summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/opaque_types.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/opaque_types.rs')
-rw-r--r--compiler/rustc_infer/src/infer/opaque_types.rs649
1 files changed, 649 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/opaque_types.rs b/compiler/rustc_infer/src/infer/opaque_types.rs
new file mode 100644
index 000000000..e579afbf3
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/opaque_types.rs
@@ -0,0 +1,649 @@
+use crate::infer::{DefiningAnchor, InferCtxt, InferOk};
+use crate::traits;
+use hir::def_id::{DefId, LocalDefId};
+use hir::{HirId, OpaqueTyOrigin};
+use rustc_data_structures::sync::Lrc;
+use rustc_data_structures::vec_map::VecMap;
+use rustc_hir as hir;
+use rustc_middle::traits::ObligationCause;
+use rustc_middle::ty::fold::BottomUpFolder;
+use rustc_middle::ty::subst::{GenericArgKind, Subst};
+use rustc_middle::ty::{
+ self, OpaqueHiddenType, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable,
+ TypeVisitable, TypeVisitor,
+};
+use rustc_span::Span;
+
+use std::ops::ControlFlow;
+
+pub type OpaqueTypeMap<'tcx> = VecMap<OpaqueTypeKey<'tcx>, OpaqueTypeDecl<'tcx>>;
+
+mod table;
+
+pub use table::{OpaqueTypeStorage, OpaqueTypeTable};
+
+use super::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use super::InferResult;
+
+/// Information about the opaque types whose values we
+/// are inferring in this function (these are the `impl Trait` that
+/// appear in the return type).
+#[derive(Clone, Debug)]
+pub struct OpaqueTypeDecl<'tcx> {
+ /// The hidden types that have been inferred for this opaque type.
+ /// There can be multiple, but they are all `lub`ed together at the end
+ /// to obtain the canonical hidden type.
+ pub hidden_type: OpaqueHiddenType<'tcx>,
+
+ /// The origin of the opaque type.
+ pub origin: hir::OpaqueTyOrigin,
+}
+
+impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
+ /// This is a backwards compatibility hack to prevent breaking changes from
+ /// lazy TAIT around RPIT handling.
+ pub fn replace_opaque_types_with_inference_vars<T: TypeFoldable<'tcx>>(
+ &self,
+ value: T,
+ body_id: HirId,
+ span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> InferOk<'tcx, T> {
+ if !value.has_opaque_types() {
+ return InferOk { value, obligations: vec![] };
+ }
+ let mut obligations = vec![];
+ let replace_opaque_type = |def_id: DefId| {
+ def_id
+ .as_local()
+ .map_or(false, |def_id| self.opaque_type_origin(def_id, span).is_some())
+ };
+ let value = value.fold_with(&mut ty::fold::BottomUpFolder {
+ tcx: self.tcx,
+ lt_op: |lt| lt,
+ ct_op: |ct| ct,
+ ty_op: |ty| match *ty.kind() {
+ ty::Opaque(def_id, _substs) if replace_opaque_type(def_id) => {
+ let def_span = self.tcx.def_span(def_id);
+ let span = if span.contains(def_span) { def_span } else { span };
+ let code = traits::ObligationCauseCode::OpaqueReturnType(None);
+ let cause = ObligationCause::new(span, body_id, code);
+ // FIXME(compiler-errors): We probably should add a new TypeVariableOriginKind
+ // for opaque types, and then use that kind to fix the spans for type errors
+ // that we see later on.
+ let ty_var = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ });
+ obligations.extend(
+ self.handle_opaque_type(ty, ty_var, true, &cause, param_env)
+ .unwrap()
+ .obligations,
+ );
+ ty_var
+ }
+ _ => ty,
+ },
+ });
+ InferOk { value, obligations }
+ }
+
+ pub fn handle_opaque_type(
+ &self,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ a_is_expected: bool,
+ cause: &ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> InferResult<'tcx, ()> {
+ if a.references_error() || b.references_error() {
+ return Ok(InferOk { value: (), obligations: vec![] });
+ }
+ let (a, b) = if a_is_expected { (a, b) } else { (b, a) };
+ let process = |a: Ty<'tcx>, b: Ty<'tcx>| match *a.kind() {
+ ty::Opaque(def_id, substs) if def_id.is_local() => {
+ let def_id = def_id.expect_local();
+ let origin = match self.defining_use_anchor {
+ DefiningAnchor::Bind(_) => {
+ // Check that this is `impl Trait` type is
+ // declared by `parent_def_id` -- i.e., one whose
+ // value we are inferring. At present, this is
+ // always true during the first phase of
+ // type-check, but not always true later on during
+ // NLL. Once we support named opaque types more fully,
+ // this same scenario will be able to arise during all phases.
