summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/mod.rs')
-rw-r--r--compiler/rustc_infer/src/infer/mod.rs2066
1 files changed, 2066 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/mod.rs b/compiler/rustc_infer/src/infer/mod.rs
new file mode 100644
index 000000000..d7d1b5fa2
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/mod.rs
@@ -0,0 +1,2066 @@
+pub use self::freshen::TypeFreshener;
+pub use self::lexical_region_resolve::RegionResolutionError;
+pub use self::LateBoundRegionConversionTime::*;
+pub use self::RegionVariableOrigin::*;
+pub use self::SubregionOrigin::*;
+pub use self::ValuePairs::*;
+
+use self::opaque_types::OpaqueTypeStorage;
+pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
+
+use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine, TraitEngineExt};
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync::Lrc;
+use rustc_data_structures::undo_log::Rollback;
+use rustc_data_structures::unify as ut;
+use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
+use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
+use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
+use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
+use rustc_middle::traits::select;
+use rustc_middle::ty::abstract_const::{AbstractConst, FailureKind};
+use rustc_middle::ty::error::{ExpectedFound, TypeError};
+use rustc_middle::ty::fold::BoundVarReplacerDelegate;
+use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
+use rustc_middle::ty::relate::RelateResult;
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
+use rustc_middle::ty::visit::TypeVisitable;
+pub use rustc_middle::ty::IntVarValue;
+use rustc_middle::ty::{self, GenericParamDefKind, InferConst, Ty, TyCtxt};
+use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
+use rustc_span::symbol::Symbol;
+use rustc_span::Span;
+
+use std::cell::{Cell, Ref, RefCell};
+use std::fmt;
+
+use self::combine::CombineFields;
+use self::free_regions::RegionRelations;
+use self::lexical_region_resolve::LexicalRegionResolutions;
+use self::outlives::env::OutlivesEnvironment;
+use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
+use self::region_constraints::{
+ RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
+};
+use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+
+pub mod at;
+pub mod canonical;
+mod combine;
+mod equate;
+pub mod error_reporting;
+pub mod free_regions;
+mod freshen;
+mod fudge;
+mod glb;
+mod higher_ranked;
+pub mod lattice;
+mod lexical_region_resolve;
+mod lub;
+pub mod nll_relate;
+pub mod opaque_types;
+pub mod outlives;
+mod projection;
+pub mod region_constraints;
+pub mod resolve;
+mod sub;
+pub mod type_variable;
+mod undo_log;
+
+#[must_use]
+#[derive(Debug)]
+pub struct InferOk<'tcx, T> {
+ pub value: T,
+ pub obligations: PredicateObligations<'tcx>,
+}
+pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
+
+pub type Bound<T> = Option<T>;
+pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
+pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
+
+pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
+ ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
+>;
+
+/// This type contains all the things within `InferCtxt` that sit within a
+/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
+/// operations are hot enough that we want only one call to `borrow_mut` per
+/// call to `start_snapshot` and `rollback_to`.
+#[derive(Clone)]
+pub struct InferCtxtInner<'tcx> {
+ /// Cache for projections. This cache is snapshotted along with the infcx.
+ ///
+ /// Public so that `traits::project` can use it.
+ pub projection_cache: traits::ProjectionCacheStorage<'tcx>,
+
+ /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
+ /// that might instantiate a general type variable have an order,
+ /// represented by its upper and lower bounds.
+ type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
+
+ /// Map from const parameter variable to the kind of const it represents.
+ const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
+
+ /// Map from integral variable to the kind of integer it represents.
+ int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
+
+ /// Map from floating variable to the kind of float it represents.
+ float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
+
+ /// Tracks the set of region variables and the constraints between them.
+ /// This is initially `Some(_)` but when
+ /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
+ /// -- further attempts to perform unification, etc., may fail if new
+ /// region constraints would've been added.
+ region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
+
+ /// A set of constraints that regionck must validate. Each
+ /// constraint has the form `T:'a`, meaning "some type `T` must
+ /// outlive the lifetime 'a". These constraints derive from
+ /// instantiated type parameters. So if you had a struct defined
+ /// like
+ /// ```ignore (illustrative)
+ /// struct Foo<T:'static> { ... }
+ /// ```
+ /// then in some expression `let x = Foo { ... }` it will
+ /// instantiate the type parameter `T` with a fresh type `$0`. At
+ /// the same time, it will record a region obligation of
+ /// `$0:'static`. This will get checked later by regionck. (We
+ /// can't generally check these things right away because we have
+ /// to wait until types are resolved.)
+ ///
+ /// These are stored in a map keyed to the id of the innermost
+ /// enclosing fn body / static initializer expression. This is
+ /// because the location where the obligation was incurred can be
+ /// relevant with respect to which sublifetime assumptions are in
+ /// place. The reason that we store under the fn-id, and not
+ /// something more fine-grained, is so that it is easier for
+ /// regionck to be sure that it has found *all* the region
+ /// obligations (otherwise, it's easy to fail to walk to a
+ /// particular node-id).
+ ///
+ /// Before running `resolve_regions_and_report_errors`, the creator
+ /// of the inference context is expected to invoke
+ /// [`InferCtxt::process_registered_region_obligations`]
+ /// for each body-id in this map, which will process the
+ /// obligations within. This is expected to be done 'late enough'
+ /// that all type inference variables have been bound and so forth.
+ region_obligations: Vec<RegionObligation<'tcx>>,
+
+ undo_log: InferCtxtUndoLogs<'tcx>,
+
+ /// Caches for opaque type inference.
+ pub opaque_type_storage: OpaqueTypeStorage<'tcx>,
+}
+
+impl<'tcx> InferCtxtInner<'tcx> {
+ fn new() -> InferCtxtInner<'tcx> {
+ InferCtxtInner {
+ projection_cache: Default::default(),
+ type_variable_storage: type_variable::TypeVariableStorage::new(),
+ undo_log: InferCtxtUndoLogs::default(),
+ const_unification_storage: ut::UnificationTableStorage::new(),
+ int_unification_storage: ut::UnificationTableStorage::new(),
+ float_unification_storage: ut::UnificationTableStorage::new(),
+ region_constraint_storage: Some(RegionConstraintStorage::new()),
+ region_obligations: vec![],
+ opaque_type_storage: Default::default(),
+ }
+ }
+
+ #[inline]
+ pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
+ &self.region_obligations
+ }
+
+ #[inline]
+ pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
+ self.projection_cache.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
+ self.type_variable_storage.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
+ self.opaque_type_storage.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ fn int_unification_table(
+ &mut self,
+ ) -> ut::UnificationTable<
+ ut::InPlace<
+ ty::IntVid,
+ &mut ut::UnificationStorage<ty::IntVid>,
+ &mut InferCtxtUndoLogs<'tcx>,
+ >,
+ > {
+ self.int_unification_storage.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ fn float_unification_table(
+ &mut self,
+ ) -> ut::UnificationTable<
+ ut::InPlace<
+ ty::FloatVid,
+ &mut ut::UnificationStorage<ty::FloatVid>,
+ &mut InferCtxtUndoLogs<'tcx>,
+ >,
+ > {
+ self.float_unification_storage.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ fn const_unification_table(
+ &mut self,
+ ) -> ut::UnificationTable<
+ ut::InPlace<
+ ty::ConstVid<'tcx>,
+ &mut ut::UnificationStorage<ty::ConstVid<'tcx>>,
+ &mut InferCtxtUndoLogs<'tcx>,
+ >,
+ > {
+ self.const_unification_storage.with_log(&mut self.undo_log)
+ }
+
+ #[inline]
+ pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
+ self.region_constraint_storage
+ .as_mut()
+ .expect("region constraints already solved")
+ .with_log(&mut self.undo_log)
+ }
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub enum DefiningAnchor {
+ /// `DefId` of the item.
+ Bind(LocalDefId),
+ /// When opaque types are not resolved, we `Bubble` up, meaning
+ /// return the opaque/hidden type pair from query, for caller of query to handle it.
+ Bubble,
+ /// Used to catch type mismatch errors when handling opaque types.
+ Error,
+}
+
+pub struct InferCtxt<'a, 'tcx> {
+ pub tcx: TyCtxt<'tcx>,
+
+ /// The `DefId` of the item in whose context we are performing inference or typeck.
