summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/outlives/obligations.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/outlives/obligations.rs')
-rw-r--r--compiler/rustc_infer/src/infer/outlives/obligations.rs470
1 files changed, 470 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/outlives/obligations.rs b/compiler/rustc_infer/src/infer/outlives/obligations.rs
new file mode 100644
index 000000000..ad052f58c
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/outlives/obligations.rs
@@ -0,0 +1,470 @@
+//! Code that handles "type-outlives" constraints like `T: 'a`. This
+//! is based on the `push_outlives_components` function defined in rustc_infer,
+//! but it adds a bit of heuristics on top, in particular to deal with
+//! associated types and projections.
+//!
+//! When we process a given `T: 'a` obligation, we may produce two
+//! kinds of constraints for the region inferencer:
+//!
+//! - Relationships between inference variables and other regions.
+//! For example, if we have `&'?0 u32: 'a`, then we would produce
+//! a constraint that `'a <= '?0`.
+//! - "Verifys" that must be checked after inferencing is done.
+//! For example, if we know that, for some type parameter `T`,
+//! `T: 'a + 'b`, and we have a requirement that `T: '?1`,
+//! then we add a "verify" that checks that `'?1 <= 'a || '?1 <= 'b`.
+//! - Note the difference with the previous case: here, the region
+//! variable must be less than something else, so this doesn't
+//! affect how inference works (it finds the smallest region that
+//! will do); it's just a post-condition that we have to check.
+//!
+//! **The key point is that once this function is done, we have
+//! reduced all of our "type-region outlives" obligations into relationships
+//! between individual regions.**
+//!
+//! One key input to this function is the set of "region-bound pairs".
+//! These are basically the relationships between type parameters and
+//! regions that are in scope at the point where the outlives
+//! obligation was incurred. **When type-checking a function,
+//! particularly in the face of closures, this is not known until
+//! regionck runs!** This is because some of those bounds come
+//! from things we have yet to infer.
+//!
+//! Consider:
+//!
+//! ```
+//! fn bar<T>(a: T, b: impl for<'a> Fn(&'a T)) {}
+//! fn foo<T>(x: T) {
+//! bar(x, |y| { /* ... */})
+//! // ^ closure arg
+//! }
+//! ```
+//!
+//! Here, the type of `y` may involve inference variables and the
+//! like, and it may also contain implied bounds that are needed to
+//! type-check the closure body (e.g., here it informs us that `T`
+//! outlives the late-bound region `'a`).
+//!
+//! Note that by delaying the gathering of implied bounds until all
+//! inference information is known, we may find relationships between
+//! bound regions and other regions in the environment. For example,
+//! when we first check a closure like the one expected as argument
+//! to `foo`:
+//!
+//! ```
+//! fn foo<U, F: for<'a> FnMut(&'a U)>(_f: F) {}
+//! ```
+//!
+//! the type of the closure's first argument would be `&'a ?U`. We
+//! might later infer `?U` to something like `&'b u32`, which would
+//! imply that `'b: 'a`.
+
+use crate::infer::outlives::components::{push_outlives_components, Component};
+use crate::infer::outlives::env::OutlivesEnvironment;
+use crate::infer::outlives::env::RegionBoundPairs;
+use crate::infer::outlives::verify::VerifyBoundCx;
+use crate::infer::{
+ self, GenericKind, InferCtxt, RegionObligation, SubregionOrigin, UndoLog, VerifyBound,
+};
+use crate::traits::{ObligationCause, ObligationCauseCode};
+use rustc_data_structures::undo_log::UndoLogs;
+use rustc_hir::def_id::LocalDefId;
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::{self, Region, Ty, TyCtxt, TypeVisitable};
+use smallvec::smallvec;
+
+impl<'cx, 'tcx> InferCtxt<'cx, 'tcx> {
+ /// Registers that the given region obligation must be resolved
+ /// from within the scope of `body_id`. These regions are enqueued
+ /// and later processed by regionck, when full type information is
+ /// available (see `region_obligations` field for more
+ /// information).
