summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/error_reporting/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/error_reporting/mod.rs')
-rw-r--r--compiler/rustc_infer/src/infer/error_reporting/mod.rs3121
1 files changed, 3121 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/error_reporting/mod.rs b/compiler/rustc_infer/src/infer/error_reporting/mod.rs
new file mode 100644
index 000000000..20864c657
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/error_reporting/mod.rs
@@ -0,0 +1,3121 @@
+//! Error Reporting Code for the inference engine
+//!
+//! Because of the way inference, and in particular region inference,
+//! works, it often happens that errors are not detected until far after
+//! the relevant line of code has been type-checked. Therefore, there is
+//! an elaborate system to track why a particular constraint in the
+//! inference graph arose so that we can explain to the user what gave
+//! rise to a particular error.
+//!
+//! The system is based around a set of "origin" types. An "origin" is the
+//! reason that a constraint or inference variable arose. There are
+//! different "origin" enums for different kinds of constraints/variables
+//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
+//! a span, but also more information so that we can generate a meaningful
+//! error message.
+//!
+//! Having a catalog of all the different reasons an error can arise is
+//! also useful for other reasons, like cross-referencing FAQs etc, though
+//! we are not really taking advantage of this yet.
+//!
+//! # Region Inference
+//!
+//! Region inference is particularly tricky because it always succeeds "in
+//! the moment" and simply registers a constraint. Then, at the end, we
+//! can compute the full graph and report errors, so we need to be able to
+//! store and later report what gave rise to the conflicting constraints.
+//!
+//! # Subtype Trace
+//!
+//! Determining whether `T1 <: T2` often involves a number of subtypes and
+//! subconstraints along the way. A "TypeTrace" is an extended version
+//! of an origin that traces the types and other values that were being
+//! compared. It is not necessarily comprehensive (in fact, at the time of
+//! this writing it only tracks the root values being compared) but I'd
+//! like to extend it to include significant "waypoints". For example, if
+//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
+//! <: T4` fails, I'd like the trace to include enough information to say
+//! "in the 2nd element of the tuple". Similarly, failures when comparing
+//! arguments or return types in fn types should be able to cite the
+//! specific position, etc.
+//!
+//! # Reality vs plan
+//!
+//! Of course, there is still a LOT of code in typeck that has yet to be
+//! ported to this system, and which relies on string concatenation at the
+//! time of error detection.
+
+use super::lexical_region_resolve::RegionResolutionError;
+use super::region_constraints::GenericKind;
+use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
+
+use crate::infer;
+use crate::infer::error_reporting::nice_region_error::find_anon_type::find_anon_type;
+use crate::traits::error_reporting::report_object_safety_error;
+use crate::traits::{
+ IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
+ StatementAsExpression,
+};
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{pluralize, struct_span_err, Diagnostic, ErrorGuaranteed};
+use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::Node;
+use rustc_middle::dep_graph::DepContext;
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::{
+ self, error::TypeError, Binder, List, Region, Subst, Ty, TyCtxt, TypeFoldable,
+ TypeSuperVisitable, TypeVisitable,
+};
+use rustc_span::{sym, symbol::kw, BytePos, DesugaringKind, Pos, Span};
+use rustc_target::spec::abi;
+use std::ops::ControlFlow;
+use std::{cmp, fmt, iter};
+
+mod note;
+
+mod need_type_info;
+pub use need_type_info::TypeAnnotationNeeded;
+
+pub mod nice_region_error;
+
+pub(super) fn note_and_explain_region<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ err: &mut Diagnostic,
+ prefix: &str,
+ region: ty::Region<'tcx>,
+ suffix: &str,
+ alt_span: Option<Span>,
+) {
+ let (description, span) = match *region {
+ ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
+ msg_span_from_free_region(tcx, region, alt_span)
+ }
+
+ ty::ReEmpty(ty::UniverseIndex::ROOT) => ("the empty lifetime".to_owned(), alt_span),
+
+ // uh oh, hope no user ever sees THIS
+ ty::ReEmpty(ui) => (format!("the empty lifetime in universe {:?}", ui), alt_span),
+
+ ty::RePlaceholder(_) => return,
+
+ // FIXME(#13998) RePlaceholder should probably print like
+ // ReFree rather than dumping Debug output on the user.
+ //
+ // We shouldn't really be having unification failures with ReVar
+ // and ReLateBound though.
+ ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
+ (format!("lifetime {:?}", region), alt_span)
+ }
+ };
+
+ emit_msg_span(err, prefix, description, span, suffix);
+}
+
+fn explain_free_region<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ err: &mut Diagnostic,
+ prefix: &str,
+ region: ty::Region<'tcx>,
+ suffix: &str,
+) {
+ let (description, span) = msg_span_from_free_region(tcx, region, None);
+
+ label_msg_span(err, prefix, description, span, suffix);
+}
+
+fn msg_span_from_free_region<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ region: ty::Region<'tcx>,
+ alt_span: Option<Span>,
+) -> (String, Option<Span>) {
+ match *region {
+ ty::ReEarlyBound(_) | ty::ReFree(_) => {
+ let (msg, span) = msg_span_from_early_bound_and_free_regions(tcx, region);
+ (msg, Some(span))
+ }
+ ty::ReStatic => ("the static lifetime".to_owned(), alt_span),
+ ty::ReEmpty(ty::UniverseIndex::ROOT) => ("an empty lifetime".to_owned(), alt_span),
+ ty::ReEmpty(ui) => (format!("an empty lifetime in universe {:?}", ui), alt_span),
+ _ => bug!("{:?}", region),
+ }
+}
+
+fn msg_span_from_early_bound_and_free_regions<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ region: ty::Region<'tcx>,
+) -> (String, Span) {
+ let scope = region.free_region_binding_scope(tcx).expect_local();
+ match *region {
+ ty::ReEarlyBound(ref br) => {
+ let mut sp = tcx.def_span(scope);
+ if let Some(param) =
+ tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(br.name))
+ {
+ sp = param.span;
+ }
+ let text = if br.has_name() {
+ format!("the lifetime `{}` as defined here", br.name)
+ } else {
+ format!("the anonymous lifetime as defined here")
+ };
+ (text, sp)
+ }
+ ty::ReFree(ref fr) => {
+ if !fr.bound_region.is_named()
+ && let Some((ty, _)) = find_anon_type(tcx, region, &fr.bound_region)
+ {
+ ("the anonymous lifetime defined here".to_string(), ty.span)
+ } else {
+ match fr.bound_region {
+ ty::BoundRegionKind::BrNamed(_, name) => {
+ let mut sp = tcx.def_span(scope);
+ if let Some(param) =
+ tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(name))
+ {
+ sp = param.span;
+ }
+ let text = if name == kw::UnderscoreLifetime {
+ format!("the anonymous lifetime as defined here")
+ } else {
+ format!("the lifetime `{}` as defined here", name)
+ };
+ (text, sp)
+ }
+ ty::BrAnon(idx) => (
+ format!("the anonymous lifetime #{} defined here", idx + 1),
+ tcx.def_span(scope)
+ ),
+ _ => (
+ format!("the lifetime `{}` as defined here", region),
+ tcx.def_span(scope),
+ ),
+ }
+ }
+ }
+ _ => bug!(),
+ }
+}
+
+fn emit_msg_span(
+ err: &mut Diagnostic,
+ prefix: &str,
+ description: String,
+ span: Option<Span>,
+ suffix: &str,
+) {
+ let message = format!("{}{}{}", prefix, description, suffix);
+
+ if let Some(span) = span {
+ err.span_note(span, &message);
+ } else {
+ err.note(&message);
+ }
+}
+
+fn label_msg_span(
+ err: &mut Diagnostic,
+ prefix: &str,
+ description: String,
+ span: Option<Span>,
+ suffix: &str,
+) {
+ let message = format!("{}{}{}", prefix, description, suffix);
+
+ if let Some(span) = span {
+ err.span_label(span, &message);
+ } else {
+ err.note(&message);
+ }
+}
+
+pub fn unexpected_hidden_region_diagnostic<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ span: Span,
+ hidden_ty: Ty<'tcx>,
+ hidden_region: ty::Region<'tcx>,
+ opaque_ty: ty::OpaqueTypeKey<'tcx>,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let opaque_ty = tcx.mk_opaque(opaque_ty.def_id.to_def_id(), opaque_ty.substs);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0700,
+ "hidden type for `{opaque_ty}` captures lifetime that does not appear in bounds",
+ );
+
+ // Explain the region we are capturing.
+ match *hidden_region {
+ ty::ReEmpty(ty::UniverseIndex::ROOT) => {
+ // All lifetimes shorter than the function body are `empty` in
+ // lexical region resolution. The default explanation of "an empty
+ // lifetime" isn't really accurate here.
+ let message = format!(
+ "hidden type `{}` captures lifetime smaller than the function body",
+ hidden_ty
+ );
+ err.span_note(span, &message);
+ }
+ ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic | ty::ReEmpty(_) => {
+ // Assuming regionck succeeded (*), we ought to always be
+ // capturing *some* region from the fn header, and hence it
+ // ought to be free. So under normal circumstances, we will go
+ // down this path which gives a decent human readable
+ // explanation.
+ //
+ // (*) if not, the `tainted_by_errors` field would be set to
+ // `Some(ErrorGuaranteed)` in any case, so we wouldn't be here at all.
+ explain_free_region(
+ tcx,
+ &mut err,
+ &format!("hidden type `{}` captures ", hidden_ty),
+ hidden_region,
+ "",
+ );
+ if let Some(reg_info) = tcx.is_suitable_region(hidden_region) {
+ let fn_returns = tcx.return_type_impl_or_dyn_traits(reg_info.def_id);
+ nice_region_error::suggest_new_region_bound(
+ tcx,
+ &mut err,
+ fn_returns,
+ hidden_region.to_string(),
+ None,
+ format!("captures `{}`", hidden_region),
+ None,
+ )
+ }
+ }
+ _ => {
+ // Ugh. This is a painful case: the hidden region is not one
+ // that we can easily summarize or explain. This can happen
+ // in a case like
+ // `src/test/ui/multiple-lifetimes/ordinary-bounds-unsuited.rs`:
+ //
+ // ```
+ // fn upper_bounds<'a, 'b>(a: Ordinary<'a>, b: Ordinary<'b>) -> impl Trait<'a, 'b> {
+ // if condition() { a } else { b }
+ // }
+ // ```
+ //
+ // Here the captured lifetime is the intersection of `'a` and
+ // `'b`, which we can't quite express.
+
+ // We can at least report a really cryptic error for now.
+ note_and_explain_region(
+ tcx,
+ &mut err,
+ &format!("hidden type `{}` captures ", hidden_ty),
+ hidden_region,
+ "",
+ None,
+ );
+ }
+ }
+
+ err
+}
+
+impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
+ pub fn report_region_errors(
+ &self,
+ generic_param_scope: LocalDefId,
+ errors: &[RegionResolutionError<'tcx>],
+ ) {
+ debug!("report_region_errors(): {} errors to start", errors.len());
+
+ // try to pre-process the errors, which will group some of them
+ // together into a `ProcessedErrors` group:
+ let errors = self.process_errors(errors);
+
+ debug!("report_region_errors: {} errors after preprocessing", errors.len());
+
+ for error in errors {
+ debug!("report_region_errors: error = {:?}", error);
+
+ if !self.try_report_nice_region_error(&error) {
+ match error.clone() {
+ // These errors could indicate all manner of different
+ // problems with many different solutions. Rather
+ // than generate a "one size fits all" error, what we
+ // attempt to do is go through a number of specific
+ // scenarios and try to find the best way to present
+ // the error. If all of these fails, we fall back to a rather
+ // general bit of code that displays the error information
+ RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
+ if sub.is_placeholder() || sup.is_placeholder() {
+ self.report_placeholder_failure(origin, sub, sup).emit();
+ } else {
+ self.report_concrete_failure(origin, sub, sup).emit();
+ }
+ }
+
+ RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
+ self.report_generic_bound_failure(
+ generic_param_scope,
+ origin.span(),
+ Some(origin),
+ param_ty,
+ sub,
+ );
+ }
+
+ RegionResolutionError::SubSupConflict(
+ _,
+ var_origin,
+ sub_origin,
+ sub_r,
+ sup_origin,
+ sup_r,
+ _,
+ ) => {
+ if sub_r.is_placeholder() {
+ self.report_placeholder_failure(sub_origin, sub_r, sup_r).emit();
+ } else if sup_r.is_placeholder() {
+ self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
+ } else {
+ self.report_sub_sup_conflict(
+ var_origin, sub_origin, sub_r, sup_origin, sup_r,
+ );
+ }
+ }
+
+ RegionResolutionError::UpperBoundUniverseConflict(
+ _,
+ _,
+ var_universe,
+ sup_origin,
+ sup_r,
+ ) => {
+ assert!(sup_r.is_placeholder());
+
+ // Make a dummy value for the "sub region" --
+ // this is the initial value of the
+ // placeholder. In practice, we expect more
+ // tailored errors that don't really use this
+ // value.
+ let sub_r = self.tcx.mk_region(ty::ReEmpty(var_universe));
+
+ self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
+ }
+ }
+ }
+ }
+ }
+
+ // This method goes through all the errors and try to group certain types
+ // of error together, for the purpose of suggesting explicit lifetime
+ // parameters to the user. This is done so that we can have a more
+ // complete view of what lifetimes should be the same.