+ /// It is used to check whether an opaque type use is a defining use.
+ ///
+ /// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
+ /// the obligation. This frequently happens for
+ /// short lived InferCtxt within queries. The opaque type obligations are forwarded
+ /// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
+ ///
+ /// It is default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
+ /// might come up during inference or typeck.
+ pub defining_use_anchor: DefiningAnchor,
+
+ /// Whether this inference context should care about region obligations in
+ /// the root universe. Most notably, this is used during hir typeck as region
+ /// solving is left to borrowck instead.
+ pub considering_regions: bool,
+
+ /// During type-checking/inference of a body, `in_progress_typeck_results`
+ /// contains a reference to the typeck results being built up, which are
+ /// used for reading closure kinds/signatures as they are inferred,
+ /// and for error reporting logic to read arbitrary node types.
+ pub in_progress_typeck_results: Option<&'a RefCell<ty::TypeckResults<'tcx>>>,
+
+ pub inner: RefCell<InferCtxtInner<'tcx>>,
+
+ /// If set, this flag causes us to skip the 'leak check' during
+ /// higher-ranked subtyping operations. This flag is a temporary one used
+ /// to manage the removal of the leak-check: for the time being, we still run the
+ /// leak-check, but we issue warnings. This flag can only be set to true
+ /// when entering a snapshot.
+ skip_leak_check: Cell<bool>,
+
+ /// Once region inference is done, the values for each variable.
+ lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
+
+ /// Caches the results of trait selection. This cache is used
+ /// for things that have to do with the parameters in scope.
+ pub selection_cache: select::SelectionCache<'tcx>,
+
+ /// Caches the results of trait evaluation.
+ pub evaluation_cache: select::EvaluationCache<'tcx>,
+
+ /// the set of predicates on which errors have been reported, to
+ /// avoid reporting the same error twice.
+ pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
+
+ pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
+
+ /// When an error occurs, we want to avoid reporting "derived"
+ /// errors that are due to this original failure. Normally, we
+ /// handle this with the `err_count_on_creation` count, which
+ /// basically just tracks how many errors were reported when we
+ /// started type-checking a fn and checks to see if any new errors
+ /// have been reported since then. Not great, but it works.
+ ///
+ /// However, when errors originated in other passes -- notably
+ /// resolve -- this heuristic breaks down. Therefore, we have this
+ /// auxiliary flag that one can set whenever one creates a
+ /// type-error that is due to an error in a prior pass.
+ ///
+ /// Don't read this flag directly, call `is_tainted_by_errors()`
+ /// and `set_tainted_by_errors()`.
+ tainted_by_errors_flag: Cell<bool>,
+
+ /// Track how many errors were reported when this infcx is created.
+ /// If the number of errors increases, that's also a sign (line
+ /// `tainted_by_errors`) to avoid reporting certain kinds of errors.
+ // FIXME(matthewjasper) Merge into `tainted_by_errors_flag`
+ err_count_on_creation: usize,
+
+ /// This flag is true while there is an active snapshot.
+ in_snapshot: Cell<bool>,
+
+ /// What is the innermost universe we have created? Starts out as
+ /// `UniverseIndex::root()` but grows from there as we enter
+ /// universal quantifiers.
+ ///
+ /// N.B., at present, we exclude the universal quantifiers on the
+ /// item we are type-checking, and just consider those names as
+ /// part of the root universe. So this would only get incremented
+ /// when we enter into a higher-ranked (`for<..>`) type or trait
+ /// bound.
+ universe: Cell<ty::UniverseIndex>,
+}
+
+/// See the `error_reporting` module for more details.
+#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
+pub enum ValuePairs<'tcx> {
+ Regions(ExpectedFound<ty::Region<'tcx>>),
+ Terms(ExpectedFound<ty::Term<'tcx>>),
+ TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
+ PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
+}
+
+impl<'tcx> ValuePairs<'tcx> {
+ pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
+ if let ValuePairs::Terms(ExpectedFound {
+ expected: ty::Term::Ty(expected),
+ found: ty::Term::Ty(found),
+ }) = self
+ {
+ Some((*expected, *found))
+ } else {
+ None
+ }
+ }
+}
+
+/// The trace designates the path through inference that we took to
+/// encounter an error or subtyping constraint.
+///
+/// See the `error_reporting` module for more details.
+#[derive(Clone, Debug)]
+pub struct TypeTrace<'tcx> {
+ pub cause: ObligationCause<'tcx>,
+ pub values: ValuePairs<'tcx>,
+}
+
+/// The origin of a `r1 <= r2` constraint.
+///
+/// See `error_reporting` module for more details
+#[derive(Clone, Debug)]
+pub enum SubregionOrigin<'tcx> {
+ /// Arose from a subtyping relation
+ Subtype(Box<TypeTrace<'tcx>>),
+
+ /// When casting `&'a T` to an `&'b Trait` object,
+ /// relating `'a` to `'b`
+ RelateObjectBound(Span),
+
+ /// Some type parameter was instantiated with the given type,
+ /// and that type must outlive some region.
+ RelateParamBound(Span, Ty<'tcx>, Option<Span>),
+
+ /// The given region parameter was instantiated with a region
+ /// that must outlive some other region.
+ RelateRegionParamBound(Span),
+
+ /// Creating a pointer `b` to contents of another reference
+ Reborrow(Span),
+
+ /// Creating a pointer `b` to contents of an upvar
+ ReborrowUpvar(Span, ty::UpvarId),
+
+ /// Data with type `Ty<'tcx>` was borrowed
+ DataBorrowed(Ty<'tcx>, Span),
+
+ /// (&'a &'b T) where a >= b
+ ReferenceOutlivesReferent(Ty<'tcx>, Span),
+
+ /// Comparing the signature and requirements of an impl method against
+ /// the containing trait.
+ CompareImplItemObligation { span: Span, impl_item_def_id: LocalDefId, trait_item_def_id: DefId },
+
+ /// Checking that the bounds of a trait's associated type hold for a given impl
+ CheckAssociatedTypeBounds {
+ parent: Box<SubregionOrigin<'tcx>>,
+ impl_item_def_id: LocalDefId,
+ trait_item_def_id: DefId,
+ },
+}
+
+// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+static_assert_size!(SubregionOrigin<'_>, 32);
+
+/// Times when we replace late-bound regions with variables:
+#[derive(Clone, Copy, Debug)]
+pub enum LateBoundRegionConversionTime {
+ /// when a fn is called
+ FnCall,
+
+ /// when two higher-ranked types are compared
+ HigherRankedType,
+
+ /// when projecting an associated type
+ AssocTypeProjection(DefId),
+}
+
+/// Reasons to create a region inference variable
+///
+/// See `error_reporting` module for more details
+#[derive(Copy, Clone, Debug)]
+pub enum RegionVariableOrigin {
+ /// Region variables created for ill-categorized reasons,
+ /// mostly indicates places in need of refactoring
+ MiscVariable(Span),
+
+ /// Regions created by a `&P` or `[...]` pattern
+ PatternRegion(Span),
+
+ /// Regions created by `&` operator
+ AddrOfRegion(Span),
+
+ /// Regions created as part of an autoref of a method receiver
+ Autoref(Span),
+
+ /// Regions created as part of an automatic coercion
+ Coercion(Span),
+
+ /// Region variables created as the values for early-bound regions
+ EarlyBoundRegion(Span, Symbol),
+
+ /// Region variables created for bound regions
+ /// in a function or method that is called
+ LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
+
+ UpvarRegion(ty::UpvarId, Span),
+
+ /// This origin is used for the inference variables that we create
+ /// during NLL region processing.
+ Nll(NllRegionVariableOrigin),
+}
+
+#[derive(Copy, Clone, Debug)]
+pub enum NllRegionVariableOrigin {
+ /// During NLL region processing, we create variables for free
+ /// regions that we encounter in the function signature and
+ /// elsewhere. This origin indices we've got one of those.
+ FreeRegion,
+
+ /// "Universal" instantiation of a higher-ranked region (e.g.,
+ /// from a `for<'a> T` binder). Meant to represent "any region".
