summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_infer/src/infer/region_constraints/leak_check.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_infer/src/infer/region_constraints/leak_check.rs')
-rw-r--r--compiler/rustc_infer/src/infer/region_constraints/leak_check.rs447
1 files changed, 447 insertions, 0 deletions
diff --git a/compiler/rustc_infer/src/infer/region_constraints/leak_check.rs b/compiler/rustc_infer/src/infer/region_constraints/leak_check.rs
new file mode 100644
index 000000000..397efe6ee
--- /dev/null
+++ b/compiler/rustc_infer/src/infer/region_constraints/leak_check.rs
@@ -0,0 +1,447 @@
+use super::*;
+use crate::infer::CombinedSnapshot;
+use rustc_data_structures::{
+ graph::{scc::Sccs, vec_graph::VecGraph},
+ undo_log::UndoLogs,
+};
+use rustc_index::vec::Idx;
+use rustc_middle::ty::error::TypeError;
+use rustc_middle::ty::relate::RelateResult;
+
+impl<'tcx> RegionConstraintCollector<'_, 'tcx> {
+ /// Searches new universes created during `snapshot`, looking for
+ /// placeholders that may "leak" out from the universes they are contained
+ /// in. If any leaking placeholders are found, then an `Err` is returned
+ /// (typically leading to the snapshot being reversed).
+ ///
+ /// The leak check *used* to be the only way we had to handle higher-ranked
+ /// obligations. Now that we have integrated universes into the region
+ /// solvers, this is no longer the case, but we retain the leak check for
+ /// backwards compatibility purposes. In particular, it lets us make "early"
+ /// decisions about whether a region error will be reported that are used in
+ /// coherence and elsewhere -- see #56105 and #59490 for more details. The
+ /// eventual fate of the leak checker is not yet settled.
+ ///
+ /// The leak checker works by searching for the following error patterns:
+ ///
+ /// * P1: P2, where P1 != P2
+ /// * P1: R, where R is in some universe that cannot name P1
+ ///
+ /// The idea here is that each of these patterns represents something that
+ /// the region solver would eventually report as an error, so we can detect
+ /// the error early. There is a fly in the ointment, though, in that this is
+ /// not entirely true. In particular, in the future, we may extend the
+ /// environment with implied bounds or other info about how placeholders
+ /// relate to regions in outer universes. In that case, `P1: R` for example
+ /// might become solvable.
+ ///
+ /// # Summary of the implementation
+ ///
+ /// The leak checks as follows. First, we construct a graph where `R2: R1`
+ /// implies `R2 -> R1`, and we compute the SCCs.
+ ///
+ /// For each SCC S, we compute:
+ ///
+ /// * what placeholder P it must be equal to, if any
+ /// * if there are multiple placeholders that must be equal, report an error because `P1: P2`
+ /// * the minimum universe of its constituents
+ ///
+ /// Then we walk the SCCs in dependency order and compute
+ ///
+ /// * what placeholder they must outlive transitively
+ /// * if they must also be equal to a placeholder, report an error because `P1: P2`
+ /// * minimum universe U of all SCCs they must outlive
+ /// * if they must also be equal to a placeholder P, and U cannot name P, report an error, as that
+ /// indicates `P: R` and `R` is in an incompatible universe
+ ///
+ /// # Historical note
+ ///
+ /// Older variants of the leak check used to report errors for these
+ /// patterns, but we no longer do:
+ ///
+ /// * R: P1, even if R cannot name P1, because R = 'static is a valid sol'n
+ /// * R: P1, R: P2, as above
+ pub fn leak_check(
+ &mut self,
+ tcx: TyCtxt<'tcx>,
+ overly_polymorphic: bool,
+ max_universe: ty::UniverseIndex,
+ snapshot: &CombinedSnapshot<'_, 'tcx>,
+ ) -> RelateResult<'tcx, ()> {
+ debug!(
+ "leak_check(max_universe={:?}, snapshot.universe={:?}, overly_polymorphic={:?})",
+ max_universe, snapshot.universe, overly_polymorphic
+ );
+
+ assert!(UndoLogs::<super::UndoLog<'_>>::in_snapshot(&self.undo_log));
+
+ let universe_at_start_of_snapshot = snapshot.universe;
+ if universe_at_start_of_snapshot == max_universe {
+ return Ok(());
+ }
+
+ let mini_graph =
+ &MiniGraph::new(tcx, self.undo_log.region_constraints(), &self.storage.data.verifys);
+
+ let mut leak_check = LeakCheck::new(
+ tcx,
+ universe_at_start_of_snapshot,
+ max_universe,
+ overly_polymorphic,
+ mini_graph,
+ self,
+ );
+ leak_check.assign_placeholder_values()?;
+ leak_check.propagate_scc_value()?;
+ Ok(())
+ }
+}
+
+struct LeakCheck<'me, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ universe_at_start_of_snapshot: ty::UniverseIndex,
+ /// Only used when reporting region errors.