+ //
+ // Here is an example using type alias `impl Trait`
+ // that indicates the distinction we are checking for:
+ //
+ // ```rust
+ // mod a {
+ // pub type Foo = impl Iterator;
+ // pub fn make_foo() -> Foo { .. }
+ // }
+ //
+ // mod b {
+ // fn foo() -> a::Foo { a::make_foo() }
+ // }
+ // ```
+ //
+ // Here, the return type of `foo` references an
+ // `Opaque` indeed, but not one whose value is
+ // presently being inferred. You can get into a
+ // similar situation with closure return types
+ // today:
+ //
+ // ```rust
+ // fn foo() -> impl Iterator { .. }
+ // fn bar() {
+ // let x = || foo(); // returns the Opaque assoc with `foo`
+ // }
+ // ```
+ self.opaque_type_origin(def_id, cause.span)?
+ }
+ DefiningAnchor::Bubble => self.opaque_ty_origin_unchecked(def_id, cause.span),
+ DefiningAnchor::Error => return None,
+ };
+ if let ty::Opaque(did2, _) = *b.kind() {
+ // We could accept this, but there are various ways to handle this situation, and we don't
+ // want to make a decision on it right now. Likely this case is so super rare anyway, that
+ // no one encounters it in practice.
+ // It does occur however in `fn fut() -> impl Future<Output = i32> { async { 42 } }`,
+ // where it is of no concern, so we only check for TAITs.
+ if let Some(OpaqueTyOrigin::TyAlias) =
+ did2.as_local().and_then(|did2| self.opaque_type_origin(did2, cause.span))
+ {
+ self.tcx
+ .sess
+ .struct_span_err(
+ cause.span,
+ "opaque type's hidden type cannot be another opaque type from the same scope",
+ )
+ .span_label(cause.span, "one of the two opaque types used here has to be outside its defining scope")
+ .span_note(
+ self.tcx.def_span(def_id),
+ "opaque type whose hidden type is being assigned",
+ )
+ .span_note(
+ self.tcx.def_span(did2),
+ "opaque type being used as hidden type",
+ )
+ .emit();
+ }
+ }
+ Some(self.register_hidden_type(
+ OpaqueTypeKey { def_id, substs },
+ cause.clone(),
+ param_env,
+ b,
+ origin,
+ ))
+ }
+ _ => None,
+ };
+ if let Some(res) = process(a, b) {
+ res
+ } else if let Some(res) = process(b, a) {
+ res
+ } else {
+ // Rerun equality check, but this time error out due to
+ // different types.
+ match self.at(cause, param_env).define_opaque_types(false).eq(a, b) {
+ Ok(_) => span_bug!(
+ cause.span,
+ "opaque types are never equal to anything but themselves: {:#?}",
+ (a.kind(), b.kind())
+ ),
+ Err(e) => Err(e),
+ }
+ }
+ }
+
+ /// Given the map `opaque_types` containing the opaque
+ /// `impl Trait` types whose underlying, hidden types are being
+ /// inferred, this method adds constraints to the regions
+ /// appearing in those underlying hidden types to ensure that they
+ /// at least do not refer to random scopes within the current
+ /// function. These constraints are not (quite) sufficient to
+ /// guarantee that the regions are actually legal values; that
+ /// final condition is imposed after region inference is done.
