+ // Record that we replaced `vid` with `new_var_id` as part of a generalization
+ // operation. This is needed to detect cyclic types. To see why, see the
+ // docs in the `type_variables` module.
+ self.infcx.inner.borrow_mut().type_variables().sub(vid, new_var_id);
+ debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
+ Ok(u)
+ }
+ }
+ }
+ }
+ ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
+ // No matter what mode we are in,
+ // integer/floating-point types must be equal to be
+ // relatable.
+ Ok(t)
+ }
+ _ => relate::super_relate_tys(self, t, t),
+ };
+
+ self.cache.insert(t, result.clone());
+ return result;
+ }
+
+ fn regions(
+ &mut self,
+ r: ty::Region<'tcx>,
+ r2: ty::Region<'tcx>,
+ ) -> RelateResult<'tcx, ty::Region<'tcx>> {
+ assert_eq!(r, r2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
+
+ debug!("generalize: regions r={:?}", r);
+
+ match *r {
+ // Never make variables for regions bound within the type itself,
+ // nor for erased regions.
+ ty::ReLateBound(..) | ty::ReErased => {
+ return Ok(r);
+ }
+
+ ty::RePlaceholder(..)
+ | ty::ReVar(..)
+ | ty::ReEmpty(_)
+ | ty::ReStatic
+ | ty::ReEarlyBound(..)
+ | ty::ReFree(..) => {
+ // see common code below
+ }
+ }
+
+ // If we are in an invariant context, we can re-use the region
+ // as is, unless it happens to be in some universe that we
+ // can't name. (In the case of a region *variable*, we could
+ // use it if we promoted it into our universe, but we don't
+ // bother.)
+ if let ty::Invariant = self.ambient_variance {
+ let r_universe = self.infcx.universe_of_region(r);
+ if self.for_universe.can_name(r_universe) {
+ return Ok(r);
+ }
+ }
+
+ // FIXME: This is non-ideal because we don't give a
+ // very descriptive origin for this region variable.
+ Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.cause.span), self.for_universe))
+ }
+
+ fn consts(
+ &mut self,
+ c: ty::Const<'tcx>,
+ c2: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ assert_eq!(c, c2); // we are abusing TypeRelation here; both LHS and RHS ought to be ==
+
+ match c.kind() {
+ ty::ConstKind::Infer(InferConst::Var(vid)) => {
+ let mut inner = self.infcx.inner.borrow_mut();
+ let variable_table = &mut inner.const_unification_table();
+ let var_value = variable_table.probe_value(vid);
+ match var_value.val {
+ ConstVariableValue::Known { value: u } => {
+ drop(inner);
+ self.relate(u, u)
+ }
+ ConstVariableValue::Unknown { universe } => {
+ if self.for_universe.can_name(universe) {
+ Ok(c)
+ } else {
+ let new_var_id = variable_table.new_key(ConstVarValue {
+ origin: var_value.origin,
+ val: ConstVariableValue::Unknown { universe: self.for_universe },
+ });
+ Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
+ }
+ }
+ }
+ }
+ ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
+ if self.tcx().lazy_normalization() =>
+ {
+ assert_eq!(promoted, None);
+ let substs = self.relate_with_variance(
+ ty::Variance::Invariant,
+ ty::VarianceDiagInfo::default(),
+ substs,
+ substs,
+ )?;
+ Ok(self.tcx().mk_const(ty::ConstS {
+ ty: c.ty(),
+ kind: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
+ }))
+ }
+ _ => relate::super_relate_consts(self, c, c),
+ }
+ }
+}
+
+pub trait ConstEquateRelation<'tcx>: TypeRelation<'tcx> {
+ /// Register an obligation that both constants must be equal to each other.
+ ///
+ /// If they aren't equal then the relation doesn't hold.
+ fn const_equate_obligation(&mut self, a: ty::Const<'tcx>, b: ty::Const<'tcx>);
+}
+
+pub fn const_unification_error<'tcx>(
+ a_is_expected: bool,
+ (a, b): (ty::Const<'tcx>, ty::Const<'tcx>),
+) -> TypeError<'tcx> {
+ TypeError::ConstMismatch(ExpectedFound::new(a_is_expected, a, b))
+}
+
+fn int_unification_error<'tcx>(
+ a_is_expected: bool,
+ v: (ty::IntVarValue, ty::IntVarValue),
+) -> TypeError<'tcx> {
+ let (a, b) = v;
+ TypeError::IntMismatch(ExpectedFound::new(a_is_expected, a, b))
+}
+
+fn float_unification_error<'tcx>(
+ a_is_expected: bool,
+ v: (ty::FloatVarValue, ty::FloatVarValue),
+) -> TypeError<'tcx> {
+ let (ty::FloatVarValue(a), ty::FloatVarValue(b)) = v;
+ TypeError::FloatMismatch(ExpectedFound::new(a_is_expected, a, b))
+}
+
+struct ConstInferUnifier<'cx, 'tcx> {
+ infcx: &'cx InferCtxt<'cx, 'tcx>,
+
+ span: Span,
+
+ param_env: ty::ParamEnv<'tcx>,
+
+ for_universe: ty::UniverseIndex,
+
+ /// The vid of the const variable that is in the process of being
+ /// instantiated; if we find this within the const we are folding,
+ /// that means we would have created a cyclic const.