+ // If the return value is an empty vector, it means that processing
+ // failed (so the return value of this method should not be used).
+ //
+ // The method also attempts to weed out messages that seem like
+ // duplicates that will be unhelpful to the end-user. But
+ // obviously it never weeds out ALL errors.
+ fn process_errors(
+ &self,
+ errors: &[RegionResolutionError<'tcx>],
+ ) -> Vec<RegionResolutionError<'tcx>> {
+ debug!("process_errors()");
+
+ // We want to avoid reporting generic-bound failures if we can
+ // avoid it: these have a very high rate of being unhelpful in
+ // practice. This is because they are basically secondary
+ // checks that test the state of the region graph after the
+ // rest of inference is done, and the other kinds of errors
+ // indicate that the region constraint graph is internally
+ // inconsistent, so these test results are likely to be
+ // meaningless.
+ //
+ // Therefore, we filter them out of the list unless they are
+ // the only thing in the list.
+
+ let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
+ RegionResolutionError::GenericBoundFailure(..) => true,
+ RegionResolutionError::ConcreteFailure(..)
+ | RegionResolutionError::SubSupConflict(..)
+ | RegionResolutionError::UpperBoundUniverseConflict(..) => false,
+ };
+
+ let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
+ errors.to_owned()
+ } else {
+ errors.iter().filter(|&e| !is_bound_failure(e)).cloned().collect()
+ };
+
+ // sort the errors by span, for better error message stability.
+ errors.sort_by_key(|u| match *u {
+ RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
+ RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
+ RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _, _) => rvo.span(),
+ RegionResolutionError::UpperBoundUniverseConflict(_, ref rvo, _, _, _) => rvo.span(),
+ });
+ errors
+ }
+
+ /// Adds a note if the types come from similarly named crates
+ fn check_and_note_conflicting_crates(&self, err: &mut Diagnostic, terr: &TypeError<'tcx>) {
+ use hir::def_id::CrateNum;
+ use rustc_hir::definitions::DisambiguatedDefPathData;
+ use ty::print::Printer;
+ use ty::subst::GenericArg;
+
+ struct AbsolutePathPrinter<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ }
+
+ struct NonTrivialPath;
+
+ impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
+ type Error = NonTrivialPath;
+
+ type Path = Vec<String>;
+ type Region = !;
+ type Type = !;
+ type DynExistential = !;
+ type Const = !;
+
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
+ Err(NonTrivialPath)
+ }
+
+ fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
+ Err(NonTrivialPath)
+ }
+
+ fn print_dyn_existential(
+ self,
+ _predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+ ) -> Result<Self::DynExistential, Self::Error> {
+ Err(NonTrivialPath)
+ }
+
+ fn print_const(self, _ct: ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
+ Err(NonTrivialPath)
+ }
+
+ fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
+ Ok(vec![self.tcx.crate_name(cnum).to_string()])
+ }
+ fn path_qualified(
+ self,
+ _self_ty: Ty<'tcx>,
+ _trait_ref: Option<ty::TraitRef<'tcx>>,
+ ) -> Result<Self::Path, Self::Error> {
+ Err(NonTrivialPath)
+ }
+
+ fn path_append_impl(
+ self,
+ _print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
+ _disambiguated_data: &DisambiguatedDefPathData,
+ _self_ty: Ty<'tcx>,
+ _trait_ref: Option<ty::TraitRef<'tcx>>,
+ ) -> Result<Self::Path, Self::Error> {
+ Err(NonTrivialPath)
+ }
+ fn path_append(
+ self,
+ print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
+ disambiguated_data: &DisambiguatedDefPathData,
+ ) -> Result<Self::Path, Self::Error> {
+ let mut path = print_prefix(self)?;
+ path.push(disambiguated_data.to_string());
+ Ok(path)
+ }
+ fn path_generic_args(
+ self,
+ print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
+ _args: &[GenericArg<'tcx>],
+ ) -> Result<Self::Path, Self::Error> {
+ print_prefix(self)
+ }
+ }
+
+ let report_path_match = |err: &mut Diagnostic, did1: DefId, did2: DefId| {
+ // Only external crates, if either is from a local
+ // module we could have false positives
+ if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
+ let abs_path =
+ |def_id| AbsolutePathPrinter { tcx: self.tcx }.print_def_path(def_id, &[]);
+
+ // We compare strings because DefPath can be different
+ // for imported and non-imported crates
+ let same_path = || -> Result<_, NonTrivialPath> {
+ Ok(self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2)
+ || abs_path(did1)? == abs_path(did2)?)
+ };
+ if same_path().unwrap_or(false) {
+ let crate_name = self.tcx.crate_name(did1.krate);
+ err.note(&format!(
+ "perhaps two different versions of crate `{}` are being used?",
+ crate_name
+ ));
+ }
+ }
+ };
+ match *terr {
+ TypeError::Sorts(ref exp_found) => {
+ // if they are both "path types", there's a chance of ambiguity
+ // due to different versions of the same crate
+ if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _)) =
+ (exp_found.expected.kind(), exp_found.found.kind())
+ {
+ report_path_match(err, exp_adt.did(), found_adt.did());
+ }
+ }
+ TypeError::Traits(ref exp_found) => {
+ report_path_match(err, exp_found.expected, exp_found.found);
+ }
+ _ => (), // FIXME(#22750) handle traits and stuff
+ }
+ }
+
+ fn note_error_origin(
+ &self,
+ err: &mut Diagnostic,
+ cause: &ObligationCause<'tcx>,
+ exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
+ terr: &TypeError<'tcx>,
+ ) {
+ match *cause.code() {
+ ObligationCauseCode::Pattern { origin_expr: true, span: Some(span), root_ty } => {
+ let ty = self.resolve_vars_if_possible(root_ty);
+ if !matches!(ty.kind(), ty::Infer(ty::InferTy::TyVar(_) | ty::InferTy::FreshTy(_)))
+ {
+ // don't show type `_`
+ if span.desugaring_kind() == Some(DesugaringKind::ForLoop)
+ && let ty::Adt(def, substs) = ty.kind()
+ && Some(def.did()) == self.tcx.get_diagnostic_item(sym::Option)
+ {
+ err.span_label(span, format!("this is an iterator with items of type `{}`", substs.type_at(0)));
+ } else {
+ err.span_label(span, format!("this expression has type `{}`", ty));
+ }
+ }
+ if let Some(ty::error::ExpectedFound { found, .. }) = exp_found
+ && ty.is_box() && ty.boxed_ty() == found
+ && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span)
+ {
+ err.span_suggestion(
+ span,
+ "consider dereferencing the boxed value",
+ format!("*{}", snippet),
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ ObligationCauseCode::Pattern { origin_expr: false, span: Some(span), .. } => {
+ err.span_label(span, "expected due to this");
+ }
+ ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
+ arm_block_id,
+ arm_span,
+ arm_ty,
+ prior_arm_block_id,
+ prior_arm_span,
+ prior_arm_ty,
+ source,
+ ref prior_arms,
+ scrut_hir_id,
+ opt_suggest_box_span,
+ scrut_span,
+ ..
+ }) => match source {
+ hir::MatchSource::TryDesugar => {
+ if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
+ let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
+ let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
+ let arg_expr = args.first().expect("try desugaring call w/out arg");
+ self.in_progress_typeck_results.and_then(|typeck_results| {
+ typeck_results.borrow().expr_ty_opt(arg_expr)
+ })
+ } else {
+ bug!("try desugaring w/out call expr as scrutinee");
+ };
+
+ match scrut_ty {
+ Some(ty) if expected == ty => {
+ let source_map = self.tcx.sess.source_map();
+ err.span_suggestion(
+ source_map.end_point(cause.span),
+ "try removing this `?`",
+ "",
+ Applicability::MachineApplicable,
+ );
+ }
+ _ => {}
+ }
+ }
+ }
+ _ => {
+ // `prior_arm_ty` can be `!`, `expected` will have better info when present.
+ let t = self.resolve_vars_if_possible(match exp_found {
+ Some(ty::error::ExpectedFound { expected, .. }) => expected,
+ _ => prior_arm_ty,
+ });
+ let source_map = self.tcx.sess.source_map();
+ let mut any_multiline_arm = source_map.is_multiline(arm_span);
+ if prior_arms.len() <= 4 {
+ for sp in prior_arms {
+ any_multiline_arm |= source_map.is_multiline(*sp);
+ err.span_label(*sp, format!("this is found to be of type `{}`", t));
+ }
+ } else if let Some(sp) = prior_arms.last() {
+ any_multiline_arm |= source_map.is_multiline(*sp);
+ err.span_label(
+ *sp,
+ format!("this and all prior arms are found to be of type `{}`", t),
+ );
+ }
+ let outer_error_span = if any_multiline_arm {
+ // Cover just `match` and the scrutinee expression, not
+ // the entire match body, to reduce diagram noise.
+ cause.span.shrink_to_lo().to(scrut_span)
+ } else {
+ cause.span
+ };
+ let msg = "`match` arms have incompatible types";
+ err.span_label(outer_error_span, msg);
+ self.suggest_remove_semi_or_return_binding(
+ err,
+ prior_arm_block_id,
+ prior_arm_ty,
+ prior_arm_span,
+ arm_block_id,
+ arm_ty,
+ arm_span,
+ );
+ if let Some(ret_sp) = opt_suggest_box_span {
+ // Get return type span and point to it.
+ self.suggest_boxing_for_return_impl_trait(
+ err,
+ ret_sp,
+ prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
+ );
+ }
+ }
+ },
+ ObligationCauseCode::IfExpression(box IfExpressionCause {
+ then_id,
+ else_id,
+ then_ty,
+ else_ty,
+ outer_span,
+ opt_suggest_box_span,
+ }) => {
+ let then_span = self.find_block_span_from_hir_id(then_id);
+ let else_span = self.find_block_span_from_hir_id(else_id);
+ err.span_label(then_span, "expected because of this");
+ if let Some(sp) = outer_span {
+ err.span_label(sp, "`if` and `else` have incompatible types");
+ }
+ self.suggest_remove_semi_or_return_binding(
+ err,
+ Some(then_id),
+ then_ty,
+ then_span,
+ Some(else_id),
+ else_ty,
+ else_span,
+ );
+ if let Some(ret_sp) = opt_suggest_box_span {
+ self.suggest_boxing_for_return_impl_trait(
+ err,
+ ret_sp,
+ [then_span, else_span].into_iter(),
+ );
+ }
+ }
+ ObligationCauseCode::LetElse => {
+ err.help("try adding a diverging expression, such as `return` or `panic!(..)`");
+ err.help("...or use `match` instead of `let...else`");
+ }
+ _ => {
+ if let ObligationCauseCode::BindingObligation(_, binding_span) =
+ cause.code().peel_derives()
+ {
+ if matches!(terr, TypeError::RegionsPlaceholderMismatch) {
+ err.span_note(*binding_span, "the lifetime requirement is introduced here");
+ }
+ }
+ }
+ }
+ }
+
+ fn suggest_remove_semi_or_return_binding(
+ &self,
+ err: &mut Diagnostic,
+ first_id: Option<hir::HirId>,
+ first_ty: Ty<'tcx>,
+ first_span: Span,
+ second_id: Option<hir::HirId>,
+ second_ty: Ty<'tcx>,
+ second_span: Span,
+ ) {
+ let remove_semicolon = [
+ (first_id, self.resolve_vars_if_possible(second_ty)),
+ (second_id, self.resolve_vars_if_possible(first_ty)),
+ ]
+ .into_iter()
+ .find_map(|(id, ty)| {
+ let hir::Node::Block(blk) = self.tcx.hir().get(id?) else { return None };
+ self.could_remove_semicolon(blk, ty)
+ });
+ match remove_semicolon {
+ Some((sp, StatementAsExpression::NeedsBoxing)) => {
+ err.multipart_suggestion(
+ "consider removing this semicolon and boxing the expressions",
+ vec![
+ (first_span.shrink_to_lo(), "Box::new(".to_string()),
+ (first_span.shrink_to_hi(), ")".to_string()),
+ (second_span.shrink_to_lo(), "Box::new(".to_string()),
+ (second_span.shrink_to_hi(), ")".to_string()),
+ (sp, String::new()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ }
+ Some((sp, StatementAsExpression::CorrectType)) => {
+ err.span_suggestion_short(
+ sp,
+ "consider removing this semicolon",
+ "",
+ Applicability::MachineApplicable,
+ );
+ }
+ None => {
+ for (id, ty) in [(first_id, second_ty), (second_id, first_ty)] {
+ if let Some(id) = id
+ && let hir::Node::Block(blk) = self.tcx.hir().get(id)
+ && self.consider_returning_binding(blk, ty, err)
+ {
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ fn suggest_boxing_for_return_impl_trait(
+ &self,
+ err: &mut Diagnostic,
+ return_sp: Span,
+ arm_spans: impl Iterator<Item = Span>,
+ ) {
+ err.multipart_suggestion(
+ "you could change the return type to be a boxed trait object",
+ vec![
+ (return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
+ (return_sp.shrink_to_hi(), ">".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ let sugg = arm_spans
+ .flat_map(|sp| {
+ [(sp.shrink_to_lo(), "Box::new(".to_string()), (sp.shrink_to_hi(), ")".to_string())]
+ .into_iter()
+ })
+ .collect::<Vec<_>>();
+ err.multipart_suggestion(
+ "if you change the return type to expect trait objects, box the returned expressions",
+ sugg,
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ /// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
+ /// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
+ /// populate `other_value` with `other_ty`.