+ ///
+ /// # The Problem
+ ///
+ /// Let's work through an example to explain how it works. Assume
+ /// the current function is as follows:
+ ///
+ /// ```text
+ /// fn foo<'a, 'b>(..) -> (impl Bar<'a>, impl Bar<'b>)
+ /// ```
+ ///
+ /// Here, we have two `impl Trait` types whose values are being
+ /// inferred (the `impl Bar<'a>` and the `impl
+ /// Bar<'b>`). Conceptually, this is sugar for a setup where we
+ /// define underlying opaque types (`Foo1`, `Foo2`) and then, in
+ /// the return type of `foo`, we *reference* those definitions:
+ ///
+ /// ```text
+ /// type Foo1<'x> = impl Bar<'x>;
+ /// type Foo2<'x> = impl Bar<'x>;
+ /// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
+ /// // ^^^^ ^^
+ /// // | |
+ /// // | substs
+ /// // def_id
+ /// ```
+ ///
+ /// As indicating in the comments above, each of those references
+ /// is (in the compiler) basically a substitution (`substs`)
+ /// applied to the type of a suitable `def_id` (which identifies
+ /// `Foo1` or `Foo2`).
+ ///
+ /// Now, at this point in compilation, what we have done is to
+ /// replace each of the references (`Foo1<'a>`, `Foo2<'b>`) with
+ /// fresh inference variables C1 and C2. We wish to use the values
+ /// of these variables to infer the underlying types of `Foo1` and
+ /// `Foo2`. That is, this gives rise to higher-order (pattern) unification
+ /// constraints like:
+ ///
+ /// ```text
+ /// for<'a> (Foo1<'a> = C1)
+ /// for<'b> (Foo1<'b> = C2)
+ /// ```
+ ///
+ /// For these equation to be satisfiable, the types `C1` and `C2`
+ /// can only refer to a limited set of regions. For example, `C1`
+ /// can only refer to `'static` and `'a`, and `C2` can only refer
+ /// to `'static` and `'b`. The job of this function is to impose that
+ /// constraint.
+ ///
+ /// Up to this point, C1 and C2 are basically just random type
+ /// inference variables, and hence they may contain arbitrary
+ /// regions. In fact, it is fairly likely that they do! Consider
+ /// this possible definition of `foo`:
+ ///
+ /// ```text
+ /// fn foo<'a, 'b>(x: &'a i32, y: &'b i32) -> (impl Bar<'a>, impl Bar<'b>) {
+ /// (&*x, &*y)
+ /// }
+ /// ```
+ ///
+ /// Here, the values for the concrete types of the two impl
+ /// traits will include inference variables:
+ ///
+ /// ```text
+ /// &'0 i32
+ /// &'1 i32
+ /// ```
+ ///
+ /// Ordinarily, the subtyping rules would ensure that these are
+ /// sufficiently large. But since `impl Bar<'a>` isn't a specific
+ /// type per se, we don't get such constraints by default. This
+ /// is where this function comes into play. It adds extra
+ /// constraints to ensure that all the regions which appear in the
+ /// inferred type are regions that could validly appear.
+ ///
+ /// This is actually a bit of a tricky constraint in general. We
+ /// want to say that each variable (e.g., `'0`) can only take on
+ /// values that were supplied as arguments to the opaque type
+ /// (e.g., `'a` for `Foo1<'a>`) or `'static`, which is always in
+ /// scope. We don't have a constraint quite of this kind in the current
+ /// region checker.
+ ///
+ /// # The Solution
+ ///
+ /// We generally prefer to make `<=` constraints, since they
+ /// integrate best into the region solver. To do that, we find the
+ /// "minimum" of all the arguments that appear in the substs: that
+ /// is, some region which is less than all the others. In the case
+ /// of `Foo1<'a>`, that would be `'a` (it's the only choice, after
+ /// all). Then we apply that as a least bound to the variables
+ /// (e.g., `'a <= '0`).
+ ///
+ /// In some cases, there is no minimum. Consider this example:
+ ///
+ /// ```text
+ /// fn baz<'a, 'b>() -> impl Trait<'a, 'b> { ... }
+ /// ```
+ ///
+ /// Here we would report a more complex "in constraint", like `'r
+ /// in ['a, 'b, 'static]` (where `'r` is some region appearing in
+ /// the hidden type).
+ ///
+ /// # Constrain regions, not the hidden concrete type
+ ///
+ /// Note that generating constraints on each region `Rc` is *not*
+ /// the same as generating an outlives constraint on `Tc` itself.