+ #[instrument(level = "debug", skip(self))]
+ pub fn register_region_obligation(&self, obligation: RegionObligation<'tcx>) {
+ let mut inner = self.inner.borrow_mut();
+ inner.undo_log.push(UndoLog::PushRegionObligation);
+ inner.region_obligations.push(obligation);
+ }
+
+ pub fn register_region_obligation_with_cause(
+ &self,
+ sup_type: Ty<'tcx>,
+ sub_region: Region<'tcx>,
+ cause: &ObligationCause<'tcx>,
+ ) {
+ let origin = SubregionOrigin::from_obligation_cause(cause, || {
+ infer::RelateParamBound(
+ cause.span,
+ sup_type,
+ match cause.code().peel_derives() {
+ ObligationCauseCode::BindingObligation(_, span) => Some(*span),
+ _ => None,
+ },
+ )
+ });
+
+ self.register_region_obligation(RegionObligation { sup_type, sub_region, origin });
+ }
+
+ /// Trait queries just want to pass back type obligations "as is"
+ pub fn take_registered_region_obligations(&self) -> Vec<RegionObligation<'tcx>> {
+ std::mem::take(&mut self.inner.borrow_mut().region_obligations)
+ }
+
+ /// NOTE: Prefer using [`InferCtxt::check_region_obligations_and_report_errors`]
+ /// instead of calling this directly.
+ ///
+ /// Process the region obligations that must be proven (during
+ /// `regionck`) for the given `body_id`, given information about
+ /// the region bounds in scope and so forth. This function must be
+ /// invoked for all relevant body-ids before region inference is
+ /// done (or else an assert will fire).
+ ///
+ /// See the `region_obligations` field of `InferCtxt` for some
+ /// comments about how this function fits into the overall expected
+ /// flow of the inferencer. The key point is that it is
+ /// invoked after all type-inference variables have been bound --
+ /// towards the end of regionck. This also ensures that the
+ /// region-bound-pairs are available (see comments above regarding
+ /// closures).
+ ///
+ /// # Parameters
+ ///
+ /// - `region_bound_pairs_map`: the set of region bounds implied by
+ /// the parameters and where-clauses. In particular, each pair
+ /// `('a, K)` in this list tells us that the bounds in scope
+ /// indicate that `K: 'a`, where `K` is either a generic
+ /// parameter like `T` or a projection like `T::Item`.
+ /// - `param_env` is the parameter environment for the enclosing function.
+ /// - `body_id` is the body-id whose region obligations are being
+ /// processed.
+ #[instrument(level = "debug", skip(self, region_bound_pairs))]
+ pub fn process_registered_region_obligations(
+ &self,
+ region_bound_pairs: &RegionBoundPairs<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) {
+ assert!(
+ !self.in_snapshot.get(),
+ "cannot process registered region obligations in a snapshot"
+ );
+
+ let my_region_obligations = self.take_registered_region_obligations();
+
+ for RegionObligation { sup_type, sub_region, origin } in my_region_obligations {
+ debug!(
+ "process_registered_region_obligations: sup_type={:?} sub_region={:?} origin={:?}",
+ sup_type, sub_region, origin
+ );
+
+ let sup_type = self.resolve_vars_if_possible(sup_type);
+
+ let outlives =
+ &mut TypeOutlives::new(self, self.tcx, &region_bound_pairs, None, param_env);
+ outlives.type_must_outlive(origin, sup_type, sub_region);
+ }
+ }
+
+ /// Processes registered region obliations and resolves regions, reporting
+ /// any errors if any were raised. Prefer using this function over manually
+ /// calling `resolve_regions_and_report_errors`.