+ target_vid: ty::ConstVid<'tcx>,
+}
+
+// We use `TypeRelation` here to propagate `RelateResult` upwards.
+//
+// Both inputs are expected to be the same.
+impl<'tcx> TypeRelation<'tcx> for ConstInferUnifier<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+
+ fn param_env(&self) -> ty::ParamEnv<'tcx> {
+ self.param_env
+ }
+
+ fn tag(&self) -> &'static str {
+ "ConstInferUnifier"
+ }
+
+ fn a_is_expected(&self) -> bool {
+ true
+ }
+
+ fn relate_with_variance<T: Relate<'tcx>>(
+ &mut self,
+ _variance: ty::Variance,
+ _info: ty::VarianceDiagInfo<'tcx>,
+ a: T,
+ b: T,
+ ) -> RelateResult<'tcx, T> {
+ // We don't care about variance here.
+ self.relate(a, b)
+ }
+
+ fn binders<T>(
+ &mut self,
+ a: ty::Binder<'tcx, T>,
+ b: ty::Binder<'tcx, T>,
+ ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
+ where
+ T: Relate<'tcx>,
+ {
+ Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn tys(&mut self, t: Ty<'tcx>, _t: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
+ debug_assert_eq!(t, _t);
+ debug!("ConstInferUnifier: t={:?}", t);
+
+ match t.kind() {
+ &ty::Infer(ty::TyVar(vid)) => {
+ let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid);
+ let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid);
+ match probe {
+ TypeVariableValue::Known { value: u } => {
+ debug!("ConstOccursChecker: known value {:?}", u);
+ self.tys(u, u)
+ }
+ TypeVariableValue::Unknown { universe } => {
+ if self.for_universe.can_name(universe) {
+ return Ok(t);
+ }
+
+ let origin =
+ *self.infcx.inner.borrow_mut().type_variables().var_origin(vid);
+ let new_var_id = self
+ .infcx
+ .inner
+ .borrow_mut()
+ .type_variables()
+ .new_var(self.for_universe, origin);
+ let u = self.tcx().mk_ty_var(new_var_id);
+ debug!(
+ "ConstInferUnifier: replacing original vid={:?} with new={:?}",
+ vid, u
+ );
+ Ok(u)
+ }
+ }
+ }
+ ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => Ok(t),
+ _ => relate::super_relate_tys(self, t, t),
+ }
+ }
+
+ fn regions(
+ &mut self,
+ r: ty::Region<'tcx>,
+ _r: ty::Region<'tcx>,
+ ) -> RelateResult<'tcx, ty::Region<'tcx>> {
+ debug_assert_eq!(r, _r);
+ debug!("ConstInferUnifier: r={:?}", r);
+
+ match *r {
+ // Never make variables for regions bound within the type itself,
+ // nor for erased regions.
+ ty::ReLateBound(..) | ty::ReErased => {
+ return Ok(r);
+ }
+
+ ty::RePlaceholder(..)
+ | ty::ReVar(..)
+ | ty::ReEmpty(_)
+ | ty::ReStatic
+ | ty::ReEarlyBound(..)
+ | ty::ReFree(..) => {
+ // see common code below
+ }
+ }
+
+ let r_universe = self.infcx.universe_of_region(r);
+ if self.for_universe.can_name(r_universe) {
+ return Ok(r);
+ } else {
+ // FIXME: This is non-ideal because we don't give a
+ // very descriptive origin for this region variable.
+ Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.span), self.for_universe))
+ }
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn consts(
+ &mut self,
+ c: ty::Const<'tcx>,
+ _c: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ debug_assert_eq!(c, _c);
+ debug!("ConstInferUnifier: c={:?}", c);
+
+ match c.kind() {
+ ty::ConstKind::Infer(InferConst::Var(vid)) => {
+ // Check if the current unification would end up
+ // unifying `target_vid` with a const which contains
+ // an inference variable which is unioned with `target_vid`.
+ //
+ // Not doing so can easily result in stack overflows.
+ if self
+ .infcx
+ .inner
+ .borrow_mut()
+ .const_unification_table()
+ .unioned(self.target_vid, vid)
+ {
+ return Err(TypeError::CyclicConst(c));
+ }
+
+ let var_value =
+ self.infcx.inner.borrow_mut().const_unification_table().probe_value(vid);
+ match var_value.val {
+ ConstVariableValue::Known { value: u } => self.consts(u, u),
+ ConstVariableValue::Unknown { universe } => {
+ if self.for_universe.can_name(universe) {
+ Ok(c)
+ } else {
+ let new_var_id =
+ self.infcx.inner.borrow_mut().const_unification_table().new_key(
+ ConstVarValue {
+ origin: var_value.origin,
+ val: ConstVariableValue::Unknown {
+ universe: self.for_universe,
+ },
+ },
+ );
+ Ok(self.tcx().mk_const_var(new_var_id, c.ty()))
+ }
+ }
+ }
+ }
+ ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted })
+ if self.tcx().lazy_normalization() =>
+ {
+ assert_eq!(promoted, None);
+ let substs = self.relate_with_variance(
+ ty::Variance::Invariant,
+ ty::VarianceDiagInfo::default(),
+ substs,
+ substs,
+ )?;
+ Ok(self.tcx().mk_const(ty::ConstS {
+ ty: c.ty(),
+ kind: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }),
+ }))
+ }
+ _ => relate::super_relate_consts(self, c, c),
+ }
+ }
+}