+ /// For example, if we had a function like this:
+ ///
+ /// ```
+ /// # #![feature(type_alias_impl_trait)]
+ /// # fn main() {}
+ /// # trait Foo<'a> {}
+ /// # impl<'a, T> Foo<'a> for (&'a u32, T) {}
+ /// fn foo<'a, T>(x: &'a u32, y: T) -> impl Foo<'a> {
+ /// (x, y)
+ /// }
+ ///
+ /// // Equivalent to:
+ /// # mod dummy { use super::*;
+ /// type FooReturn<'a, T> = impl Foo<'a>;
+ /// fn foo<'a, T>(x: &'a u32, y: T) -> FooReturn<'a, T> {
+ /// (x, y)
+ /// }
+ /// # }
+ /// ```
+ ///
+ /// then the hidden type `Tc` would be `(&'0 u32, T)` (where `'0`
+ /// is an inference variable). If we generated a constraint that
+ /// `Tc: 'a`, then this would incorrectly require that `T: 'a` --
+ /// but this is not necessary, because the opaque type we
+ /// create will be allowed to reference `T`. So we only generate a
+ /// constraint that `'0: 'a`.
+ #[instrument(level = "debug", skip(self))]
+ pub fn register_member_constraints(
+ &self,
+ param_env: ty::ParamEnv<'tcx>,
+ opaque_type_key: OpaqueTypeKey<'tcx>,
+ concrete_ty: Ty<'tcx>,
+ span: Span,
+ ) {
+ let def_id = opaque_type_key.def_id;
+
+ let tcx = self.tcx;
+
+ let concrete_ty = self.resolve_vars_if_possible(concrete_ty);
+
+ debug!(?concrete_ty);
+
+ let first_own_region = match self.opaque_ty_origin_unchecked(def_id, span) {
+ hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {
+ // We lower
+ //
+ // fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
+ //
+ // into
+ //
+ // type foo::<'p0..'pn>::Foo<'q0..'qm>
+ // fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
+ //
+ // For these types we only iterate over `'l0..lm` below.
+ tcx.generics_of(def_id).parent_count
+ }
+ // These opaque type inherit all lifetime parameters from their
+ // parent, so we have to check them all.
+ hir::OpaqueTyOrigin::TyAlias => 0,
+ };
+
+ // For a case like `impl Foo<'a, 'b>`, we would generate a constraint
+ // `'r in ['a, 'b, 'static]` for each region `'r` that appears in the
+ // hidden type (i.e., it must be equal to `'a`, `'b`, or `'static`).
+ //
+ // `conflict1` and `conflict2` are the two region bounds that we
+ // detected which were unrelated. They are used for diagnostics.
+
+ // Create the set of choice regions: each region in the hidden
+ // type can be equal to any of the region parameters of the
+ // opaque type definition.
+ let choice_regions: Lrc<Vec<ty::Region<'tcx>>> = Lrc::new(
+ opaque_type_key.substs[first_own_region..]
+ .iter()
+ .filter_map(|arg| match arg.unpack() {
+ GenericArgKind::Lifetime(r) => Some(r),
+ GenericArgKind::Type(_) | GenericArgKind::Const(_) => None,
+ })
+ .chain(std::iter::once(self.tcx.lifetimes.re_static))
+ .collect(),
+ );
+
+ concrete_ty.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
+ op: |r| self.member_constraint(opaque_type_key, span, concrete_ty, r, &choice_regions),
+ });
+ }
+
+ #[instrument(skip(self), level = "trace")]
+ pub fn opaque_type_origin(&self, def_id: LocalDefId, span: Span) -> Option<OpaqueTyOrigin> {
+ let opaque_hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
+ let parent_def_id = match self.defining_use_anchor {
+ DefiningAnchor::Bubble | DefiningAnchor::Error => return None,
+ DefiningAnchor::Bind(bind) => bind,
+ };
+ let item_kind = &self.tcx.hir().expect_item(def_id).kind;
+
+ let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item_kind else {
+ span_bug!(
+ span,
+ "weird opaque type: {:#?}, {:#?}",
+ def_id,
+ item_kind
+ )
+ };
+ let in_definition_scope = match *origin {
+ // Async `impl Trait`
+ hir::OpaqueTyOrigin::AsyncFn(parent) => parent == parent_def_id,
+ // Anonymous `impl Trait`
+ hir::OpaqueTyOrigin::FnReturn(parent) => parent == parent_def_id,
+ // Named `type Foo = impl Bar;`
+ hir::OpaqueTyOrigin::TyAlias => {
+ may_define_opaque_type(self.tcx, parent_def_id, opaque_hir_id)
+ }
+ };
+ trace!(?origin);
+ in_definition_scope.then_some(*origin)
+ }
+
+ #[instrument(skip(self), level = "trace")]
+ fn opaque_ty_origin_unchecked(&self, def_id: LocalDefId, span: Span) -> OpaqueTyOrigin {
+ let origin = match self.tcx.hir().expect_item(def_id).kind {
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => origin,
+ ref itemkind => {
+ span_bug!(span, "weird opaque type: {:?}, {:#?}", def_id, itemkind)
+ }
+ };
+ trace!(?origin);
+ origin
+ }
+}
+
+// Visitor that requires that (almost) all regions in the type visited outlive
+// `least_region`. We cannot use `push_outlives_components` because regions in
+// closure signatures are not included in their outlives components. We need to
+// ensure all regions outlive the given bound so that we don't end up with,
+// say, `ReVar` appearing in a return type and causing ICEs when other
+// functions end up with region constraints involving regions from other
+// functions.
