summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_lint/src/builtin.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_lint/src/builtin.rs')
-rw-r--r--compiler/rustc_lint/src/builtin.rs3172
1 files changed, 3172 insertions, 0 deletions
diff --git a/compiler/rustc_lint/src/builtin.rs b/compiler/rustc_lint/src/builtin.rs
new file mode 100644
index 000000000..bd58021f7
--- /dev/null
+++ b/compiler/rustc_lint/src/builtin.rs
@@ -0,0 +1,3172 @@
+//! Lints in the Rust compiler.
+//!
+//! This contains lints which can feasibly be implemented as their own
+//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
+//! definitions of lints that are emitted directly inside the main compiler.
+//!
+//! To add a new lint to rustc, declare it here using `declare_lint!()`.
+//! Then add code to emit the new lint in the appropriate circumstances.
+//! You can do that in an existing `LintPass` if it makes sense, or in a
+//! new `LintPass`, or using `Session::add_lint` elsewhere in the
+//! compiler. Only do the latter if the check can't be written cleanly as a
+//! `LintPass` (also, note that such lints will need to be defined in
+//! `rustc_session::lint::builtin`, not here).
+//!
+//! If you define a new `EarlyLintPass`, you will also need to add it to the
+//! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
+//! `lib.rs`. Use the former for unit-like structs and the latter for structs
+//! with a `pub fn new()`.
+//!
+//! If you define a new `LateLintPass`, you will also need to add it to the
+//! `late_lint_methods!` invocation in `lib.rs`.
+
+use crate::{
+ types::{transparent_newtype_field, CItemKind},
+ EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
+};
+use rustc_ast::attr;
+use rustc_ast::tokenstream::{TokenStream, TokenTree};
+use rustc_ast::visit::{FnCtxt, FnKind};
+use rustc_ast::{self as ast, *};
+use rustc_ast_pretty::pprust::{self, expr_to_string};
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::{
+ fluent, Applicability, Diagnostic, DiagnosticMessage, DiagnosticStyledString,
+ LintDiagnosticBuilder, MultiSpan,
+};
+use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
+use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
+use rustc_index::vec::Idx;
+use rustc_middle::lint::in_external_macro;
+use rustc_middle::ty::layout::{LayoutError, LayoutOf};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::Instance;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
+use rustc_span::edition::Edition;
+use rustc_span::source_map::Spanned;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{BytePos, InnerSpan, Span};
+use rustc_target::abi::VariantIdx;
+use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
+
+use crate::nonstandard_style::{method_context, MethodLateContext};
+
+use std::fmt::Write;
+use tracing::{debug, trace};
+
+// hardwired lints from librustc_middle
+pub use rustc_session::lint::builtin::*;
+
+declare_lint! {
+ /// The `while_true` lint detects `while true { }`.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,no_run
+ /// while true {
+ ///
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// `while true` should be replaced with `loop`. A `loop` expression is
+ /// the preferred way to write an infinite loop because it more directly
+ /// expresses the intent of the loop.
+ WHILE_TRUE,
+ Warn,
+ "suggest using `loop { }` instead of `while true { }`"
+}
+
+declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
+
+/// Traverse through any amount of parenthesis and return the first non-parens expression.
+fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
+ while let ast::ExprKind::Paren(sub) = &expr.kind {
+ expr = sub;
+ }
+ expr
+}
+
+impl EarlyLintPass for WhileTrue {
+ fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
+ if let ast::ExprKind::While(cond, _, label) = &e.kind {
+ if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
+ if let ast::LitKind::Bool(true) = lit.kind {
+ if !lit.span.from_expansion() {
+ let condition_span = e.span.with_hi(cond.span.hi());
+ cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
+ lint.build(fluent::lint::builtin_while_true)
+ .span_suggestion_short(
+ condition_span,
+ fluent::lint::suggestion,
+ format!(
+ "{}loop",
+ label.map_or_else(String::new, |label| format!(
+ "{}: ",
+ label.ident,
+ ))
+ ),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ })
+ }
+ }
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `box_pointers` lints use of the Box type.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(box_pointers)]
+ /// struct Foo {
+ /// x: Box<isize>,
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// This lint is mostly historical, and not particularly useful. `Box<T>`
+ /// used to be built into the language, and the only way to do heap
+ /// allocation. Today's Rust can call into other allocators, etc.
+ BOX_POINTERS,
+ Allow,
+ "use of owned (Box type) heap memory"
+}
+
+declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
+
+impl BoxPointers {
+ fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
+ for leaf in ty.walk() {
+ if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
+ if leaf_ty.is_box() {
+ cx.struct_span_lint(BOX_POINTERS, span, |lint| {
+ lint.build(fluent::lint::builtin_box_pointers).set_arg("ty", ty).emit();
+ });
+ }
+ }
+ }
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for BoxPointers {
+ fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ match it.kind {
+ hir::ItemKind::Fn(..)
+ | hir::ItemKind::TyAlias(..)
+ | hir::ItemKind::Enum(..)
+ | hir::ItemKind::Struct(..)
+ | hir::ItemKind::Union(..) => {
+ self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
+ }
+ _ => (),
+ }
+
+ // If it's a struct, we also have to check the fields' types
+ match it.kind {
+ hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
+ for struct_field in struct_def.fields() {
+ let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
+ self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
+ }
+ }
+ _ => (),
+ }
+ }
+
+ fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
+ let ty = cx.typeck_results().node_type(e.hir_id);
+ self.check_heap_type(cx, e.span, ty);
+ }
+}
+
+declare_lint! {
+ /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
+ /// instead of `Struct { x }` in a pattern.
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// struct Point {
+ /// x: i32,
+ /// y: i32,
+ /// }
+ ///
+ ///
+ /// fn main() {
+ /// let p = Point {
+ /// x: 5,
+ /// y: 5,
+ /// };
+ ///
+ /// match p {
+ /// Point { x: x, y: y } => (),
+ /// }
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// The preferred style is to avoid the repetition of specifying both the
+ /// field name and the binding name if both identifiers are the same.
+ NON_SHORTHAND_FIELD_PATTERNS,
+ Warn,
+ "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
+}
+
+declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
+
+impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
+ fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
+ if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
+ let variant = cx
+ .typeck_results()
+ .pat_ty(pat)
+ .ty_adt_def()
+ .expect("struct pattern type is not an ADT")
+ .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
+ for fieldpat in field_pats {
+ if fieldpat.is_shorthand {
+ continue;
+ }
+ if fieldpat.span.from_expansion() {
+ // Don't lint if this is a macro expansion: macro authors
+ // shouldn't have to worry about this kind of style issue
+ // (Issue #49588)
+ continue;
+ }
+ if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
+ if cx.tcx.find_field_index(ident, &variant)
+ == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
+ {
+ cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
+ let binding = match binding_annot {
+ hir::BindingAnnotation::Unannotated => None,
+ hir::BindingAnnotation::Mutable => Some("mut"),
+ hir::BindingAnnotation::Ref => Some("ref"),
+ hir::BindingAnnotation::RefMut => Some("ref mut"),
+ };
+ let suggested_ident = if let Some(binding) = binding {
+ format!("{} {}", binding, ident)
+ } else {
+ ident.to_string()
+ };
+ lint.build(fluent::lint::builtin_non_shorthand_field_patterns)
+ .set_arg("ident", ident.clone())
+ .span_suggestion(
+ fieldpat.span,
+ fluent::lint::suggestion,
+ suggested_ident,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ }
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `unsafe_code` lint catches usage of `unsafe` code.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(unsafe_code)]
+ /// fn main() {
+ /// unsafe {
+ ///
+ /// }
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// This lint is intended to restrict the usage of `unsafe`, which can be
+ /// difficult to use correctly.
+ UNSAFE_CODE,
+ Allow,
+ "usage of `unsafe` code"
+}
+
+declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
+
+impl UnsafeCode {
+ fn report_unsafe(
+ &self,
+ cx: &EarlyContext<'_>,
+ span: Span,
+ decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a, ()>),
+ ) {
+ // This comes from a macro that has `#[allow_internal_unsafe]`.
+ if span.allows_unsafe() {
+ return;
+ }
+
+ cx.struct_span_lint(UNSAFE_CODE, span, decorate);
+ }
+
+ fn report_overridden_symbol_name(
+ &self,
+ cx: &EarlyContext<'_>,
+ span: Span,
+ msg: DiagnosticMessage,
+ ) {
+ self.report_unsafe(cx, span, |lint| {
+ lint.build(msg).note(fluent::lint::builtin_overridden_symbol_name).emit();
+ })
+ }
+
+ fn report_overridden_symbol_section(
+ &self,
+ cx: &EarlyContext<'_>,
+ span: Span,
+ msg: DiagnosticMessage,
+ ) {
+ self.report_unsafe(cx, span, |lint| {
+ lint.build(msg).note(fluent::lint::builtin_overridden_symbol_section).emit();
+ })
+ }
+}
+
+impl EarlyLintPass for UnsafeCode {
+ fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
+ if attr.has_name(sym::allow_internal_unsafe) {
+ self.report_unsafe(cx, attr.span, |lint| {
+ lint.build(fluent::lint::builtin_allow_internal_unsafe).emit();
+ });
+ }
+ }
+
+ fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
+ if let ast::ExprKind::Block(ref blk, _) = e.kind {
+ // Don't warn about generated blocks; that'll just pollute the output.