+ pub fn check_region_obligations_and_report_errors(
+ &self,
+ generic_param_scope: LocalDefId,
+ outlives_env: &OutlivesEnvironment<'tcx>,
+ ) {
+ self.process_registered_region_obligations(
+ outlives_env.region_bound_pairs(),
+ outlives_env.param_env,
+ );
+
+ self.resolve_regions_and_report_errors(generic_param_scope, outlives_env)
+ }
+}
+
+/// The `TypeOutlives` struct has the job of "lowering" a `T: 'a`
+/// obligation into a series of `'a: 'b` constraints and "verify"s, as
+/// described on the module comment. The final constraints are emitted
+/// via a "delegate" of type `D` -- this is usually the `infcx`, which
+/// accrues them into the `region_obligations` code, but for NLL we
+/// use something else.
+pub struct TypeOutlives<'cx, 'tcx, D>
+where
+ D: TypeOutlivesDelegate<'tcx>,
+{
+ // See the comments on `process_registered_region_obligations` for the meaning
+ // of these fields.
+ delegate: D,
+ tcx: TyCtxt<'tcx>,
+ verify_bound: VerifyBoundCx<'cx, 'tcx>,
+}
+
+pub trait TypeOutlivesDelegate<'tcx> {
+ fn push_sub_region_constraint(
+ &mut self,
+ origin: SubregionOrigin<'tcx>,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ );
+
+ fn push_verify(
+ &mut self,
+ origin: SubregionOrigin<'tcx>,
+ kind: GenericKind<'tcx>,
+ a: ty::Region<'tcx>,
+ bound: VerifyBound<'tcx>,
+ );
+}
+
+impl<'cx, 'tcx, D> TypeOutlives<'cx, 'tcx, D>
+where
+ D: TypeOutlivesDelegate<'tcx>,
+{
+ pub fn new(
+ delegate: D,
+ tcx: TyCtxt<'tcx>,
+ region_bound_pairs: &'cx RegionBoundPairs<'tcx>,
+ implicit_region_bound: Option<ty::Region<'tcx>>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Self {
+ Self {
+ delegate,
+ tcx,
+ verify_bound: VerifyBoundCx::new(
+ tcx,
+ region_bound_pairs,
+ implicit_region_bound,
+ param_env,
+ ),
+ }
+ }
+
+ /// Adds constraints to inference such that `T: 'a` holds (or
+ /// reports an error if it cannot).
+ ///
+ /// # Parameters
+ ///
+ /// - `origin`, the reason we need this constraint
+ /// - `ty`, the type `T`
+ /// - `region`, the region `'a`
+ pub fn type_must_outlive(
+ &mut self,
+ origin: infer::SubregionOrigin<'tcx>,
+ ty: Ty<'tcx>,
+ region: ty::Region<'tcx>,
+ ) {
+ debug!("type_must_outlive(ty={:?}, region={:?}, origin={:?})", ty, region, origin);
+
+ assert!(!ty.has_escaping_bound_vars());
+
+ let mut components = smallvec![];
+ push_outlives_components(self.tcx, ty, &mut components);
+ self.components_must_outlive(origin, &components, region);
+ }
+
+ fn components_must_outlive(
+ &mut self,
+ origin: infer::SubregionOrigin<'tcx>,
+ components: &[Component<'tcx>],
+ region: ty::Region<'tcx>,
+ ) {
+ for component in components.iter() {
+ let origin = origin.clone();
+ match component {
+ Component::Region(region1) => {
+ self.delegate.push_sub_region_constraint(origin, region, *region1);
+ }
+ Component::Param(param_ty) => {
+ self.param_ty_must_outlive(origin, region, *param_ty);
+ }
+ Component::Projection(projection_ty) => {
+ self.projection_must_outlive(origin, region, *projection_ty);
+ }
+ Component::EscapingProjection(subcomponents) => {
+ self.components_must_outlive(origin, &subcomponents, region);
+ }
+ Component::UnresolvedInferenceVariable(v) => {
+ // ignore this, we presume it will yield an error
+ // later, since if a type variable is not resolved by
+ // this point it never will be
+ self.tcx.sess.delay_span_bug(
+ origin.span(),
+ &format!("unresolved inference variable in outlives: {:?}", v),
+ );
+ }
