summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/lattice.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/lattice.rs')
-rw-r--r--compiler/rustc_infer/src/infer/lattice.rs124
1 files changed, 124 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/lattice.rs b/compiler/rustc_infer/src/infer/lattice.rs
new file mode 100644
index 000000000..1e3293efa
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/lattice.rs
@@ -0,0 +1,124 @@
+//! # Lattice variables
+//!
+//! Generic code for operating on [lattices] of inference variables
+//! that are characterized by an upper- and lower-bound.
+//!
+//! The code is defined quite generically so that it can be
+//! applied both to type variables, which represent types being inferred,
+//! and fn variables, which represent function types being inferred.
+//! (It may eventually be applied to their types as well.)
+//! In some cases, the functions are also generic with respect to the
+//! operation on the lattice (GLB vs LUB).
+//!
+//! ## Note
+//!
+//! Although all the functions are generic, for simplicity, comments in the source code
+//! generally refer to type variables and the LUB operation.
+//!
+//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
+
+use super::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use super::InferCtxt;
+
+use crate::traits::{ObligationCause, PredicateObligation};
+use rustc_middle::ty::relate::{RelateResult, TypeRelation};
+use rustc_middle::ty::TyVar;
+use rustc_middle::ty::{self, Ty};
+
+/// Trait for returning data about a lattice, and for abstracting
+/// over the "direction" of the lattice operation (LUB/GLB).
+///
+/// GLB moves "down" the lattice (to smaller values); LUB moves
+/// "up" the lattice (to bigger values).
+pub trait LatticeDir<'f, 'tcx>: TypeRelation<'tcx> {
+ fn infcx(&self) -> &'f InferCtxt<'f, 'tcx>;
+
+ fn cause(&self) -> &ObligationCause<'tcx>;
+
+ fn add_obligations(&mut self, obligations: Vec<PredicateObligation<'tcx>>);
+
+ fn define_opaque_types(&self) -> bool;
+
+ // Relates the type `v` to `a` and `b` such that `v` represents
+ // the LUB/GLB of `a` and `b` as appropriate.
+ //
+ // Subtle hack: ordering *may* be significant here. This method
+ // relates `v` to `a` first, which may help us to avoid unnecessary
+ // type variable obligations. See caller for details.
+ fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()>;
+}
+
+/// Relates two types using a given lattice.
+#[instrument(skip(this), level = "debug")]
+pub fn super_lattice_tys<'a, 'tcx: 'a, L>(
+ this: &mut L,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+) -> RelateResult<'tcx, Ty<'tcx>>
+where
+ L: LatticeDir<'a, 'tcx>,
+{
+ debug!("{}", this.tag());
+
+ if a == b {
+ return Ok(a);
+ }
+
+ let infcx = this.infcx();
+
+ let a = infcx.inner.borrow_mut().type_variables().replace_if_possible(a);
+ let b = infcx.inner.borrow_mut().type_variables().replace_if_possible(b);
+
+ match (a.kind(), b.kind()) {
+ // If one side is known to be a variable and one is not,
+ // create a variable (`v`) to represent the LUB. Make sure to
+ // relate `v` to the non-type-variable first (by passing it
+ // first to `relate_bound`). Otherwise, we would produce a
+ // subtype obligation that must then be processed.
+ //
+ // Example: if the LHS is a type variable, and RHS is
+ // `Box<i32>`, then we current compare `v` to the RHS first,
+ // which will instantiate `v` with `Box<i32>`. Then when `v`
+ // is compared to the LHS, we instantiate LHS with `Box<i32>`.
+ // But if we did in reverse order, we would create a `v <:
+ // LHS` (or vice versa) constraint and then instantiate
+ // `v`. This would require further processing to achieve same
+ // end-result; in particular, this screws up some of the logic
+ // in coercion, which expects LUB to figure out that the LHS
+ // is (e.g.) `Box<i32>`. A more obvious solution might be to
+ // iterate on the subtype obligations that are returned, but I
+ // think this suffices. -nmatsakis
+ (&ty::Infer(TyVar(..)), _) => {
+ let v = infcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::LatticeVariable,
+ span: this.cause().span,
+ });
+ this.relate_bound(v, b, a)?;
+ Ok(v)
+ }
+ (_, &ty::Infer(TyVar(..))) => {
+ let v = infcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::LatticeVariable,
+ span: this.cause().span,
+ });
+ this.relate_bound(v, a, b)?;
+ Ok(v)
+ }
+
+ (&ty::Opaque(a_def_id, _), &ty::Opaque(b_def_id, _)) if a_def_id == b_def_id => {
+ infcx.super_combine_tys(this, a, b)
+ }
+ (&ty::Opaque(did, ..), _) | (_, &ty::Opaque(did, ..))
+ if this.define_opaque_types() && did.is_local() =>
+ {
+ this.add_obligations(
+ infcx
+ .handle_opaque_type(a, b, this.a_is_expected(), this.cause(), this.param_env())?
+ .obligations,
+ );
+ Ok(a)
+ }
+
+ _ => infcx.super_combine_tys(this, a, b),
+ }
+}