+ overly_polymorphic: bool,
+ mini_graph: &'me MiniGraph<'tcx>,
+ rcc: &'me RegionConstraintCollector<'me, 'tcx>,
+
+ // Initially, for each SCC S, stores a placeholder `P` such that `S = P`
+ // must hold.
+ //
+ // Later, during the [`LeakCheck::propagate_scc_value`] function, this array
+ // is repurposed to store some placeholder `P` such that the weaker
+ // condition `S: P` must hold. (This is true if `S: S1` transitively and `S1
+ // = P`.)
+ scc_placeholders: IndexVec<LeakCheckScc, Option<ty::PlaceholderRegion>>,
+
+ // For each SCC S, track the minimum universe that flows into it. Note that
+ // this is both the minimum of the universes for every region that is a
+ // member of the SCC, but also if you have `R1: R2`, then the universe of
+ // `R2` must be less than the universe of `R1` (i.e., `R1` flows `R2`). To
+ // see that, imagine that you have `P1: R` -- in that case, `R` must be
+ // either the placeholder `P1` or the empty region in that same universe.
+ //
+ // To detect errors, we look for an SCC S where the values in
+ // `scc_values[S]` (if any) cannot be stored into `scc_universes[S]`.
+ scc_universes: IndexVec<LeakCheckScc, SccUniverse<'tcx>>,
+}
+
+impl<'me, 'tcx> LeakCheck<'me, 'tcx> {
+ fn new(
+ tcx: TyCtxt<'tcx>,
+ universe_at_start_of_snapshot: ty::UniverseIndex,
+ max_universe: ty::UniverseIndex,
+ overly_polymorphic: bool,
+ mini_graph: &'me MiniGraph<'tcx>,
+ rcc: &'me RegionConstraintCollector<'me, 'tcx>,
+ ) -> Self {
+ let dummy_scc_universe = SccUniverse { universe: max_universe, region: None };
+ Self {
+ tcx,
+ universe_at_start_of_snapshot,
+ overly_polymorphic,
+ mini_graph,
+ rcc,
+ scc_placeholders: IndexVec::from_elem_n(None, mini_graph.sccs.num_sccs()),
+ scc_universes: IndexVec::from_elem_n(dummy_scc_universe, mini_graph.sccs.num_sccs()),
+ }
+ }
+
+ /// Compute what placeholders (if any) each SCC must be equal to.
+ /// Also compute the minimum universe of all the regions in each SCC.
+ fn assign_placeholder_values(&mut self) -> RelateResult<'tcx, ()> {
+ // First walk: find each placeholder that is from a newly created universe.
+ for (region, leak_check_node) in &self.mini_graph.nodes {
+ let scc = self.mini_graph.sccs.scc(*leak_check_node);
+
+ // Set the universe of each SCC to be the minimum of its constituent universes
+ let universe = self.rcc.universe(*region);
+ debug!(
+ "assign_placeholder_values: scc={:?} universe={:?} region={:?}",
+ scc, universe, region
+ );
+ self.scc_universes[scc].take_min(universe, *region);
+
+ // Detect those SCCs that directly contain a placeholder
+ if let ty::RePlaceholder(placeholder) = **region {
+ if self.universe_at_start_of_snapshot.cannot_name(placeholder.universe) {
+ self.assign_scc_value(scc, placeholder)?;
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ // assign_scc_value(S, P): Update `scc_values` to account for the fact that `P: S` must hold.
+ // This may create an error.
+ fn assign_scc_value(
+ &mut self,
+ scc: LeakCheckScc,
+ placeholder: ty::PlaceholderRegion,
+ ) -> RelateResult<'tcx, ()> {
+ match self.scc_placeholders[scc] {
+ Some(p) => {
+ assert_ne!(p, placeholder);
+ return Err(self.placeholder_error(p, placeholder));
+ }
+ None => {
+ self.scc_placeholders[scc] = Some(placeholder);
+ }
+ };
+
+ Ok(())
+ }
+
+ /// For each SCC S, iterate over each successor S1 where `S: S1`:
+ ///
+ /// * Compute
+ /// Iterate over each SCC `S` and ensure that, for each `S1` where `S1: S`,
+ /// `universe(S) <= universe(S1)`. This executes after
+ /// `assign_placeholder_values`, so `universe(S)` is already the minimum
+ /// universe of any of its direct constituents.