+ ///
+ /// ```text
+ /// Foo<Bar<Qux>>
+ /// ^^^^--------^ this is highlighted
+ /// | |
+ /// | this type argument is exactly the same as the other type, not highlighted
+ /// this is highlighted
+ /// Bar<Qux>
+ /// -------- this type is the same as a type argument in the other type, not highlighted
+ /// ```
+ fn highlight_outer(
+ &self,
+ value: &mut DiagnosticStyledString,
+ other_value: &mut DiagnosticStyledString,
+ name: String,
+ sub: ty::subst::SubstsRef<'tcx>,
+ pos: usize,
+ other_ty: Ty<'tcx>,
+ ) {
+ // `value` and `other_value` hold two incomplete type representation for display.
+ // `name` is the path of both types being compared. `sub`
+ value.push_highlighted(name);
+ let len = sub.len();
+ if len > 0 {
+ value.push_highlighted("<");
+ }
+
+ // Output the lifetimes for the first type
+ let lifetimes = sub
+ .regions()
+ .map(|lifetime| {
+ let s = lifetime.to_string();
+ if s.is_empty() { "'_".to_string() } else { s }
+ })
+ .collect::<Vec<_>>()
+ .join(", ");
+ if !lifetimes.is_empty() {
+ if sub.regions().count() < len {
+ value.push_normal(lifetimes + ", ");
+ } else {
+ value.push_normal(lifetimes);
+ }
+ }
+
+ // Highlight all the type arguments that aren't at `pos` and compare the type argument at
+ // `pos` and `other_ty`.
+ for (i, type_arg) in sub.types().enumerate() {
+ if i == pos {
+ let values = self.cmp(type_arg, other_ty);
+ value.0.extend((values.0).0);
+ other_value.0.extend((values.1).0);
+ } else {
+ value.push_highlighted(type_arg.to_string());
+ }
+
+ if len > 0 && i != len - 1 {
+ value.push_normal(", ");
+ }
+ }
+ if len > 0 {
+ value.push_highlighted(">");
+ }
+ }
+
+ /// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
+ /// as that is the difference to the other type.
+ ///
+ /// For the following code:
+ ///
+ /// ```ignore (illustrative)
+ /// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
+ /// ```
+ ///
+ /// The type error output will behave in the following way:
+ ///
+ /// ```text
+ /// Foo<Bar<Qux>>
+ /// ^^^^--------^ this is highlighted
+ /// | |
+ /// | this type argument is exactly the same as the other type, not highlighted
+ /// this is highlighted
+ /// Bar<Qux>
+ /// -------- this type is the same as a type argument in the other type, not highlighted
+ /// ```
+ fn cmp_type_arg(
+ &self,
+ mut t1_out: &mut DiagnosticStyledString,
+ mut t2_out: &mut DiagnosticStyledString,
+ path: String,
+ sub: &'tcx [ty::GenericArg<'tcx>],
+ other_path: String,
+ other_ty: Ty<'tcx>,
+ ) -> Option<()> {
+ // FIXME/HACK: Go back to `SubstsRef` to use its inherent methods,
+ // ideally that shouldn't be necessary.
+ let sub = self.tcx.intern_substs(sub);
+ for (i, ta) in sub.types().enumerate() {
+ if ta == other_ty {
+ self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, other_ty);
+ return Some(());
+ }
+ if let ty::Adt(def, _) = ta.kind() {
+ let path_ = self.tcx.def_path_str(def.did());
+ if path_ == other_path {
+ self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, other_ty);
+ return Some(());
+ }
+ }
+ }
+ None
+ }
+
+ /// Adds a `,` to the type representation only if it is appropriate.
+ fn push_comma(
+ &self,
+ value: &mut DiagnosticStyledString,
+ other_value: &mut DiagnosticStyledString,
+ len: usize,
+ pos: usize,
+ ) {
+ if len > 0 && pos != len - 1 {
+ value.push_normal(", ");
+ other_value.push_normal(", ");
+ }
+ }
+
+ /// Given two `fn` signatures highlight only sub-parts that are different.
+ fn cmp_fn_sig(
+ &self,
+ sig1: &ty::PolyFnSig<'tcx>,
+ sig2: &ty::PolyFnSig<'tcx>,
+ ) -> (DiagnosticStyledString, DiagnosticStyledString) {
+ let get_lifetimes = |sig| {
+ use rustc_hir::def::Namespace;
+ let (_, sig, reg) = ty::print::FmtPrinter::new(self.tcx, Namespace::TypeNS)
+ .name_all_regions(sig)
+ .unwrap();
+ let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();
+ (if lts.is_empty() { String::new() } else { format!("for<{}> ", lts.join(", ")) }, sig)
+ };
+
+ let (lt1, sig1) = get_lifetimes(sig1);
+ let (lt2, sig2) = get_lifetimes(sig2);
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ let mut values = (
+ DiagnosticStyledString::normal("".to_string()),
+ DiagnosticStyledString::normal("".to_string()),
+ );
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^^^^
+ values.0.push(sig1.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
+ values.1.push(sig2.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^^^^^^^^
+ if sig1.abi != abi::Abi::Rust {
+ values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
+ }
+ if sig2.abi != abi::Abi::Rust {
+ values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
+ }
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^^^^^^
+ let lifetime_diff = lt1 != lt2;
+ values.0.push(lt1, lifetime_diff);
+ values.1.push(lt2, lifetime_diff);
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^
+ values.0.push_normal("fn(");
+ values.1.push_normal("fn(");
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^^^
+ let len1 = sig1.inputs().len();
+ let len2 = sig2.inputs().len();
+ if len1 == len2 {
+ for (i, (l, r)) in iter::zip(sig1.inputs(), sig2.inputs()).enumerate() {
+ let (x1, x2) = self.cmp(*l, *r);
+ (values.0).0.extend(x1.0);
+ (values.1).0.extend(x2.0);
+ self.push_comma(&mut values.0, &mut values.1, len1, i);
+ }
+ } else {
+ for (i, l) in sig1.inputs().iter().enumerate() {
+ values.0.push_highlighted(l.to_string());
+ if i != len1 - 1 {
+ values.0.push_highlighted(", ");
+ }
+ }
+ for (i, r) in sig2.inputs().iter().enumerate() {
+ values.1.push_highlighted(r.to_string());
+ if i != len2 - 1 {
+ values.1.push_highlighted(", ");
+ }
+ }
+ }
+
+ if sig1.c_variadic {
+ if len1 > 0 {
+ values.0.push_normal(", ");
+ }
+ values.0.push("...", !sig2.c_variadic);
+ }
+ if sig2.c_variadic {
+ if len2 > 0 {
+ values.1.push_normal(", ");
+ }
+ values.1.push("...", !sig1.c_variadic);
+ }
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^
+ values.0.push_normal(")");
+ values.1.push_normal(")");
+
+ // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
+ // ^^^^^^^^
+ let output1 = sig1.output();
+ let output2 = sig2.output();
+ let (x1, x2) = self.cmp(output1, output2);
+ if !output1.is_unit() {
+ values.0.push_normal(" -> ");
+ (values.0).0.extend(x1.0);
+ }
+ if !output2.is_unit() {
+ values.1.push_normal(" -> ");
+ (values.1).0.extend(x2.0);
+ }
+ values
+ }
+
+ /// Compares two given types, eliding parts that are the same between them and highlighting
+ /// relevant differences, and return two representation of those types for highlighted printing.
+ pub fn cmp(
+ &self,
+ t1: Ty<'tcx>,
+ t2: Ty<'tcx>,
+ ) -> (DiagnosticStyledString, DiagnosticStyledString) {
+ debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind(), t2, t2.kind());
+
+ // helper functions
+ fn equals<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
+ match (a.kind(), b.kind()) {
+ (a, b) if *a == *b => true,
+ (&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
+ | (
+ &ty::Infer(ty::InferTy::IntVar(_)),
+ &ty::Int(_) | &ty::Infer(ty::InferTy::IntVar(_)),
+ )
+ | (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
+ | (
+ &ty::Infer(ty::InferTy::FloatVar(_)),
+ &ty::Float(_) | &ty::Infer(ty::InferTy::FloatVar(_)),
+ ) => true,
+ _ => false,
+ }
+ }
+
+ fn push_ty_ref<'tcx>(
+ region: ty::Region<'tcx>,
+ ty: Ty<'tcx>,
+ mutbl: hir::Mutability,
+ s: &mut DiagnosticStyledString,
+ ) {
+ let mut r = region.to_string();
+ if r == "'_" {
+ r.clear();
+ } else {
+ r.push(' ');
+ }
+ s.push_highlighted(format!("&{}{}", r, mutbl.prefix_str()));
+ s.push_normal(ty.to_string());
+ }
+
+ // process starts here
+ match (t1.kind(), t2.kind()) {
+ (&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
+ let did1 = def1.did();
+ let did2 = def2.did();
+ let sub_no_defaults_1 =
+ self.tcx.generics_of(did1).own_substs_no_defaults(self.tcx, sub1);
+ let sub_no_defaults_2 =
+ self.tcx.generics_of(did2).own_substs_no_defaults(self.tcx, sub2);
+ let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
+ let path1 = self.tcx.def_path_str(did1);
+ let path2 = self.tcx.def_path_str(did2);
+ if did1 == did2 {
+ // Easy case. Replace same types with `_` to shorten the output and highlight
+ // the differing ones.
+ // let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
+ // Foo<Bar, _>
+ // Foo<Quz, _>
+ // --- ^ type argument elided
+ // |
+ // highlighted in output
+ values.0.push_normal(path1);
+ values.1.push_normal(path2);
+
+ // Avoid printing out default generic parameters that are common to both
+ // types.
+ let len1 = sub_no_defaults_1.len();
+ let len2 = sub_no_defaults_2.len();
+ let common_len = cmp::min(len1, len2);
+ let remainder1: Vec<_> = sub1.types().skip(common_len).collect();
+ let remainder2: Vec<_> = sub2.types().skip(common_len).collect();
+ let common_default_params =
+ iter::zip(remainder1.iter().rev(), remainder2.iter().rev())
+ .filter(|(a, b)| a == b)
+ .count();
+ let len = sub1.len() - common_default_params;
+ let consts_offset = len - sub1.consts().count();
+
+ // Only draw `<...>` if there are lifetime/type arguments.
+ if len > 0 {
+ values.0.push_normal("<");
+ values.1.push_normal("<");
+ }
+
+ fn lifetime_display(lifetime: Region<'_>) -> String {
+ let s = lifetime.to_string();
+ if s.is_empty() { "'_".to_string() } else { s }
+ }
+ // At one point we'd like to elide all lifetimes here, they are irrelevant for
+ // all diagnostics that use this output
+ //
+ // Foo<'x, '_, Bar>
+ // Foo<'y, '_, Qux>
+ // ^^ ^^ --- type arguments are not elided
+ // | |
+ // | elided as they were the same
+ // not elided, they were different, but irrelevant
+ //
+ // For bound lifetimes, keep the names of the lifetimes,
+ // even if they are the same so that it's clear what's happening
+ // if we have something like
+ //
+ // for<'r, 's> fn(Inv<'r>, Inv<'s>)
+ // for<'r> fn(Inv<'r>, Inv<'r>)
+ let lifetimes = sub1.regions().zip(sub2.regions());
+ for (i, lifetimes) in lifetimes.enumerate() {
+ let l1 = lifetime_display(lifetimes.0);
+ let l2 = lifetime_display(lifetimes.1);
+ if lifetimes.0 != lifetimes.1 {
+ values.0.push_highlighted(l1);
+ values.1.push_highlighted(l2);
+ } else if lifetimes.0.is_late_bound() {
+ values.0.push_normal(l1);
+ values.1.push_normal(l2);
+ } else {
+ values.0.push_normal("'_");
+ values.1.push_normal("'_");
+ }
+ self.push_comma(&mut values.0, &mut values.1, len, i);
+ }
+
+ // We're comparing two types with the same path, so we compare the type
+ // arguments for both. If they are the same, do not highlight and elide from the
+ // output.
+ // Foo<_, Bar>
+ // Foo<_, Qux>
+ // ^ elided type as this type argument was the same in both sides
+ let type_arguments = sub1.types().zip(sub2.types());
+ let regions_len = sub1.regions().count();
+ let num_display_types = consts_offset - regions_len;
+ for (i, (ta1, ta2)) in type_arguments.take(num_display_types).enumerate() {
+ let i = i + regions_len;
+ if ta1 == ta2 {
+ values.0.push_normal("_");
+ values.1.push_normal("_");
+ } else {
+ let (x1, x2) = self.cmp(ta1, ta2);
+ (values.0).0.extend(x1.0);
+ (values.1).0.extend(x2.0);
+ }
+ self.push_comma(&mut values.0, &mut values.1, len, i);
+ }
+
+ // Do the same for const arguments, if they are equal, do not highlight and
+ // elide them from the output.
