summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/mir/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/mir/mod.rs')
-rw-r--r--compiler/rustc_middle/src/mir/mod.rs2900
1 files changed, 2900 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/mir/mod.rs b/compiler/rustc_middle/src/mir/mod.rs
new file mode 100644
index 000000000..7ab71f900
--- /dev/null
+++ b/compiler/rustc_middle/src/mir/mod.rs
@@ -0,0 +1,2900 @@
+//! MIR datatypes and passes. See the [rustc dev guide] for more info.
+//!
+//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
+
+use crate::mir::interpret::{
+ AllocRange, ConstAllocation, ConstValue, GlobalAlloc, LitToConstInput, Scalar,
+};
+use crate::mir::visit::MirVisitable;
+use crate::ty::codec::{TyDecoder, TyEncoder};
+use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable};
+use crate::ty::print::{FmtPrinter, Printer};
+use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
+use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
+use crate::ty::{self, List, Ty, TyCtxt};
+use crate::ty::{AdtDef, InstanceDef, ScalarInt, UserTypeAnnotationIndex};
+
+use rustc_data_structures::captures::Captures;
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::def::{CtorKind, Namespace};
+use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
+use rustc_hir::{self, GeneratorKind};
+use rustc_hir::{self as hir, HirId};
+use rustc_session::Session;
+use rustc_target::abi::{Size, VariantIdx};
+
+use polonius_engine::Atom;
+pub use rustc_ast::Mutability;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::graph::dominators::Dominators;
+use rustc_index::bit_set::BitMatrix;
+use rustc_index::vec::{Idx, IndexVec};
+use rustc_serialize::{Decodable, Encodable};
+use rustc_span::symbol::Symbol;
+use rustc_span::{Span, DUMMY_SP};
+
+use either::Either;
+
+use std::borrow::Cow;
+use std::convert::TryInto;
+use std::fmt::{self, Debug, Display, Formatter, Write};
+use std::ops::{ControlFlow, Index, IndexMut};
+use std::{iter, mem};
+
+pub use self::query::*;
+pub use basic_blocks::BasicBlocks;
+
+mod basic_blocks;
+pub mod coverage;
+mod generic_graph;
+pub mod generic_graphviz;
+mod graph_cyclic_cache;
+pub mod graphviz;
+pub mod interpret;
+pub mod mono;
+pub mod patch;
+mod predecessors;
+pub mod pretty;
+mod query;
+pub mod spanview;
+mod syntax;
+pub use syntax::*;
+mod switch_sources;
+pub mod tcx;
+pub mod terminator;
+pub use terminator::*;
+
+pub mod traversal;
+mod type_foldable;
+mod type_visitable;
+pub mod visit;
+
+pub use self::generic_graph::graphviz_safe_def_name;
+pub use self::graphviz::write_mir_graphviz;
+pub use self::pretty::{
+ create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty, PassWhere,
+};
+
+/// Types for locals
+pub type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;
+
+pub trait HasLocalDecls<'tcx> {
+ fn local_decls(&self) -> &LocalDecls<'tcx>;
+}
+
+impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
+ #[inline]
+ fn local_decls(&self) -> &LocalDecls<'tcx> {
+ self
+ }
+}
+
+impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
+ #[inline]
+ fn local_decls(&self) -> &LocalDecls<'tcx> {
+ &self.local_decls
+ }
+}
+
+/// A streamlined trait that you can implement to create a pass; the
+/// pass will be named after the type, and it will consist of a main
+/// loop that goes over each available MIR and applies `run_pass`.
+pub trait MirPass<'tcx> {
+ fn name(&self) -> Cow<'_, str> {
+ let name = std::any::type_name::<Self>();
+ if let Some(tail) = name.rfind(':') {
+ Cow::from(&name[tail + 1..])
+ } else {
+ Cow::from(name)
+ }
+ }
+
+ /// Returns `true` if this pass is enabled with the current combination of compiler flags.
+ fn is_enabled(&self, _sess: &Session) -> bool {
+ true
+ }
+
+ fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>);
+
+ /// If this pass causes the MIR to enter a new phase, return that phase.
+ fn phase_change(&self) -> Option<MirPhase> {
+ None
+ }
+
+ fn is_mir_dump_enabled(&self) -> bool {
+ true
+ }
+}
+
+impl MirPhase {
+ /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
+ pub fn phase_index(&self) -> usize {
+ *self as usize
+ }
+}
+
+/// Where a specific `mir::Body` comes from.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
+pub struct MirSource<'tcx> {
+ pub instance: InstanceDef<'tcx>,
+
+ /// If `Some`, this is a promoted rvalue within the parent function.
+ pub promoted: Option<Promoted>,
+}
+
+impl<'tcx> MirSource<'tcx> {
+ pub fn item(def_id: DefId) -> Self {
+ MirSource {
+ instance: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)),
+ promoted: None,
+ }
+ }
+
+ pub fn from_instance(instance: InstanceDef<'tcx>) -> Self {
+ MirSource { instance, promoted: None }
+ }
+
+ pub fn with_opt_param(self) -> ty::WithOptConstParam<DefId> {
+ self.instance.with_opt_param()
+ }
+
+ #[inline]
+ pub fn def_id(&self) -> DefId {
+ self.instance.def_id()
+ }
+}
+
+#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
+pub struct GeneratorInfo<'tcx> {
+ /// The yield type of the function, if it is a generator.
+ pub yield_ty: Option<Ty<'tcx>>,
+
+ /// Generator drop glue.
+ pub generator_drop: Option<Body<'tcx>>,
+
+ /// The layout of a generator. Produced by the state transformation.
+ pub generator_layout: Option<GeneratorLayout<'tcx>>,
+
+ /// If this is a generator then record the type of source expression that caused this generator
+ /// to be created.
+ pub generator_kind: GeneratorKind,
+}
+
+/// The lowered representation of a single function.
+#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
+pub struct Body<'tcx> {
+ /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
+ /// that indexes into this vector.
+ pub basic_blocks: BasicBlocks<'tcx>,
+
+ /// Records how far through the "desugaring and optimization" process this particular
+ /// MIR has traversed. This is particularly useful when inlining, since in that context
+ /// we instantiate the promoted constants and add them to our promoted vector -- but those
+ /// promoted items have already been optimized, whereas ours have not. This field allows
+ /// us to see the difference and forego optimization on the inlined promoted items.