+ if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
+ self.report_unsafe(cx, blk.span, |lint| {
+ lint.build(fluent::lint::builtin_unsafe_block).emit();
+ });
+ }
+ }
+ }
+
+ fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
+ match it.kind {
+ ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
+ .report_unsafe(cx, it.span, |lint| {
+ lint.build(fluent::lint::builtin_unsafe_trait).emit();
+ }),
+
+ ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
+ .report_unsafe(cx, it.span, |lint| {
+ lint.build(fluent::lint::builtin_unsafe_impl).emit();
+ }),
+
+ ast::ItemKind::Fn(..) => {
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_no_mangle_fn,
+ );
+ }
+
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_export_name_fn,
+ );
+ }
+
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
+ self.report_overridden_symbol_section(
+ cx,
+ attr.span,
+ fluent::lint::builtin_link_section_fn,
+ );
+ }
+ }
+
+ ast::ItemKind::Static(..) => {
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_no_mangle_static,
+ );
+ }
+
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_export_name_static,
+ );
+ }
+
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
+ self.report_overridden_symbol_section(
+ cx,
+ attr.span,
+ fluent::lint::builtin_link_section_static,
+ );
+ }
+ }
+
+ _ => {}
+ }
+ }
+
+ fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
+ if let ast::AssocItemKind::Fn(..) = it.kind {
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_no_mangle_method,
+ );
+ }
+ if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
+ self.report_overridden_symbol_name(
+ cx,
+ attr.span,
+ fluent::lint::builtin_export_name_method,
+ );
+ }
+ }
+ }
+
+ fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
+ if let FnKind::Fn(
+ ctxt,
+ _,
+ ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
+ _,
+ _,
+ body,
+ ) = fk
+ {
+ let msg = match ctxt {
+ FnCtxt::Foreign => return,
+ FnCtxt::Free => fluent::lint::builtin_decl_unsafe_fn,
+ FnCtxt::Assoc(_) if body.is_none() => fluent::lint::builtin_decl_unsafe_method,
+ FnCtxt::Assoc(_) => fluent::lint::builtin_impl_unsafe_method,
+ };
+ self.report_unsafe(cx, span, |lint| {
+ lint.build(msg).emit();
+ });
+ }
+ }
+}
+
+declare_lint! {
+ /// The `missing_docs` lint detects missing documentation for public items.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(missing_docs)]
+ /// pub fn foo() {}
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// This lint is intended to ensure that a library is well-documented.
+ /// Items without documentation can be difficult for users to understand
+ /// how to use properly.
+ ///
+ /// This lint is "allow" by default because it can be noisy, and not all
+ /// projects may want to enforce everything to be documented.
+ pub MISSING_DOCS,
+ Allow,
+ "detects missing documentation for public members",
+ report_in_external_macro
+}
+
+pub struct MissingDoc {
+ /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
+ doc_hidden_stack: Vec<bool>,
+}
+
+impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
+
+fn has_doc(attr: &ast::Attribute) -> bool {
+ if attr.is_doc_comment() {
+ return true;
+ }
+
+ if !attr.has_name(sym::doc) {
+ return false;
+ }
+
+ if attr.value_str().is_some() {
+ return true;
+ }
+
+ if let Some(list) = attr.meta_item_list() {
+ for meta in list {
+ if meta.has_name(sym::hidden) {
+ return true;
+ }
+ }
+ }
+
+ false
+}
+
+impl MissingDoc {
+ pub fn new() -> MissingDoc {
+ MissingDoc { doc_hidden_stack: vec![false] }
+ }
+
+ fn doc_hidden(&self) -> bool {
+ *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
+ }
+
+ fn check_missing_docs_attrs(
+ &self,
+ cx: &LateContext<'_>,
+ def_id: LocalDefId,
+ article: &'static str,
+ desc: &'static str,
+ ) {
+ // If we're building a test harness, then warning about
+ // documentation is probably not really relevant right now.
+ if cx.sess().opts.test {
+ return;
+ }
+
+ // `#[doc(hidden)]` disables missing_docs check.
+ if self.doc_hidden() {
+ return;
+ }
+
+ // Only check publicly-visible items, using the result from the privacy pass.
+ // It's an option so the crate root can also use this function (it doesn't
+ // have a `NodeId`).
+ if def_id != CRATE_DEF_ID {
+ if !cx.access_levels.is_exported(def_id) {
+ return;
+ }
+ }
+
+ let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
+ let has_doc = attrs.iter().any(has_doc);
+ if !has_doc {
+ cx.struct_span_lint(MISSING_DOCS, cx.tcx.def_span(def_id), |lint| {
+ lint.build(fluent::lint::builtin_missing_doc)
+ .set_arg("article", article)
+ .set_arg("desc", desc)
+ .emit();
+ });
+ }
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for MissingDoc {
+ fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
+ let doc_hidden = self.doc_hidden()
+ || attrs.iter().any(|attr| {
+ attr.has_name(sym::doc)
+ && match attr.meta_item_list() {
+ None => false,
+ Some(l) => attr::list_contains_name(&l, sym::hidden),
+ }
+ });
+ self.doc_hidden_stack.push(doc_hidden);
+ }
+
+ fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
+ self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
+ }
+
+ fn check_crate(&mut self, cx: &LateContext<'_>) {
+ self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
+ }
+
+ fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ match it.kind {
+ hir::ItemKind::Trait(..) => {
+ // Issue #11592: traits are always considered exported, even when private.
+ if cx.tcx.visibility(it.def_id)
+ == ty::Visibility::Restricted(
+ cx.tcx.parent_module_from_def_id(it.def_id).to_def_id(),
+ )
+ {
+ return;
+ }
+ }
+ hir::ItemKind::TyAlias(..)
+ | hir::ItemKind::Fn(..)
+ | hir::ItemKind::Macro(..)
+ | hir::ItemKind::Mod(..)
+ | hir::ItemKind::Enum(..)
+ | hir::ItemKind::Struct(..)
+ | hir::ItemKind::Union(..)
+ | hir::ItemKind::Const(..)
+ | hir::ItemKind::Static(..) => {}
+
+ _ => return,
+ };
+
+ let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
+
+ self.check_missing_docs_attrs(cx, it.def_id, article, desc);
+ }
+
+ fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
+ let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
+
+ self.check_missing_docs_attrs(cx, trait_item.def_id, article, desc);
+ }
+
+ fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
+ // If the method is an impl for a trait, don't doc.
+ if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
+ return;
+ }
+
+ // If the method is an impl for an item with docs_hidden, don't doc.
+ if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
+ let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
+ let impl_ty = cx.tcx.type_of(parent);
+ let outerdef = match impl_ty.kind() {
+ ty::Adt(def, _) => Some(def.did()),
+ ty::Foreign(def_id) => Some(*def_id),
+ _ => None,
+ };
+ let is_hidden = match outerdef {
+ Some(id) => cx.tcx.is_doc_hidden(id),
+ None => false,
+ };
+ if is_hidden {
+ return;
+ }
+ }
+
+ let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
+ self.check_missing_docs_attrs(cx, impl_item.def_id, article, desc);
+ }
+
+ fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
+ let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
+ self.check_missing_docs_attrs(cx, foreign_item.def_id, article, desc);
+ }
+
+ fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
+ if !sf.is_positional() {
+ let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
+ self.check_missing_docs_attrs(cx, def_id, "a", "struct field")
+ }
+ }
+
+ fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
+ self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), "a", "variant");
+ }
+}
+
+declare_lint! {
+ /// The `missing_copy_implementations` lint detects potentially-forgotten
+ /// implementations of [`Copy`].
+ ///
+ /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(missing_copy_implementations)]
+ /// pub struct Foo {
+ /// pub field: i32
+ /// }
+ /// # fn main() {}
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Historically (before 1.0), types were automatically marked as `Copy`
+ /// if possible. This was changed so that it required an explicit opt-in
+ /// by implementing the `Copy` trait. As part of this change, a lint was
+ /// added to alert if a copyable type was not marked `Copy`.
+ ///
+ /// This lint is "allow" by default because this code isn't bad; it is
+ /// common to write newtypes like this specifically so that a `Copy` type
+ /// is no longer `Copy`. `Copy` types can result in unintended copies of
+ /// large data which can impact performance.
+ pub MISSING_COPY_IMPLEMENTATIONS,
+ Allow,
+ "detects potentially-forgotten implementations of `Copy`"
+}
+
+declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
+
+impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
+ fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
+ if !cx.access_levels.is_reachable(item.def_id) {
+ return;
+ }
+ let (def, ty) = match item.kind {
+ hir::ItemKind::Struct(_, ref ast_generics) => {
+ if !ast_generics.params.is_empty() {
+ return;
+ }
+ let def = cx.tcx.adt_def(item.def_id);
+ (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
+ }
+ hir::ItemKind::Union(_, ref ast_generics) => {
+ if !ast_generics.params.is_empty() {
+ return;
+ }
+ let def = cx.tcx.adt_def(item.def_id);
+ (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
+ }
+ hir::ItemKind::Enum(_, ref ast_generics) => {
+ if !ast_generics.params.is_empty() {
+ return;
+ }
+ let def = cx.tcx.adt_def(item.def_id);
+ (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
+ }
+ _ => return,
+ };
+ if def.has_dtor(cx.tcx) {
+ return;
+ }
+ let param_env = ty::ParamEnv::empty();
+ if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
+ return;
+ }
+ if can_type_implement_copy(
+ cx.tcx,
+ param_env,
+ ty,
+ traits::ObligationCause::misc(item.span, item.hir_id()),
+ )
+ .is_ok()
+ {
+ cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
+ lint.build(fluent::lint::builtin_missing_copy_impl).emit();
+ })
+ }
+ }
+}
+
+declare_lint! {
+ /// The `missing_debug_implementations` lint detects missing
+ /// implementations of [`fmt::Debug`].
+ ///
+ /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(missing_debug_implementations)]
+ /// pub struct Foo;
+ /// # fn main() {}
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Having a `Debug` implementation on all types can assist with
+ /// debugging, as it provides a convenient way to format and display a
+ /// value. Using the `#[derive(Debug)]` attribute will automatically
+ /// generate a typical implementation, or a custom implementation can be
+ /// added by manually implementing the `Debug` trait.
+ ///
+ /// This lint is "allow" by default because adding `Debug` to all types can
+ /// have a negative impact on compile time and code size. It also requires
+ /// boilerplate to be added to every type, which can be an impediment.