+ let const_arguments = sub1.consts().zip(sub2.consts());
+ for (i, (ca1, ca2)) in const_arguments.enumerate() {
+ let i = i + consts_offset;
+ if ca1 == ca2 {
+ values.0.push_normal("_");
+ values.1.push_normal("_");
+ } else {
+ values.0.push_highlighted(ca1.to_string());
+ values.1.push_highlighted(ca2.to_string());
+ }
+ self.push_comma(&mut values.0, &mut values.1, len, i);
+ }
+
+ // Close the type argument bracket.
+ // Only draw `<...>` if there are lifetime/type arguments.
+ if len > 0 {
+ values.0.push_normal(">");
+ values.1.push_normal(">");
+ }
+ values
+ } else {
+ // Check for case:
+ // let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
+ // Foo<Bar<Qux>
+ // ------- this type argument is exactly the same as the other type
+ // Bar<Qux>
+ if self
+ .cmp_type_arg(
+ &mut values.0,
+ &mut values.1,
+ path1.clone(),
+ sub_no_defaults_1,
+ path2.clone(),
+ t2,
+ )
+ .is_some()
+ {
+ return values;
+ }
+ // Check for case:
+ // let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
+ // Bar<Qux>
+ // Foo<Bar<Qux>>
+ // ------- this type argument is exactly the same as the other type
+ if self
+ .cmp_type_arg(
+ &mut values.1,
+ &mut values.0,
+ path2,
+ sub_no_defaults_2,
+ path1,
+ t1,
+ )
+ .is_some()
+ {
+ return values;
+ }
+
+ // We can't find anything in common, highlight relevant part of type path.
+ // let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
+ // foo::bar::Baz<Qux>
+ // foo::bar::Bar<Zar>
+ // -------- this part of the path is different
+
+ let t1_str = t1.to_string();
+ let t2_str = t2.to_string();
+ let min_len = t1_str.len().min(t2_str.len());
+
+ const SEPARATOR: &str = "::";
+ let separator_len = SEPARATOR.len();
+ let split_idx: usize =
+ iter::zip(t1_str.split(SEPARATOR), t2_str.split(SEPARATOR))
+ .take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
+ .map(|(mod_str, _)| mod_str.len() + separator_len)
+ .sum();
+
+ debug!(
+ "cmp: separator_len={}, split_idx={}, min_len={}",
+ separator_len, split_idx, min_len
+ );
+
+ if split_idx >= min_len {
+ // paths are identical, highlight everything
+ (
+ DiagnosticStyledString::highlighted(t1_str),
+ DiagnosticStyledString::highlighted(t2_str),
+ )
+ } else {
+ let (common, uniq1) = t1_str.split_at(split_idx);
+ let (_, uniq2) = t2_str.split_at(split_idx);
+ debug!("cmp: common={}, uniq1={}, uniq2={}", common, uniq1, uniq2);
+
+ values.0.push_normal(common);
+ values.0.push_highlighted(uniq1);
+ values.1.push_normal(common);
+ values.1.push_highlighted(uniq2);
+
+ values
+ }
+ }
+ }
+
+ // When finding T != &T, highlight only the borrow
+ (&ty::Ref(r1, ref_ty1, mutbl1), _) if equals(ref_ty1, t2) => {
+ let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
+ push_ty_ref(r1, ref_ty1, mutbl1, &mut values.0);
+ values.1.push_normal(t2.to_string());
+ values
+ }
+ (_, &ty::Ref(r2, ref_ty2, mutbl2)) if equals(t1, ref_ty2) => {
+ let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
+ values.0.push_normal(t1.to_string());
+ push_ty_ref(r2, ref_ty2, mutbl2, &mut values.1);
+ values
+ }
+
+ // When encountering &T != &mut T, highlight only the borrow
+ (&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2))
+ if equals(ref_ty1, ref_ty2) =>
+ {
+ let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
+ push_ty_ref(r1, ref_ty1, mutbl1, &mut values.0);
+ push_ty_ref(r2, ref_ty2, mutbl2, &mut values.1);
+ values
+ }
+
+ // When encountering tuples of the same size, highlight only the differing types
+ (&ty::Tuple(substs1), &ty::Tuple(substs2)) if substs1.len() == substs2.len() => {
+ let mut values =
+ (DiagnosticStyledString::normal("("), DiagnosticStyledString::normal("("));
+ let len = substs1.len();
+ for (i, (left, right)) in substs1.iter().zip(substs2).enumerate() {
+ let (x1, x2) = self.cmp(left, right);
+ (values.0).0.extend(x1.0);
+ (values.1).0.extend(x2.0);
+ self.push_comma(&mut values.0, &mut values.1, len, i);
+ }
+ if len == 1 {
+ // Keep the output for single element tuples as `(ty,)`.
+ values.0.push_normal(",");
+ values.1.push_normal(",");
+ }
+ values.0.push_normal(")");
+ values.1.push_normal(")");
+ values
+ }
+
+ (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
+ let sig1 = self.tcx.bound_fn_sig(*did1).subst(self.tcx, substs1);
+ let sig2 = self.tcx.bound_fn_sig(*did2).subst(self.tcx, substs2);
+ let mut values = self.cmp_fn_sig(&sig1, &sig2);
+ let path1 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did1, substs1));
+ let path2 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did2, substs2));
+ let same_path = path1 == path2;
+ values.0.push(path1, !same_path);
+ values.1.push(path2, !same_path);
+ values
+ }
+
+ (ty::FnDef(did1, substs1), ty::FnPtr(sig2)) => {
+ let sig1 = self.tcx.bound_fn_sig(*did1).subst(self.tcx, substs1);
+ let mut values = self.cmp_fn_sig(&sig1, sig2);
+ values.0.push_highlighted(format!(
+ " {{{}}}",
+ self.tcx.def_path_str_with_substs(*did1, substs1)
+ ));
+ values
+ }
+
+ (ty::FnPtr(sig1), ty::FnDef(did2, substs2)) => {
+ let sig2 = self.tcx.bound_fn_sig(*did2).subst(self.tcx, substs2);
+ let mut values = self.cmp_fn_sig(sig1, &sig2);
+ values.1.push_normal(format!(
+ " {{{}}}",
+ self.tcx.def_path_str_with_substs(*did2, substs2)
+ ));
+ values
+ }
+
+ (ty::FnPtr(sig1), ty::FnPtr(sig2)) => self.cmp_fn_sig(sig1, sig2),
+
+ _ => {
+ if t1 == t2 {
+ // The two types are the same, elide and don't highlight.
+ (DiagnosticStyledString::normal("_"), DiagnosticStyledString::normal("_"))
+ } else {
+ // We couldn't find anything in common, highlight everything.
+ (
+ DiagnosticStyledString::highlighted(t1.to_string()),
+ DiagnosticStyledString::highlighted(t2.to_string()),
+ )
+ }
+ }
+ }
+ }
+
+ /// Extend a type error with extra labels pointing at "non-trivial" types, like closures and
+ /// the return type of `async fn`s.
+ ///
+ /// `secondary_span` gives the caller the opportunity to expand `diag` with a `span_label`.
+ ///
+ /// `swap_secondary_and_primary` is used to make projection errors in particular nicer by using
+ /// the message in `secondary_span` as the primary label, and apply the message that would
+ /// otherwise be used for the primary label on the `secondary_span` `Span`. This applies on
+ /// E0271, like `src/test/ui/issues/issue-39970.stderr`.
+ #[tracing::instrument(
+ level = "debug",
+ skip(self, diag, secondary_span, swap_secondary_and_primary, force_label)
+ )]
+ pub fn note_type_err(
+ &self,
+ diag: &mut Diagnostic,
+ cause: &ObligationCause<'tcx>,
+ secondary_span: Option<(Span, String)>,
+ mut values: Option<ValuePairs<'tcx>>,
+ terr: &TypeError<'tcx>,
+ swap_secondary_and_primary: bool,
+ force_label: bool,
+ ) {
+ let span = cause.span();
+
+ // For some types of errors, expected-found does not make
+ // sense, so just ignore the values we were given.
+ if let TypeError::CyclicTy(_) = terr {
+ values = None;
+ }
+ struct OpaqueTypesVisitor<'tcx> {
+ types: FxHashMap<TyCategory, FxHashSet<Span>>,
+ expected: FxHashMap<TyCategory, FxHashSet<Span>>,
+ found: FxHashMap<TyCategory, FxHashSet<Span>>,
+ ignore_span: Span,
+ tcx: TyCtxt<'tcx>,
+ }
+
+ impl<'tcx> OpaqueTypesVisitor<'tcx> {
+ fn visit_expected_found(
+ tcx: TyCtxt<'tcx>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ ignore_span: Span,
+ ) -> Self {
+ let mut types_visitor = OpaqueTypesVisitor {
+ types: Default::default(),
+ expected: Default::default(),
+ found: Default::default(),
+ ignore_span,
+ tcx,
+ };
+ // The visitor puts all the relevant encountered types in `self.types`, but in
+ // here we want to visit two separate types with no relation to each other, so we
+ // move the results from `types` to `expected` or `found` as appropriate.
+ expected.visit_with(&mut types_visitor);
+ std::mem::swap(&mut types_visitor.expected, &mut types_visitor.types);
+ found.visit_with(&mut types_visitor);
+ std::mem::swap(&mut types_visitor.found, &mut types_visitor.types);
+ types_visitor
+ }
+
+ fn report(&self, err: &mut Diagnostic) {
+ self.add_labels_for_types(err, "expected", &self.expected);
+ self.add_labels_for_types(err, "found", &self.found);
+ }
+
+ fn add_labels_for_types(
+ &self,
+ err: &mut Diagnostic,
+ target: &str,
+ types: &FxHashMap<TyCategory, FxHashSet<Span>>,
+ ) {
+ for (key, values) in types.iter() {
+ let count = values.len();
+ let kind = key.descr();
+ let mut returned_async_output_error = false;
+ for &sp in values {
+ if sp.is_desugaring(DesugaringKind::Async) && !returned_async_output_error {
+ if [sp] != err.span.primary_spans() {
+ let mut span: MultiSpan = sp.into();
+ span.push_span_label(
+ sp,
+ format!(
+ "checked the `Output` of this `async fn`, {}{} {}{}",
+ if count > 1 { "one of the " } else { "" },
+ target,
+ kind,
+ pluralize!(count),
+ ),
+ );
+ err.span_note(
+ span,
+ "while checking the return type of the `async fn`",
+ );
+ } else {
+ err.span_label(
+ sp,
+ format!(
+ "checked the `Output` of this `async fn`, {}{} {}{}",
+ if count > 1 { "one of the " } else { "" },
+ target,
+ kind,
+ pluralize!(count),
+ ),
+ );
+ err.note("while checking the return type of the `async fn`");
+ }
+ returned_async_output_error = true;
+ } else {
+ err.span_label(
+ sp,
+ format!(
+ "{}{} {}{}",
+ if count == 1 { "the " } else { "one of the " },
+ target,
+ kind,
+ pluralize!(count),
+ ),
+ );
+ }
+ }
+ }
+ }
+ }
+
+ impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypesVisitor<'tcx> {
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let Some((kind, def_id)) = TyCategory::from_ty(self.tcx, t) {
+ let span = self.tcx.def_span(def_id);
+ // Avoid cluttering the output when the "found" and error span overlap:
+ //
+ // error[E0308]: mismatched types
+ // --> $DIR/issue-20862.rs:2:5
+ // |
+ // LL | |y| x + y
+ // | ^^^^^^^^^
+ // | |
+ // | the found closure
+ // | expected `()`, found closure
+ // |
+ // = note: expected unit type `()`
+ // found closure `[closure@$DIR/issue-20862.rs:2:5: 2:14 x:_]`
+ if !self.ignore_span.overlaps(span) {
+ self.types.entry(kind).or_default().insert(span);
+ }
+ }
+ t.super_visit_with(self)
+ }
+ }
+
+ debug!("note_type_err(diag={:?})", diag);
+ enum Mismatch<'a> {
+ Variable(ty::error::ExpectedFound<Ty<'a>>),
+ Fixed(&'static str),
+ }
+ let (expected_found, exp_found, is_simple_error, values) = match values {
+ None => (None, Mismatch::Fixed("type"), false, None),
+ Some(values) => {
+ let values = self.resolve_vars_if_possible(values);
+ let (is_simple_error, exp_found) = match values {
+ ValuePairs::Terms(infer::ExpectedFound {
+ expected: ty::Term::Ty(expected),
+ found: ty::Term::Ty(found),
+ }) => {
+ let is_simple_err = expected.is_simple_text() && found.is_simple_text();
+ OpaqueTypesVisitor::visit_expected_found(self.tcx, expected, found, span)
+ .report(diag);
+
+ (
+ is_simple_err,
+ Mismatch::Variable(infer::ExpectedFound { expected, found }),
+ )
+ }
+ ValuePairs::TraitRefs(_) | ValuePairs::PolyTraitRefs(_) => {
+ (false, Mismatch::Fixed("trait"))
+ }
+ _ => (false, Mismatch::Fixed("type")),
+ };
+ let vals = match self.values_str(values) {
+ Some((expected, found)) => Some((expected, found)),
+ None => {
+ // Derived error. Cancel the emitter.