+ Placeholder(ty::PlaceholderRegion),
+
+ Existential {
+ /// If this is true, then this variable was created to represent a lifetime
+ /// bound in a `for` binder. For example, it might have been created to
+ /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
+ /// Such variables are created when we are trying to figure out if there
+ /// is any valid instantiation of `'a` that could fit into some scenario.
+ ///
+ /// This is used to inform error reporting: in the case that we are trying to
+ /// determine whether there is any valid instantiation of a `'a` variable that meets
+ /// some constraint C, we want to blame the "source" of that `for` type,
+ /// rather than blaming the source of the constraint C.
+ from_forall: bool,
+ },
+}
+
+// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
+#[derive(Copy, Clone, Debug)]
+pub enum FixupError<'tcx> {
+ UnresolvedIntTy(IntVid),
+ UnresolvedFloatTy(FloatVid),
+ UnresolvedTy(TyVid),
+ UnresolvedConst(ConstVid<'tcx>),
+}
+
+/// See the `region_obligations` field for more information.
+#[derive(Clone)]
+pub struct RegionObligation<'tcx> {
+ pub sub_region: ty::Region<'tcx>,
+ pub sup_type: Ty<'tcx>,
+ pub origin: SubregionOrigin<'tcx>,
+}
+
+impl<'tcx> fmt::Display for FixupError<'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use self::FixupError::*;
+
+ match *self {
+ UnresolvedIntTy(_) => write!(
+ f,
+ "cannot determine the type of this integer; \
+ add a suffix to specify the type explicitly"
+ ),
+ UnresolvedFloatTy(_) => write!(
+ f,
+ "cannot determine the type of this number; \
+ add a suffix to specify the type explicitly"
+ ),
+ UnresolvedTy(_) => write!(f, "unconstrained type"),
+ UnresolvedConst(_) => write!(f, "unconstrained const value"),
+ }
+ }
+}
+
+/// A temporary returned by `tcx.infer_ctxt()`. This is necessary
+/// for multiple `InferCtxt` to share the same `in_progress_typeck_results`
+/// without using `Rc` or something similar.
+pub struct InferCtxtBuilder<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ defining_use_anchor: DefiningAnchor,
+ considering_regions: bool,
+ fresh_typeck_results: Option<RefCell<ty::TypeckResults<'tcx>>>,
+}
+
+pub trait TyCtxtInferExt<'tcx> {
+ fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
+}
+
+impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
+ fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
+ InferCtxtBuilder {
+ tcx: self,
+ defining_use_anchor: DefiningAnchor::Error,
+ considering_regions: true,
+ fresh_typeck_results: None,
+ }
+ }
+}
+
+impl<'tcx> InferCtxtBuilder<'tcx> {
+ /// Used only by `rustc_typeck` during body type-checking/inference,
+ /// will initialize `in_progress_typeck_results` with fresh `TypeckResults`.
+ /// Will also change the scope for opaque type defining use checks to the given owner.
+ pub fn with_fresh_in_progress_typeck_results(mut self, table_owner: LocalDefId) -> Self {
+ self.fresh_typeck_results = Some(RefCell::new(ty::TypeckResults::new(table_owner)));
+ self.with_opaque_type_inference(DefiningAnchor::Bind(table_owner))
+ }
+
+ /// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
+ /// you need to call this function. Otherwise the opaque type will be treated opaquely.
+ ///
+ /// It is only meant to be called in two places, for typeck
+ /// (via `with_fresh_in_progress_typeck_results`) and for the inference context used
+ /// in mir borrowck.
+ pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
+ self.defining_use_anchor = defining_use_anchor;
+ self
+ }
+
+ pub fn ignoring_regions(mut self) -> Self {
+ self.considering_regions = false;
+ self
+ }
+
+ /// Given a canonical value `C` as a starting point, create an
+ /// inference context that contains each of the bound values
+ /// within instantiated as a fresh variable. The `f` closure is
+ /// invoked with the new infcx, along with the instantiated value
+ /// `V` and a substitution `S`. This substitution `S` maps from
+ /// the bound values in `C` to their instantiated values in `V`
+ /// (in other words, `S(C) = V`).
+ pub fn enter_with_canonical<T, R>(
+ &mut self,
+ span: Span,
+ canonical: &Canonical<'tcx, T>,
+ f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>, T, CanonicalVarValues<'tcx>) -> R,
+ ) -> R
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ self.enter(|infcx| {
+ let (value, subst) =
+ infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
+ f(infcx, value, subst)
+ })
+ }
+
+ pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
+ let InferCtxtBuilder {
+ tcx,
+ defining_use_anchor,
+ considering_regions,
+ ref fresh_typeck_results,
+ } = *self;
+ let in_progress_typeck_results = fresh_typeck_results.as_ref();
+ f(InferCtxt {
+ tcx,
+ defining_use_anchor,
+ considering_regions,
+ in_progress_typeck_results,
+ inner: RefCell::new(InferCtxtInner::new()),
+ lexical_region_resolutions: RefCell::new(None),
+ selection_cache: Default::default(),
+ evaluation_cache: Default::default(),
+ reported_trait_errors: Default::default(),
+ reported_closure_mismatch: Default::default(),
+ tainted_by_errors_flag: Cell::new(false),
+ err_count_on_creation: tcx.sess.err_count(),
+ in_snapshot: Cell::new(false),
+ skip_leak_check: Cell::new(false),
+ universe: Cell::new(ty::UniverseIndex::ROOT),
+ })
+ }
+}
+
+impl<'tcx, T> InferOk<'tcx, T> {
+ pub fn unit(self) -> InferOk<'tcx, ()> {
+ InferOk { value: (), obligations: self.obligations }
+ }
+
+ /// Extracts `value`, registering any obligations into `fulfill_cx`.
+ pub fn into_value_registering_obligations(
+ self,
+ infcx: &InferCtxt<'_, 'tcx>,
+ fulfill_cx: &mut dyn TraitEngine<'tcx>,
+ ) -> T {
+ let InferOk { value, obligations } = self;
+ fulfill_cx.register_predicate_obligations(infcx, obligations);
+ value
+ }
+}
+
+impl<'tcx> InferOk<'tcx, ()> {
+ pub fn into_obligations(self) -> PredicateObligations<'tcx> {
+ self.obligations
+ }
+}
+
+#[must_use = "once you start a snapshot, you should always consume it"]
+pub struct CombinedSnapshot<'a, 'tcx> {
+ undo_snapshot: Snapshot<'tcx>,
+ region_constraints_snapshot: RegionSnapshot,
+ universe: ty::UniverseIndex,
+ was_in_snapshot: bool,
+ _in_progress_typeck_results: Option<Ref<'a, ty::TypeckResults<'tcx>>>,
+}
+
+impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
+ /// calls `tcx.try_unify_abstract_consts` after
+ /// canonicalizing the consts.
+ #[instrument(skip(self), level = "debug")]
+ pub fn try_unify_abstract_consts(
+ &self,
+ a: ty::Unevaluated<'tcx, ()>,
+ b: ty::Unevaluated<'tcx, ()>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> bool {
+ // Reject any attempt to unify two unevaluated constants that contain inference
+ // variables, since inference variables in queries lead to ICEs.
+ if a.substs.has_infer_types_or_consts()
+ || b.substs.has_infer_types_or_consts()
+ || param_env.has_infer_types_or_consts()
+ {
+ debug!("a or b or param_env contain infer vars in its substs -> cannot unify");
+ return false;
+ }
+
+ let param_env_and = param_env.and((a, b));
+ let erased = self.tcx.erase_regions(param_env_and);
+ debug!("after erase_regions: {:?}", erased);
+
+ self.tcx.try_unify_abstract_consts(erased)
+ }
+
+ pub fn is_in_snapshot(&self) -> bool {
+ self.in_snapshot.get()
+ }
+
+ pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
+ t.fold_with(&mut self.freshener())
+ }
+
+ /// Returns the origin of the type variable identified by `vid`, or `None`
+ /// if this is not a type variable.
+ ///
+ /// No attempt is made to resolve `ty`.
+ pub fn type_var_origin(&'a self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
+ match *ty.kind() {
+ ty::Infer(ty::TyVar(vid)) => {
+ Some(*self.inner.borrow_mut().type_variables().var_origin(vid))
+ }
+ _ => None,
+ }
+ }
+
+ pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
+ freshen::TypeFreshener::new(self, false)
+ }
+
+ /// Like `freshener`, but does not replace `'static` regions.