+ pub phase: MirPhase,
+
+ pub source: MirSource<'tcx>,
+
+ /// A list of source scopes; these are referenced by statements
+ /// and used for debuginfo. Indexed by a `SourceScope`.
+ pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
+
+ pub generator: Option<Box<GeneratorInfo<'tcx>>>,
+
+ /// Declarations of locals.
+ ///
+ /// The first local is the return value pointer, followed by `arg_count`
+ /// locals for the function arguments, followed by any user-declared
+ /// variables and temporaries.
+ pub local_decls: LocalDecls<'tcx>,
+
+ /// User type annotations.
+ pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
+
+ /// The number of arguments this function takes.
+ ///
+ /// Starting at local 1, `arg_count` locals will be provided by the caller
+ /// and can be assumed to be initialized.
+ ///
+ /// If this MIR was built for a constant, this will be 0.
+ pub arg_count: usize,
+
+ /// Mark an argument local (which must be a tuple) as getting passed as
+ /// its individual components at the LLVM level.
+ ///
+ /// This is used for the "rust-call" ABI.
+ pub spread_arg: Option<Local>,
+
+ /// Debug information pertaining to user variables, including captures.
+ pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
+
+ /// A span representing this MIR, for error reporting.
+ pub span: Span,
+
+ /// Constants that are required to evaluate successfully for this MIR to be well-formed.
+ /// We hold in this field all the constants we are not able to evaluate yet.
+ pub required_consts: Vec<Constant<'tcx>>,
+
+ /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
+ ///
+ /// Note that this does not actually mean that this body is not computable right now.
+ /// The repeat count in the following example is polymorphic, but can still be evaluated
+ /// without knowing anything about the type parameter `T`.
+ ///
+ /// ```rust
+ /// fn test<T>() {
+ /// let _ = [0; std::mem::size_of::<*mut T>()];
+ /// }
+ /// ```
+ ///
+ /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
+ /// removed the last mention of all generic params. We do not want to rely on optimizations and
+ /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
+ pub is_polymorphic: bool,
+
+ pub tainted_by_errors: Option<ErrorGuaranteed>,
+}
+
+impl<'tcx> Body<'tcx> {
+ pub fn new(
+ source: MirSource<'tcx>,
+ basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+ source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
+ local_decls: LocalDecls<'tcx>,
+ user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
+ arg_count: usize,
+ var_debug_info: Vec<VarDebugInfo<'tcx>>,
+ span: Span,
+ generator_kind: Option<GeneratorKind>,
+ tainted_by_errors: Option<ErrorGuaranteed>,
+ ) -> Self {
+ // We need `arg_count` locals, and one for the return place.
+ assert!(
+ local_decls.len() > arg_count,
+ "expected at least {} locals, got {}",
+ arg_count + 1,
+ local_decls.len()
+ );
+
+ let mut body = Body {
+ phase: MirPhase::Built,
+ source,
+ basic_blocks: BasicBlocks::new(basic_blocks),
+ source_scopes,
+ generator: generator_kind.map(|generator_kind| {
+ Box::new(GeneratorInfo {
+ yield_ty: None,
+ generator_drop: None,
+ generator_layout: None,
+ generator_kind,
+ })
+ }),
+ local_decls,
+ user_type_annotations,
+ arg_count,
+ spread_arg: None,
+ var_debug_info,
+ span,
+ required_consts: Vec::new(),
+ is_polymorphic: false,
+ tainted_by_errors,
+ };
+ body.is_polymorphic = body.has_param_types_or_consts();
+ body
+ }
+
+ /// Returns a partially initialized MIR body containing only a list of basic blocks.
+ ///
+ /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
+ /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
+ /// crate.
+ pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
+ let mut body = Body {
+ phase: MirPhase::Built,
+ source: MirSource::item(CRATE_DEF_ID.to_def_id()),
+ basic_blocks: BasicBlocks::new(basic_blocks),
+ source_scopes: IndexVec::new(),
+ generator: None,
+ local_decls: IndexVec::new(),
+ user_type_annotations: IndexVec::new(),
+ arg_count: 0,
+ spread_arg: None,
+ span: DUMMY_SP,
+ required_consts: Vec::new(),
+ var_debug_info: Vec::new(),
+ is_polymorphic: false,
+ tainted_by_errors: None,
+ };
+ body.is_polymorphic = body.has_param_types_or_consts();
+ body
+ }
+
+ #[inline]
+ pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
+ &self.basic_blocks
+ }
+
+ #[inline]
+ pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
+ self.basic_blocks.as_mut()
+ }
+
+ #[inline]
+ pub fn local_kind(&self, local: Local) -> LocalKind {
+ let index = local.as_usize();
+ if index == 0 {
+ debug_assert!(
+ self.local_decls[local].mutability == Mutability::Mut,
+ "return place should be mutable"
+ );
+
+ LocalKind::ReturnPointer
+ } else if index < self.arg_count + 1 {
+ LocalKind::Arg
+ } else if self.local_decls[local].is_user_variable() {
+ LocalKind::Var
+ } else {
+ LocalKind::Temp
+ }
+ }
+
+ /// Returns an iterator over all user-declared mutable locals.
+ #[inline]
+ pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
+ (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
+ let local = Local::new(index);
+ let decl = &self.local_decls[local];
+ if decl.is_user_variable() && decl.mutability == Mutability::Mut {
+ Some(local)
+ } else {
+ None
+ }
+ })
+ }
+
+ /// Returns an iterator over all user-declared mutable arguments and locals.
+ #[inline]
+ pub fn mut_vars_and_args_iter<'a>(
+ &'a self,
+ ) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
+ (1..self.local_decls.len()).filter_map(move |index| {
+ let local = Local::new(index);
+ let decl = &self.local_decls[local];
+ if (decl.is_user_variable() || index < self.arg_count + 1)
+ && decl.mutability == Mutability::Mut
+ {
+ Some(local)
+ } else {
+ None
+ }
+ })
+ }
+
+ /// Returns an iterator over all function arguments.
+ #[inline]
+ pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
+ (1..self.arg_count + 1).map(Local::new)
+ }
+
+ /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
+ /// locals that are neither arguments nor the return place).