+ fn propagate_scc_value(&mut self) -> RelateResult<'tcx, ()> {
+ // Loop invariants:
+ //
+ // On start of the loop iteration for `scc1`:
+ //
+ // * `scc_universes[scc1]` contains the minimum universe of the
+ // constituents of `scc1`
+ // * `scc_placeholder[scc1]` stores the placeholder that `scc1` must
+ // be equal to (if any)
+ //
+ // For each successor `scc2` where `scc1: scc2`:
+ //
+ // * `scc_placeholder[scc2]` stores some placeholder `P` where
+ // `scc2: P` (if any)
+ // * `scc_universes[scc2]` contains the minimum universe of the
+ // constituents of `scc2` and any of its successors
+ for scc1 in self.mini_graph.sccs.all_sccs() {
+ debug!(
+ "propagate_scc_value: scc={:?} with universe {:?}",
+ scc1, self.scc_universes[scc1]
+ );
+
+ // Walk over each `scc2` such that `scc1: scc2` and compute:
+ //
+ // * `scc1_universe`: the minimum universe of `scc2` and the constituents of `scc1`
+ // * `succ_bound`: placeholder `P` that the successors must outlive, if any (if there are multiple,
+ // we pick one arbitrarily)
+ let mut scc1_universe = self.scc_universes[scc1];
+ let mut succ_bound = None;
+ for &scc2 in self.mini_graph.sccs.successors(scc1) {
+ let SccUniverse { universe: scc2_universe, region: scc2_region } =
+ self.scc_universes[scc2];
+
+ scc1_universe.take_min(scc2_universe, scc2_region.unwrap());
+
+ if let Some(b) = self.scc_placeholders[scc2] {
+ succ_bound = Some(b);
+ }
+ }
+
+ // Update minimum universe of scc1.
+ self.scc_universes[scc1] = scc1_universe;
+
+ // At this point, `scc_placeholders[scc1]` stores the placeholder that
+ // `scc1` must be equal to, if any.
+ if let Some(scc1_placeholder) = self.scc_placeholders[scc1] {
+ debug!(
+ "propagate_scc_value: scc1={:?} placeholder={:?} scc1_universe={:?}",
+ scc1, scc1_placeholder, scc1_universe
+ );
+
+ // Check if `P1: R` for some `R` in a universe that cannot name
+ // P1. That's an error.
+ if scc1_universe.universe.cannot_name(scc1_placeholder.universe) {
+ return Err(self.error(scc1_placeholder, scc1_universe.region.unwrap()));
+ }
+
+ // Check if we have some placeholder where `S: P2`
+ // (transitively). In that case, since `S = P1`, that implies
+ // `P1: P2`, which is an error condition.
+ if let Some(scc2_placeholder) = succ_bound {
+ assert_ne!(scc1_placeholder, scc2_placeholder);
+ return Err(self.placeholder_error(scc1_placeholder, scc2_placeholder));
+ }
+ } else {
+ // Otherwise, we can reach a placeholder if some successor can.
+ self.scc_placeholders[scc1] = succ_bound;
+ }
+
+ // At this point, `scc_placeholder[scc1]` stores some placeholder that `scc1` must outlive (if any).
+ }
+ Ok(())
+ }
+
+ fn placeholder_error(
+ &self,
+ placeholder1: ty::PlaceholderRegion,
+ placeholder2: ty::PlaceholderRegion,
+ ) -> TypeError<'tcx> {
+ self.error(placeholder1, self.tcx.mk_region(ty::RePlaceholder(placeholder2)))
+ }
+
+ fn error(
+ &self,
+ placeholder: ty::PlaceholderRegion,
+ other_region: ty::Region<'tcx>,
+ ) -> TypeError<'tcx> {
+ debug!("error: placeholder={:?}, other_region={:?}", placeholder, other_region);
+ if self.overly_polymorphic {
+ TypeError::RegionsOverlyPolymorphic(placeholder.name, other_region)
+ } else {
+ TypeError::RegionsInsufficientlyPolymorphic(placeholder.name, other_region)
+ }
+ }
+}
+
+// States we need to distinguish:
+//
+// * must be equal to a placeholder (i.e., a placeholder is in the SCC)
+// * it could conflict with some other regions in the SCC in different universes
+// * or a different placeholder
+// * `P1: S` and `S` must be equal to a placeholder
+// * `P1: S` and `S` is in an incompatible universe
+//
+// So if we
+//
+// (a) compute which placeholder (if any) each SCC must be equal to
+// (b) compute its minimum universe
+// (c) compute *some* placeholder where `S: P1` (any one will do)
+//
+// then we get an error if:
+//
+// - it must be equal to a placeholder `P1` and minimum universe cannot name `P1`
+// - `S: P1` and minimum universe cannot name `P1`
+// - `S: P1` and we must be equal to `P2`
+//
+// So we want to track:
+//
+// * Equal placeholder (if any)
+// * Some bounding placeholder (if any)
+// * Minimum universe
+//
+// * We compute equal placeholder + minimum universe of constituents in first pass
+// * Then we walk in order and compute from our dependencies `S1` where `S: S1` (`S -> S1`)
+// * bounding placeholder (if any)
+// * minimum universe
+// * And if we must be equal to a placeholder then we check it against
+// * minimum universe
+// * no bounding placeholder
+
+/// Tracks the "minimum universe" for each SCC, along with some region that
+/// caused it to change.