+ pub fn freshener_keep_static<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
+ freshen::TypeFreshener::new(self, true)
+ }
+
+ pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
+ let mut inner = self.inner.borrow_mut();
+ let mut vars: Vec<Ty<'_>> = inner
+ .type_variables()
+ .unsolved_variables()
+ .into_iter()
+ .map(|t| self.tcx.mk_ty_var(t))
+ .collect();
+ vars.extend(
+ (0..inner.int_unification_table().len())
+ .map(|i| ty::IntVid { index: i as u32 })
+ .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
+ .map(|v| self.tcx.mk_int_var(v)),
+ );
+ vars.extend(
+ (0..inner.float_unification_table().len())
+ .map(|i| ty::FloatVid { index: i as u32 })
+ .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
+ .map(|v| self.tcx.mk_float_var(v)),
+ );
+ vars
+ }
+
+ fn combine_fields(
+ &'a self,
+ trace: TypeTrace<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ define_opaque_types: bool,
+ ) -> CombineFields<'a, 'tcx> {
+ CombineFields {
+ infcx: self,
+ trace,
+ cause: None,
+ param_env,
+ obligations: PredicateObligations::new(),
+ define_opaque_types,
+ }
+ }
+
+ /// Clear the "currently in a snapshot" flag, invoke the closure,
+ /// then restore the flag to its original value. This flag is a
+ /// debugging measure designed to detect cases where we start a
+ /// snapshot, create type variables, and register obligations
+ /// which may involve those type variables in the fulfillment cx,
+ /// potentially leaving "dangling type variables" behind.
+ /// In such cases, an assertion will fail when attempting to
+ /// register obligations, within a snapshot. Very useful, much
+ /// better than grovelling through megabytes of `RUSTC_LOG` output.
+ ///
+ /// HOWEVER, in some cases the flag is unhelpful. In particular, we
+ /// sometimes create a "mini-fulfilment-cx" in which we enroll
+ /// obligations. As long as this fulfillment cx is fully drained
+ /// before we return, this is not a problem, as there won't be any
+ /// escaping obligations in the main cx. In those cases, you can
+ /// use this function.
+ pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
+ where
+ F: FnOnce(&Self) -> R,
+ {
+ let flag = self.in_snapshot.replace(false);
+ let result = func(self);
+ self.in_snapshot.set(flag);
+ result
+ }
+
+ fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
+ debug!("start_snapshot()");
+
+ let in_snapshot = self.in_snapshot.replace(true);
+
+ let mut inner = self.inner.borrow_mut();
+
+ CombinedSnapshot {
+ undo_snapshot: inner.undo_log.start_snapshot(),
+ region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
+ universe: self.universe(),
+ was_in_snapshot: in_snapshot,
+ // Borrow typeck results "in progress" (i.e., during typeck)
+ // to ban writes from within a snapshot to them.
+ _in_progress_typeck_results: self
+ .in_progress_typeck_results
+ .map(|typeck_results| typeck_results.borrow()),
+ }
+ }
+
+ #[instrument(skip(self, snapshot), level = "debug")]
+ fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
+ let CombinedSnapshot {
+ undo_snapshot,
+ region_constraints_snapshot,
+ universe,
+ was_in_snapshot,
+ _in_progress_typeck_results,
+ } = snapshot;
+
+ self.in_snapshot.set(was_in_snapshot);
+ self.universe.set(universe);
+
+ let mut inner = self.inner.borrow_mut();
+ inner.rollback_to(undo_snapshot);
+ inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
+ }
+
+ #[instrument(skip(self, snapshot), level = "debug")]
+ fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
+ let CombinedSnapshot {
+ undo_snapshot,
+ region_constraints_snapshot: _,
+ universe: _,
+ was_in_snapshot,
+ _in_progress_typeck_results,
+ } = snapshot;
+
+ self.in_snapshot.set(was_in_snapshot);
+
+ self.inner.borrow_mut().commit(undo_snapshot);
+ }
+
+ /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
+ #[instrument(skip(self, f), level = "debug")]
+ pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
+ where
+ F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>,
+ {
+ let snapshot = self.start_snapshot();
+ let r = f(&snapshot);
+ debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
+ match r {
+ Ok(_) => {
+ self.commit_from(snapshot);
+ }
+ Err(_) => {
+ self.rollback_to("commit_if_ok -- error", snapshot);
+ }
+ }
+ r
+ }
+
+ /// Execute `f` then unroll any bindings it creates.
+ #[instrument(skip(self, f), level = "debug")]
+ pub fn probe<R, F>(&self, f: F) -> R
+ where
+ F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
+ {
+ let snapshot = self.start_snapshot();
+ let r = f(&snapshot);
+ self.rollback_to("probe", snapshot);
+ r
+ }
+
+ /// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
+ #[instrument(skip(self, f), level = "debug")]
+ pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
+ where
+ F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
+ {
+ let snapshot = self.start_snapshot();
+ let was_skip_leak_check = self.skip_leak_check.get();
+ if should_skip {
+ self.skip_leak_check.set(true);
+ }
+ let r = f(&snapshot);
+ self.rollback_to("probe", snapshot);
+ self.skip_leak_check.set(was_skip_leak_check);
+ r
+ }
+
+ /// Scan the constraints produced since `snapshot` began and returns:
+ ///
+ /// - `None` -- if none of them involve "region outlives" constraints
+ /// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
+ /// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
+ pub fn region_constraints_added_in_snapshot(
+ &self,
+ snapshot: &CombinedSnapshot<'a, 'tcx>,
+ ) -> Option<bool> {
+ self.inner
+ .borrow_mut()
+ .unwrap_region_constraints()
+ .region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
+ }
+
+ pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'a, 'tcx>) -> bool {
+ self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
+ }
+
+ pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
+ self.inner.borrow_mut().unwrap_region_constraints().add_given(sub, sup);
+ }
+
+ pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
+ where
+ T: at::ToTrace<'tcx>,
+ {
+ let origin = &ObligationCause::dummy();
+ self.probe(|_| {
+ self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
+ // Ignore obligations, since we are unrolling
+ // everything anyway.
+ })
+ })
+ }
+
+ pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
+ where
+ T: at::ToTrace<'tcx>,
+ {
+ let origin = &ObligationCause::dummy();
+ self.probe(|_| {
+ self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
+ // Ignore obligations, since we are unrolling
+ // everything anyway.
+ })
+ })
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ pub fn sub_regions(
+ &self,
+ origin: SubregionOrigin<'tcx>,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ ) {
+ self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
+ }
+
+ /// Require that the region `r` be equal to one of the regions in
+ /// the set `regions`.
+ #[instrument(skip(self), level = "debug")]
+ pub fn member_constraint(
+ &self,
+ key: ty::OpaqueTypeKey<'tcx>,
+ definition_span: Span,
+ hidden_ty: Ty<'tcx>,
+ region: ty::Region<'tcx>,
+ in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
+ ) {
+ self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
+ key,
+ definition_span,
+ hidden_ty,
+ region,
+ in_regions,
+ );
+ }
+
+ /// Processes a `Coerce` predicate from the fulfillment context.
+ /// This is NOT the preferred way to handle coercion, which is to
+ /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
+ ///
+ /// This method here is actually a fallback that winds up being
+ /// invoked when `FnCtxt::coerce` encounters unresolved type variables
+ /// and records a coercion predicate. Presently, this method is equivalent
+ /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
+ /// actually requiring `a <: b`. This is of course a valid coercion,
+ /// but it's not as flexible as `FnCtxt::coerce` would be.
+ ///
+ /// (We may refactor this in the future, but there are a number of
+ /// practical obstacles. Among other things, `FnCtxt::coerce` presently
+ /// records adjustments that are required on the HIR in order to perform
+ /// the coercion, and we don't currently have a way to manage that.)