+ MISSING_DEBUG_IMPLEMENTATIONS,
+ Allow,
+ "detects missing implementations of Debug"
+}
+
+#[derive(Default)]
+pub struct MissingDebugImplementations {
+ impling_types: Option<LocalDefIdSet>,
+}
+
+impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
+
+impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
+ fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
+ if !cx.access_levels.is_reachable(item.def_id) {
+ return;
+ }
+
+ match item.kind {
+ hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
+ _ => return,
+ }
+
+ let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
+ return
+ };
+
+ if self.impling_types.is_none() {
+ let mut impls = LocalDefIdSet::default();
+ cx.tcx.for_each_impl(debug, |d| {
+ if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
+ if let Some(def_id) = ty_def.did().as_local() {
+ impls.insert(def_id);
+ }
+ }
+ });
+
+ self.impling_types = Some(impls);
+ debug!("{:?}", self.impling_types);
+ }
+
+ if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
+ cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
+ lint.build(fluent::lint::builtin_missing_debug_impl)
+ .set_arg("debug", cx.tcx.def_path_str(debug))
+ .emit();
+ });
+ }
+ }
+}
+
+declare_lint! {
+ /// The `anonymous_parameters` lint detects anonymous parameters in trait
+ /// definitions.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,edition2015,compile_fail
+ /// #![deny(anonymous_parameters)]
+ /// // edition 2015
+ /// pub trait Foo {
+ /// fn foo(usize);
+ /// }
+ /// fn main() {}
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// This syntax is mostly a historical accident, and can be worked around
+ /// quite easily by adding an `_` pattern or a descriptive identifier:
+ ///
+ /// ```rust
+ /// trait Foo {
+ /// fn foo(_: usize);
+ /// }
+ /// ```
+ ///
+ /// This syntax is now a hard error in the 2018 edition. In the 2015
+ /// edition, this lint is "warn" by default. This lint
+ /// enables the [`cargo fix`] tool with the `--edition` flag to
+ /// automatically transition old code from the 2015 edition to 2018. The
+ /// tool will run this lint and automatically apply the
+ /// suggested fix from the compiler (which is to add `_` to each
+ /// parameter). This provides a completely automated way to update old
+ /// code for a new edition. See [issue #41686] for more details.
+ ///
+ /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
+ /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
+ pub ANONYMOUS_PARAMETERS,
+ Warn,
+ "detects anonymous parameters",
+ @future_incompatible = FutureIncompatibleInfo {
+ reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
+ reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
+ };
+}
+
+declare_lint_pass!(
+ /// Checks for use of anonymous parameters (RFC 1685).
+ AnonymousParameters => [ANONYMOUS_PARAMETERS]
+);
+
+impl EarlyLintPass for AnonymousParameters {
+ fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
+ if cx.sess().edition() != Edition::Edition2015 {
+ // This is a hard error in future editions; avoid linting and erroring
+ return;
+ }
+ if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
+ for arg in sig.decl.inputs.iter() {
+ if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
+ if ident.name == kw::Empty {
+ cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
+ let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
+
+ let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
+ (snip.as_str(), Applicability::MachineApplicable)
+ } else {
+ ("<type>", Applicability::HasPlaceholders)
+ };
+
+ lint.build(fluent::lint::builtin_anonymous_params)
+ .span_suggestion(
+ arg.pat.span,
+ fluent::lint::suggestion,
+ format!("_: {}", ty_snip),
+ appl,
+ )
+ .emit();
+ })
+ }
+ }
+ }
+ }
+ }
+}
+
+/// Check for use of attributes which have been deprecated.
+#[derive(Clone)]
+pub struct DeprecatedAttr {
+ // This is not free to compute, so we want to keep it around, rather than
+ // compute it for every attribute.
+ depr_attrs: Vec<&'static BuiltinAttribute>,
+}
+
+impl_lint_pass!(DeprecatedAttr => []);
+
+impl DeprecatedAttr {
+ pub fn new() -> DeprecatedAttr {
+ DeprecatedAttr { depr_attrs: deprecated_attributes() }
+ }
+}
+
+impl EarlyLintPass for DeprecatedAttr {
+ fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
+ for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
+ if attr.ident().map(|ident| ident.name) == Some(*name) {
+ if let &AttributeGate::Gated(
+ Stability::Deprecated(link, suggestion),
+ name,
+ reason,
+ _,
+ ) = gate
+ {
+ cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
+ // FIXME(davidtwco) translatable deprecated attr
+ lint.build(fluent::lint::builtin_deprecated_attr_link)
+ .set_arg("name", name)
+ .set_arg("reason", reason)
+ .set_arg("link", link)
+ .span_suggestion_short(
+ attr.span,
+ suggestion.map(|s| s.into()).unwrap_or(
+ fluent::lint::builtin_deprecated_attr_default_suggestion,
+ ),
+ "",
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ return;
+ }
+ }
+ if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
+ cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
+ lint.build(fluent::lint::builtin_deprecated_attr_used)
+ .set_arg("name", pprust::path_to_string(&attr.get_normal_item().path))
+ .span_suggestion_short(
+ attr.span,
+ fluent::lint::builtin_deprecated_attr_default_suggestion,
+ "",
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ }
+}
+
+fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
+ use rustc_ast::token::CommentKind;
+
+ let mut attrs = attrs.iter().peekable();
+
+ // Accumulate a single span for sugared doc comments.
+ let mut sugared_span: Option<Span> = None;
+
+ while let Some(attr) = attrs.next() {
+ let is_doc_comment = attr.is_doc_comment();
+ if is_doc_comment {
+ sugared_span =
+ Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
+ }
+
+ if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
+ continue;
+ }
+
+ let span = sugared_span.take().unwrap_or(attr.span);
+
+ if is_doc_comment || attr.has_name(sym::doc) {
+ cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_unused_doc_comment);
+ err.set_arg("kind", node_kind);
+ err.span_label(node_span, fluent::lint::label);
+ match attr.kind {
+ AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
+ err.help(fluent::lint::plain_help);
+ }
+ AttrKind::DocComment(CommentKind::Block, _) => {
+ err.help(fluent::lint::block_help);
+ }
+ }
+ err.emit();
+ });
+ }
+ }
+}
+
+impl EarlyLintPass for UnusedDocComment {
+ fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
+ let kind = match stmt.kind {
+ ast::StmtKind::Local(..) => "statements",
+ // Disabled pending discussion in #78306
+ ast::StmtKind::Item(..) => return,
+ // expressions will be reported by `check_expr`.
+ ast::StmtKind::Empty
+ | ast::StmtKind::Semi(_)
+ | ast::StmtKind::Expr(_)
+ | ast::StmtKind::MacCall(_) => return,
+ };
+
+ warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
+ }
+
+ fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
+ let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
+ warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
+ }
+
+ fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
+ warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
+ }
+
+ fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
+ warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
+ }
+
+ fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
+ warn_if_doc(cx, block.span, "blocks", &block.attrs());
+ }
+
+ fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
+ if let ast::ItemKind::ForeignMod(_) = item.kind {
+ warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
+ }
+ }
+}
+
+declare_lint! {
+ /// The `no_mangle_const_items` lint detects any `const` items with the
+ /// [`no_mangle` attribute].
+ ///
+ /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #[no_mangle]
+ /// const FOO: i32 = 5;
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Constants do not have their symbols exported, and therefore, this
+ /// probably means you meant to use a [`static`], not a [`const`].
+ ///
+ /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
+ /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
+ NO_MANGLE_CONST_ITEMS,
+ Deny,
+ "const items will not have their symbols exported"
+}
+
+declare_lint! {
+ /// The `no_mangle_generic_items` lint detects generic items that must be
+ /// mangled.
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// #[no_mangle]
+ /// fn foo<T>(t: T) {
+ ///
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// A function with generics must have its symbol mangled to accommodate
+ /// the generic parameter. The [`no_mangle` attribute] has no effect in
+ /// this situation, and should be removed.
+ ///
+ /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
+ NO_MANGLE_GENERIC_ITEMS,
+ Warn,
+ "generic items must be mangled"
+}
+
+declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
+
+impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
+ fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ let attrs = cx.tcx.hir().attrs(it.hir_id());
+ let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
+ impl_generics: Option<&hir::Generics<'_>>,
+ generics: &hir::Generics<'_>,
+ span| {
+ for param in
+ generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
+ {
+ match param.kind {
+ GenericParamKind::Lifetime { .. } => {}
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
+ cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
+ lint.build(fluent::lint::builtin_no_mangle_generic)
+ .span_suggestion_short(
+ no_mangle_attr.span,
+ fluent::lint::suggestion,
+ "",
+ // Use of `#[no_mangle]` suggests FFI intent; correct
+ // fix may be to monomorphize source by hand
+ Applicability::MaybeIncorrect,
+ )
+ .emit();
+ });
+ break;
+ }
+ }
+ }
+ };
+ match it.kind {
+ hir::ItemKind::Fn(.., ref generics, _) => {
+ if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
+ check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
+ }
+ }
+ hir::ItemKind::Const(..) => {
+ if cx.sess().contains_name(attrs, sym::no_mangle) {
+ // Const items do not refer to a particular location in memory, and therefore
+ // don't have anything to attach a symbol to
+ cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_const_no_mangle);
+
+ // account for "pub const" (#45562)
+ let start = cx
+ .tcx
+ .sess
+ .source_map()
+ .span_to_snippet(it.span)
+ .map(|snippet| snippet.find("const").unwrap_or(0))
+ .unwrap_or(0) as u32;
+ // `const` is 5 chars
+ let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
+ err.span_suggestion(
+ const_span,
+ fluent::lint::suggestion,
+ "pub static",
+ Applicability::MachineApplicable,
+ );
+ err.emit();
+ });
+ }
+ }
+ hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
+ for it in *items {
+ if let hir::AssocItemKind::Fn { .. } = it.kind {
+ if let Some(no_mangle_attr) = cx
+ .sess()
+ .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
+ {
+ check_no_mangle_on_generic_fn(
+ no_mangle_attr,
+ Some(generics),
+ cx.tcx.hir().get_generics(it.id.def_id).unwrap(),
+ it.span,
+ );
+ }
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+}
+
+declare_lint! {
+ /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
+ /// T` because it is [undefined behavior].
+ ///
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// unsafe {
+ /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Certain assumptions are made about aliasing of data, and this transmute
+ /// violates those assumptions. Consider using [`UnsafeCell`] instead.
+ ///
+ /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
+ MUTABLE_TRANSMUTES,
+ Deny,
+ "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
+}
+
+declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
+
+impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
+ fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
+ if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
+ get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
+ {
+ if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
+ cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| {
+ lint.build(fluent::lint::builtin_mutable_transmutes).emit();
+ });
+ }
+ }
+
+ fn get_transmute_from_to<'tcx>(
+ cx: &LateContext<'tcx>,
+ expr: &hir::Expr<'_>,
+ ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
+ let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
+ cx.qpath_res(qpath, expr.hir_id)
+ } else {
+ return None;
+ };
+ if let Res::Def(DefKind::Fn, did) = def {
+ if !def_id_is_transmute(cx, did) {
+ return None;
+ }
+ let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
+ let from = sig.inputs().skip_binder()[0];
+ let to = sig.output().skip_binder();
+ return Some((from, to));
+ }
+ None
+ }
+
+ fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
+ cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
+ }
+ }
+}
+
+declare_lint! {
+ /// The `unstable_features` is deprecated and should no longer be used.