+#[derive(Copy, Clone, Debug)]
+struct SccUniverse<'tcx> {
+ /// For some SCC S, the minimum universe of:
+ ///
+ /// * each region R in S
+ /// * each SCC S1 such that S: S1
+ universe: ty::UniverseIndex,
+
+ /// Some region that caused `universe` to be what it is.
+ region: Option<ty::Region<'tcx>>,
+}
+
+impl<'tcx> SccUniverse<'tcx> {
+ /// If `universe` is less than our current universe, then update
+ /// `self.universe` and `self.region`.
+ fn take_min(&mut self, universe: ty::UniverseIndex, region: ty::Region<'tcx>) {
+ if universe < self.universe || self.region.is_none() {
+ self.universe = universe;
+ self.region = Some(region);
+ }
+ }
+}
+
+rustc_index::newtype_index! {
+ struct LeakCheckNode {
+ DEBUG_FORMAT = "LeakCheckNode({})"
+ }
+}
+
+rustc_index::newtype_index! {
+ struct LeakCheckScc {
+ DEBUG_FORMAT = "LeakCheckScc({})"
+ }
+}
+
+/// Represents the graph of constraints. For each `R1: R2` constraint we create
+/// an edge `R1 -> R2` in the graph.
+struct MiniGraph<'tcx> {
+ /// Map from a region to the index of the node in the graph.
+ nodes: FxHashMap<ty::Region<'tcx>, LeakCheckNode>,
+
+ /// Map from node index to SCC, and stores the successors of each SCC. All
+ /// the regions in the same SCC are equal to one another, and if `S1 -> S2`,
+ /// then `S1: S2`.
+ sccs: Sccs<LeakCheckNode, LeakCheckScc>,
+}
+
+impl<'tcx> MiniGraph<'tcx> {
+ fn new<'a>(
+ tcx: TyCtxt<'tcx>,
+ undo_log: impl Iterator<Item = &'a UndoLog<'tcx>>,
+ verifys: &[Verify<'tcx>],
+ ) -> Self
+ where
+ 'tcx: 'a,
+ {
+ let mut nodes = FxHashMap::default();
+ let mut edges = Vec::new();
+
+ // Note that if `R2: R1`, we get a callback `r1, r2`, so `target` is first parameter.
+ Self::iterate_undo_log(tcx, undo_log, verifys, |target, source| {
+ let source_node = Self::add_node(&mut nodes, source);
+ let target_node = Self::add_node(&mut nodes, target);
+ edges.push((source_node, target_node));
+ });
+ let graph = VecGraph::new(nodes.len(), edges);
+ let sccs = Sccs::new(&graph);
+ Self { nodes, sccs }
+ }
+
+ /// Invokes `each_edge(R1, R2)` for each edge where `R2: R1`
+ fn iterate_undo_log<'a>(
+ tcx: TyCtxt<'tcx>,
+ undo_log: impl Iterator<Item = &'a UndoLog<'tcx>>,
+ verifys: &[Verify<'tcx>],
+ mut each_edge: impl FnMut(ty::Region<'tcx>, ty::Region<'tcx>),
+ ) where
+ 'tcx: 'a,
+ {
+ for undo_entry in undo_log {
+ match undo_entry {
+ &AddConstraint(Constraint::VarSubVar(a, b)) => {
+ each_edge(tcx.mk_region(ReVar(a)), tcx.mk_region(ReVar(b)));
+ }
+ &AddConstraint(Constraint::RegSubVar(a, b)) => {
+ each_edge(a, tcx.mk_region(ReVar(b)));
+ }
+ &AddConstraint(Constraint::VarSubReg(a, b)) => {
+ each_edge(tcx.mk_region(ReVar(a)), b);
+ }
+ &AddConstraint(Constraint::RegSubReg(a, b)) => {
+ each_edge(a, b);
+ }
+ &AddGiven(a, b) => {
+ each_edge(a, tcx.mk_region(ReVar(b)));
+ }
+ &AddVerify(i) => span_bug!(
+ verifys[i].origin.span(),
+ "we never add verifications while doing higher-ranked things",
+ ),
+ &AddCombination(..) | &AddVar(..) => {}
+ }
+ }
+ }
+
+ fn add_node(
+ nodes: &mut FxHashMap<ty::Region<'tcx>, LeakCheckNode>,
+ r: ty::Region<'tcx>,
+ ) -> LeakCheckNode {
+ let l = nodes.len();
+ *nodes.entry(r).or_insert(LeakCheckNode::new(l))
+ }
+}