+ pub fn coerce_predicate(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ predicate: ty::PolyCoercePredicate<'tcx>,
+ ) -> Option<InferResult<'tcx, ()>> {
+ let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
+ a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
+ a: p.a,
+ b: p.b,
+ });
+ self.subtype_predicate(cause, param_env, subtype_predicate)
+ }
+
+ pub fn subtype_predicate(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ predicate: ty::PolySubtypePredicate<'tcx>,
+ ) -> Option<InferResult<'tcx, ()>> {
+ // Check for two unresolved inference variables, in which case we can
+ // make no progress. This is partly a micro-optimization, but it's
+ // also an opportunity to "sub-unify" the variables. This isn't
+ // *necessary* to prevent cycles, because they would eventually be sub-unified
+ // anyhow during generalization, but it helps with diagnostics (we can detect
+ // earlier that they are sub-unified).
+ //
+ // Note that we can just skip the binders here because
+ // type variables can't (at present, at
+ // least) capture any of the things bound by this binder.
+ //
+ // Note that this sub here is not just for diagnostics - it has semantic
+ // effects as well.
+ let r_a = self.shallow_resolve(predicate.skip_binder().a);
+ let r_b = self.shallow_resolve(predicate.skip_binder().b);
+ match (r_a.kind(), r_b.kind()) {
+ (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
+ self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
+ return None;
+ }
+ _ => {}
+ }
+
+ Some(self.commit_if_ok(|_snapshot| {
+ let ty::SubtypePredicate { a_is_expected, a, b } =
+ self.replace_bound_vars_with_placeholders(predicate);
+
+ let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
+
+ Ok(ok.unit())
+ }))
+ }
+
+ pub fn region_outlives_predicate(
+ &self,
+ cause: &traits::ObligationCause<'tcx>,
+ predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
+ ) {
+ let ty::OutlivesPredicate(r_a, r_b) = self.replace_bound_vars_with_placeholders(predicate);
+ let origin =
+ SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
+ self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
+ }
+
+ /// Number of type variables created so far.
+ pub fn num_ty_vars(&self) -> usize {
+ self.inner.borrow_mut().type_variables().num_vars()
+ }
+
+ pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
+ self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
+ }
+
+ pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
+ self.tcx.mk_ty_var(self.next_ty_var_id(origin))
+ }
+
+ pub fn next_ty_var_id_in_universe(
+ &self,
+ origin: TypeVariableOrigin,
+ universe: ty::UniverseIndex,
+ ) -> TyVid {
+ self.inner.borrow_mut().type_variables().new_var(universe, origin)
+ }
+
+ pub fn next_ty_var_in_universe(
+ &self,
+ origin: TypeVariableOrigin,
+ universe: ty::UniverseIndex,
+ ) -> Ty<'tcx> {
+ let vid = self.next_ty_var_id_in_universe(origin, universe);
+ self.tcx.mk_ty_var(vid)
+ }
+
+ pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
+ self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
+ }
+
+ pub fn next_const_var_in_universe(
+ &self,
+ ty: Ty<'tcx>,
+ origin: ConstVariableOrigin,
+ universe: ty::UniverseIndex,
+ ) -> ty::Const<'tcx> {
+ let vid = self
+ .inner
+ .borrow_mut()
+ .const_unification_table()
+ .new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
+ self.tcx.mk_const_var(vid, ty)
+ }
+
+ pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
+ self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
+ origin,
+ val: ConstVariableValue::Unknown { universe: self.universe() },
+ })
+ }
+
+ fn next_int_var_id(&self) -> IntVid {
+ self.inner.borrow_mut().int_unification_table().new_key(None)
+ }
+
+ pub fn next_int_var(&self) -> Ty<'tcx> {
+ self.tcx.mk_int_var(self.next_int_var_id())
+ }
+
+ fn next_float_var_id(&self) -> FloatVid {
+ self.inner.borrow_mut().float_unification_table().new_key(None)
+ }
+
+ pub fn next_float_var(&self) -> Ty<'tcx> {
+ self.tcx.mk_float_var(self.next_float_var_id())
+ }
+
+ /// Creates a fresh region variable with the next available index.
+ /// The variable will be created in the maximum universe created
+ /// thus far, allowing it to name any region created thus far.
+ pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
+ self.next_region_var_in_universe(origin, self.universe())
+ }
+
+ /// Creates a fresh region variable with the next available index
+ /// in the given universe; typically, you can use
+ /// `next_region_var` and just use the maximal universe.
+ pub fn next_region_var_in_universe(
+ &self,
+ origin: RegionVariableOrigin,
+ universe: ty::UniverseIndex,
+ ) -> ty::Region<'tcx> {
+ let region_var =
+ self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
+ self.tcx.mk_region(ty::ReVar(region_var))
+ }
+
+ /// Return the universe that the region `r` was created in. For
+ /// most regions (e.g., `'static`, named regions from the user,
+ /// etc) this is the root universe U0. For inference variables or
+ /// placeholders, however, it will return the universe which which
+ /// they are associated.
+ pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
+ self.inner.borrow_mut().unwrap_region_constraints().universe(r)
+ }
+
+ /// Number of region variables created so far.
+ pub fn num_region_vars(&self) -> usize {
+ self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
+ }
+
+ /// Just a convenient wrapper of `next_region_var` for using during NLL.
+ pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
+ self.next_region_var(RegionVariableOrigin::Nll(origin))
+ }
+
+ /// Just a convenient wrapper of `next_region_var` for using during NLL.
+ pub fn next_nll_region_var_in_universe(
+ &self,
+ origin: NllRegionVariableOrigin,
+ universe: ty::UniverseIndex,
+ ) -> ty::Region<'tcx> {
+ self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
+ }
+
+ pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
+ match param.kind {
+ GenericParamDefKind::Lifetime => {
+ // Create a region inference variable for the given
+ // region parameter definition.
+ self.next_region_var(EarlyBoundRegion(span, param.name)).into()
+ }
+ GenericParamDefKind::Type { .. } => {
+ // Create a type inference variable for the given
+ // type parameter definition. The substitutions are
+ // for actual parameters that may be referred to by
+ // the default of this type parameter, if it exists.
+ // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
+ // used in a path such as `Foo::<T, U>::new()` will
+ // use an inference variable for `C` with `[T, U]`
+ // as the substitutions for the default, `(T, U)`.
+ let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
+ self.universe(),
+ TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeParameterDefinition(
+ param.name,
+ Some(param.def_id),
+ ),
+ span,
+ },
+ );
+
+ self.tcx.mk_ty_var(ty_var_id).into()
+ }
+ GenericParamDefKind::Const { .. } => {
+ let origin = ConstVariableOrigin {
+ kind: ConstVariableOriginKind::ConstParameterDefinition(
+ param.name,
+ param.def_id,
+ ),
+ span,
+ };
+ let const_var_id =
+ self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
+ origin,
+ val: ConstVariableValue::Unknown { universe: self.universe() },
+ });
+ self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
+ }
+ }
+ }
+
+ /// Given a set of generics defined on a type or impl, returns a substitution mapping each
+ /// type/region parameter to a fresh inference variable.
+ pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
+ InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
+ }
+
+ /// Returns `true` if errors have been reported since this infcx was
+ /// created. This is sometimes used as a heuristic to skip
+ /// reporting errors that often occur as a result of earlier
+ /// errors, but where it's hard to be 100% sure (e.g., unresolved
+ /// inference variables, regionck errors).
+ pub fn is_tainted_by_errors(&self) -> bool {
+ debug!(
+ "is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
+ tainted_by_errors_flag={})",
+ self.tcx.sess.err_count(),
+ self.err_count_on_creation,
+ self.tainted_by_errors_flag.get()
+ );
+
+ if self.tcx.sess.err_count() > self.err_count_on_creation {
+ return true; // errors reported since this infcx was made
+ }
+ self.tainted_by_errors_flag.get()
+ }
+
+ /// Set the "tainted by errors" flag to true. We call this when we
+ /// observe an error from a prior pass.
+ pub fn set_tainted_by_errors(&self) {
+ debug!("set_tainted_by_errors()");
+ self.tainted_by_errors_flag.set(true)
+ }
+
+ pub fn skip_region_resolution(&self) {
+ let (var_infos, _) = {
+ let mut inner = self.inner.borrow_mut();
+ let inner = &mut *inner;
+ // Note: `inner.region_obligations` may not be empty, because we
+ // didn't necessarily call `process_registered_region_obligations`.
+ // This is okay, because that doesn't introduce new vars.