+ UNSTABLE_FEATURES,
+ Allow,
+ "enabling unstable features (deprecated. do not use)"
+}
+
+declare_lint_pass!(
+ /// Forbids using the `#[feature(...)]` attribute
+ UnstableFeatures => [UNSTABLE_FEATURES]
+);
+
+impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
+ fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
+ if attr.has_name(sym::feature) {
+ if let Some(items) = attr.meta_item_list() {
+ for item in items {
+ cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
+ lint.build(fluent::lint::builtin_unstable_features).emit();
+ });
+ }
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `unreachable_pub` lint triggers for `pub` items not reachable from
+ /// the crate root.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// #![deny(unreachable_pub)]
+ /// mod foo {
+ /// pub mod bar {
+ ///
+ /// }
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// A bare `pub` visibility may be misleading if the item is not actually
+ /// publicly exported from the crate. The `pub(crate)` visibility is
+ /// recommended to be used instead, which more clearly expresses the intent
+ /// that the item is only visible within its own crate.
+ ///
+ /// This lint is "allow" by default because it will trigger for a large
+ /// amount existing Rust code, and has some false-positives. Eventually it
+ /// is desired for this to become warn-by-default.
+ pub UNREACHABLE_PUB,
+ Allow,
+ "`pub` items not reachable from crate root"
+}
+
+declare_lint_pass!(
+ /// Lint for items marked `pub` that aren't reachable from other crates.
+ UnreachablePub => [UNREACHABLE_PUB]
+);
+
+impl UnreachablePub {
+ fn perform_lint(
+ &self,
+ cx: &LateContext<'_>,
+ what: &str,
+ def_id: LocalDefId,
+ vis_span: Span,
+ exportable: bool,
+ ) {
+ let mut applicability = Applicability::MachineApplicable;
+ if cx.tcx.visibility(def_id).is_public() && !cx.access_levels.is_reachable(def_id) {
+ if vis_span.from_expansion() {
+ applicability = Applicability::MaybeIncorrect;
+ }
+ let def_span = cx.tcx.def_span(def_id);
+ cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_unreachable_pub);
+ err.set_arg("what", what);
+
+ err.span_suggestion(
+ vis_span,
+ fluent::lint::suggestion,
+ "pub(crate)",
+ applicability,
+ );
+ if exportable {
+ err.help(fluent::lint::help);
+ }
+ err.emit();
+ });
+ }
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
+ fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
+ // Do not warn for fake `use` statements.
+ if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
+ return;
+ }
+ self.perform_lint(cx, "item", item.def_id, item.vis_span, true);
+ }
+
+ fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
+ self.perform_lint(cx, "item", foreign_item.def_id, foreign_item.vis_span, true);
+ }
+
+ fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
+ let def_id = cx.tcx.hir().local_def_id(field.hir_id);
+ self.perform_lint(cx, "field", def_id, field.vis_span, false);
+ }
+
+ fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
+ // Only lint inherent impl items.
+ if cx.tcx.associated_item(impl_item.def_id).trait_item_def_id.is_none() {
+ self.perform_lint(cx, "item", impl_item.def_id, impl_item.vis_span, false);
+ }
+ }
+}
+
+declare_lint! {
+ /// The `type_alias_bounds` lint detects bounds in type aliases.
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// type SendVec<T: Send> = Vec<T>;
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// The trait bounds in a type alias are currently ignored, and should not
+ /// be included to avoid confusion. This was previously allowed
+ /// unintentionally; this may become a hard error in the future.
+ TYPE_ALIAS_BOUNDS,
+ Warn,
+ "bounds in type aliases are not enforced"
+}
+
+declare_lint_pass!(
+ /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
+ /// They are relevant when using associated types, but otherwise neither checked
+ /// at definition site nor enforced at use site.
+ TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
+);
+
+impl TypeAliasBounds {
+ fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
+ match *qpath {
+ hir::QPath::TypeRelative(ref ty, _) => {
+ // If this is a type variable, we found a `T::Assoc`.
+ match ty.kind {
+ hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
+ matches!(path.res, Res::Def(DefKind::TyParam, _))
+ }
+ _ => false,
+ }
+ }
+ hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
+ }
+ }
+
+ fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
+ // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
+ // bound. Let's see if this type does that.
+
+ // We use a HIR visitor to walk the type.
+ use rustc_hir::intravisit::{self, Visitor};
+ struct WalkAssocTypes<'a> {
+ err: &'a mut Diagnostic,
+ }
+ impl Visitor<'_> for WalkAssocTypes<'_> {
+ fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
+ if TypeAliasBounds::is_type_variable_assoc(qpath) {
+ self.err.span_help(span, fluent::lint::builtin_type_alias_bounds_help);
+ }
+ intravisit::walk_qpath(self, qpath, id, span)
+ }
+ }
+
+ // Let's go for a walk!
+ let mut visitor = WalkAssocTypes { err };
+ visitor.visit_ty(ty);
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
+ fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
+ let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
+ return
+ };
+ if let hir::TyKind::OpaqueDef(..) = ty.kind {
+ // Bounds are respected for `type X = impl Trait`
+ return;
+ }
+ // There must not be a where clause
+ if type_alias_generics.predicates.is_empty() {
+ return;
+ }
+
+ let mut where_spans = Vec::new();
+ let mut inline_spans = Vec::new();
+ let mut inline_sugg = Vec::new();
+ for p in type_alias_generics.predicates {
+ let span = p.span();
+ if p.in_where_clause() {
+ where_spans.push(span);
+ } else {
+ for b in p.bounds() {
+ inline_spans.push(b.span());
+ }
+ inline_sugg.push((span, String::new()));
+ }
+ }
+
+ let mut suggested_changing_assoc_types = false;
+ if !where_spans.is_empty() {
+ cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_type_alias_where_clause);
+ err.set_span(where_spans);
+ err.span_suggestion(
+ type_alias_generics.where_clause_span,
+ fluent::lint::suggestion,
+ "",
+ Applicability::MachineApplicable,
+ );
+ if !suggested_changing_assoc_types {
+ TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
+ suggested_changing_assoc_types = true;
+ }
+ err.emit();
+ });
+ }
+
+ if !inline_spans.is_empty() {
+ cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_type_alias_generic_bounds);
+ err.set_span(inline_spans);
+ err.multipart_suggestion(
+ fluent::lint::suggestion,
+ inline_sugg,
+ Applicability::MachineApplicable,
+ );
+ if !suggested_changing_assoc_types {
+ TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
+ }
+ err.emit();
+ });
+ }
+ }
+}
+
+declare_lint_pass!(
+ /// Lint constants that are erroneous.
+ /// Without this lint, we might not get any diagnostic if the constant is
+ /// unused within this crate, even though downstream crates can't use it
+ /// without producing an error.
+ UnusedBrokenConst => []
+);
+
+impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
+ fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ match it.kind {
+ hir::ItemKind::Const(_, body_id) => {
+ let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
+ // trigger the query once for all constants since that will already report the errors
+ cx.tcx.ensure().const_eval_poly(def_id);
+ }
+ hir::ItemKind::Static(_, _, body_id) => {
+ let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
+ cx.tcx.ensure().eval_static_initializer(def_id);
+ }
+ _ => {}
+ }
+ }
+}
+
+declare_lint! {
+ /// The `trivial_bounds` lint detects trait bounds that don't depend on
+ /// any type parameters.
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// #![feature(trivial_bounds)]
+ /// pub struct A where i32: Copy;
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Usually you would not write a trait bound that you know is always
+ /// true, or never true. However, when using macros, the macro may not
+ /// know whether or not the constraint would hold or not at the time when
+ /// generating the code. Currently, the compiler does not alert you if the
+ /// constraint is always true, and generates an error if it is never true.
+ /// The `trivial_bounds` feature changes this to be a warning in both
+ /// cases, giving macros more freedom and flexibility to generate code,
+ /// while still providing a signal when writing non-macro code that
+ /// something is amiss.
+ ///
+ /// See [RFC 2056] for more details. This feature is currently only
+ /// available on the nightly channel, see [tracking issue #48214].
+ ///
+ /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
+ /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
+ TRIVIAL_BOUNDS,
+ Warn,
+ "these bounds don't depend on an type parameters"
+}
+
+declare_lint_pass!(
+ /// Lint for trait and lifetime bounds that don't depend on type parameters
+ /// which either do nothing, or stop the item from being used.
+ TrivialConstraints => [TRIVIAL_BOUNDS]
+);
+
+impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
+ fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
+ use rustc_middle::ty::visit::TypeVisitable;
+ use rustc_middle::ty::PredicateKind::*;
+
+ if cx.tcx.features().trivial_bounds {
+ let predicates = cx.tcx.predicates_of(item.def_id);
+ for &(predicate, span) in predicates.predicates {
+ let predicate_kind_name = match predicate.kind().skip_binder() {
+ Trait(..) => "trait",
+ TypeOutlives(..) |
+ RegionOutlives(..) => "lifetime",
+
+ // Ignore projections, as they can only be global
+ // if the trait bound is global
+ Projection(..) |
+ // Ignore bounds that a user can't type
+ WellFormed(..) |
+ ObjectSafe(..) |
+ ClosureKind(..) |
+ Subtype(..) |
+ Coerce(..) |
+ ConstEvaluatable(..) |
+ ConstEquate(..) |
+ TypeWellFormedFromEnv(..) => continue,
+ };
+ if predicate.is_global() {
+ cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
+ lint.build(fluent::lint::builtin_trivial_bounds)
+ .set_arg("predicate_kind_name", predicate_kind_name)
+ .set_arg("predicate", predicate)
+ .emit();
+ });
+ }
+ }
+ }
+ }
+}
+
+declare_lint_pass!(
+ /// Does nothing as a lint pass, but registers some `Lint`s
+ /// which are used by other parts of the compiler.
+ SoftLints => [
+ WHILE_TRUE,
+ BOX_POINTERS,
+ NON_SHORTHAND_FIELD_PATTERNS,
+ UNSAFE_CODE,
+ MISSING_DOCS,
+ MISSING_COPY_IMPLEMENTATIONS,
+ MISSING_DEBUG_IMPLEMENTATIONS,
+ ANONYMOUS_PARAMETERS,
+ UNUSED_DOC_COMMENTS,
+ NO_MANGLE_CONST_ITEMS,
+ NO_MANGLE_GENERIC_ITEMS,
+ MUTABLE_TRANSMUTES,
+ UNSTABLE_FEATURES,
+ UNREACHABLE_PUB,
+ TYPE_ALIAS_BOUNDS,
+ TRIVIAL_BOUNDS
+ ]
+);
+
+declare_lint! {
+ /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
+ /// pattern], which is deprecated.