+ #[inline]
+ pub fn vars_and_temps_iter(
+ &self,
+ ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
+ (self.arg_count + 1..self.local_decls.len()).map(Local::new)
+ }
+
+ #[inline]
+ pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
+ self.local_decls.drain(self.arg_count + 1..)
+ }
+
+ /// Returns the source info associated with `location`.
+ pub fn source_info(&self, location: Location) -> &SourceInfo {
+ let block = &self[location.block];
+ let stmts = &block.statements;
+ let idx = location.statement_index;
+ if idx < stmts.len() {
+ &stmts[idx].source_info
+ } else {
+ assert_eq!(idx, stmts.len());
+ &block.terminator().source_info
+ }
+ }
+
+ /// Returns the return type; it always return first element from `local_decls` array.
+ #[inline]
+ pub fn return_ty(&self) -> Ty<'tcx> {
+ self.local_decls[RETURN_PLACE].ty
+ }
+
+ /// Returns the return type; it always return first element from `local_decls` array.
+ #[inline]
+ pub fn bound_return_ty(&self) -> ty::EarlyBinder<Ty<'tcx>> {
+ ty::EarlyBinder(self.local_decls[RETURN_PLACE].ty)
+ }
+
+ /// Gets the location of the terminator for the given block.
+ #[inline]
+ pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
+ Location { block: bb, statement_index: self[bb].statements.len() }
+ }
+
+ pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
+ let Location { block, statement_index } = location;
+ let block_data = &self.basic_blocks[block];
+ block_data
+ .statements
+ .get(statement_index)
+ .map(Either::Left)
+ .unwrap_or_else(|| Either::Right(block_data.terminator()))
+ }
+
+ #[inline]
+ pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
+ self.generator.as_ref().and_then(|generator| generator.yield_ty)
+ }
+
+ #[inline]
+ pub fn generator_layout(&self) -> Option<&GeneratorLayout<'tcx>> {
+ self.generator.as_ref().and_then(|generator| generator.generator_layout.as_ref())
+ }
+
+ #[inline]
+ pub fn generator_drop(&self) -> Option<&Body<'tcx>> {
+ self.generator.as_ref().and_then(|generator| generator.generator_drop.as_ref())
+ }
+
+ #[inline]
+ pub fn generator_kind(&self) -> Option<GeneratorKind> {
+ self.generator.as_ref().map(|generator| generator.generator_kind)
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)]
+pub enum Safety {
+ Safe,
+ /// Unsafe because of compiler-generated unsafe code, like `await` desugaring
+ BuiltinUnsafe,
+ /// Unsafe because of an unsafe fn
+ FnUnsafe,
+ /// Unsafe because of an `unsafe` block
+ ExplicitUnsafe(hir::HirId),
+}
+
+impl<'tcx> Index<BasicBlock> for Body<'tcx> {
+ type Output = BasicBlockData<'tcx>;
+
+ #[inline]
+ fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
+ &self.basic_blocks()[index]
+ }
+}
+
+impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
+ #[inline]
+ fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
+ &mut self.basic_blocks.as_mut()[index]
+ }
+}
+
+#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
+pub enum ClearCrossCrate<T> {
+ Clear,
+ Set(T),
+}
+
+impl<T> ClearCrossCrate<T> {
+ pub fn as_ref(&self) -> ClearCrossCrate<&T> {
+ match self {
+ ClearCrossCrate::Clear => ClearCrossCrate::Clear,
+ ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
+ }
+ }
+
+ pub fn assert_crate_local(self) -> T {
+ match self {
+ ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
+ ClearCrossCrate::Set(v) => v,
+ }
+ }
+}
+
+const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
+const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
+
+impl<E: TyEncoder, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
+ #[inline]
+ fn encode(&self, e: &mut E) {
+ if E::CLEAR_CROSS_CRATE {
+ return;
+ }
+
+ match *self {
+ ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
+ ClearCrossCrate::Set(ref val) => {
+ TAG_CLEAR_CROSS_CRATE_SET.encode(e);
+ val.encode(e);
+ }
+ }
+ }
+}
+impl<D: TyDecoder, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
+ #[inline]
+ fn decode(d: &mut D) -> ClearCrossCrate<T> {
+ if D::CLEAR_CROSS_CRATE {
+ return ClearCrossCrate::Clear;
+ }
+
+ let discr = u8::decode(d);
+
+ match discr {
+ TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
+ TAG_CLEAR_CROSS_CRATE_SET => {
+ let val = T::decode(d);
+ ClearCrossCrate::Set(val)
+ }
+ tag => panic!("Invalid tag for ClearCrossCrate: {:?}", tag),
+ }
+ }
+}
+
+/// Grouped information about the source code origin of a MIR entity.
+/// Intended to be inspected by diagnostics and debuginfo.
+/// Most passes can work with it as a whole, within a single function.
+// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
+// `Hash`. Please ping @bjorn3 if removing them.
+#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
+pub struct SourceInfo {
+ /// The source span for the AST pertaining to this MIR entity.
+ pub span: Span,
+
+ /// The source scope, keeping track of which bindings can be
+ /// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
+ pub scope: SourceScope,
+}
+
+impl SourceInfo {
+ #[inline]
+ pub fn outermost(span: Span) -> Self {
+ SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Variables and temps
+
+rustc_index::newtype_index! {
+ pub struct Local {
+ derive [HashStable]
+ DEBUG_FORMAT = "_{}",
+ const RETURN_PLACE = 0,
+ }
+}
+
+impl Atom for Local {
+ fn index(self) -> usize {
+ Idx::index(self)
+ }
+}
+
+/// Classifies locals into categories. See `Body::local_kind`.
+#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
+pub enum LocalKind {
+ /// User-declared variable binding.
+ Var,
+ /// Compiler-introduced temporary.
+ Temp,
+ /// Function argument.
+ Arg,
+ /// Location of function's return value.
+ ReturnPointer,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct VarBindingForm<'tcx> {
+ /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
+ pub binding_mode: ty::BindingMode,
+ /// If an explicit type was provided for this variable binding,
+ /// this holds the source Span of that type.