+ // NOTE(eddyb) this was `.cancel()`, but `diag`
+ // is borrowed, so we can't fully defuse it.
+ diag.downgrade_to_delayed_bug();
+ return;
+ }
+ };
+ (vals, exp_found, is_simple_error, Some(values))
+ }
+ };
+
+ match terr {
+ // Ignore msg for object safe coercion
+ // since E0038 message will be printed
+ TypeError::ObjectUnsafeCoercion(_) => {}
+ _ => {
+ let mut label_or_note = |span: Span, msg: &str| {
+ if force_label || &[span] == diag.span.primary_spans() {
+ diag.span_label(span, msg);
+ } else {
+ diag.span_note(span, msg);
+ }
+ };
+ if let Some((sp, msg)) = secondary_span {
+ if swap_secondary_and_primary {
+ let terr = if let Some(infer::ValuePairs::Terms(infer::ExpectedFound {
+ expected,
+ ..
+ })) = values
+ {
+ format!("expected this to be `{}`", expected)
+ } else {
+ terr.to_string()
+ };
+ label_or_note(sp, &terr);
+ label_or_note(span, &msg);
+ } else {
+ label_or_note(span, &terr.to_string());
+ label_or_note(sp, &msg);
+ }
+ } else {
+ label_or_note(span, &terr.to_string());
+ }
+ }
+ };
+ if let Some((expected, found)) = expected_found {
+ let (expected_label, found_label, exp_found) = match exp_found {
+ Mismatch::Variable(ef) => (
+ ef.expected.prefix_string(self.tcx),
+ ef.found.prefix_string(self.tcx),
+ Some(ef),
+ ),
+ Mismatch::Fixed(s) => (s.into(), s.into(), None),
+ };
+ match (&terr, expected == found) {
+ (TypeError::Sorts(values), extra) => {
+ let sort_string = |ty: Ty<'tcx>| match (extra, ty.kind()) {
+ (true, ty::Opaque(def_id, _)) => {
+ let sm = self.tcx.sess.source_map();
+ let pos = sm.lookup_char_pos(self.tcx.def_span(*def_id).lo());
+ format!(
+ " (opaque type at <{}:{}:{}>)",
+ sm.filename_for_diagnostics(&pos.file.name),
+ pos.line,
+ pos.col.to_usize() + 1,
+ )
+ }
+ (true, _) => format!(" ({})", ty.sort_string(self.tcx)),
+ (false, _) => "".to_string(),
+ };
+ if !(values.expected.is_simple_text() && values.found.is_simple_text())
+ || (exp_found.map_or(false, |ef| {
+ // This happens when the type error is a subset of the expectation,
+ // like when you have two references but one is `usize` and the other
+ // is `f32`. In those cases we still want to show the `note`. If the
+ // value from `ef` is `Infer(_)`, then we ignore it.
+ if !ef.expected.is_ty_infer() {
+ ef.expected != values.expected
+ } else if !ef.found.is_ty_infer() {
+ ef.found != values.found
+ } else {
+ false
+ }
+ }))
+ {
+ diag.note_expected_found_extra(
+ &expected_label,
+ expected,
+ &found_label,
+ found,
+ &sort_string(values.expected),
+ &sort_string(values.found),
+ );
+ }
+ }
+ (TypeError::ObjectUnsafeCoercion(_), _) => {
+ diag.note_unsuccessful_coercion(found, expected);
+ }
+ (_, _) => {
+ debug!(
+ "note_type_err: exp_found={:?}, expected={:?} found={:?}",
+ exp_found, expected, found
+ );
+ if !is_simple_error || terr.must_include_note() {
+ diag.note_expected_found(&expected_label, expected, &found_label, found);
+ }
+ }
+ }
+ }
+ let exp_found = match exp_found {
+ Mismatch::Variable(exp_found) => Some(exp_found),
+ Mismatch::Fixed(_) => None,
+ };
+ let exp_found = match terr {
+ // `terr` has more accurate type information than `exp_found` in match expressions.
+ ty::error::TypeError::Sorts(terr)
+ if exp_found.map_or(false, |ef| terr.found == ef.found) =>
+ {
+ Some(*terr)
+ }
+ _ => exp_found,
+ };
+ debug!("exp_found {:?} terr {:?} cause.code {:?}", exp_found, terr, cause.code());
+ if let Some(exp_found) = exp_found {
+ let should_suggest_fixes =
+ if let ObligationCauseCode::Pattern { root_ty, .. } = cause.code() {
+ // Skip if the root_ty of the pattern is not the same as the expected_ty.
+ // If these types aren't equal then we've probably peeled off a layer of arrays.
+ self.same_type_modulo_infer(*root_ty, exp_found.expected)
+ } else {
+ true
+ };
+
+ if should_suggest_fixes {
+ self.suggest_tuple_pattern(cause, &exp_found, diag);
+ self.suggest_as_ref_where_appropriate(span, &exp_found, diag);
+ self.suggest_accessing_field_where_appropriate(cause, &exp_found, diag);
+ self.suggest_await_on_expect_found(cause, span, &exp_found, diag);
+ }
+ }
+
+ // In some (most?) cases cause.body_id points to actual body, but in some cases
+ // it's an actual definition. According to the comments (e.g. in
+ // librustc_typeck/check/compare_method.rs:compare_predicate_entailment) the latter
+ // is relied upon by some other code. This might (or might not) need cleanup.
+ let body_owner_def_id =
+ self.tcx.hir().opt_local_def_id(cause.body_id).unwrap_or_else(|| {
+ self.tcx.hir().body_owner_def_id(hir::BodyId { hir_id: cause.body_id })
+ });
+ self.check_and_note_conflicting_crates(diag, terr);
+ self.tcx.note_and_explain_type_err(diag, terr, cause, span, body_owner_def_id.to_def_id());
+
+ if let Some(ValuePairs::PolyTraitRefs(exp_found)) = values
+ && let ty::Closure(def_id, _) = exp_found.expected.skip_binder().self_ty().kind()
+ && let Some(def_id) = def_id.as_local()
+ {
+ let span = self.tcx.def_span(def_id);
+ diag.span_note(span, "this closure does not fulfill the lifetime requirements");
+ }
+
+ // It reads better to have the error origin as the final
+ // thing.
+ self.note_error_origin(diag, cause, exp_found, terr);
+
+ debug!(?diag);
+ }
+
+ fn suggest_tuple_pattern(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
+ diag: &mut Diagnostic,
+ ) {
+ // Heavily inspired by `FnCtxt::suggest_compatible_variants`, with
+ // some modifications due to that being in typeck and this being in infer.
+ if let ObligationCauseCode::Pattern { .. } = cause.code() {
+ if let ty::Adt(expected_adt, substs) = exp_found.expected.kind() {
+ let compatible_variants: Vec<_> = expected_adt
+ .variants()
+ .iter()
+ .filter(|variant| {
+ variant.fields.len() == 1 && variant.ctor_kind == hir::def::CtorKind::Fn
+ })
+ .filter_map(|variant| {
+ let sole_field = &variant.fields[0];
+ let sole_field_ty = sole_field.ty(self.tcx, substs);
+ if self.same_type_modulo_infer(sole_field_ty, exp_found.found) {
+ let variant_path =
+ with_no_trimmed_paths!(self.tcx.def_path_str(variant.def_id));
+ // FIXME #56861: DRYer prelude filtering
+ if let Some(path) = variant_path.strip_prefix("std::prelude::") {
+ if let Some((_, path)) = path.split_once("::") {
+ return Some(path.to_string());
+ }
+ }
+ Some(variant_path)
+ } else {
+ None
+ }
+ })
+ .collect();
+ match &compatible_variants[..] {
+ [] => {}
+ [variant] => {
+ diag.multipart_suggestion_verbose(
+ &format!("try wrapping the pattern in `{}`", variant),
+ vec![
+ (cause.span.shrink_to_lo(), format!("{}(", variant)),
+ (cause.span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {
+ // More than one matching variant.
+ diag.multipart_suggestions(
+ &format!(
+ "try wrapping the pattern in a variant of `{}`",
+ self.tcx.def_path_str(expected_adt.did())
+ ),
+ compatible_variants.into_iter().map(|variant| {
+ vec![
+ (cause.span.shrink_to_lo(), format!("{}(", variant)),
+ (cause.span.shrink_to_hi(), ")".to_string()),
+ ]
+ }),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ }
+ }
+
+ pub fn get_impl_future_output_ty(&self, ty: Ty<'tcx>) -> Option<Binder<'tcx, Ty<'tcx>>> {
+ if let ty::Opaque(def_id, substs) = ty.kind() {
+ let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
+ // Future::Output
+ let item_def_id = self.tcx.associated_item_def_ids(future_trait)[0];
+
+ let bounds = self.tcx.bound_explicit_item_bounds(*def_id);
+
+ for predicate in bounds.transpose_iter().map(|e| e.map_bound(|(p, _)| *p)) {
+ let predicate = predicate.subst(self.tcx, substs);
+ let output = predicate
+ .kind()
+ .map_bound(|kind| match kind {
+ ty::PredicateKind::Projection(projection_predicate)
+ if projection_predicate.projection_ty.item_def_id == item_def_id =>
+ {
+ projection_predicate.term.ty()
+ }
+ _ => None,
+ })
+ .transpose();
+ if output.is_some() {
+ // We don't account for multiple `Future::Output = Ty` constraints.
+ return output;
+ }
+ }
+ }
+ None
+ }
+
+ /// A possible error is to forget to add `.await` when using futures:
+ ///
+ /// ```compile_fail,E0308
+ /// async fn make_u32() -> u32 {
+ /// 22
+ /// }
+ ///
+ /// fn take_u32(x: u32) {}
+ ///
+ /// async fn foo() {
+ /// let x = make_u32();
+ /// take_u32(x);
+ /// }
+ /// ```
+ ///
+ /// This routine checks if the found type `T` implements `Future<Output=U>` where `U` is the
+ /// expected type. If this is the case, and we are inside of an async body, it suggests adding
+ /// `.await` to the tail of the expression.
+ fn suggest_await_on_expect_found(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ exp_span: Span,
+ exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
+ diag: &mut Diagnostic,
+ ) {
+ debug!(
+ "suggest_await_on_expect_found: exp_span={:?}, expected_ty={:?}, found_ty={:?}",
+ exp_span, exp_found.expected, exp_found.found,
+ );
+
+ if let ObligationCauseCode::CompareImplItemObligation { .. } = cause.code() {
+ return;
+ }
+
+ match (
+ self.get_impl_future_output_ty(exp_found.expected).map(Binder::skip_binder),
+ self.get_impl_future_output_ty(exp_found.found).map(Binder::skip_binder),
+ ) {
+ (Some(exp), Some(found)) if self.same_type_modulo_infer(exp, found) => match cause
+ .code()
+ {
+ ObligationCauseCode::IfExpression(box IfExpressionCause { then_id, .. }) => {
+ let then_span = self.find_block_span_from_hir_id(*then_id);
+ diag.multipart_suggestion(
+ "consider `await`ing on both `Future`s",
+ vec![
+ (then_span.shrink_to_hi(), ".await".to_string()),
+ (exp_span.shrink_to_hi(), ".await".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
+ prior_arms,
+ ..
+ }) => {
+ if let [.., arm_span] = &prior_arms[..] {
+ diag.multipart_suggestion(
+ "consider `await`ing on both `Future`s",
+ vec![
+ (arm_span.shrink_to_hi(), ".await".to_string()),
+ (exp_span.shrink_to_hi(), ".await".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ diag.help("consider `await`ing on both `Future`s");
+ }
+ }
+ _ => {
+ diag.help("consider `await`ing on both `Future`s");
+ }
+ },
+ (_, Some(ty)) if self.same_type_modulo_infer(exp_found.expected, ty) => {
+ diag.span_suggestion_verbose(
+ exp_span.shrink_to_hi(),
+ "consider `await`ing on the `Future`",
+ ".await",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ (Some(ty), _) if self.same_type_modulo_infer(ty, exp_found.found) => match cause.code()
+ {
+ ObligationCauseCode::Pattern { span: Some(then_span), .. } => {
+ diag.span_suggestion_verbose(
+ then_span.shrink_to_hi(),
+ "consider `await`ing on the `Future`",
+ ".await",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ ObligationCauseCode::IfExpression(box IfExpressionCause { then_id, .. }) => {
+ let then_span = self.find_block_span_from_hir_id(*then_id);
+ diag.span_suggestion_verbose(
+ then_span.shrink_to_hi(),
+ "consider `await`ing on the `Future`",
+ ".await",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
+ ref prior_arms,
+ ..