+//
+// We also cannot use `for_each_free_region` because for closures it includes
+// the regions parameters from the enclosing item.
+//
+// We ignore any type parameters because impl trait values are assumed to
+// capture all the in-scope type parameters.
+struct ConstrainOpaqueTypeRegionVisitor<OP> {
+ op: OP,
+}
+
+impl<'tcx, OP> TypeVisitor<'tcx> for ConstrainOpaqueTypeRegionVisitor<OP>
+where
+ OP: FnMut(ty::Region<'tcx>),
+{
+ fn visit_binder<T: TypeVisitable<'tcx>>(
+ &mut self,
+ t: &ty::Binder<'tcx, T>,
+ ) -> ControlFlow<Self::BreakTy> {
+ t.super_visit_with(self);
+ ControlFlow::CONTINUE
+ }
+
+ fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
+ match *r {
+ // ignore bound regions, keep visiting
+ ty::ReLateBound(_, _) => ControlFlow::CONTINUE,
+ _ => {
+ (self.op)(r);
+ ControlFlow::CONTINUE
+ }
+ }
+ }
+
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ // We're only interested in types involving regions
+ if !ty.flags().intersects(ty::TypeFlags::HAS_FREE_REGIONS) {
+ return ControlFlow::CONTINUE;
+ }
+
+ match ty.kind() {
+ ty::Closure(_, ref substs) => {
+ // Skip lifetime parameters of the enclosing item(s)
+
+ substs.as_closure().tupled_upvars_ty().visit_with(self);
+ substs.as_closure().sig_as_fn_ptr_ty().visit_with(self);
+ }
+
+ ty::Generator(_, ref substs, _) => {
+ // Skip lifetime parameters of the enclosing item(s)
+ // Also skip the witness type, because that has no free regions.
+
+ substs.as_generator().tupled_upvars_ty().visit_with(self);
+ substs.as_generator().return_ty().visit_with(self);
+ substs.as_generator().yield_ty().visit_with(self);
+ substs.as_generator().resume_ty().visit_with(self);
+ }
+ _ => {
+ ty.super_visit_with(self);
+ }
+ }
+
+ ControlFlow::CONTINUE
+ }
+}
+
+pub enum UseKind {
+ DefiningUse,
+ OpaqueUse,
+}
+
+impl UseKind {
+ pub fn is_defining(self) -> bool {
+ match self {
+ UseKind::DefiningUse => true,
+ UseKind::OpaqueUse => false,
+ }
+ }
+}
+
+impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
+ #[instrument(skip(self), level = "debug")]
+ pub fn register_hidden_type(
+ &self,
+ opaque_type_key: OpaqueTypeKey<'tcx>,
+ cause: ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ hidden_ty: Ty<'tcx>,
+ origin: hir::OpaqueTyOrigin,
+ ) -> InferResult<'tcx, ()> {
+ let tcx = self.tcx;
+ let OpaqueTypeKey { def_id, substs } = opaque_type_key;
+
+ // Ideally, we'd get the span where *this specific `ty` came
+ // from*, but right now we just use the span from the overall
+ // value being folded. In simple cases like `-> impl Foo`,
+ // these are the same span, but not in cases like `-> (impl
+ // Foo, impl Bar)`.