+ ///
+ /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
+ ///
+ /// ### Example
+ ///
+ /// ```rust,edition2018
+ /// let x = 123;
+ /// match x {
+ /// 0...100 => {}
+ /// _ => {}
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// The `...` range pattern syntax was changed to `..=` to avoid potential
+ /// confusion with the [`..` range expression]. Use the new form instead.
+ ///
+ /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
+ pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
+ Warn,
+ "`...` range patterns are deprecated",
+ @future_incompatible = FutureIncompatibleInfo {
+ reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
+ reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
+ };
+}
+
+#[derive(Default)]
+pub struct EllipsisInclusiveRangePatterns {
+ /// If `Some(_)`, suppress all subsequent pattern
+ /// warnings for better diagnostics.
+ node_id: Option<ast::NodeId>,
+}
+
+impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
+
+impl EarlyLintPass for EllipsisInclusiveRangePatterns {
+ fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
+ if self.node_id.is_some() {
+ // Don't recursively warn about patterns inside range endpoints.
+ return;
+ }
+
+ use self::ast::{PatKind, RangeSyntax::DotDotDot};
+
+ /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
+ /// corresponding to the ellipsis.
+ fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
+ match &pat.kind {
+ PatKind::Range(
+ a,
+ Some(b),
+ Spanned { span, node: RangeEnd::Included(DotDotDot) },
+ ) => Some((a.as_deref(), b, *span)),
+ _ => None,
+ }
+ }
+
+ let (parenthesise, endpoints) = match &pat.kind {
+ PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
+ _ => (false, matches_ellipsis_pat(pat)),
+ };
+
+ if let Some((start, end, join)) = endpoints {
+ let msg = fluent::lint::builtin_ellipsis_inclusive_range_patterns;
+ let suggestion = fluent::lint::suggestion;
+ if parenthesise {
+ self.node_id = Some(pat.id);
+ let end = expr_to_string(&end);
+ let replace = match start {
+ Some(start) => format!("&({}..={})", expr_to_string(&start), end),
+ None => format!("&(..={})", end),
+ };
+ if join.edition() >= Edition::Edition2021 {
+ let mut err = cx.sess().struct_span_err_with_code(
+ pat.span,
+ msg,
+ rustc_errors::error_code!(E0783),
+ );
+ err.span_suggestion(
+ pat.span,
+ suggestion,
+ replace,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ } else {
+ cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
+ lint.build(msg)
+ .span_suggestion(
+ pat.span,
+ suggestion,
+ replace,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ } else {
+ let replace = "..=";
+ if join.edition() >= Edition::Edition2021 {
+ let mut err = cx.sess().struct_span_err_with_code(
+ pat.span,
+ msg,
+ rustc_errors::error_code!(E0783),
+ );
+ err.span_suggestion_short(
+ join,
+ suggestion,
+ replace,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ } else {
+ cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
+ lint.build(msg)
+ .span_suggestion_short(
+ join,
+ suggestion,
+ replace,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ };
+ }
+ }
+
+ fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
+ if let Some(node_id) = self.node_id {
+ if pat.id == node_id {
+ self.node_id = None
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
+ /// that are not able to be run by the test harness because they are in a
+ /// position where they are not nameable.
+ ///
+ /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
+ ///
+ /// ### Example
+ ///
+ /// ```rust,test
+ /// fn main() {
+ /// #[test]
+ /// fn foo() {
+ /// // This test will not fail because it does not run.
+ /// assert_eq!(1, 2);
+ /// }
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// In order for the test harness to run a test, the test function must be
+ /// located in a position where it can be accessed from the crate root.
+ /// This generally means it must be defined in a module, and not anywhere
+ /// else such as inside another function. The compiler previously allowed
+ /// this without an error, so a lint was added as an alert that a test is
+ /// not being used. Whether or not this should be allowed has not yet been
+ /// decided, see [RFC 2471] and [issue #36629].
+ ///
+ /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
+ /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
+ UNNAMEABLE_TEST_ITEMS,
+ Warn,
+ "detects an item that cannot be named being marked as `#[test_case]`",
+ report_in_external_macro
+}
+
+pub struct UnnameableTestItems {
+ boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
+ items_nameable: bool,
+}
+
+impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
+
+impl UnnameableTestItems {
+ pub fn new() -> Self {
+ Self { boundary: None, items_nameable: true }
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
+ fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ if self.items_nameable {
+ if let hir::ItemKind::Mod(..) = it.kind {
+ } else {
+ self.items_nameable = false;
+ self.boundary = Some(it.def_id);
+ }
+ return;
+ }
+
+ let attrs = cx.tcx.hir().attrs(it.hir_id());
+ if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
+ cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
+ lint.build(fluent::lint::builtin_unnameable_test_items).emit();
+ });
+ }
+ }
+
+ fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
+ if !self.items_nameable && self.boundary == Some(it.def_id) {
+ self.items_nameable = true;
+ }
+ }
+}
+
+declare_lint! {
+ /// The `keyword_idents` lint detects edition keywords being used as an
+ /// identifier.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,edition2015,compile_fail
+ /// #![deny(keyword_idents)]
+ /// // edition 2015
+ /// fn dyn() {}
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Rust [editions] allow the language to evolve without breaking
+ /// backwards compatibility. This lint catches code that uses new keywords
+ /// that are added to the language that are used as identifiers (such as a
+ /// variable name, function name, etc.). If you switch the compiler to a
+ /// new edition without updating the code, then it will fail to compile if
+ /// you are using a new keyword as an identifier.
+ ///
+ /// You can manually change the identifiers to a non-keyword, or use a
+ /// [raw identifier], for example `r#dyn`, to transition to a new edition.
+ ///
+ /// This lint solves the problem automatically. It is "allow" by default
+ /// because the code is perfectly valid in older editions. The [`cargo
+ /// fix`] tool with the `--edition` flag will switch this lint to "warn"
+ /// and automatically apply the suggested fix from the compiler (which is
+ /// to use a raw identifier). This provides a completely automated way to
+ /// update old code for a new edition.
+ ///
+ /// [editions]: https://doc.rust-lang.org/edition-guide/
+ /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
+ /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
+ pub KEYWORD_IDENTS,
+ Allow,
+ "detects edition keywords being used as an identifier",
+ @future_incompatible = FutureIncompatibleInfo {
+ reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
+ reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
+ };
+}
+
+declare_lint_pass!(
+ /// Check for uses of edition keywords used as an identifier.
+ KeywordIdents => [KEYWORD_IDENTS]
+);
+
+struct UnderMacro(bool);
+
+impl KeywordIdents {
+ fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
+ for tt in tokens.into_trees() {
+ match tt {
+ // Only report non-raw idents.
+ TokenTree::Token(token, _) => {
+ if let Some((ident, false)) = token.ident() {
+ self.check_ident_token(cx, UnderMacro(true), ident);
+ }
+ }
+ TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
+ }
+ }
+ }
+
+ fn check_ident_token(
+ &mut self,
+ cx: &EarlyContext<'_>,
+ UnderMacro(under_macro): UnderMacro,
+ ident: Ident,
+ ) {
+ let next_edition = match cx.sess().edition() {
+ Edition::Edition2015 => {
+ match ident.name {
+ kw::Async | kw::Await | kw::Try => Edition::Edition2018,
+
+ // rust-lang/rust#56327: Conservatively do not
+ // attempt to report occurrences of `dyn` within
+ // macro definitions or invocations, because `dyn`
+ // can legitimately occur as a contextual keyword
+ // in 2015 code denoting its 2018 meaning, and we
+ // do not want rustfix to inject bugs into working
+ // code by rewriting such occurrences.
+ //
+ // But if we see `dyn` outside of a macro, we know
+ // its precise role in the parsed AST and thus are
+ // assured this is truly an attempt to use it as
+ // an identifier.
+ kw::Dyn if !under_macro => Edition::Edition2018,
+
+ _ => return,
+ }
+ }
+
+ // There are no new keywords yet for the 2018 edition and beyond.
+ _ => return,
+ };
+
+ // Don't lint `r#foo`.
+ if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
+ return;
+ }
+
+ cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
+ lint.build(fluent::lint::builtin_keyword_idents)
+ .set_arg("kw", ident.clone())
+ .set_arg("next", next_edition)
+ .span_suggestion(
+ ident.span,
+ fluent::lint::suggestion,
+ format!("r#{}", ident),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+}
+
+impl EarlyLintPass for KeywordIdents {
+ fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
+ self.check_tokens(cx, mac_def.body.inner_tokens());
+ }
+ fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
+ self.check_tokens(cx, mac.args.inner_tokens());
+ }
+ fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
+ self.check_ident_token(cx, UnderMacro(false), ident);
+ }
+}
+
+declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
+
+impl ExplicitOutlivesRequirements {
+ fn lifetimes_outliving_lifetime<'tcx>(
+ inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
+ index: u32,
+ ) -> Vec<ty::Region<'tcx>> {
+ inferred_outlives
+ .iter()
+ .filter_map(|(pred, _)| match pred.kind().skip_binder() {
+ ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
+ ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
+ _ => None,
+ },
+ _ => None,
+ })
+ .collect()
+ }
+
+ fn lifetimes_outliving_type<'tcx>(
+ inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
+ index: u32,
+ ) -> Vec<ty::Region<'tcx>> {
+ inferred_outlives
+ .iter()
+ .filter_map(|(pred, _)| match pred.kind().skip_binder() {
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
+ a.is_param(index).then_some(b)
+ }
+ _ => None,
+ })
+ .collect()
+ }
+
+ fn collect_outlives_bound_spans<'tcx>(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ bounds: &hir::GenericBounds<'_>,
+ inferred_outlives: &[ty::Region<'tcx>],
+ ) -> Vec<(usize, Span)> {
+ use rustc_middle::middle::resolve_lifetime::Region;
+
+ bounds
+ .iter()
+ .enumerate()
+ .filter_map(|(i, bound)| {
+ if let hir::GenericBound::Outlives(lifetime) = bound {
+ let is_inferred = match tcx.named_region(lifetime.hir_id) {
+ Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
+ if let ty::ReEarlyBound(ebr) = **r { ebr.index == index } else { false }
+ }),
+ _ => false,
+ };
+ is_inferred.then_some((i, bound.span()))
+ } else {
+ None
+ }
+ })
+ .filter(|(_, span)| !in_external_macro(tcx.sess, *span))
+ .collect()
+ }
+
+ fn consolidate_outlives_bound_spans(
+ &self,
+ lo: Span,
+ bounds: &hir::GenericBounds<'_>,
+ bound_spans: Vec<(usize, Span)>,
+ ) -> Vec<Span> {
+ if bounds.is_empty() {
+ return Vec::new();
+ }
+ if bound_spans.len() == bounds.len() {
+ let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
+ // If all bounds are inferable, we want to delete the colon, so
+ // start from just after the parameter (span passed as argument)
+ vec![lo.to(last_bound_span)]
+ } else {
+ let mut merged = Vec::new();
+ let mut last_merged_i = None;
+
+ let mut from_start = true;
+ for (i, bound_span) in bound_spans {
+ match last_merged_i {
+ // If the first bound is inferable, our span should also eat the leading `+`.