+ ///
+ /// NOTE: if you want to change this to a `HirId`, be wary that
+ /// doing so breaks incremental compilation (as of this writing),
+ /// while a `Span` does not cause our tests to fail.
+ pub opt_ty_info: Option<Span>,
+ /// Place of the RHS of the =, or the subject of the `match` where this
+ /// variable is initialized. None in the case of `let PATTERN;`.
+ /// Some((None, ..)) in the case of and `let [mut] x = ...` because
+ /// (a) the right-hand side isn't evaluated as a place expression.
+ /// (b) it gives a way to separate this case from the remaining cases
+ /// for diagnostics.
+ pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
+ /// The span of the pattern in which this variable was bound.
+ pub pat_span: Span,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable)]
+pub enum BindingForm<'tcx> {
+ /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
+ Var(VarBindingForm<'tcx>),
+ /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
+ ImplicitSelf(ImplicitSelfKind),
+ /// Reference used in a guard expression to ensure immutability.
+ RefForGuard,
+}
+
+/// Represents what type of implicit self a function has, if any.
+#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
+pub enum ImplicitSelfKind {
+ /// Represents a `fn x(self);`.
+ Imm,
+ /// Represents a `fn x(mut self);`.
+ Mut,
+ /// Represents a `fn x(&self);`.
+ ImmRef,
+ /// Represents a `fn x(&mut self);`.
+ MutRef,
+ /// Represents when a function does not have a self argument or
+ /// when a function has a `self: X` argument.
+ None,
+}
+
+TrivialTypeTraversalAndLiftImpls! { BindingForm<'tcx>, }
+
+mod binding_form_impl {
+ use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
+ use rustc_query_system::ich::StableHashingContext;
+
+ impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
+ fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
+ use super::BindingForm::*;
+ std::mem::discriminant(self).hash_stable(hcx, hasher);
+
+ match self {
+ Var(binding) => binding.hash_stable(hcx, hasher),
+ ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
+ RefForGuard => (),
+ }
+ }
+ }
+}
+
+/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
+/// created during evaluation of expressions in a block tail
+/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
+///
+/// It is used to improve diagnostics when such temporaries are
+/// involved in borrow_check errors, e.g., explanations of where the
+/// temporaries come from, when their destructors are run, and/or how
+/// one might revise the code to satisfy the borrow checker's rules.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct BlockTailInfo {
+ /// If `true`, then the value resulting from evaluating this tail
+ /// expression is ignored by the block's expression context.
+ ///
+ /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
+ /// but not e.g., `let _x = { ...; tail };`
+ pub tail_result_is_ignored: bool,
+
+ /// `Span` of the tail expression.
+ pub span: Span,
+}
+
+/// A MIR local.
+///
+/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
+/// argument, or the return place.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct LocalDecl<'tcx> {
+ /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
+ ///
+ /// Temporaries and the return place are always mutable.
+ pub mutability: Mutability,
+
+ // FIXME(matthewjasper) Don't store in this in `Body`
+ pub local_info: Option<Box<LocalInfo<'tcx>>>,
+
+ /// `true` if this is an internal local.
+ ///
+ /// These locals are not based on types in the source code and are only used
+ /// for a few desugarings at the moment.
+ ///
+ /// The generator transformation will sanity check the locals which are live
+ /// across a suspension point against the type components of the generator
+ /// which type checking knows are live across a suspension point. We need to
+ /// flag drop flags to avoid triggering this check as they are introduced
+ /// outside of type inference.
+ ///
+ /// This should be sound because the drop flags are fully algebraic, and
+ /// therefore don't affect the auto-trait or outlives properties of the
+ /// generator.
+ pub internal: bool,
+
+ /// If this local is a temporary and `is_block_tail` is `Some`,
+ /// then it is a temporary created for evaluation of some
+ /// subexpression of some block's tail expression (with no
+ /// intervening statement context).
+ // FIXME(matthewjasper) Don't store in this in `Body`
+ pub is_block_tail: Option<BlockTailInfo>,
+
+ /// The type of this local.
+ pub ty: Ty<'tcx>,
+
+ /// If the user manually ascribed a type to this variable,
+ /// e.g., via `let x: T`, then we carry that type here. The MIR
+ /// borrow checker needs this information since it can affect
+ /// region inference.
+ // FIXME(matthewjasper) Don't store in this in `Body`
+ pub user_ty: Option<Box<UserTypeProjections>>,
+
+ /// The *syntactic* (i.e., not visibility) source scope the local is defined
+ /// in. If the local was defined in a let-statement, this
+ /// is *within* the let-statement, rather than outside
+ /// of it.
+ ///
+ /// This is needed because the visibility source scope of locals within
+ /// a let-statement is weird.
+ ///
+ /// The reason is that we want the local to be *within* the let-statement
+ /// for lint purposes, but we want the local to be *after* the let-statement
+ /// for names-in-scope purposes.
+ ///
+ /// That's it, if we have a let-statement like the one in this
+ /// function:
+ ///
+ /// ```
+ /// fn foo(x: &str) {
+ /// #[allow(unused_mut)]
+ /// let mut x: u32 = { // <- one unused mut
+ /// let mut y: u32 = x.parse().unwrap();
+ /// y + 2
+ /// };
+ /// drop(x);
+ /// }
+ /// ```
+ ///
+ /// Then, from a lint point of view, the declaration of `x: u32`
+ /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
+ /// lint scopes are the same as the AST/HIR nesting.
+ ///
+ /// However, from a name lookup point of view, the scopes look more like
+ /// as if the let-statements were `match` expressions:
+ ///
+ /// ```
+ /// fn foo(x: &str) {
+ /// match {
+ /// match x.parse::<u32>().unwrap() {
+ /// y => y + 2
+ /// }
+ /// } {
+ /// x => drop(x)
+ /// };
+ /// }
+ /// ```
+ ///
+ /// We care about the name-lookup scopes for debuginfo - if the
+ /// debuginfo instruction pointer is at the call to `x.parse()`, we
+ /// want `x` to refer to `x: &str`, but if it is at the call to
+ /// `drop(x)`, we want it to refer to `x: u32`.
+ ///
+ /// To allow both uses to work, we need to have more than a single scope
+ /// for a local. We have the `source_info.scope` represent the "syntactic"
+ /// lint scope (with a variable being under its let block) while the
+ /// `var_debug_info.source_info.scope` represents the "local variable"
+ /// scope (where the "rest" of a block is under all prior let-statements).