+ }
+ }
+ }
+
+ fn param_ty_must_outlive(
+ &mut self,
+ origin: infer::SubregionOrigin<'tcx>,
+ region: ty::Region<'tcx>,
+ param_ty: ty::ParamTy,
+ ) {
+ debug!(
+ "param_ty_must_outlive(region={:?}, param_ty={:?}, origin={:?})",
+ region, param_ty, origin
+ );
+
+ let generic = GenericKind::Param(param_ty);
+ let verify_bound = self.verify_bound.generic_bound(generic);
+ self.delegate.push_verify(origin, generic, region, verify_bound);
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn projection_must_outlive(
+ &mut self,
+ origin: infer::SubregionOrigin<'tcx>,
+ region: ty::Region<'tcx>,
+ projection_ty: ty::ProjectionTy<'tcx>,
+ ) {
+ // This case is thorny for inference. The fundamental problem is
+ // that there are many cases where we have choice, and inference
+ // doesn't like choice (the current region inference in
+ // particular). :) First off, we have to choose between using the
+ // OutlivesProjectionEnv, OutlivesProjectionTraitDef, and
+ // OutlivesProjectionComponent rules, any one of which is
+ // sufficient. If there are no inference variables involved, it's
+ // not hard to pick the right rule, but if there are, we're in a
+ // bit of a catch 22: if we picked which rule we were going to
+ // use, we could add constraints to the region inference graph
+ // that make it apply, but if we don't add those constraints, the
+ // rule might not apply (but another rule might). For now, we err
+ // on the side of adding too few edges into the graph.
+
+ // Compute the bounds we can derive from the trait definition.
+ // These are guaranteed to apply, no matter the inference
+ // results.
+ let trait_bounds: Vec<_> =
+ self.verify_bound.projection_declared_bounds_from_trait(projection_ty).collect();
+
+ debug!(?trait_bounds);
+
+ // Compute the bounds we can derive from the environment. This
+ // is an "approximate" match -- in some cases, these bounds
+ // may not apply.
+ let mut approx_env_bounds =
+ self.verify_bound.projection_approx_declared_bounds_from_env(projection_ty);
+ debug!("projection_must_outlive: approx_env_bounds={:?}", approx_env_bounds);
+
+ // Remove outlives bounds that we get from the environment but
+ // which are also deducible from the trait. This arises (cc
+ // #55756) in cases where you have e.g., `<T as Foo<'a>>::Item:
+ // 'a` in the environment but `trait Foo<'b> { type Item: 'b
+ // }` in the trait definition.
+ approx_env_bounds.retain(|bound_outlives| {
+ // OK to skip binder because we only manipulate and compare against other
+ // values from the same binder. e.g. if we have (e.g.) `for<'a> <T as Trait<'a>>::Item: 'a`
+ // in `bound`, the `'a` will be a `^1` (bound, debruijn index == innermost) region.
+ // If the declaration is `trait Trait<'b> { type Item: 'b; }`, then `projection_declared_bounds_from_trait`
+ // will be invoked with `['b => ^1]` and so we will get `^1` returned.
+ let bound = bound_outlives.skip_binder();
+ match *bound.0.kind() {
+ ty::Projection(projection_ty) => self
+ .verify_bound
+ .projection_declared_bounds_from_trait(projection_ty)
+ .all(|r| r != bound.1),
+
+ _ => panic!("expected only projection types from env, not {:?}", bound.0),
+ }
+ });
+
+ // If declared bounds list is empty, the only applicable rule is
+ // OutlivesProjectionComponent. If there are inference variables,
+ // then, we can break down the outlives into more primitive
+ // components without adding unnecessary edges.