+ None if i == 0 => {
+ merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
+ last_merged_i = Some(0);
+ }
+ // If consecutive bounds are inferable, merge their spans
+ Some(h) if i == h + 1 => {
+ if let Some(tail) = merged.last_mut() {
+ // Also eat the trailing `+` if the first
+ // more-than-one bound is inferable
+ let to_span = if from_start && i < bounds.len() {
+ bounds[i + 1].span().shrink_to_lo()
+ } else {
+ bound_span
+ };
+ *tail = tail.to(to_span);
+ last_merged_i = Some(i);
+ } else {
+ bug!("another bound-span visited earlier");
+ }
+ }
+ _ => {
+ // When we find a non-inferable bound, subsequent inferable bounds
+ // won't be consecutive from the start (and we'll eat the leading
+ // `+` rather than the trailing one)
+ from_start = false;
+ merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
+ last_merged_i = Some(i);
+ }
+ }
+ }
+ merged
+ }
+ }
+}
+
+impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
+ fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
+ use rustc_middle::middle::resolve_lifetime::Region;
+
+ let def_id = item.def_id;
+ if let hir::ItemKind::Struct(_, ref hir_generics)
+ | hir::ItemKind::Enum(_, ref hir_generics)
+ | hir::ItemKind::Union(_, ref hir_generics) = item.kind
+ {
+ let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
+ if inferred_outlives.is_empty() {
+ return;
+ }
+
+ let ty_generics = cx.tcx.generics_of(def_id);
+
+ let mut bound_count = 0;
+ let mut lint_spans = Vec::new();
+ let mut where_lint_spans = Vec::new();
+ let mut dropped_predicate_count = 0;
+ let num_predicates = hir_generics.predicates.len();
+ for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
+ let (relevant_lifetimes, bounds, span, in_where_clause) = match where_predicate {
+ hir::WherePredicate::RegionPredicate(predicate) => {
+ if let Some(Region::EarlyBound(index, ..)) =
+ cx.tcx.named_region(predicate.lifetime.hir_id)
+ {
+ (
+ Self::lifetimes_outliving_lifetime(inferred_outlives, index),
+ &predicate.bounds,
+ predicate.span,
+ predicate.in_where_clause,
+ )
+ } else {
+ continue;
+ }
+ }
+ hir::WherePredicate::BoundPredicate(predicate) => {
+ // FIXME we can also infer bounds on associated types,
+ // and should check for them here.
+ match predicate.bounded_ty.kind {
+ hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
+ let Res::Def(DefKind::TyParam, def_id) = path.res else {
+ continue
+ };
+ let index = ty_generics.param_def_id_to_index[&def_id];
+ (
+ Self::lifetimes_outliving_type(inferred_outlives, index),
+ &predicate.bounds,
+ predicate.span,
+ predicate.origin == PredicateOrigin::WhereClause,
+ )
+ }
+ _ => {
+ continue;
+ }
+ }
+ }
+ _ => continue,
+ };
+ if relevant_lifetimes.is_empty() {
+ continue;
+ }
+
+ let bound_spans =
+ self.collect_outlives_bound_spans(cx.tcx, bounds, &relevant_lifetimes);
+ bound_count += bound_spans.len();
+
+ let drop_predicate = bound_spans.len() == bounds.len();
+ if drop_predicate {
+ dropped_predicate_count += 1;
+ }
+
+ if drop_predicate && !in_where_clause {
+ lint_spans.push(span);
+ } else if drop_predicate && i + 1 < num_predicates {
+ // If all the bounds on a predicate were inferable and there are
+ // further predicates, we want to eat the trailing comma.
+ let next_predicate_span = hir_generics.predicates[i + 1].span();
+ where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
+ } else {
+ where_lint_spans.extend(self.consolidate_outlives_bound_spans(
+ span.shrink_to_lo(),
+ bounds,
+ bound_spans,
+ ));
+ }
+ }
+
+ // If all predicates are inferable, drop the entire clause
+ // (including the `where`)
+ if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
+ {
+ let where_span = hir_generics.where_clause_span;
+ // Extend the where clause back to the closing `>` of the
+ // generics, except for tuple struct, which have the `where`
+ // after the fields of the struct.
+ let full_where_span =
+ if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
+ where_span
+ } else {
+ hir_generics.span.shrink_to_hi().to(where_span)
+ };
+ lint_spans.push(full_where_span);
+ } else {
+ lint_spans.extend(where_lint_spans);
+ }
+
+ if !lint_spans.is_empty() {
+ cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
+ lint.build(fluent::lint::builtin_explicit_outlives)
+ .set_arg("count", bound_count)
+ .multipart_suggestion(
+ fluent::lint::suggestion,
+ lint_spans
+ .into_iter()
+ .map(|span| (span, String::new()))
+ .collect::<Vec<_>>(),
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ });
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `incomplete_features` lint detects unstable features enabled with
+ /// the [`feature` attribute] that may function improperly in some or all
+ /// cases.
+ ///
+ /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// #![feature(generic_const_exprs)]
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Although it is encouraged for people to experiment with unstable
+ /// features, some of them are known to be incomplete or faulty. This lint
+ /// is a signal that the feature has not yet been finished, and you may
+ /// experience problems with it.
+ pub INCOMPLETE_FEATURES,
+ Warn,
+ "incomplete features that may function improperly in some or all cases"
+}
+
+declare_lint_pass!(
+ /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
+ IncompleteFeatures => [INCOMPLETE_FEATURES]
+);
+
+impl EarlyLintPass for IncompleteFeatures {
+ fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
+ let features = cx.sess().features_untracked();
+ features
+ .declared_lang_features
+ .iter()
+ .map(|(name, span, _)| (name, span))
+ .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
+ .filter(|(&name, _)| features.incomplete(name))
+ .for_each(|(&name, &span)| {
+ cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
+ let mut builder = lint.build(fluent::lint::builtin_incomplete_features);
+ builder.set_arg("name", name);
+ if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
+ builder.set_arg("n", n);
+ builder.note(fluent::lint::note);
+ }
+ if HAS_MIN_FEATURES.contains(&name) {
+ builder.help(fluent::lint::help);
+ }
+ builder.emit();
+ })
+ });
+ }
+}
+
+const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
+
+declare_lint! {
+ /// The `invalid_value` lint detects creating a value that is not valid,
+ /// such as a null reference.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,no_run
+ /// # #![allow(unused)]
+ /// unsafe {
+ /// let x: &'static i32 = std::mem::zeroed();
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// In some situations the compiler can detect that the code is creating
+ /// an invalid value, which should be avoided.
+ ///
+ /// In particular, this lint will check for improper use of
+ /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
+ /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
+ /// lint should provide extra information to indicate what the problem is
+ /// and a possible solution.
+ ///
+ /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
+ /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
+ /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
+ /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ pub INVALID_VALUE,
+ Warn,
+ "an invalid value is being created (such as a null reference)"
+}
+
+declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
+
+impl<'tcx> LateLintPass<'tcx> for InvalidValue {
+ fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
+ #[derive(Debug, Copy, Clone, PartialEq)]
+ enum InitKind {
+ Zeroed,
+ Uninit,
+ }
+
+ /// Information about why a type cannot be initialized this way.
+ /// Contains an error message and optionally a span to point at.
+ type InitError = (String, Option<Span>);
+
+ /// Test if this constant is all-0.
+ fn is_zero(expr: &hir::Expr<'_>) -> bool {
+ use hir::ExprKind::*;
+ use rustc_ast::LitKind::*;
+ match &expr.kind {
+ Lit(lit) => {
+ if let Int(i, _) = lit.node {
+ i == 0
+ } else {
+ false
+ }
+ }
+ Tup(tup) => tup.iter().all(is_zero),
+ _ => false,
+ }
+ }
+
+ /// Determine if this expression is a "dangerous initialization".
+ fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
+ if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
+ // Find calls to `mem::{uninitialized,zeroed}` methods.
+ if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
+ let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
+ match cx.tcx.get_diagnostic_name(def_id) {
+ Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
+ Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
+ Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
+ _ => {}
+ }
+ }
+ } else if let hir::ExprKind::MethodCall(_, ref args, _) = expr.kind {
+ // Find problematic calls to `MaybeUninit::assume_init`.
+ let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
+ if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
+ // This is a call to *some* method named `assume_init`.
+ // See if the `self` parameter is one of the dangerous constructors.
+ if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
+ if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
+ let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
+ match cx.tcx.get_diagnostic_name(def_id) {
+ Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
+ Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
+ _ => {}
+ }
+ }
+ }
+ }
+ }
+
+ None
+ }
+
+ /// Test if this enum has several actually "existing" variants.
+ /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
+ fn is_multi_variant<'tcx>(adt: ty::AdtDef<'tcx>) -> bool {
+ // As an approximation, we only count dataless variants. Those are definitely inhabited.
+ let existing_variants = adt.variants().iter().filter(|v| v.fields.is_empty()).count();
+ existing_variants > 1
+ }
+
+ /// Return `Some` only if we are sure this type does *not*
+ /// allow zero initialization.
+ fn ty_find_init_error<'tcx>(
+ cx: &LateContext<'tcx>,
+ ty: Ty<'tcx>,
+ init: InitKind,
+ ) -> Option<InitError> {
+ use rustc_type_ir::sty::TyKind::*;
+ match ty.kind() {
+ // Primitive types that don't like 0 as a value.