+ ///
+ /// The end result looks like this:
+ ///
+ /// ```text
+ /// ROOT SCOPE
+ /// │{ argument x: &str }
+ /// │
+ /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
+ /// │ │ // in practice because I'm lazy.
+ /// │ │
+ /// │ │← x.source_info.scope
+ /// │ │← `x.parse().unwrap()`
+ /// │ │
+ /// │ │ │← y.source_info.scope
+ /// │ │
+ /// │ │ │{ let y: u32 }
+ /// │ │ │
+ /// │ │ │← y.var_debug_info.source_info.scope
+ /// │ │ │← `y + 2`
+ /// │
+ /// │ │{ let x: u32 }
+ /// │ │← x.var_debug_info.source_info.scope
+ /// │ │← `drop(x)` // This accesses `x: u32`.
+ /// ```
+ pub source_info: SourceInfo,
+}
+
+// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+static_assert_size!(LocalDecl<'_>, 56);
+
+/// Extra information about a some locals that's used for diagnostics and for
+/// classifying variables into local variables, statics, etc, which is needed e.g.
+/// for unsafety checking.
+///
+/// Not used for non-StaticRef temporaries, the return place, or anonymous
+/// function parameters.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub enum LocalInfo<'tcx> {
+ /// A user-defined local variable or function parameter
+ ///
+ /// The `BindingForm` is solely used for local diagnostics when generating
+ /// warnings/errors when compiling the current crate, and therefore it need
+ /// not be visible across crates.
+ User(ClearCrossCrate<BindingForm<'tcx>>),
+ /// A temporary created that references the static with the given `DefId`.
+ StaticRef { def_id: DefId, is_thread_local: bool },
+ /// A temporary created that references the const with the given `DefId`
+ ConstRef { def_id: DefId },
+ /// A temporary created during the creation of an aggregate
+ /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
+ AggregateTemp,
+ /// A temporary created during the pass `Derefer` to avoid it's retagging
+ DerefTemp,
+}
+
+impl<'tcx> LocalDecl<'tcx> {
+ /// Returns `true` only if local is a binding that can itself be
+ /// made mutable via the addition of the `mut` keyword, namely
+ /// something like the occurrences of `x` in:
+ /// - `fn foo(x: Type) { ... }`,
+ /// - `let x = ...`,
+ /// - or `match ... { C(x) => ... }`
+ pub fn can_be_made_mutable(&self) -> bool {
+ matches!(
+ self.local_info,
+ Some(box LocalInfo::User(ClearCrossCrate::Set(
+ BindingForm::Var(VarBindingForm {
+ binding_mode: ty::BindingMode::BindByValue(_),
+ opt_ty_info: _,
+ opt_match_place: _,
+ pat_span: _,
+ }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
+ )))
+ )
+ }
+
+ /// Returns `true` if local is definitely not a `ref ident` or
+ /// `ref mut ident` binding. (Such bindings cannot be made into
+ /// mutable bindings, but the inverse does not necessarily hold).
+ pub fn is_nonref_binding(&self) -> bool {
+ matches!(
+ self.local_info,
+ Some(box LocalInfo::User(ClearCrossCrate::Set(
+ BindingForm::Var(VarBindingForm {
+ binding_mode: ty::BindingMode::BindByValue(_),
+ opt_ty_info: _,
+ opt_match_place: _,
+ pat_span: _,
+ }) | BindingForm::ImplicitSelf(_),
+ )))
+ )
+ }
+
+ /// Returns `true` if this variable is a named variable or function
+ /// parameter declared by the user.
+ #[inline]
+ pub fn is_user_variable(&self) -> bool {
+ matches!(self.local_info, Some(box LocalInfo::User(_)))
+ }
+
+ /// Returns `true` if this is a reference to a variable bound in a `match`
+ /// expression that is used to access said variable for the guard of the
+ /// match arm.
+ pub fn is_ref_for_guard(&self) -> bool {
+ matches!(
+ self.local_info,
+ Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard)))
+ )
+ }
+
+ /// Returns `Some` if this is a reference to a static item that is used to
+ /// access that static.
+ pub fn is_ref_to_static(&self) -> bool {
+ matches!(self.local_info, Some(box LocalInfo::StaticRef { .. }))
+ }
+
+ /// Returns `Some` if this is a reference to a thread-local static item that is used to
+ /// access that static.
+ pub fn is_ref_to_thread_local(&self) -> bool {
+ match self.local_info {
+ Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local,
+ _ => false,
+ }
+ }
+
+ /// Returns `true` if this is a DerefTemp
+ pub fn is_deref_temp(&self) -> bool {
+ match self.local_info {
+ Some(box LocalInfo::DerefTemp) => return true,
+ _ => (),
+ }
+ return false;
+ }
+
+ /// Returns `true` is the local is from a compiler desugaring, e.g.,
+ /// `__next` from a `for` loop.
+ #[inline]
+ pub fn from_compiler_desugaring(&self) -> bool {
+ self.source_info.span.desugaring_kind().is_some()
+ }
+
+ /// Creates a new `LocalDecl` for a temporary: mutable, non-internal.
+ #[inline]
+ pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
+ Self::with_source_info(ty, SourceInfo::outermost(span))
+ }
+
+ /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
+ #[inline]
+ pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
+ LocalDecl {
+ mutability: Mutability::Mut,
+ local_info: None,
+ internal: false,
+ is_block_tail: None,
+ ty,
+ user_ty: None,
+ source_info,
+ }
+ }
+
+ /// Converts `self` into same `LocalDecl` except tagged as internal.
+ #[inline]
+ pub fn internal(mut self) -> Self {
+ self.internal = true;
+ self
+ }
+
+ /// Converts `self` into same `LocalDecl` except tagged as immutable.
+ #[inline]
+ pub fn immutable(mut self) -> Self {
+ self.mutability = Mutability::Not;
+ self
+ }
+
+ /// Converts `self` into same `LocalDecl` except tagged as internal temporary.