+ }) => {
+ diag.multipart_suggestion_verbose(
+ "consider `await`ing on the `Future`",
+ prior_arms
+ .iter()
+ .map(|arm| (arm.shrink_to_hi(), ".await".to_string()))
+ .collect(),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ },
+ _ => {}
+ }
+ }
+
+ fn suggest_accessing_field_where_appropriate(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
+ diag: &mut Diagnostic,
+ ) {
+ debug!(
+ "suggest_accessing_field_where_appropriate(cause={:?}, exp_found={:?})",
+ cause, exp_found
+ );
+ if let ty::Adt(expected_def, expected_substs) = exp_found.expected.kind() {
+ if expected_def.is_enum() {
+ return;
+ }
+
+ if let Some((name, ty)) = expected_def
+ .non_enum_variant()
+ .fields
+ .iter()
+ .filter(|field| field.vis.is_accessible_from(field.did, self.tcx))
+ .map(|field| (field.name, field.ty(self.tcx, expected_substs)))
+ .find(|(_, ty)| self.same_type_modulo_infer(*ty, exp_found.found))
+ {
+ if let ObligationCauseCode::Pattern { span: Some(span), .. } = *cause.code() {
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ let suggestion = if expected_def.is_struct() {
+ format!("{}.{}", snippet, name)
+ } else if expected_def.is_union() {
+ format!("unsafe {{ {}.{} }}", snippet, name)
+ } else {
+ return;
+ };
+ diag.span_suggestion(
+ span,
+ &format!(
+ "you might have meant to use field `{}` whose type is `{}`",
+ name, ty
+ ),
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ }
+ }
+
+ /// When encountering a case where `.as_ref()` on a `Result` or `Option` would be appropriate,
+ /// suggests it.
+ fn suggest_as_ref_where_appropriate(
+ &self,
+ span: Span,
+ exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
+ diag: &mut Diagnostic,
+ ) {
+ if let (ty::Adt(exp_def, exp_substs), ty::Ref(_, found_ty, _)) =
+ (exp_found.expected.kind(), exp_found.found.kind())
+ {
+ if let ty::Adt(found_def, found_substs) = *found_ty.kind() {
+ let path_str = format!("{:?}", exp_def);
+ if exp_def == &found_def {
+ let opt_msg = "you can convert from `&Option<T>` to `Option<&T>` using \
+ `.as_ref()`";
+ let result_msg = "you can convert from `&Result<T, E>` to \
+ `Result<&T, &E>` using `.as_ref()`";
+ let have_as_ref = &[
+ ("std::option::Option", opt_msg),
+ ("core::option::Option", opt_msg),
+ ("std::result::Result", result_msg),
+ ("core::result::Result", result_msg),
+ ];
+ if let Some(msg) = have_as_ref
+ .iter()
+ .find_map(|(path, msg)| (&path_str == path).then_some(msg))
+ {
+ let mut show_suggestion = true;
+ for (exp_ty, found_ty) in
+ iter::zip(exp_substs.types(), found_substs.types())
+ {
+ match *exp_ty.kind() {
+ ty::Ref(_, exp_ty, _) => {
+ match (exp_ty.kind(), found_ty.kind()) {
+ (_, ty::Param(_))
+ | (_, ty::Infer(_))
+ | (ty::Param(_), _)
+ | (ty::Infer(_), _) => {}
+ _ if self.same_type_modulo_infer(exp_ty, found_ty) => {}
+ _ => show_suggestion = false,
+ };
+ }
+ ty::Param(_) | ty::Infer(_) => {}
+ _ => show_suggestion = false,
+ }
+ }
+ if let (Ok(snippet), true) =
+ (self.tcx.sess.source_map().span_to_snippet(span), show_suggestion)
+ {
+ diag.span_suggestion(
+ span,
+ *msg,
+ format!("{}.as_ref()", snippet),
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ }
+ }
+ }
+ }
+
+ pub fn report_and_explain_type_error(
+ &self,
+ trace: TypeTrace<'tcx>,
+ terr: &TypeError<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ use crate::traits::ObligationCauseCode::MatchExpressionArm;
+
+ debug!("report_and_explain_type_error(trace={:?}, terr={:?})", trace, terr);
+
+ let span = trace.cause.span();
+ let failure_code = trace.cause.as_failure_code(terr);
+ let mut diag = match failure_code {
+ FailureCode::Error0038(did) => {
+ let violations = self.tcx.object_safety_violations(did);
+ report_object_safety_error(self.tcx, span, did, violations)
+ }
+ FailureCode::Error0317(failure_str) => {
+ struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
+ }
+ FailureCode::Error0580(failure_str) => {
+ struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
+ }
+ FailureCode::Error0308(failure_str) => {
+ let mut err = struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str);
+ if let Some((expected, found)) = trace.values.ty() {
+ match (expected.kind(), found.kind()) {
+ (ty::Tuple(_), ty::Tuple(_)) => {}
+ // If a tuple of length one was expected and the found expression has
+ // parentheses around it, perhaps the user meant to write `(expr,)` to
+ // build a tuple (issue #86100)
+ (ty::Tuple(fields), _) => {
+ self.emit_tuple_wrap_err(&mut err, span, found, fields)
+ }
+ // If a character was expected and the found expression is a string literal
+ // containing a single character, perhaps the user meant to write `'c'` to
+ // specify a character literal (issue #92479)
+ (ty::Char, ty::Ref(_, r, _)) if r.is_str() => {
+ if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span)
+ && let Some(code) = code.strip_prefix('"').and_then(|s| s.strip_suffix('"'))
+ && code.chars().count() == 1
+ {
+ err.span_suggestion(
+ span,
+ "if you meant to write a `char` literal, use single quotes",
+ format!("'{}'", code),
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ // If a string was expected and the found expression is a character literal,
+ // perhaps the user meant to write `"s"` to specify a string literal.
+ (ty::Ref(_, r, _), ty::Char) if r.is_str() => {
+ if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span) {
+ if let Some(code) =
+ code.strip_prefix('\'').and_then(|s| s.strip_suffix('\''))
+ {
+ err.span_suggestion(
+ span,
+ "if you meant to write a `str` literal, use double quotes",
+ format!("\"{}\"", code),
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+ let code = trace.cause.code();
+ if let &MatchExpressionArm(box MatchExpressionArmCause { source, .. }) = code
+ && let hir::MatchSource::TryDesugar = source
+ && let Some((expected_ty, found_ty)) = self.values_str(trace.values)
+ {
+ err.note(&format!(
+ "`?` operator cannot convert from `{}` to `{}`",
+ found_ty.content(),
+ expected_ty.content(),
+ ));
+ }
+ err
+ }
+ FailureCode::Error0644(failure_str) => {
+ struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
+ }
+ };
+ self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr, false, false);
+ diag
+ }
+
+ fn emit_tuple_wrap_err(
+ &self,
+ err: &mut Diagnostic,
+ span: Span,
+ found: Ty<'tcx>,
+ expected_fields: &List<Ty<'tcx>>,
+ ) {
+ let [expected_tup_elem] = expected_fields[..] else { return };
+
+ if !self.same_type_modulo_infer(expected_tup_elem, found) {
+ return;
+ }
+
+ let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span)
+ else { return };
+
+ let msg = "use a trailing comma to create a tuple with one element";
+ if code.starts_with('(') && code.ends_with(')') {
+ let before_close = span.hi() - BytePos::from_u32(1);
+ err.span_suggestion(
+ span.with_hi(before_close).shrink_to_hi(),
+ msg,
+ ",",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.multipart_suggestion(
+ msg,
+ vec![(span.shrink_to_lo(), "(".into()), (span.shrink_to_hi(), ",)".into())],
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+
+ fn values_str(
+ &self,
+ values: ValuePairs<'tcx>,
+ ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
+ match values {
+ infer::Regions(exp_found) => self.expected_found_str(exp_found),
+ infer::Terms(exp_found) => self.expected_found_str_term(exp_found),
+ infer::TraitRefs(exp_found) => {
+ let pretty_exp_found = ty::error::ExpectedFound {
+ expected: exp_found.expected.print_only_trait_path(),
+ found: exp_found.found.print_only_trait_path(),
+ };
+ match self.expected_found_str(pretty_exp_found) {
+ Some((expected, found)) if expected == found => {
+ self.expected_found_str(exp_found)
+ }
+ ret => ret,
+ }
+ }
+ infer::PolyTraitRefs(exp_found) => {
+ let pretty_exp_found = ty::error::ExpectedFound {
+ expected: exp_found.expected.print_only_trait_path(),
+ found: exp_found.found.print_only_trait_path(),
+ };
+ match self.expected_found_str(pretty_exp_found) {
+ Some((expected, found)) if expected == found => {
+ self.expected_found_str(exp_found)
+ }
+ ret => ret,
+ }
+ }
+ }
+ }
+
+ fn expected_found_str_term(
+ &self,
+ exp_found: ty::error::ExpectedFound<ty::Term<'tcx>>,
+ ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
+ let exp_found = self.resolve_vars_if_possible(exp_found);
+ if exp_found.references_error() {
+ return None;
+ }
+
+ Some(match (exp_found.expected, exp_found.found) {
+ (ty::Term::Ty(expected), ty::Term::Ty(found)) => self.cmp(expected, found),
+ (expected, found) => (
+ DiagnosticStyledString::highlighted(expected.to_string()),
+ DiagnosticStyledString::highlighted(found.to_string()),
+ ),
+ })
+ }
+
+ /// Returns a string of the form "expected `{}`, found `{}`".
+ fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
+ &self,
+ exp_found: ty::error::ExpectedFound<T>,
+ ) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
+ let exp_found = self.resolve_vars_if_possible(exp_found);
+ if exp_found.references_error() {
+ return None;
+ }
+
+ Some((
+ DiagnosticStyledString::highlighted(exp_found.expected.to_string()),
+ DiagnosticStyledString::highlighted(exp_found.found.to_string()),
+ ))
+ }
+
+ pub fn report_generic_bound_failure(
+ &self,
+ generic_param_scope: LocalDefId,
+ span: Span,
+ origin: Option<SubregionOrigin<'tcx>>,
+ bound_kind: GenericKind<'tcx>,
+ sub: Region<'tcx>,
+ ) {
+ self.construct_generic_bound_failure(generic_param_scope, span, origin, bound_kind, sub)
+ .emit();
+ }
+
+ pub fn construct_generic_bound_failure(
+ &self,
+ generic_param_scope: LocalDefId,
+ span: Span,
+ origin: Option<SubregionOrigin<'tcx>>,
+ bound_kind: GenericKind<'tcx>,
+ sub: Region<'tcx>,
+ ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
+ // Attempt to obtain the span of the parameter so we can
+ // suggest adding an explicit lifetime bound to it.
+ let generics = self.tcx.generics_of(generic_param_scope);
+ // type_param_span is (span, has_bounds)
+ let type_param_span = match bound_kind {
+ GenericKind::Param(ref param) => {
+ // Account for the case where `param` corresponds to `Self`,
+ // which doesn't have the expected type argument.
+ if !(generics.has_self && param.index == 0) {
+ let type_param = generics.type_param(param, self.tcx);
+ type_param.def_id.as_local().map(|def_id| {
+ // Get the `hir::Param` to verify whether it already has any bounds.
+ // We do this to avoid suggesting code that ends up as `T: 'a'b`,
+ // instead we suggest `T: 'a + 'b` in that case.
+ let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
+ let ast_generics = self.tcx.hir().get_generics(hir_id.owner);
+ let bounds =
+ ast_generics.and_then(|g| g.bounds_span_for_suggestions(def_id));
+ // `sp` only covers `T`, change it so that it covers
+ // `T:` when appropriate
+ if let Some(span) = bounds {
+ (span, true)
+ } else {
+ let sp = self.tcx.def_span(def_id);
+ (sp.shrink_to_hi(), false)
+ }
+ })
+ } else {
+ None
+ }
+ }
+ _ => None,
+ };
+
+ let new_lt = {
+ let mut possible = (b'a'..=b'z').map(|c| format!("'{}", c as char));
+ let lts_names =
+ iter::successors(Some(generics), |g| g.parent.map(|p| self.tcx.generics_of(p)))
+ .flat_map(|g| &g.params)
+ .filter(|p| matches!(p.kind, ty::GenericParamDefKind::Lifetime))
+ .map(|p| p.name.as_str())
+ .collect::<Vec<_>>();
+ possible
+ .find(|candidate| !lts_names.contains(&&candidate[..]))
+ .unwrap_or("'lt".to_string())
+ };
+
+ let add_lt_sugg = generics
+ .params
+ .first()
+ .and_then(|param| param.def_id.as_local())
+ .map(|def_id| (self.tcx.def_span(def_id).shrink_to_lo(), format!("{}, ", new_lt)));
+
+ let labeled_user_string = match bound_kind {
+ GenericKind::Param(ref p) => format!("the parameter type `{}`", p),
+ GenericKind::Projection(ref p) => format!("the associated type `{}`", p),
+ };
+
+ if let Some(SubregionOrigin::CompareImplItemObligation {
+ span,
+ impl_item_def_id,
+ trait_item_def_id,
+ }) = origin
+ {
+ return self.report_extra_impl_obligation(
+ span,
+ impl_item_def_id,
+ trait_item_def_id,
+ &format!("`{}: {}`", bound_kind, sub),
+ );
+ }
+
+ fn binding_suggestion<'tcx, S: fmt::Display>(
+ err: &mut Diagnostic,
+ type_param_span: Option<(Span, bool)>,
+ bound_kind: GenericKind<'tcx>,
+ sub: S,
+ ) {
+ let msg = "consider adding an explicit lifetime bound";
+ if let Some((sp, has_lifetimes)) = type_param_span {
+ let suggestion =
+ if has_lifetimes { format!(" + {}", sub) } else { format!(": {}", sub) };
+ err.span_suggestion_verbose(
+ sp,
+ &format!("{}...", msg),
+ suggestion,
+ Applicability::MaybeIncorrect, // Issue #41966
+ );
+ } else {
+ let consider = format!("{} `{}: {}`...", msg, bound_kind, sub,);
+ err.help(&consider);
+ }
+ }
+
+ let new_binding_suggestion =
+ |err: &mut Diagnostic, type_param_span: Option<(Span, bool)>| {
+ let msg = "consider introducing an explicit lifetime bound";
+ if let Some((sp, has_lifetimes)) = type_param_span {
+ let suggestion = if has_lifetimes {
+ format!(" + {}", new_lt)
+ } else {
+ format!(": {}", new_lt)
+ };
+ let mut sugg =
+ vec![(sp, suggestion), (span.shrink_to_hi(), format!(" + {}", new_lt))];
+ if let Some(lt) = add_lt_sugg {
+ sugg.push(lt);
+ sugg.rotate_right(1);
+ }
+ // `MaybeIncorrect` due to issue #41966.