+ let span = cause.span;
+
+ let mut obligations = vec![];
+ let prev = self.inner.borrow_mut().opaque_types().register(
+ OpaqueTypeKey { def_id, substs },
+ OpaqueHiddenType { ty: hidden_ty, span },
+ origin,
+ );
+ if let Some(prev) = prev {
+ obligations = self.at(&cause, param_env).eq(prev, hidden_ty)?.obligations;
+ }
+
+ let item_bounds = tcx.bound_explicit_item_bounds(def_id.to_def_id());
+
+ for predicate in item_bounds.transpose_iter().map(|e| e.map_bound(|(p, _)| *p)) {
+ debug!(?predicate);
+ let predicate = predicate.subst(tcx, substs);
+
+ let predicate = predicate.fold_with(&mut BottomUpFolder {
+ tcx,
+ ty_op: |ty| match *ty.kind() {
+ // We can't normalize associated types from `rustc_infer`,
+ // but we can eagerly register inference variables for them.
+ ty::Projection(projection_ty) if !projection_ty.has_escaping_bound_vars() => {
+ self.infer_projection(
+ param_env,
+ projection_ty,
+ cause.clone(),
+ 0,
+ &mut obligations,
+ )
+ }
+ // Replace all other mentions of the same opaque type with the hidden type,
+ // as the bounds must hold on the hidden type after all.
+ ty::Opaque(def_id2, substs2)
+ if def_id.to_def_id() == def_id2 && substs == substs2 =>
+ {
+ hidden_ty
+ }
+ _ => ty,
+ },
+ lt_op: |lt| lt,
+ ct_op: |ct| ct,
+ });
+
+ if let ty::PredicateKind::Projection(projection) = predicate.kind().skip_binder() {
+ if projection.term.references_error() {
+ // No point on adding these obligations since there's a type error involved.
+ return Ok(InferOk { value: (), obligations: vec![] });
+ }
+ trace!("{:#?}", projection.term);
+ }
+ // Require that the predicate holds for the concrete type.
+ debug!(?predicate);
+ obligations.push(traits::Obligation::new(cause.clone(), param_env, predicate));
+ }
+ Ok(InferOk { value: (), obligations })
+ }
+}
+
+/// Returns `true` if `opaque_hir_id` is a sibling or a child of a sibling of `def_id`.
+///
+/// Example:
+/// ```ignore UNSOLVED (is this a bug?)
+/// # #![feature(type_alias_impl_trait)]
+/// pub mod foo {
+/// pub mod bar {
+/// pub trait Bar { /* ... */ }
+/// pub type Baz = impl Bar;
+///
+/// # impl Bar for () {}
+/// fn f1() -> Baz { /* ... */ }
+/// }
+/// fn f2() -> bar::Baz { /* ... */ }
+/// }
+/// ```
+///
+/// Here, `def_id` is the `LocalDefId` of the defining use of the opaque type (e.g., `f1` or `f2`),
+/// and `opaque_hir_id` is the `HirId` of the definition of the opaque type `Baz`.
+/// For the above example, this function returns `true` for `f1` and `false` for `f2`.
+fn may_define_opaque_type(tcx: TyCtxt<'_>, def_id: LocalDefId, opaque_hir_id: hir::HirId) -> bool {
+ let mut hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+ // Named opaque types can be defined by any siblings or children of siblings.
+ let scope = tcx.hir().get_defining_scope(opaque_hir_id);
+ // We walk up the node tree until we hit the root or the scope of the opaque type.
+ while hir_id != scope && hir_id != hir::CRATE_HIR_ID {
+ hir_id = tcx.hir().local_def_id_to_hir_id(tcx.hir().get_parent_item(hir_id));
+ }
+ // Syntactically, we are allowed to define the concrete type if:
+ let res = hir_id == scope;
+ trace!(
+ "may_define_opaque_type(def={:?}, opaque_node={:?}) = {}",
+ tcx.hir().find(hir_id),
+ tcx.hir().get(opaque_hir_id),
+ res
+ );
+ res
+}