+ #[inline]
+ pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
+ assert!(self.is_block_tail.is_none());
+ self.is_block_tail = Some(info);
+ self
+ }
+}
+
+#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub enum VarDebugInfoContents<'tcx> {
+ /// NOTE(eddyb) There's an unenforced invariant that this `Place` is
+ /// based on a `Local`, not a `Static`, and contains no indexing.
+ Place(Place<'tcx>),
+ Const(Constant<'tcx>),
+}
+
+impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ match self {
+ VarDebugInfoContents::Const(c) => write!(fmt, "{}", c),
+ VarDebugInfoContents::Place(p) => write!(fmt, "{:?}", p),
+ }
+ }
+}
+
+/// Debug information pertaining to a user variable.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct VarDebugInfo<'tcx> {
+ pub name: Symbol,
+
+ /// Source info of the user variable, including the scope
+ /// within which the variable is visible (to debuginfo)
+ /// (see `LocalDecl`'s `source_info` field for more details).
+ pub source_info: SourceInfo,
+
+ /// Where the data for this user variable is to be found.
+ pub value: VarDebugInfoContents<'tcx>,
+}
+
+///////////////////////////////////////////////////////////////////////////
+// BasicBlock
+
+rustc_index::newtype_index! {
+ /// A node in the MIR [control-flow graph][CFG].
+ ///
+ /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
+ /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
+ /// as an edge in a graph between basic blocks.
+ ///
+ /// Basic blocks consist of a series of [statements][Statement], ending with a
+ /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
+ /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
+ /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
+ /// needed because some analyses require that there are no critical edges in the CFG.
+ ///
+ /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
+ /// the actual data that a basic block holds is in [`BasicBlockData`].
+ ///
+ /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
+ ///
+ /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
+ /// [data-flow analyses]:
+ /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
+ /// [`CriticalCallEdges`]: ../../rustc_const_eval/transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
+ /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
+ pub struct BasicBlock {
+ derive [HashStable]
+ DEBUG_FORMAT = "bb{}",
+ const START_BLOCK = 0,
+ }
+}
+
+impl BasicBlock {
+ pub fn start_location(self) -> Location {
+ Location { block: self, statement_index: 0 }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// BasicBlockData
+
+/// Data for a basic block, including a list of its statements.
+///
+/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct BasicBlockData<'tcx> {
+ /// List of statements in this block.
+ pub statements: Vec<Statement<'tcx>>,
+
+ /// Terminator for this block.
+ ///
+ /// N.B., this should generally ONLY be `None` during construction.
+ /// Therefore, you should generally access it via the
+ /// `terminator()` or `terminator_mut()` methods. The only
+ /// exception is that certain passes, such as `simplify_cfg`, swap
+ /// out the terminator temporarily with `None` while they continue
+ /// to recurse over the set of basic blocks.
+ pub terminator: Option<Terminator<'tcx>>,
+
+ /// If true, this block lies on an unwind path. This is used
+ /// during codegen where distinct kinds of basic blocks may be
+ /// generated (particularly for MSVC cleanup). Unwind blocks must
+ /// only branch to other unwind blocks.
+ pub is_cleanup: bool,
+}
+
+impl<'tcx> BasicBlockData<'tcx> {
+ pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
+ BasicBlockData { statements: vec![], terminator, is_cleanup: false }
+ }
+
+ /// Accessor for terminator.
+ ///
+ /// Terminator may not be None after construction of the basic block is complete. This accessor
+ /// provides a convenient way to reach the terminator.
+ #[inline]
+ pub fn terminator(&self) -> &Terminator<'tcx> {
+ self.terminator.as_ref().expect("invalid terminator state")
+ }
+
+ #[inline]
+ pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
+ self.terminator.as_mut().expect("invalid terminator state")
+ }
+
+ pub fn retain_statements<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&mut Statement<'_>) -> bool,
+ {
+ for s in &mut self.statements {
+ if !f(s) {
+ s.make_nop();
+ }
+ }
+ }
+
+ pub fn expand_statements<F, I>(&mut self, mut f: F)
+ where
+ F: FnMut(&mut Statement<'tcx>) -> Option<I>,
+ I: iter::TrustedLen<Item = Statement<'tcx>>,
+ {
+ // Gather all the iterators we'll need to splice in, and their positions.
+ let mut splices: Vec<(usize, I)> = vec![];
+ let mut extra_stmts = 0;
+ for (i, s) in self.statements.iter_mut().enumerate() {
+ if let Some(mut new_stmts) = f(s) {
+ if let Some(first) = new_stmts.next() {
+ // We can already store the first new statement.
+ *s = first;
+
+ // Save the other statements for optimized splicing.
+ let remaining = new_stmts.size_hint().0;
+ if remaining > 0 {
+ splices.push((i + 1 + extra_stmts, new_stmts));
+ extra_stmts += remaining;
+ }
+ } else {
+ s.make_nop();
+ }
+ }
+ }
+
+ // Splice in the new statements, from the end of the block.
+ // FIXME(eddyb) This could be more efficient with a "gap buffer"
+ // where a range of elements ("gap") is left uninitialized, with
+ // splicing adding new elements to the end of that gap and moving
+ // existing elements from before the gap to the end of the gap.
+ // For now, this is safe code, emulating a gap but initializing it.
+ let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
+ self.statements.resize(
+ gap.end,
+ Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
+ );
+ for (splice_start, new_stmts) in splices.into_iter().rev() {
+ let splice_end = splice_start + new_stmts.size_hint().0;
+ while gap.end > splice_end {
+ gap.start -= 1;
+ gap.end -= 1;
+ self.statements.swap(gap.start, gap.end);
+ }
+ self.statements.splice(splice_start..splice_end, new_stmts);
+ gap.end = splice_start;
+ }
+ }
+
+ pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
+ if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
+ }
+}
+
+impl<O> AssertKind<O> {
+ /// Getting a description does not require `O` to be printable, and does not
+ /// require allocation.
+ /// The caller is expected to handle `BoundsCheck` separately.