+ Ref(..) => Some(("references must be non-null".to_string(), None)),
+ Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
+ FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
+ Never => Some(("the `!` type has no valid value".to_string(), None)),
+ RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
+ // raw ptr to dyn Trait
+ {
+ Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
+ }
+ // Primitive types with other constraints.
+ Bool if init == InitKind::Uninit => {
+ Some(("booleans must be either `true` or `false`".to_string(), None))
+ }
+ Char if init == InitKind::Uninit => {
+ Some(("characters must be a valid Unicode codepoint".to_string(), None))
+ }
+ // Recurse and checks for some compound types.
+ Adt(adt_def, substs) if !adt_def.is_union() => {
+ // First check if this ADT has a layout attribute (like `NonNull` and friends).
+ use std::ops::Bound;
+ match cx.tcx.layout_scalar_valid_range(adt_def.did()) {
+ // We exploit here that `layout_scalar_valid_range` will never
+ // return `Bound::Excluded`. (And we have tests checking that we
+ // handle the attribute correctly.)
+ (Bound::Included(lo), _) if lo > 0 => {
+ return Some((format!("`{}` must be non-null", ty), None));
+ }
+ (Bound::Included(_), _) | (_, Bound::Included(_))
+ if init == InitKind::Uninit =>
+ {
+ return Some((
+ format!(
+ "`{}` must be initialized inside its custom valid range",
+ ty,
+ ),
+ None,
+ ));
+ }
+ _ => {}
+ }
+ // Now, recurse.
+ match adt_def.variants().len() {
+ 0 => Some(("enums with no variants have no valid value".to_string(), None)),
+ 1 => {
+ // Struct, or enum with exactly one variant.
+ // Proceed recursively, check all fields.
+ let variant = &adt_def.variant(VariantIdx::from_u32(0));
+ variant.fields.iter().find_map(|field| {
+ ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(
+ |(mut msg, span)| {
+ if span.is_none() {
+ // Point to this field, should be helpful for figuring
+ // out where the source of the error is.
+ let span = cx.tcx.def_span(field.did);
+ write!(
+ &mut msg,
+ " (in this {} field)",
+ adt_def.descr()
+ )
+ .unwrap();
+ (msg, Some(span))
+ } else {
+ // Just forward.
+ (msg, span)
+ }
+ },
+ )
+ })
+ }
+ // Multi-variant enum.
+ _ => {
+ if init == InitKind::Uninit && is_multi_variant(*adt_def) {
+ let span = cx.tcx.def_span(adt_def.did());
+ Some((
+ "enums have to be initialized to a variant".to_string(),
+ Some(span),
+ ))
+ } else {
+ // In principle, for zero-initialization we could figure out which variant corresponds
+ // to tag 0, and check that... but for now we just accept all zero-initializations.
+ None
+ }
+ }
+ }
+ }
+ Tuple(..) => {
+ // Proceed recursively, check all fields.
+ ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
+ }
+ Array(ty, len) => {
+ if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
+ // Array length known at array non-empty -- recurse.
+ ty_find_init_error(cx, *ty, init)
+ } else {
+ // Empty array or size unknown.
+ None
+ }
+ }
+ // Conservative fallback.
+ _ => None,
+ }
+ }
+
+ if let Some(init) = is_dangerous_init(cx, expr) {
+ // This conjures an instance of a type out of nothing,
+ // using zeroed or uninitialized memory.
+ // We are extremely conservative with what we warn about.
+ let conjured_ty = cx.typeck_results().expr_ty(expr);
+ if let Some((msg, span)) =
+ with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
+ {
+ // FIXME(davidtwco): make translatable
+ cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
+ let mut err = lint.build(&format!(
+ "the type `{}` does not permit {}",
+ conjured_ty,
+ match init {
+ InitKind::Zeroed => "zero-initialization",
+ InitKind::Uninit => "being left uninitialized",
+ },
+ ));
+ err.span_label(expr.span, "this code causes undefined behavior when executed");
+ err.span_label(
+ expr.span,
+ "help: use `MaybeUninit<T>` instead, \
+ and only call `assume_init` after initialization is done",
+ );
+ if let Some(span) = span {
+ err.span_note(span, &msg);
+ } else {
+ err.note(&msg);
+ }
+ err.emit();
+ });
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `clashing_extern_declarations` lint detects when an `extern fn`
+ /// has been declared with the same name but different types.
+ ///
+ /// ### Example
+ ///
+ /// ```rust
+ /// mod m {
+ /// extern "C" {
+ /// fn foo();
+ /// }
+ /// }
+ ///
+ /// extern "C" {
+ /// fn foo(_: u32);
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Because two symbols of the same name cannot be resolved to two
+ /// different functions at link time, and one function cannot possibly
+ /// have two types, a clashing extern declaration is almost certainly a
+ /// mistake. Check to make sure that the `extern` definitions are correct
+ /// and equivalent, and possibly consider unifying them in one location.
+ ///
+ /// This lint does not run between crates because a project may have
+ /// dependencies which both rely on the same extern function, but declare
+ /// it in a different (but valid) way. For example, they may both declare
+ /// an opaque type for one or more of the arguments (which would end up
+ /// distinct types), or use types that are valid conversions in the
+ /// language the `extern fn` is defined in. In these cases, the compiler
+ /// can't say that the clashing declaration is incorrect.
+ pub CLASHING_EXTERN_DECLARATIONS,
+ Warn,
+ "detects when an extern fn has been declared with the same name but different types"
+}
+
+pub struct ClashingExternDeclarations {
+ /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
+ /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
+ /// the symbol should be reported as a clashing declaration.
+ // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
+ // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
+ seen_decls: FxHashMap<Symbol, HirId>,
+}
+
+/// Differentiate between whether the name for an extern decl came from the link_name attribute or
+/// just from declaration itself. This is important because we don't want to report clashes on
+/// symbol name if they don't actually clash because one or the other links against a symbol with a
+/// different name.
+enum SymbolName {
+ /// The name of the symbol + the span of the annotation which introduced the link name.
+ Link(Symbol, Span),
+ /// No link name, so just the name of the symbol.
+ Normal(Symbol),
+}
+
+impl SymbolName {
+ fn get_name(&self) -> Symbol {
+ match self {
+ SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
+ }
+ }
+}
+
+impl ClashingExternDeclarations {
+ pub(crate) fn new() -> Self {
+ ClashingExternDeclarations { seen_decls: FxHashMap::default() }
+ }
+ /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
+ /// for the item, return its HirId without updating the set.
+ fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
+ let did = fi.def_id.to_def_id();
+ let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
+ let name = Symbol::intern(tcx.symbol_name(instance).name);
+ if let Some(&hir_id) = self.seen_decls.get(&name) {
+ // Avoid updating the map with the new entry when we do find a collision. We want to
+ // make sure we're always pointing to the first definition as the previous declaration.
+ // This lets us avoid emitting "knock-on" diagnostics.
+ Some(hir_id)
+ } else {
+ self.seen_decls.insert(name, fi.hir_id())
+ }
+ }
+
+ /// Get the name of the symbol that's linked against for a given extern declaration. That is,
+ /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
+ /// symbol's name.
+ fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
+ if let Some((overridden_link_name, overridden_link_name_span)) =
+ tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
+ // FIXME: Instead of searching through the attributes again to get span
+ // information, we could have codegen_fn_attrs also give span information back for
+ // where the attribute was defined. However, until this is found to be a
+ // bottleneck, this does just fine.
+ (
+ overridden_link_name,
+ tcx.get_attr(fi.def_id.to_def_id(), sym::link_name).unwrap().span,
+ )
+ })
+ {
+ SymbolName::Link(overridden_link_name, overridden_link_name_span)
+ } else {
+ SymbolName::Normal(fi.ident.name)
+ }
+ }
+
+ /// Checks whether two types are structurally the same enough that the declarations shouldn't
+ /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
+ /// with the same members (as the declarations shouldn't clash).
+ fn structurally_same_type<'tcx>(
+ cx: &LateContext<'tcx>,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ ckind: CItemKind,
+ ) -> bool {
+ fn structurally_same_type_impl<'tcx>(
+ seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
+ cx: &LateContext<'tcx>,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ ckind: CItemKind,
+ ) -> bool {
+ debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
+ let tcx = cx.tcx;
+
+ // Given a transparent newtype, reach through and grab the inner
+ // type unless the newtype makes the type non-null.
+ let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
+ let mut ty = ty;
+ loop {
+ if let ty::Adt(def, substs) = *ty.kind() {
+ let is_transparent = def.repr().transparent();
+ let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
+ debug!(
+ "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
+ ty, is_transparent, is_non_null
+ );
+ if is_transparent && !is_non_null {
+ debug_assert!(def.variants().len() == 1);
+ let v = &def.variant(VariantIdx::new(0));
+ ty = transparent_newtype_field(tcx, v)
+ .expect(
+ "single-variant transparent structure with zero-sized field",
+ )
+ .ty(tcx, substs);
+ continue;
+ }
+ }
+ debug!("non_transparent_ty -> {:?}", ty);
+ return ty;
+ }
+ };
+
+ let a = non_transparent_ty(a);
+ let b = non_transparent_ty(b);
+
+ if !seen_types.insert((a, b)) {
+ // We've encountered a cycle. There's no point going any further -- the types are
+ // structurally the same.
+ return true;
+ }
+ let tcx = cx.tcx;
+ if a == b {
+ // All nominally-same types are structurally same, too.
+ true
+ } else {
+ // Do a full, depth-first comparison between the two.
+ use rustc_type_ir::sty::TyKind::*;
+ let a_kind = a.kind();
+ let b_kind = b.kind();
+
+ let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
+ debug!("compare_layouts({:?}, {:?})", a, b);
+ let a_layout = &cx.layout_of(a)?.layout.abi();
+ let b_layout = &cx.layout_of(b)?.layout.abi();
+ debug!(
+ "comparing layouts: {:?} == {:?} = {}",
+ a_layout,
+ b_layout,
+ a_layout == b_layout
+ );
+ Ok(a_layout == b_layout)
+ };
+
+ #[allow(rustc::usage_of_ty_tykind)]
+ let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
+ kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
+ };
+
+ ensure_sufficient_stack(|| {
+ match (a_kind, b_kind) {
+ (Adt(a_def, _), Adt(b_def, _)) => {
+ // We can immediately rule out these types as structurally same if
+ // their layouts differ.