+ err.multipart_suggestion(msg, sugg, Applicability::MaybeIncorrect);
+ }
+ };
+
+ #[derive(Debug)]
+ enum SubOrigin<'hir> {
+ GAT(&'hir hir::Generics<'hir>),
+ Impl,
+ Trait,
+ Fn,
+ Unknown,
+ }
+ let sub_origin = 'origin: {
+ match *sub {
+ ty::ReEarlyBound(ty::EarlyBoundRegion { def_id, .. }) => {
+ let node = self.tcx.hir().get_if_local(def_id).unwrap();
+ match node {
+ Node::GenericParam(param) => {
+ for h in self.tcx.hir().parent_iter(param.hir_id) {
+ break 'origin match h.1 {
+ Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::TyAlias(..),
+ generics,
+ ..
+ })
+ | Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Type(..),
+ generics,
+ ..
+ }) => SubOrigin::GAT(generics),
+ Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Fn(..),
+ ..
+ })
+ | Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(..),
+ ..
+ })
+ | Node::Item(hir::Item {
+ kind: hir::ItemKind::Fn(..), ..
+ }) => SubOrigin::Fn,
+ Node::Item(hir::Item {
+ kind: hir::ItemKind::Trait(..),
+ ..
+ }) => SubOrigin::Trait,
+ Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(..), ..
+ }) => SubOrigin::Impl,
+ _ => continue,
+ };
+ }
+ }
+ _ => {}
+ }
+ }
+ _ => {}
+ }
+ SubOrigin::Unknown
+ };
+ debug!(?sub_origin);
+
+ let mut err = match (*sub, sub_origin) {
+ // In the case of GATs, we have to be careful. If we a type parameter `T` on an impl,
+ // but a lifetime `'a` on an associated type, then we might need to suggest adding
+ // `where T: 'a`. Importantly, this is on the GAT span, not on the `T` declaration.
+ (ty::ReEarlyBound(ty::EarlyBoundRegion { name: _, .. }), SubOrigin::GAT(generics)) => {
+ // Does the required lifetime have a nice name we can print?
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0309,
+ "{} may not live long enough",
+ labeled_user_string
+ );
+ let pred = format!("{}: {}", bound_kind, sub);
+ let suggestion = format!("{} {}", generics.add_where_or_trailing_comma(), pred,);
+ err.span_suggestion(
+ generics.tail_span_for_predicate_suggestion(),
+ "consider adding a where clause",
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ err
+ }
+ (
+ ty::ReEarlyBound(ty::EarlyBoundRegion { name, .. })
+ | ty::ReFree(ty::FreeRegion { bound_region: ty::BrNamed(_, name), .. }),
+ _,
+ ) if name != kw::UnderscoreLifetime => {
+ // Does the required lifetime have a nice name we can print?
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0309,
+ "{} may not live long enough",
+ labeled_user_string
+ );
+ // Explicitly use the name instead of `sub`'s `Display` impl. The `Display` impl
+ // for the bound is not suitable for suggestions when `-Zverbose` is set because it
+ // uses `Debug` output, so we handle it specially here so that suggestions are
+ // always correct.
+ binding_suggestion(&mut err, type_param_span, bound_kind, name);
+ err
+ }
+
+ (ty::ReStatic, _) => {
+ // Does the required lifetime have a nice name we can print?
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0310,
+ "{} may not live long enough",
+ labeled_user_string
+ );
+ binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
+ err
+ }
+
+ _ => {
+ // If not, be less specific.
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0311,
+ "{} may not live long enough",
+ labeled_user_string
+ );
+ note_and_explain_region(
+ self.tcx,
+ &mut err,
+ &format!("{} must be valid for ", labeled_user_string),
+ sub,
+ "...",
+ None,
+ );
+ if let Some(infer::RelateParamBound(_, t, _)) = origin {
+ let return_impl_trait =
+ self.tcx.return_type_impl_trait(generic_param_scope).is_some();
+ let t = self.resolve_vars_if_possible(t);
+ match t.kind() {
+ // We've got:
+ // fn get_later<G, T>(g: G, dest: &mut T) -> impl FnOnce() + '_
+ // suggest:
+ // fn get_later<'a, G: 'a, T>(g: G, dest: &mut T) -> impl FnOnce() + '_ + 'a
+ ty::Closure(_, _substs) | ty::Opaque(_, _substs) if return_impl_trait => {
+ new_binding_suggestion(&mut err, type_param_span);
+ }
+ _ => {
+ binding_suggestion(&mut err, type_param_span, bound_kind, new_lt);
+ }
+ }
+ }
+ err
+ }
+ };
+
+ if let Some(origin) = origin {
+ self.note_region_origin(&mut err, &origin);
+ }
+ err
+ }
+
+ fn report_sub_sup_conflict(
+ &self,
+ var_origin: RegionVariableOrigin,
+ sub_origin: SubregionOrigin<'tcx>,
+ sub_region: Region<'tcx>,
+ sup_origin: SubregionOrigin<'tcx>,
+ sup_region: Region<'tcx>,
+ ) {
+ let mut err = self.report_inference_failure(var_origin);
+
+ note_and_explain_region(
+ self.tcx,
+ &mut err,
+ "first, the lifetime cannot outlive ",
+ sup_region,
+ "...",
+ None,
+ );
+
+ debug!("report_sub_sup_conflict: var_origin={:?}", var_origin);
+ debug!("report_sub_sup_conflict: sub_region={:?}", sub_region);
+ debug!("report_sub_sup_conflict: sub_origin={:?}", sub_origin);
+ debug!("report_sub_sup_conflict: sup_region={:?}", sup_region);
+ debug!("report_sub_sup_conflict: sup_origin={:?}", sup_origin);
+
+ if let (&infer::Subtype(ref sup_trace), &infer::Subtype(ref sub_trace)) =
+ (&sup_origin, &sub_origin)
+ {
+ debug!("report_sub_sup_conflict: sup_trace={:?}", sup_trace);
+ debug!("report_sub_sup_conflict: sub_trace={:?}", sub_trace);
+ debug!("report_sub_sup_conflict: sup_trace.values={:?}", sup_trace.values);
+ debug!("report_sub_sup_conflict: sub_trace.values={:?}", sub_trace.values);
+
+ if let (Some((sup_expected, sup_found)), Some((sub_expected, sub_found))) =
+ (self.values_str(sup_trace.values), self.values_str(sub_trace.values))
+ {
+ if sub_expected == sup_expected && sub_found == sup_found {
+ note_and_explain_region(
+ self.tcx,
+ &mut err,
+ "...but the lifetime must also be valid for ",
+ sub_region,
+ "...",
+ None,
+ );
+ err.span_note(
+ sup_trace.cause.span,
+ &format!("...so that the {}", sup_trace.cause.as_requirement_str()),
+ );
+
+ err.note_expected_found(&"", sup_expected, &"", sup_found);
+ err.emit();
+ return;
+ }
+ }
+ }
+
+ self.note_region_origin(&mut err, &sup_origin);
+
+ note_and_explain_region(
+ self.tcx,
+ &mut err,
+ "but, the lifetime must be valid for ",
+ sub_region,
+ "...",
+ None,
+ );
+
+ self.note_region_origin(&mut err, &sub_origin);
+ err.emit();
+ }
+
+ /// Determine whether an error associated with the given span and definition
+ /// should be treated as being caused by the implicit `From` conversion
+ /// within `?` desugaring.
+ pub fn is_try_conversion(&self, span: Span, trait_def_id: DefId) -> bool {
+ span.is_desugaring(DesugaringKind::QuestionMark)
+ && self.tcx.is_diagnostic_item(sym::From, trait_def_id)
+ }
+
+ /// Structurally compares two types, modulo any inference variables.
+ ///
+ /// Returns `true` if two types are equal, or if one type is an inference variable compatible
+ /// with the other type. A TyVar inference type is compatible with any type, and an IntVar or
+ /// FloatVar inference type are compatible with themselves or their concrete types (Int and
+ /// Float types, respectively). When comparing two ADTs, these rules apply recursively.
+ pub fn same_type_modulo_infer(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
+ let (a, b) = self.resolve_vars_if_possible((a, b));
+ match (a.kind(), b.kind()) {
+ (&ty::Adt(def_a, substs_a), &ty::Adt(def_b, substs_b)) => {
+ if def_a != def_b {
+ return false;
+ }
+
+ substs_a
+ .types()
+ .zip(substs_b.types())
+ .all(|(a, b)| self.same_type_modulo_infer(a, b))
+ }
+ (&ty::FnDef(did_a, substs_a), &ty::FnDef(did_b, substs_b)) => {
+ if did_a != did_b {
+ return false;
+ }
+
+ substs_a
+ .types()
+ .zip(substs_b.types())
+ .all(|(a, b)| self.same_type_modulo_infer(a, b))
+ }
+ (&ty::Int(_) | &ty::Uint(_), &ty::Infer(ty::InferTy::IntVar(_)))
+ | (
+ &ty::Infer(ty::InferTy::IntVar(_)),
+ &ty::Int(_) | &ty::Uint(_) | &ty::Infer(ty::InferTy::IntVar(_)),
+ )
+ | (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
+ | (
+ &ty::Infer(ty::InferTy::FloatVar(_)),
+ &ty::Float(_) | &ty::Infer(ty::InferTy::FloatVar(_)),
+ )
+ | (&ty::Infer(ty::InferTy::TyVar(_)), _)
+ | (_, &ty::Infer(ty::InferTy::TyVar(_))) => true,
+ (&ty::Ref(_, ty_a, mut_a), &ty::Ref(_, ty_b, mut_b)) => {
+ mut_a == mut_b && self.same_type_modulo_infer(ty_a, ty_b)
+ }
+ (&ty::RawPtr(a), &ty::RawPtr(b)) => {
+ a.mutbl == b.mutbl && self.same_type_modulo_infer(a.ty, b.ty)
+ }
+ (&ty::Slice(a), &ty::Slice(b)) => self.same_type_modulo_infer(a, b),
+ (&ty::Array(a_ty, a_ct), &ty::Array(b_ty, b_ct)) => {
+ self.same_type_modulo_infer(a_ty, b_ty) && a_ct == b_ct
+ }
+ (&ty::Tuple(a), &ty::Tuple(b)) => {
+ if a.len() != b.len() {
+ return false;
+ }
+ std::iter::zip(a.iter(), b.iter()).all(|(a, b)| self.same_type_modulo_infer(a, b))
+ }
+ (&ty::FnPtr(a), &ty::FnPtr(b)) => {
+ let a = a.skip_binder().inputs_and_output;
+ let b = b.skip_binder().inputs_and_output;
+ if a.len() != b.len() {
+ return false;
+ }
+ std::iter::zip(a.iter(), b.iter()).all(|(a, b)| self.same_type_modulo_infer(a, b))
+ }
+ // FIXME(compiler-errors): This needs to be generalized more
+ _ => a == b,
+ }
+ }
+}
+
+impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
+ fn report_inference_failure(
+ &self,
+ var_origin: RegionVariableOrigin,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let br_string = |br: ty::BoundRegionKind| {
+ let mut s = match br {
+ ty::BrNamed(_, name) => name.to_string(),
+ _ => String::new(),
+ };
+ if !s.is_empty() {
+ s.push(' ');
+ }
+ s
+ };
+ let var_description = match var_origin {
+ infer::MiscVariable(_) => String::new(),
+ infer::PatternRegion(_) => " for pattern".to_string(),
+ infer::AddrOfRegion(_) => " for borrow expression".to_string(),
+ infer::Autoref(_) => " for autoref".to_string(),
+ infer::Coercion(_) => " for automatic coercion".to_string(),
+ infer::LateBoundRegion(_, br, infer::FnCall) => {
+ format!(" for lifetime parameter {}in function call", br_string(br))
+ }
+ infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
+ format!(" for lifetime parameter {}in generic type", br_string(br))
+ }
+ infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => format!(
+ " for lifetime parameter {}in trait containing associated type `{}`",
+ br_string(br),
+ self.tcx.associated_item(def_id).name
+ ),
+ infer::EarlyBoundRegion(_, name) => format!(" for lifetime parameter `{}`", name),
+ infer::UpvarRegion(ref upvar_id, _) => {
+ let var_name = self.tcx.hir().name(upvar_id.var_path.hir_id);
+ format!(" for capture of `{}` by closure", var_name)
+ }
+ infer::Nll(..) => bug!("NLL variable found in lexical phase"),
+ };
+
+ struct_span_err!(
+ self.tcx.sess,
+ var_origin.span(),
+ E0495,
+ "cannot infer an appropriate lifetime{} due to conflicting requirements",
+ var_description
+ )
+ }
+}
+
+pub enum FailureCode {
+ Error0038(DefId),
+ Error0317(&'static str),
+ Error0580(&'static str),
+ Error0308(&'static str),
+ Error0644(&'static str),
+}
+
+pub trait ObligationCauseExt<'tcx> {
+ fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode;
+ fn as_requirement_str(&self) -> &'static str;
+}
+
+impl<'tcx> ObligationCauseExt<'tcx> for ObligationCause<'tcx> {
+ fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
+ use self::FailureCode::*;
+ use crate::traits::ObligationCauseCode::*;
+ match self.code() {
+ CompareImplItemObligation { kind: ty::AssocKind::Fn, .. } => {
+ Error0308("method not compatible with trait")
+ }
+ CompareImplItemObligation { kind: ty::AssocKind::Type, .. } => {
+ Error0308("type not compatible with trait")
+ }
+ CompareImplItemObligation { kind: ty::AssocKind::Const, .. } => {
+ Error0308("const not compatible with trait")
+ }
+ MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => {
+ Error0308(match source {
+ hir::MatchSource::TryDesugar => "`?` operator has incompatible types",
+ _ => "`match` arms have incompatible types",
+ })
+ }
+ IfExpression { .. } => Error0308("`if` and `else` have incompatible types"),
+ IfExpressionWithNoElse => Error0317("`if` may be missing an `else` clause"),
+ LetElse => Error0308("`else` clause of `let...else` does not diverge"),
+ MainFunctionType => Error0580("`main` function has wrong type"),
+ StartFunctionType => Error0308("`#[start]` function has wrong type"),
+ IntrinsicType => Error0308("intrinsic has wrong type"),
+ MethodReceiver => Error0308("mismatched `self` parameter type"),
+
+ // In the case where we have no more specific thing to
+ // say, also take a look at the error code, maybe we can
+ // tailor to that.