+ pub fn description(&self) -> &'static str {
+ use AssertKind::*;
+ match self {
+ Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
+ Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
+ Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
+ Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
+ Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
+ OverflowNeg(_) => "attempt to negate with overflow",
+ Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
+ Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
+ Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
+ DivisionByZero(_) => "attempt to divide by zero",
+ RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
+ ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
+ ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
+ ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
+ ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
+ BoundsCheck { .. } => bug!("Unexpected AssertKind"),
+ }
+ }
+
+ /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
+ pub fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
+ where
+ O: Debug,
+ {
+ use AssertKind::*;
+ match self {
+ BoundsCheck { ref len, ref index } => write!(
+ f,
+ "\"index out of bounds: the length is {{}} but the index is {{}}\", {:?}, {:?}",
+ len, index
+ ),
+
+ OverflowNeg(op) => {
+ write!(f, "\"attempt to negate `{{}}`, which would overflow\", {:?}", op)
+ }
+ DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {:?}", op),
+ RemainderByZero(op) => write!(
+ f,
+ "\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {:?}",
+ op
+ ),
+ Overflow(BinOp::Add, l, r) => write!(
+ f,
+ "\"attempt to compute `{{}} + {{}}`, which would overflow\", {:?}, {:?}",
+ l, r
+ ),
+ Overflow(BinOp::Sub, l, r) => write!(
+ f,
+ "\"attempt to compute `{{}} - {{}}`, which would overflow\", {:?}, {:?}",
+ l, r
+ ),
+ Overflow(BinOp::Mul, l, r) => write!(
+ f,
+ "\"attempt to compute `{{}} * {{}}`, which would overflow\", {:?}, {:?}",
+ l, r
+ ),
+ Overflow(BinOp::Div, l, r) => write!(
+ f,
+ "\"attempt to compute `{{}} / {{}}`, which would overflow\", {:?}, {:?}",
+ l, r
+ ),
+ Overflow(BinOp::Rem, l, r) => write!(
+ f,
+ "\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {:?}, {:?}",
+ l, r
+ ),
+ Overflow(BinOp::Shr, _, r) => {
+ write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {:?}", r)
+ }
+ Overflow(BinOp::Shl, _, r) => {
+ write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {:?}", r)
+ }
+ _ => write!(f, "\"{}\"", self.description()),
+ }
+ }
+}
+
+impl<O: fmt::Debug> fmt::Debug for AssertKind<O> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ use AssertKind::*;
+ match self {
+ BoundsCheck { ref len, ref index } => write!(
+ f,
+ "index out of bounds: the length is {:?} but the index is {:?}",
+ len, index
+ ),
+ OverflowNeg(op) => write!(f, "attempt to negate `{:#?}`, which would overflow", op),
+ DivisionByZero(op) => write!(f, "attempt to divide `{:#?}` by zero", op),
+ RemainderByZero(op) => write!(
+ f,
+ "attempt to calculate the remainder of `{:#?}` with a divisor of zero",
+ op
+ ),
+ Overflow(BinOp::Add, l, r) => {
+ write!(f, "attempt to compute `{:#?} + {:#?}`, which would overflow", l, r)
+ }
+ Overflow(BinOp::Sub, l, r) => {
+ write!(f, "attempt to compute `{:#?} - {:#?}`, which would overflow", l, r)
+ }
+ Overflow(BinOp::Mul, l, r) => {
+ write!(f, "attempt to compute `{:#?} * {:#?}`, which would overflow", l, r)
+ }
+ Overflow(BinOp::Div, l, r) => {
+ write!(f, "attempt to compute `{:#?} / {:#?}`, which would overflow", l, r)
+ }
+ Overflow(BinOp::Rem, l, r) => write!(
+ f,
+ "attempt to compute the remainder of `{:#?} % {:#?}`, which would overflow",
+ l, r
+ ),
+ Overflow(BinOp::Shr, _, r) => {
+ write!(f, "attempt to shift right by `{:#?}`, which would overflow", r)
+ }
+ Overflow(BinOp::Shl, _, r) => {
+ write!(f, "attempt to shift left by `{:#?}`, which would overflow", r)
+ }
+ _ => write!(f, "{}", self.description()),
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Statements
+
+/// A statement in a basic block, including information about its source code.
+#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct Statement<'tcx> {
+ pub source_info: SourceInfo,
+ pub kind: StatementKind<'tcx>,
+}
+
+// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+static_assert_size!(Statement<'_>, 32);
+
+impl Statement<'_> {
+ /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
+ /// invalidating statement indices in `Location`s.
+ pub fn make_nop(&mut self) {
+ self.kind = StatementKind::Nop
+ }
+
+ /// Changes a statement to a nop and returns the original statement.
+ #[must_use = "If you don't need the statement, use `make_nop` instead"]
+ pub fn replace_nop(&mut self) -> Self {
+ Statement {
+ source_info: self.source_info,
+ kind: mem::replace(&mut self.kind, StatementKind::Nop),
+ }
+ }
+}
+
+impl Debug for Statement<'_> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ use self::StatementKind::*;
+ match self.kind {
+ Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv),
+ FakeRead(box (ref cause, ref place)) => {
+ write!(fmt, "FakeRead({:?}, {:?})", cause, place)
+ }
+ Retag(ref kind, ref place) => write!(
+ fmt,
+ "Retag({}{:?})",
+ match kind {
+ RetagKind::FnEntry => "[fn entry] ",
+ RetagKind::TwoPhase => "[2phase] ",
+ RetagKind::Raw => "[raw] ",
+ RetagKind::Default => "",
+ },
+ place,
+ ),
+ StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
+ StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
+ SetDiscriminant { ref place, variant_index } => {
+ write!(fmt, "discriminant({:?}) = {:?}", place, variant_index)
+ }
+ Deinit(ref place) => write!(fmt, "Deinit({:?})", place),
+ AscribeUserType(box (ref place, ref c_ty), ref variance) => {
+ write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
+ }
+ Coverage(box self::Coverage { ref kind, code_region: Some(ref rgn) }) => {
+ write!(fmt, "Coverage::{:?} for {:?}", kind, rgn)
+ }
+ Coverage(box ref coverage) => write!(fmt, "Coverage::{:?}", coverage.kind),
+ CopyNonOverlapping(box crate::mir::CopyNonOverlapping {
+ ref src,
+ ref dst,
+ ref count,
+ }) => {
+ write!(fmt, "copy_nonoverlapping(src={:?}, dst={:?}, count={:?})", src, dst, count)
+ }
+ Nop => write!(fmt, "nop"),
+ }
+ }
+}
+
+impl<'tcx> StatementKind<'tcx> {
+ pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
+ match self {
+ StatementKind::Assign(x) => Some(x),
+ _ => None,
+ }
+ }
+
+ pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
+ match self {
+ StatementKind::Assign(x) => Some(x),
+ _ => None,
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Places
+
+impl<V, T> ProjectionElem<V, T> {
+ /// Returns `true` if the target of this projection may refer to a different region of memory
+ /// than the base.