+ inner
+ .region_constraint_storage
+ .take()
+ .expect("regions already resolved")
+ .with_log(&mut inner.undo_log)
+ .into_infos_and_data()
+ };
+
+ let lexical_region_resolutions = LexicalRegionResolutions {
+ values: rustc_index::vec::IndexVec::from_elem_n(
+ crate::infer::lexical_region_resolve::VarValue::Value(self.tcx.lifetimes.re_erased),
+ var_infos.len(),
+ ),
+ };
+
+ let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
+ assert!(old_value.is_none());
+ }
+
+ /// Process the region constraints and return any any errors that
+ /// result. After this, no more unification operations should be
+ /// done -- or the compiler will panic -- but it is legal to use
+ /// `resolve_vars_if_possible` as well as `fully_resolve`.
+ pub fn resolve_regions(
+ &self,
+ outlives_env: &OutlivesEnvironment<'tcx>,
+ ) -> Vec<RegionResolutionError<'tcx>> {
+ let (var_infos, data) = {
+ let mut inner = self.inner.borrow_mut();
+ let inner = &mut *inner;
+ assert!(
+ self.is_tainted_by_errors() || inner.region_obligations.is_empty(),
+ "region_obligations not empty: {:#?}",
+ inner.region_obligations
+ );
+ inner
+ .region_constraint_storage
+ .take()
+ .expect("regions already resolved")
+ .with_log(&mut inner.undo_log)
+ .into_infos_and_data()
+ };
+
+ let region_rels = &RegionRelations::new(self.tcx, outlives_env.free_region_map());
+
+ let (lexical_region_resolutions, errors) =
+ lexical_region_resolve::resolve(outlives_env.param_env, region_rels, var_infos, data);
+
+ let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
+ assert!(old_value.is_none());
+
+ errors
+ }
+
+ /// Process the region constraints and report any errors that
+ /// result. After this, no more unification operations should be
+ /// done -- or the compiler will panic -- but it is legal to use
+ /// `resolve_vars_if_possible` as well as `fully_resolve`.
+ ///
+ /// Make sure to call [`InferCtxt::process_registered_region_obligations`]
+ /// first, or preferrably use [`InferCtxt::check_region_obligations_and_report_errors`]
+ /// to do both of these operations together.
+ pub fn resolve_regions_and_report_errors(
+ &self,
+ generic_param_scope: LocalDefId,
+ outlives_env: &OutlivesEnvironment<'tcx>,
+ ) {
+ let errors = self.resolve_regions(outlives_env);
+
+ if !self.is_tainted_by_errors() {
+ // As a heuristic, just skip reporting region errors
+ // altogether if other errors have been reported while
+ // this infcx was in use. This is totally hokey but
+ // otherwise we have a hard time separating legit region
+ // errors from silly ones.
+ self.report_region_errors(generic_param_scope, &errors);
+ }
+ }
+
+ /// Obtains (and clears) the current set of region
+ /// constraints. The inference context is still usable: further
+ /// unifications will simply add new constraints.
+ ///
+ /// This method is not meant to be used with normal lexical region
+ /// resolution. Rather, it is used in the NLL mode as a kind of
+ /// interim hack: basically we run normal type-check and generate
+ /// region constraints as normal, but then we take them and
+ /// translate them into the form that the NLL solver
+ /// understands. See the NLL module for mode details.
+ pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
+ assert!(
+ self.inner.borrow().region_obligations.is_empty(),
+ "region_obligations not empty: {:#?}",
+ self.inner.borrow().region_obligations
+ );
+
+ self.inner.borrow_mut().unwrap_region_constraints().take_and_reset_data()
+ }
+
+ /// Gives temporary access to the region constraint data.
+ pub fn with_region_constraints<R>(
+ &self,
+ op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
+ ) -> R {
+ let mut inner = self.inner.borrow_mut();
+ op(inner.unwrap_region_constraints().data())
+ }
+
+ pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
+ let mut inner = self.inner.borrow_mut();
+ let inner = &mut *inner;
+ inner
+ .region_constraint_storage
+ .as_mut()
+ .expect("regions already resolved")
+ .with_log(&mut inner.undo_log)
+ .var_origin(vid)
+ }
+
+ /// Takes ownership of the list of variable regions. This implies
+ /// that all the region constraints have already been taken, and
+ /// hence that `resolve_regions_and_report_errors` can never be
+ /// called. This is used only during NLL processing to "hand off" ownership
+ /// of the set of region variables into the NLL region context.
+ pub fn take_region_var_origins(&self) -> VarInfos {
+ let mut inner = self.inner.borrow_mut();
+ let (var_infos, data) = inner
+ .region_constraint_storage
+ .take()
+ .expect("regions already resolved")
+ .with_log(&mut inner.undo_log)
+ .into_infos_and_data();
+ assert!(data.is_empty());
+ var_infos
+ }
+
+ pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
+ self.resolve_vars_if_possible(t).to_string()
+ }
+
+ /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
+ /// universe index of `TyVar(vid)`.
+ pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
+ use self::type_variable::TypeVariableValue;
+
+ match self.inner.borrow_mut().type_variables().probe(vid) {
+ TypeVariableValue::Known { value } => Ok(value),
+ TypeVariableValue::Unknown { universe } => Err(universe),
+ }
+ }
+
+ /// Resolve any type variables found in `value` -- but only one
+ /// level. So, if the variable `?X` is bound to some type
+ /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
+ /// itself be bound to a type).
+ ///
+ /// Useful when you only need to inspect the outermost level of
+ /// the type and don't care about nested types (or perhaps you
+ /// will be resolving them as well, e.g. in a loop).
+ pub fn shallow_resolve<T>(&self, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ value.fold_with(&mut ShallowResolver { infcx: self })
+ }
+
+ pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
+ self.inner.borrow_mut().type_variables().root_var(var)
+ }
+
+ /// Where possible, replaces type/const variables in
+ /// `value` with their final value. Note that region variables
+ /// are unaffected. If a type/const variable has not been unified, it
+ /// is left as is. This is an idempotent operation that does
+ /// not affect inference state in any way and so you can do it
+ /// at will.
+ pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ if !value.needs_infer() {
+ return value; // Avoid duplicated subst-folding.
+ }
+ let mut r = resolve::OpportunisticVarResolver::new(self);
+ value.fold_with(&mut r)
+ }
+
+ pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ if !value.needs_infer() {
+ return value; // Avoid duplicated subst-folding.
+ }
+ let mut r = InferenceLiteralEraser { tcx: self.tcx };
+ value.fold_with(&mut r)
+ }
+
+ /// Returns the first unresolved variable contained in `T`. In the
+ /// process of visiting `T`, this will resolve (where possible)
+ /// type variables in `T`, but it never constructs the final,
+ /// resolved type, so it's more efficient than
+ /// `resolve_vars_if_possible()`.
+ pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
+ where
+ T: TypeVisitable<'tcx>,
+ {
+ value.visit_with(&mut resolve::UnresolvedTypeFinder::new(self)).break_value()
+ }
+
+ pub fn probe_const_var(
+ &self,
+ vid: ty::ConstVid<'tcx>,
+ ) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
+ match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
+ ConstVariableValue::Known { value } => Ok(value),
+ ConstVariableValue::Unknown { universe } => Err(universe),
+ }
+ }
+
+ pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: T) -> FixupResult<'tcx, T> {
+ /*!
+ * Attempts to resolve all type/region/const variables in
+ * `value`. Region inference must have been run already (e.g.,
+ * by calling `resolve_regions_and_report_errors`). If some
+ * variable was never unified, an `Err` results.
+ *
+ * This method is idempotent, but it not typically not invoked
+ * except during the writeback phase.
+ */
+
+ resolve::fully_resolve(self, value)
+ }
+
+ // [Note-Type-error-reporting]
+ // An invariant is that anytime the expected or actual type is Error (the special
+ // error type, meaning that an error occurred when typechecking this expression),
+ // this is a derived error. The error cascaded from another error (that was already
+ // reported), so it's not useful to display it to the user.
+ // The following methods implement this logic.
+ // They check if either the actual or expected type is Error, and don't print the error
+ // in this case. The typechecker should only ever report type errors involving mismatched
+ // types using one of these methods, and should not call span_err directly for such
+ // errors.