+ match compare_layouts(a, b) {
+ Ok(false) => return false,
+ _ => (), // otherwise, continue onto the full, fields comparison
+ }
+
+ // Grab a flattened representation of all fields.
+ let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
+ let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
+
+ // Perform a structural comparison for each field.
+ a_fields.eq_by(
+ b_fields,
+ |&ty::FieldDef { did: a_did, .. },
+ &ty::FieldDef { did: b_did, .. }| {
+ structurally_same_type_impl(
+ seen_types,
+ cx,
+ tcx.type_of(a_did),
+ tcx.type_of(b_did),
+ ckind,
+ )
+ },
+ )
+ }
+ (Array(a_ty, a_const), Array(b_ty, b_const)) => {
+ // For arrays, we also check the constness of the type.
+ a_const.kind() == b_const.kind()
+ && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
+ }
+ (Slice(a_ty), Slice(b_ty)) => {
+ structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
+ }
+ (RawPtr(a_tymut), RawPtr(b_tymut)) => {
+ a_tymut.mutbl == b_tymut.mutbl
+ && structurally_same_type_impl(
+ seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
+ )
+ }
+ (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
+ // For structural sameness, we don't need the region to be same.
+ a_mut == b_mut
+ && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
+ }
+ (FnDef(..), FnDef(..)) => {
+ let a_poly_sig = a.fn_sig(tcx);
+ let b_poly_sig = b.fn_sig(tcx);
+
+ // We don't compare regions, but leaving bound regions around ICEs, so
+ // we erase them.
+ let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
+ let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
+
+ (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
+ == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
+ && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
+ structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
+ })
+ && structurally_same_type_impl(
+ seen_types,
+ cx,
+ a_sig.output(),
+ b_sig.output(),
+ ckind,
+ )
+ }
+ (Tuple(a_substs), Tuple(b_substs)) => {
+ a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
+ structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
+ })
+ }
+ // For these, it's not quite as easy to define structural-sameness quite so easily.
+ // For the purposes of this lint, take the conservative approach and mark them as
+ // not structurally same.
+ (Dynamic(..), Dynamic(..))
+ | (Error(..), Error(..))
+ | (Closure(..), Closure(..))
+ | (Generator(..), Generator(..))
+ | (GeneratorWitness(..), GeneratorWitness(..))
+ | (Projection(..), Projection(..))
+ | (Opaque(..), Opaque(..)) => false,
+
+ // These definitely should have been caught above.
+ (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
+
+ // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
+ // enum layout optimisation is being applied.
+ (Adt(..), other_kind) | (other_kind, Adt(..))
+ if is_primitive_or_pointer(other_kind) =>
+ {
+ let (primitive, adt) =
+ if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
+ if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
+ ty == primitive
+ } else {
+ compare_layouts(a, b).unwrap_or(false)
+ }
+ }
+ // Otherwise, just compare the layouts. This may fail to lint for some
+ // incompatible types, but at the very least, will stop reads into
+ // uninitialised memory.
+ _ => compare_layouts(a, b).unwrap_or(false),
+ }
+ })
+ }
+ }
+ let mut seen_types = FxHashSet::default();
+ structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
+ }
+}
+
+impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
+
+impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
+ fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
+ trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
+ if let ForeignItemKind::Fn(..) = this_fi.kind {
+ let tcx = cx.tcx;
+ if let Some(existing_hid) = self.insert(tcx, this_fi) {
+ let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
+ let this_decl_ty = tcx.type_of(this_fi.def_id);
+ debug!(
+ "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
+ existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
+ );
+ // Check that the declarations match.
+ if !Self::structurally_same_type(
+ cx,
+ existing_decl_ty,
+ this_decl_ty,
+ CItemKind::Declaration,
+ ) {
+ let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
+ let orig = Self::name_of_extern_decl(tcx, orig_fi);
+
+ // We want to ensure that we use spans for both decls that include where the
+ // name was defined, whether that was from the link_name attribute or not.
+ let get_relevant_span =
+ |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
+ SymbolName::Normal(_) => fi.span,
+ SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
+ };
+ // Finally, emit the diagnostic.
+ tcx.struct_span_lint_hir(
+ CLASHING_EXTERN_DECLARATIONS,
+ this_fi.hir_id(),
+ get_relevant_span(this_fi),
+ |lint| {
+ let mut expected_str = DiagnosticStyledString::new();
+ expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
+ let mut found_str = DiagnosticStyledString::new();
+ found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
+
+ lint.build(if orig.get_name() == this_fi.ident.name {
+ fluent::lint::builtin_clashing_extern_same_name
+ } else {
+ fluent::lint::builtin_clashing_extern_diff_name
+ })
+ .set_arg("this_fi", this_fi.ident.name)
+ .set_arg("orig", orig.get_name())
+ .span_label(
+ get_relevant_span(orig_fi),
+ fluent::lint::previous_decl_label,
+ )
+ .span_label(get_relevant_span(this_fi), fluent::lint::mismatch_label)
+ // FIXME(davidtwco): translatable expected/found
+ .note_expected_found(&"", expected_str, &"", found_str)
+ .emit();
+ },
+ );
+ }
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
+ /// which causes [undefined behavior].
+ ///
+ /// ### Example
+ ///
+ /// ```rust,no_run
+ /// # #![allow(unused)]
+ /// use std::ptr;
+ /// unsafe {
+ /// let x = &*ptr::null::<i32>();
+ /// let x = ptr::addr_of!(*ptr::null::<i32>());
+ /// let x = *(0 as *const i32);
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
+ /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
+ ///
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ pub DEREF_NULLPTR,
+ Warn,
+ "detects when an null pointer is dereferenced"
+}
+
+declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
+
+impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
+ fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
+ /// test if expression is a null ptr
+ fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
+ match &expr.kind {
+ rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
+ if let rustc_hir::TyKind::Ptr(_) = ty.kind {
+ return is_zero(expr) || is_null_ptr(cx, expr);
+ }
+ }
+ // check for call to `core::ptr::null` or `core::ptr::null_mut`
+ rustc_hir::ExprKind::Call(ref path, _) => {
+ if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
+ if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
+ return matches!(
+ cx.tcx.get_diagnostic_name(def_id),
+ Some(sym::ptr_null | sym::ptr_null_mut)
+ );
+ }
+ }
+ }
+ _ => {}
+ }
+ false
+ }
+
+ /// test if expression is the literal `0`
+ fn is_zero(expr: &hir::Expr<'_>) -> bool {
+ match &expr.kind {
+ rustc_hir::ExprKind::Lit(ref lit) => {
+ if let LitKind::Int(a, _) = lit.node {
+ return a == 0;
+ }
+ }
+ _ => {}
+ }
+ false
+ }
+
+ if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
+ if is_null_ptr(cx, expr_deref) {
+ cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
+ let mut err = lint.build(fluent::lint::builtin_deref_nullptr);
+ err.span_label(expr.span, fluent::lint::label);
+ err.emit();
+ });
+ }
+ }
+ }
+}
+
+declare_lint! {
+ /// The `named_asm_labels` lint detects the use of named labels in the
+ /// inline `asm!` macro.
+ ///
+ /// ### Example
+ ///
+ /// ```rust,compile_fail
+ /// use std::arch::asm;
+ ///
+ /// fn main() {
+ /// unsafe {
+ /// asm!("foo: bar");
+ /// }
+ /// }
+ /// ```
+ ///
+ /// {{produces}}
+ ///
+ /// ### Explanation
+ ///
+ /// LLVM is allowed to duplicate inline assembly blocks for any
+ /// reason, for example when it is in a function that gets inlined. Because
+ /// of this, GNU assembler [local labels] *must* be used instead of labels
+ /// with a name. Using named labels might cause assembler or linker errors.
+ ///
+ /// See the explanation in [Rust By Example] for more details.
+ ///
+ /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
+ /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
+ pub NAMED_ASM_LABELS,
+ Deny,
+ "named labels in inline assembly",
+}
+
+declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
+
+impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
+ fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
+ if let hir::Expr {
+ kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
+ ..
+ } = expr
+ {
+ for (template_sym, template_snippet, template_span) in template_strs.iter() {
+ let template_str = template_sym.as_str();
+ let find_label_span = |needle: &str| -> Option<Span> {
+ if let Some(template_snippet) = template_snippet {
+ let snippet = template_snippet.as_str();
+ if let Some(pos) = snippet.find(needle) {
+ let end = pos
+ + snippet[pos..]
+ .find(|c| c == ':')
+ .unwrap_or(snippet[pos..].len() - 1);
+ let inner = InnerSpan::new(pos, end);
+ return Some(template_span.from_inner(inner));
+ }
+ }
+
+ None
+ };
+
+ let mut found_labels = Vec::new();
+
+ // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
+ let statements = template_str.split(|c| matches!(c, '\n' | ';'));
+ for statement in statements {
+ // If there's a comment, trim it from the statement
+ let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
+ let mut start_idx = 0;
+ for (idx, _) in statement.match_indices(':') {
+ let possible_label = statement[start_idx..idx].trim();
+ let mut chars = possible_label.chars();
+ let Some(c) = chars.next() else {
+ // Empty string means a leading ':' in this section, which is not a label
+ break
+ };
+ // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
+ if (c.is_alphabetic() || matches!(c, '.' | '_'))
+ && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
+ {
+ found_labels.push(possible_label);
+ } else {
+ // If we encounter a non-label, there cannot be any further labels, so stop checking
+ break;
+ }
+
+ start_idx = idx + 1;
+ }
+ }
+
+ debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
+
+ if found_labels.len() > 0 {
+ let spans = found_labels
+ .into_iter()
+ .filter_map(|label| find_label_span(label))
+ .collect::<Vec<Span>>();
+ // If there were labels but we couldn't find a span, combine the warnings and use the template span
+ let target_spans: MultiSpan =
+ if spans.len() > 0 { spans.into() } else { (*template_span).into() };
+
+ cx.lookup_with_diagnostics(
+ NAMED_ASM_LABELS,
+ Some(target_spans),
+ |diag| {
+ diag.build(fluent::lint::builtin_asm_labels).emit();
+ },
+ BuiltinLintDiagnostics::NamedAsmLabel(
+ "only local labels of the form `<number>:` should be used in inline asm"
+ .to_string(),
+ ),
+ );
+ }
+ }
+ }
+ }
+}