+ _ => match terr {
+ TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() => {
+ Error0644("closure/generator type that references itself")
+ }
+ TypeError::IntrinsicCast => {
+ Error0308("cannot coerce intrinsics to function pointers")
+ }
+ TypeError::ObjectUnsafeCoercion(did) => Error0038(*did),
+ _ => Error0308("mismatched types"),
+ },
+ }
+ }
+
+ fn as_requirement_str(&self) -> &'static str {
+ use crate::traits::ObligationCauseCode::*;
+ match self.code() {
+ CompareImplItemObligation { kind: ty::AssocKind::Fn, .. } => {
+ "method type is compatible with trait"
+ }
+ CompareImplItemObligation { kind: ty::AssocKind::Type, .. } => {
+ "associated type is compatible with trait"
+ }
+ CompareImplItemObligation { kind: ty::AssocKind::Const, .. } => {
+ "const is compatible with trait"
+ }
+ ExprAssignable => "expression is assignable",
+ IfExpression { .. } => "`if` and `else` have incompatible types",
+ IfExpressionWithNoElse => "`if` missing an `else` returns `()`",
+ MainFunctionType => "`main` function has the correct type",
+ StartFunctionType => "`#[start]` function has the correct type",
+ IntrinsicType => "intrinsic has the correct type",
+ MethodReceiver => "method receiver has the correct type",
+ _ => "types are compatible",
+ }
+ }
+}
+
+/// This is a bare signal of what kind of type we're dealing with. `ty::TyKind` tracks
+/// extra information about each type, but we only care about the category.
+#[derive(Clone, Copy, PartialEq, Eq, Hash)]
+pub enum TyCategory {
+ Closure,
+ Opaque,
+ Generator(hir::GeneratorKind),
+ Foreign,
+}
+
+impl TyCategory {
+ fn descr(&self) -> &'static str {
+ match self {
+ Self::Closure => "closure",
+ Self::Opaque => "opaque type",
+ Self::Generator(gk) => gk.descr(),
+ Self::Foreign => "foreign type",
+ }
+ }
+
+ pub fn from_ty(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Self, DefId)> {
+ match *ty.kind() {
+ ty::Closure(def_id, _) => Some((Self::Closure, def_id)),
+ ty::Opaque(def_id, _) => Some((Self::Opaque, def_id)),
+ ty::Generator(def_id, ..) => {
+ Some((Self::Generator(tcx.generator_kind(def_id).unwrap()), def_id))
+ }
+ ty::Foreign(def_id) => Some((Self::Foreign, def_id)),
+ _ => None,
+ }
+ }
+}
+
+impl<'tcx> InferCtxt<'_, 'tcx> {
+ /// Given a [`hir::Block`], get the span of its last expression or
+ /// statement, peeling off any inner blocks.
+ pub fn find_block_span(&self, block: &'tcx hir::Block<'tcx>) -> Span {
+ let block = block.innermost_block();
+ if let Some(expr) = &block.expr {
+ expr.span
+ } else if let Some(stmt) = block.stmts.last() {
+ // possibly incorrect trailing `;` in the else arm
+ stmt.span
+ } else {
+ // empty block; point at its entirety
+ block.span
+ }
+ }
+
+ /// Given a [`hir::HirId`] for a block, get the span of its last expression
+ /// or statement, peeling off any inner blocks.
+ pub fn find_block_span_from_hir_id(&self, hir_id: hir::HirId) -> Span {
+ match self.tcx.hir().get(hir_id) {
+ hir::Node::Block(blk) => self.find_block_span(blk),
+ // The parser was in a weird state if either of these happen, but
+ // it's better not to panic.
+ hir::Node::Expr(e) => e.span,
+ _ => rustc_span::DUMMY_SP,
+ }
+ }
+
+ /// Be helpful when the user wrote `{... expr; }` and taking the `;` off
+ /// is enough to fix the error.
+ pub fn could_remove_semicolon(
+ &self,
+ blk: &'tcx hir::Block<'tcx>,
+ expected_ty: Ty<'tcx>,
+ ) -> Option<(Span, StatementAsExpression)> {
+ let blk = blk.innermost_block();
+ // Do not suggest if we have a tail expr.
+ if blk.expr.is_some() {
+ return None;
+ }
+ let last_stmt = blk.stmts.last()?;
+ let hir::StmtKind::Semi(ref last_expr) = last_stmt.kind else {
+ return None;
+ };
+ let last_expr_ty = self.in_progress_typeck_results?.borrow().expr_ty_opt(*last_expr)?;
+ let needs_box = match (last_expr_ty.kind(), expected_ty.kind()) {
+ _ if last_expr_ty.references_error() => return None,
+ _ if self.same_type_modulo_infer(last_expr_ty, expected_ty) => {
+ StatementAsExpression::CorrectType
+ }
+ (ty::Opaque(last_def_id, _), ty::Opaque(exp_def_id, _))
+ if last_def_id == exp_def_id =>
+ {
+ StatementAsExpression::CorrectType
+ }
+ (ty::Opaque(last_def_id, last_bounds), ty::Opaque(exp_def_id, exp_bounds)) => {
+ debug!(
+ "both opaque, likely future {:?} {:?} {:?} {:?}",
+ last_def_id, last_bounds, exp_def_id, exp_bounds
+ );
+
+ let last_local_id = last_def_id.as_local()?;
+ let exp_local_id = exp_def_id.as_local()?;
+
+ match (
+ &self.tcx.hir().expect_item(last_local_id).kind,
+ &self.tcx.hir().expect_item(exp_local_id).kind,
+ ) {
+ (
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: last_bounds, .. }),
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: exp_bounds, .. }),
+ ) if iter::zip(*last_bounds, *exp_bounds).all(|(left, right)| {
+ match (left, right) {
+ (
+ hir::GenericBound::Trait(tl, ml),
+ hir::GenericBound::Trait(tr, mr),
+ ) if tl.trait_ref.trait_def_id() == tr.trait_ref.trait_def_id()
+ && ml == mr =>
+ {
+ true
+ }
+ (
+ hir::GenericBound::LangItemTrait(langl, _, _, argsl),
+ hir::GenericBound::LangItemTrait(langr, _, _, argsr),
+ ) if langl == langr => {
+ // FIXME: consider the bounds!
+ debug!("{:?} {:?}", argsl, argsr);
+ true
+ }
+ _ => false,
+ }
+ }) =>
+ {
+ StatementAsExpression::NeedsBoxing
+ }
+ _ => StatementAsExpression::CorrectType,
+ }
+ }
+ _ => return None,
+ };
+ let span = if last_stmt.span.from_expansion() {
+ let mac_call = rustc_span::source_map::original_sp(last_stmt.span, blk.span);
+ self.tcx.sess.source_map().mac_call_stmt_semi_span(mac_call)?
+ } else {
+ last_stmt.span.with_lo(last_stmt.span.hi() - BytePos(1))
+ };
+ Some((span, needs_box))
+ }
+
+ /// Suggest returning a local binding with a compatible type if the block
+ /// has no return expression.
+ pub fn consider_returning_binding(
+ &self,
+ blk: &'tcx hir::Block<'tcx>,
+ expected_ty: Ty<'tcx>,
+ err: &mut Diagnostic,
+ ) -> bool {
+ let blk = blk.innermost_block();
+ // Do not suggest if we have a tail expr.
+ if blk.expr.is_some() {
+ return false;
+ }
+ let mut shadowed = FxHashSet::default();
+ let mut candidate_idents = vec![];
+ let mut find_compatible_candidates = |pat: &hir::Pat<'_>| {
+ if let hir::PatKind::Binding(_, hir_id, ident, _) = &pat.kind
+ && let Some(pat_ty) = self
+ .in_progress_typeck_results
+ .and_then(|typeck_results| typeck_results.borrow().node_type_opt(*hir_id))
+ {
+ let pat_ty = self.resolve_vars_if_possible(pat_ty);
+ if self.same_type_modulo_infer(pat_ty, expected_ty)
+ && !(pat_ty, expected_ty).references_error()
+ && shadowed.insert(ident.name)
+ {
+ candidate_idents.push((*ident, pat_ty));
+ }
+ }
+ true
+ };
+
+ let hir = self.tcx.hir();
+ for stmt in blk.stmts.iter().rev() {
+ let hir::StmtKind::Local(local) = &stmt.kind else { continue; };
+ local.pat.walk(&mut find_compatible_candidates);
+ }
+ match hir.find(hir.get_parent_node(blk.hir_id)) {
+ Some(hir::Node::Expr(hir::Expr { hir_id, .. })) => {
+ match hir.find(hir.get_parent_node(*hir_id)) {
+ Some(hir::Node::Arm(hir::Arm { pat, .. })) => {
+ pat.walk(&mut find_compatible_candidates);
+ }
+ Some(
+ hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, _, body), .. })
+ | hir::Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Fn(_, body),
+ ..
+ })
+ | hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(body)),
+ ..
+ })
+ | hir::Node::Expr(hir::Expr {
+ kind: hir::ExprKind::Closure(hir::Closure { body, .. }),
+ ..
+ }),
+ ) => {
+ for param in hir.body(*body).params {
+ param.pat.walk(&mut find_compatible_candidates);
+ }
+ }
+ Some(hir::Node::Expr(hir::Expr {
+ kind:
+ hir::ExprKind::If(
+ hir::Expr { kind: hir::ExprKind::Let(let_), .. },
+ then_block,
+ _,
+ ),
+ ..
+ })) if then_block.hir_id == *hir_id => {
+ let_.pat.walk(&mut find_compatible_candidates);
+ }
+ _ => {}
+ }
+ }
+ _ => {}
+ }
+
+ match &candidate_idents[..] {
+ [(ident, _ty)] => {
+ let sm = self.tcx.sess.source_map();
+ if let Some(stmt) = blk.stmts.last() {
+ let stmt_span = sm.stmt_span(stmt.span, blk.span);
+ let sugg = if sm.is_multiline(blk.span)
+ && let Some(spacing) = sm.indentation_before(stmt_span)
+ {
+ format!("\n{spacing}{ident}")
+ } else {
+ format!(" {ident}")
+ };
+ err.span_suggestion_verbose(
+ stmt_span.shrink_to_hi(),
+ format!("consider returning the local binding `{ident}`"),
+ sugg,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ let sugg = if sm.is_multiline(blk.span)
+ && let Some(spacing) = sm.indentation_before(blk.span.shrink_to_lo())
+ {
+ format!("\n{spacing} {ident}\n{spacing}")
+ } else {
+ format!(" {ident} ")
+ };
+ let left_span = sm.span_through_char(blk.span, '{').shrink_to_hi();
+ err.span_suggestion_verbose(
+ sm.span_extend_while(left_span, |c| c.is_whitespace()).unwrap_or(left_span),
+ format!("consider returning the local binding `{ident}`"),
+ sugg,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ true
+ }
+ values if (1..3).contains(&values.len()) => {
+ let spans = values.iter().map(|(ident, _)| ident.span).collect::<Vec<_>>();
+ err.span_note(spans, "consider returning one of these bindings");
+ true
+ }
+ _ => false,
+ }
+ }
+}