+
+ pub fn type_error_struct_with_diag<M>(
+ &self,
+ sp: Span,
+ mk_diag: M,
+ actual_ty: Ty<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>
+ where
+ M: FnOnce(String) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ {
+ let actual_ty = self.resolve_vars_if_possible(actual_ty);
+ debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
+
+ let mut err = mk_diag(self.ty_to_string(actual_ty));
+
+ // Don't report an error if actual type is `Error`.
+ if actual_ty.references_error() {
+ err.downgrade_to_delayed_bug();
+ }
+
+ err
+ }
+
+ pub fn report_mismatched_types(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ expected: Ty<'tcx>,
+ actual: Ty<'tcx>,
+ err: TypeError<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let trace = TypeTrace::types(cause, true, expected, actual);
+ self.report_and_explain_type_error(trace, &err)
+ }
+
+ pub fn report_mismatched_consts(
+ &self,
+ cause: &ObligationCause<'tcx>,
+ expected: ty::Const<'tcx>,
+ actual: ty::Const<'tcx>,
+ err: TypeError<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let trace = TypeTrace::consts(cause, true, expected, actual);
+ self.report_and_explain_type_error(trace, &err)
+ }
+
+ pub fn replace_bound_vars_with_fresh_vars<T>(
+ &self,
+ span: Span,
+ lbrct: LateBoundRegionConversionTime,
+ value: ty::Binder<'tcx, T>,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx> + Copy,
+ {
+ if let Some(inner) = value.no_bound_vars() {
+ return inner;
+ }
+
+ struct ToFreshVars<'a, 'tcx> {
+ infcx: &'a InferCtxt<'a, 'tcx>,
+ span: Span,
+ lbrct: LateBoundRegionConversionTime,
+ map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
+ }
+
+ impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
+ fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
+ self.map
+ .entry(br.var)
+ .or_insert_with(|| {
+ self.infcx
+ .next_region_var(LateBoundRegion(self.span, br.kind, self.lbrct))
+ .into()
+ })
+ .expect_region()
+ }
+ fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
+ self.map
+ .entry(bt.var)
+ .or_insert_with(|| {
+ self.infcx
+ .next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: self.span,
+ })
+ .into()
+ })
+ .expect_ty()
+ }
+ fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
+ self.map
+ .entry(bv)
+ .or_insert_with(|| {
+ self.infcx
+ .next_const_var(
+ ty,
+ ConstVariableOrigin {
+ kind: ConstVariableOriginKind::MiscVariable,
+ span: self.span,
+ },
+ )
+ .into()
+ })
+ .expect_const()
+ }
+ }
+ let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
+ self.tcx.replace_bound_vars_uncached(value, delegate)
+ }
+
+ /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
+ pub fn verify_generic_bound(
+ &self,
+ origin: SubregionOrigin<'tcx>,
+ kind: GenericKind<'tcx>,
+ a: ty::Region<'tcx>,
+ bound: VerifyBound<'tcx>,
+ ) {
+ debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
+
+ self.inner
+ .borrow_mut()
+ .unwrap_region_constraints()
+ .verify_generic_bound(origin, kind, a, bound);
+ }
+
+ /// Obtains the latest type of the given closure; this may be a
+ /// closure in the current function, in which case its
+ /// `ClosureKind` may not yet be known.
+ pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
+ let closure_kind_ty = closure_substs.as_closure().kind_ty();
+ let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
+ closure_kind_ty.to_opt_closure_kind()
+ }
+
+ /// Clears the selection, evaluation, and projection caches. This is useful when
+ /// repeatedly attempting to select an `Obligation` while changing only
+ /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
+ pub fn clear_caches(&self) {
+ self.selection_cache.clear();
+ self.evaluation_cache.clear();
+ self.inner.borrow_mut().projection_cache().clear();
+ }
+
+ pub fn universe(&self) -> ty::UniverseIndex {
+ self.universe.get()
+ }
+
+ /// Creates and return a fresh universe that extends all previous
+ /// universes. Updates `self.universe` to that new universe.
+ pub fn create_next_universe(&self) -> ty::UniverseIndex {
+ let u = self.universe.get().next_universe();
+ self.universe.set(u);
+ u
+ }
+
+ pub fn try_const_eval_resolve(
+ &self,
+ param_env: ty::ParamEnv<'tcx>,
+ unevaluated: ty::Unevaluated<'tcx>,
+ ty: Ty<'tcx>,
+ span: Option<Span>,
+ ) -> Result<ty::Const<'tcx>, ErrorHandled> {
+ match self.const_eval_resolve(param_env, unevaluated, span) {
+ Ok(Some(val)) => Ok(ty::Const::from_value(self.tcx, val, ty)),
+ Ok(None) => {
+ let tcx = self.tcx;
+ let def_id = unevaluated.def.did;
+ span_bug!(
+ tcx.def_span(def_id),
+ "unable to construct a constant value for the unevaluated constant {:?}",
+ unevaluated
+ );
+ }
+ Err(err) => Err(err),
+ }
+ }
+
+ /// Resolves and evaluates a constant.
+ ///
+ /// The constant can be located on a trait like `<A as B>::C`, in which case the given
+ /// substitutions and environment are used to resolve the constant. Alternatively if the
+ /// constant has generic parameters in scope the substitutions are used to evaluate the value of
+ /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
+ /// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
+ /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
+ /// returned.
+ ///
+ /// This handles inferences variables within both `param_env` and `substs` by
+ /// performing the operation on their respective canonical forms.
+ #[instrument(skip(self), level = "debug")]
+ pub fn const_eval_resolve(
+ &self,
+ mut param_env: ty::ParamEnv<'tcx>,
+ unevaluated: ty::Unevaluated<'tcx>,
+ span: Option<Span>,
+ ) -> EvalToValTreeResult<'tcx> {
+ let mut substs = self.resolve_vars_if_possible(unevaluated.substs);
+ debug!(?substs);
+
+ // Postpone the evaluation of constants whose substs depend on inference
+ // variables
+ if substs.has_infer_types_or_consts() {
+ let ac = AbstractConst::new(self.tcx, unevaluated.shrink());
+ match ac {
+ Ok(None) => {
+ substs = InternalSubsts::identity_for_item(self.tcx, unevaluated.def.did);
+ param_env = self.tcx.param_env(unevaluated.def.did);
+ }
+ Ok(Some(ct)) => {
+ if ct.unify_failure_kind(self.tcx) == FailureKind::Concrete {
+ substs = replace_param_and_infer_substs_with_placeholder(self.tcx, substs);
+ } else {
+ return Err(ErrorHandled::TooGeneric);
+ }
+ }
+ Err(guar) => return Err(ErrorHandled::Reported(guar)),
+ }
+ }
+
+ let param_env_erased = self.tcx.erase_regions(param_env);
+ let substs_erased = self.tcx.erase_regions(substs);
+ debug!(?param_env_erased);
+ debug!(?substs_erased);
+
+ let unevaluated = ty::Unevaluated {
+ def: unevaluated.def,
+ substs: substs_erased,
+ promoted: unevaluated.promoted,
+ };
+
+ // The return value is the evaluated value which doesn't contain any reference to inference
+ // variables, thus we don't need to substitute back the original values.
+ self.tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
+ }
+
+ /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
+ /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
+ /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
+ ///
+ /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
+ /// inlined, despite being large, because it has only two call sites that
+ /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
+ /// inference variables), and it handles both `Ty` and `ty::Const` without
+ /// having to resort to storing full `GenericArg`s in `stalled_on`.
+ #[inline(always)]
+ pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
+ match infer_var {
+ TyOrConstInferVar::Ty(v) => {
+ use self::type_variable::TypeVariableValue;
+
+ // If `inlined_probe` returns a `Known` value, it never equals
+ // `ty::Infer(ty::TyVar(v))`.
+ match self.inner.borrow_mut().type_variables().inlined_probe(v) {
+ TypeVariableValue::Unknown { .. } => false,
+ TypeVariableValue::Known { .. } => true,
+ }
+ }
+
+ TyOrConstInferVar::TyInt(v) => {
+ // If `inlined_probe_value` returns a value it's always a
+ // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
+ // `ty::Infer(_)`.