+ //
+ // If there are *no* inference variables, however, we COULD do
+ // this, but we choose not to, because the error messages are less
+ // good. For example, a requirement like `T::Item: 'r` would be
+ // translated to a requirement that `T: 'r`; when this is reported
+ // to the user, it will thus say "T: 'r must hold so that T::Item:
+ // 'r holds". But that makes it sound like the only way to fix
+ // the problem is to add `T: 'r`, which isn't true. So, if there are no
+ // inference variables, we use a verify constraint instead of adding
+ // edges, which winds up enforcing the same condition.
+ let needs_infer = projection_ty.needs_infer();
+ if approx_env_bounds.is_empty() && trait_bounds.is_empty() && needs_infer {
+ debug!("projection_must_outlive: no declared bounds");
+
+ for k in projection_ty.substs {
+ match k.unpack() {
+ GenericArgKind::Lifetime(lt) => {
+ self.delegate.push_sub_region_constraint(origin.clone(), region, lt);
+ }
+ GenericArgKind::Type(ty) => {
+ self.type_must_outlive(origin.clone(), ty, region);
+ }
+ GenericArgKind::Const(_) => {
+ // Const parameters don't impose constraints.
+ }
+ }
+ }
+
+ return;
+ }
+
+ // If we found a unique bound `'b` from the trait, and we
+ // found nothing else from the environment, then the best
+ // action is to require that `'b: 'r`, so do that.
+ //
+ // This is best no matter what rule we use:
+ //
+ // - OutlivesProjectionEnv: these would translate to the requirement that `'b:'r`
+ // - OutlivesProjectionTraitDef: these would translate to the requirement that `'b:'r`
+ // - OutlivesProjectionComponent: this would require `'b:'r`
+ // in addition to other conditions
+ if !trait_bounds.is_empty()
+ && trait_bounds[1..]
+ .iter()
+ .map(|r| Some(*r))
+ .chain(
+ // NB: The environment may contain `for<'a> T: 'a` style bounds.
+ // In that case, we don't know if they are equal to the trait bound
+ // or not (since we don't *know* whether the environment bound even applies),
+ // so just map to `None` here if there are bound vars, ensuring that
+ // the call to `all` will fail below.
+ approx_env_bounds.iter().map(|b| b.map_bound(|b| b.1).no_bound_vars()),
+ )
+ .all(|b| b == Some(trait_bounds[0]))
+ {
+ let unique_bound = trait_bounds[0];
+ debug!("projection_must_outlive: unique trait bound = {:?}", unique_bound);
+ debug!("projection_must_outlive: unique declared bound appears in trait ref");
+ self.delegate.push_sub_region_constraint(origin, region, unique_bound);
+ return;
+ }
+
+ // Fallback to verifying after the fact that there exists a
+ // declared bound, or that all the components appearing in the
+ // projection outlive; in some cases, this may add insufficient
+ // edges into the inference graph, leading to inference failures
+ // even though a satisfactory solution exists.
+ let generic = GenericKind::Projection(projection_ty);
+ let verify_bound = self.verify_bound.generic_bound(generic);
+ debug!("projection_must_outlive: pushing {:?}", verify_bound);
+ self.delegate.push_verify(origin, generic, region, verify_bound);
+ }
+}
+
+impl<'cx, 'tcx> TypeOutlivesDelegate<'tcx> for &'cx InferCtxt<'cx, 'tcx> {
+ fn push_sub_region_constraint(
+ &mut self,
+ origin: SubregionOrigin<'tcx>,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ ) {
+ self.sub_regions(origin, a, b)
+ }
+
+ fn push_verify(
+ &mut self,
+ origin: SubregionOrigin<'tcx>,
+ kind: GenericKind<'tcx>,
+ a: ty::Region<'tcx>,
+ bound: VerifyBound<'tcx>,
+ ) {
+ self.verify_generic_bound(origin, kind, a, bound)
+ }
+}