+ self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
+ }
+
+ TyOrConstInferVar::TyFloat(v) => {
+ // If `probe_value` returns a value it's always a
+ // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
+ //
+ // Not `inlined_probe_value(v)` because this call site is colder.
+ self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
+ }
+
+ TyOrConstInferVar::Const(v) => {
+ // If `probe_value` returns a `Known` value, it never equals
+ // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
+ //
+ // Not `inlined_probe_value(v)` because this call site is colder.
+ match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
+ ConstVariableValue::Unknown { .. } => false,
+ ConstVariableValue::Known { .. } => true,
+ }
+ }
+ }
+ }
+}
+
+/// Helper for `ty_or_const_infer_var_changed` (see comment on that), currently
+/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
+#[derive(Copy, Clone, Debug)]
+pub enum TyOrConstInferVar<'tcx> {
+ /// Equivalent to `ty::Infer(ty::TyVar(_))`.
+ Ty(TyVid),
+ /// Equivalent to `ty::Infer(ty::IntVar(_))`.
+ TyInt(IntVid),
+ /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
+ TyFloat(FloatVid),
+
+ /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
+ Const(ConstVid<'tcx>),
+}
+
+impl<'tcx> TyOrConstInferVar<'tcx> {
+ /// Tries to extract an inference variable from a type or a constant, returns `None`
+ /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
+ /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
+ pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
+ match arg.unpack() {
+ GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
+ GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
+ GenericArgKind::Lifetime(_) => None,
+ }
+ }
+
+ /// Tries to extract an inference variable from a type, returns `None`
+ /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
+ pub fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
+ match *ty.kind() {
+ ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
+ ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
+ ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
+ _ => None,
+ }
+ }
+
+ /// Tries to extract an inference variable from a constant, returns `None`
+ /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
+ pub fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
+ match ct.kind() {
+ ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
+ _ => None,
+ }
+ }
+}
+
+/// Replace `{integer}` with `i32` and `{float}` with `f64`.
+/// Used only for diagnostics.
+struct InferenceLiteralEraser<'tcx> {
+ tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> TypeFolder<'tcx> for InferenceLiteralEraser<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ match ty.kind() {
+ ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
+ ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
+ _ => ty.super_fold_with(self),
+ }
+ }
+}
+
+struct ShallowResolver<'a, 'tcx> {
+ infcx: &'a InferCtxt<'a, 'tcx>,
+}
+
+impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+
+ /// If `ty` is a type variable of some kind, resolve it one level
+ /// (but do not resolve types found in the result). If `typ` is
+ /// not a type variable, just return it unmodified.
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ match *ty.kind() {
+ ty::Infer(ty::TyVar(v)) => {
+ // Not entirely obvious: if `typ` is a type variable,
+ // it can be resolved to an int/float variable, which
+ // can then be recursively resolved, hence the
+ // recursion. Note though that we prevent type
+ // variables from unifying to other type variables
+ // directly (though they may be embedded
+ // structurally), and we prevent cycles in any case,
+ // so this recursion should always be of very limited
+ // depth.
+ //
+ // Note: if these two lines are combined into one we get
+ // dynamic borrow errors on `self.inner`.
+ let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
+ known.map_or(ty, |t| self.fold_ty(t))
+ }
+
+ ty::Infer(ty::IntVar(v)) => self
+ .infcx
+ .inner
+ .borrow_mut()
+ .int_unification_table()
+ .probe_value(v)
+ .map_or(ty, |v| v.to_type(self.infcx.tcx)),
+
+ ty::Infer(ty::FloatVar(v)) => self
+ .infcx
+ .inner
+ .borrow_mut()
+ .float_unification_table()
+ .probe_value(v)
+ .map_or(ty, |v| v.to_type(self.infcx.tcx)),
+
+ _ => ty,
+ }
+ }
+
+ fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
+ if let ty::ConstKind::Infer(InferConst::Var(vid)) = ct.kind() {
+ self.infcx
+ .inner
+ .borrow_mut()
+ .const_unification_table()
+ .probe_value(vid)
+ .val
+ .known()
+ .unwrap_or(ct)
+ } else {
+ ct
+ }
+ }
+}
+
+impl<'tcx> TypeTrace<'tcx> {
+ pub fn span(&self) -> Span {
+ self.cause.span
+ }
+
+ pub fn types(
+ cause: &ObligationCause<'tcx>,
+ a_is_expected: bool,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ ) -> TypeTrace<'tcx> {
+ TypeTrace {
+ cause: cause.clone(),
+ values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
+ }
+ }
+
+ pub fn consts(
+ cause: &ObligationCause<'tcx>,
+ a_is_expected: bool,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) -> TypeTrace<'tcx> {
+ TypeTrace {
+ cause: cause.clone(),
+ values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
+ }
+ }
+}
+
+impl<'tcx> SubregionOrigin<'tcx> {
+ pub fn span(&self) -> Span {
+ match *self {
+ Subtype(ref a) => a.span(),
+ RelateObjectBound(a) => a,
+ RelateParamBound(a, ..) => a,
+ RelateRegionParamBound(a) => a,
+ Reborrow(a) => a,
+ ReborrowUpvar(a, _) => a,
+ DataBorrowed(_, a) => a,
+ ReferenceOutlivesReferent(_, a) => a,
+ CompareImplItemObligation { span, .. } => span,
+ CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
+ }
+ }
+
+ pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
+ where
+ F: FnOnce() -> Self,
+ {
+ match *cause.code() {
+ traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
+ SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
+ }
+
+ traits::ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id,
+ trait_item_def_id,
+ kind: _,
+ } => SubregionOrigin::CompareImplItemObligation {
+ span: cause.span,
+ impl_item_def_id,
+ trait_item_def_id,
+ },
+
+ traits::ObligationCauseCode::CheckAssociatedTypeBounds {
+ impl_item_def_id,
+ trait_item_def_id,
+ } => SubregionOrigin::CheckAssociatedTypeBounds {
+ impl_item_def_id,
+ trait_item_def_id,
+ parent: Box::new(default()),
+ },
+
+ _ => default(),
+ }
+ }
+}
+
+impl RegionVariableOrigin {
+ pub fn span(&self) -> Span {
+ match *self {
+ MiscVariable(a)
+ | PatternRegion(a)
+ | AddrOfRegion(a)
+ | Autoref(a)
+ | Coercion(a)
+ | EarlyBoundRegion(a, ..)
+ | LateBoundRegion(a, ..)
+ | UpvarRegion(_, a) => a,
+ Nll(..) => bug!("NLL variable used with `span`"),
+ }
+ }
+}
+
+impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ f,
+ "RegionObligation(sub_region={:?}, sup_type={:?})",
+ self.sub_region, self.sup_type
+ )
+ }
+}
+
+/// Replaces substs that reference param or infer variables with suitable
+/// placeholders. This function is meant to remove these param and infer
+/// substs when they're not actually needed to evaluate a constant.
+fn replace_param_and_infer_substs_with_placeholder<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ substs: SubstsRef<'tcx>,
+) -> SubstsRef<'tcx> {
+ tcx.mk_substs(substs.iter().enumerate().map(|(idx, arg)| {
+ match arg.unpack() {
+ GenericArgKind::Type(_)
+ if arg.has_param_types_or_consts() || arg.has_infer_types_or_consts() =>
+ {
+ tcx.mk_ty(ty::Placeholder(ty::PlaceholderType {
+ universe: ty::UniverseIndex::ROOT,
+ name: ty::BoundVar::from_usize(idx),
+ }))
+ .into()
+ }
+ GenericArgKind::Const(ct)
+ if ct.has_infer_types_or_consts() || ct.has_param_types_or_consts() =>
+ {
+ let ty = ct.ty();
+ // If the type references param or infer, replace that too...
+ if ty.has_param_types_or_consts() || ty.has_infer_types_or_consts() {
+ bug!("const `{ct}`'s type should not reference params or types");
+ }
+ tcx.mk_const(ty::ConstS {
+ ty,
+ kind: ty::ConstKind::Placeholder(ty::PlaceholderConst {
+ universe: ty::UniverseIndex::ROOT,
+ name: ty::BoundVar::from_usize(idx),
+ }),
+ })
+ .into()
+ }
+ _ => arg,
+ }
+ }))
+}