+ fn is_indirect(&self) -> bool {
+ match self {
+ Self::Deref => true,
+
+ Self::Field(_, _)
+ | Self::Index(_)
+ | Self::ConstantIndex { .. }
+ | Self::Subslice { .. }
+ | Self::Downcast(_, _) => false,
+ }
+ }
+
+ /// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
+ pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
+ matches!(*self, Self::Downcast(_, x) if x == v)
+ }
+
+ /// Returns `true` if this is a `Field` projection with the given index.
+ pub fn is_field_to(&self, f: Field) -> bool {
+ matches!(*self, Self::Field(x, _) if x == f)
+ }
+}
+
+/// Alias for projections as they appear in `UserTypeProjection`, where we
+/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
+pub type ProjectionKind = ProjectionElem<(), ()>;
+
+rustc_index::newtype_index! {
+ /// A [newtype'd][wrapper] index type in the MIR [control-flow graph][CFG]
+ ///
+ /// A field (e.g., `f` in `_1.f`) is one variant of [`ProjectionElem`]. Conceptually,
+ /// rustc can identify that a field projection refers to either two different regions of memory
+ /// or the same one between the base and the 'projection element'.
+ /// Read more about projections in the [rustc-dev-guide][mir-datatypes]
+ ///
+ /// [wrapper]: https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
+ /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
+ /// [mir-datatypes]: https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types
+ pub struct Field {
+ derive [HashStable]
+ DEBUG_FORMAT = "field[{}]"
+ }
+}
+
+#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
+pub struct PlaceRef<'tcx> {
+ pub local: Local,
+ pub projection: &'tcx [PlaceElem<'tcx>],
+}
+
+// Once we stop implementing `Ord` for `DefId`,
+// this impl will be unnecessary. Until then, we'll
+// leave this impl in place to prevent re-adding a
+// dependnecy on the `Ord` impl for `DefId`
+impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}
+
+impl<'tcx> Place<'tcx> {
+ // FIXME change this to a const fn by also making List::empty a const fn.
+ pub fn return_place() -> Place<'tcx> {
+ Place { local: RETURN_PLACE, projection: List::empty() }
+ }
+
+ /// Returns `true` if this `Place` contains a `Deref` projection.
+ ///
+ /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
+ /// same region of memory as its base.
+ pub fn is_indirect(&self) -> bool {
+ self.projection.iter().any(|elem| elem.is_indirect())
+ }
+
+ /// If MirPhase >= Derefered and if projection contains Deref,
+ /// It's guaranteed to be in the first place
+ pub fn has_deref(&self) -> bool {
+ // To make sure this is not accidently used in wrong mir phase
+ debug_assert!(!self.projection[1..].contains(&PlaceElem::Deref));
+ self.projection.first() == Some(&PlaceElem::Deref)
+ }
+
+ /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
+ /// a single deref of a local.
+ #[inline(always)]
+ pub fn local_or_deref_local(&self) -> Option<Local> {
+ self.as_ref().local_or_deref_local()
+ }
+
+ /// If this place represents a local variable like `_X` with no
+ /// projections, return `Some(_X)`.
+ #[inline(always)]
+ pub fn as_local(&self) -> Option<Local> {
+ self.as_ref().as_local()
+ }
+
+ #[inline]
+ pub fn as_ref(&self) -> PlaceRef<'tcx> {
+ PlaceRef { local: self.local, projection: &self.projection }
+ }
+
+ /// Iterate over the projections in evaluation order, i.e., the first element is the base with
+ /// its projection and then subsequently more projections are added.
+ /// As a concrete example, given the place a.b.c, this would yield:
+ /// - (a, .b)
+ /// - (a.b, .c)
+ ///
+ /// Given a place without projections, the iterator is empty.
+ #[inline]
+ pub fn iter_projections(
+ self,
+ ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
+ self.as_ref().iter_projections()
+ }
+
+ /// Generates a new place by appending `more_projections` to the existing ones
+ /// and interning the result.
+ pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
+ if more_projections.is_empty() {
+ return self;
+ }
+
+ let mut v: Vec<PlaceElem<'tcx>>;
+
+ let new_projections = if self.projection.is_empty() {
+ more_projections
+ } else {
+ v = Vec::with_capacity(self.projection.len() + more_projections.len());
+ v.extend(self.projection);
+ v.extend(more_projections);
+ &v
+ };
+
+ Place { local: self.local, projection: tcx.intern_place_elems(new_projections) }
+ }
+}
+
+impl From<Local> for Place<'_> {
+ fn from(local: Local) -> Self {
+ Place { local, projection: List::empty() }
+ }
+}
+
+impl<'tcx> PlaceRef<'tcx> {
+ /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
+ /// a single deref of a local.
+ pub fn local_or_deref_local(&self) -> Option<Local> {
+ match *self {
+ PlaceRef { local, projection: [] }
+ | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
+ _ => None,
+ }
+ }
+
+ /// If MirPhase >= Derefered and if projection contains Deref,
+ /// It's guaranteed to be in the first place
+ pub fn has_deref(&self) -> bool {
+ self.projection.first() == Some(&PlaceElem::Deref)
+ }
+
+ /// If this place represents a local variable like `_X` with no
+ /// projections, return `Some(_X)`.
+ #[inline]
+ pub fn as_local(&self) -> Option<Local> {
+ match *self {
+ PlaceRef { local, projection: [] } => Some(local),
+ _ => None,
+ }
+ }
+
+ #[inline]
+ pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
+ if let &[ref proj_base @ .., elem] = self.projection {
+ Some((PlaceRef { local: self.local, projection: proj_base }, elem))
+ } else {
+ None
+ }
+ }
+
+ /// Iterate over the projections in evaluation order, i.e., the first element is the base with
+ /// its projection and then subsequently more projections are added.
+ /// As a concrete example, given the place a.b.c, this would yield:
+ /// - (a, .b)
+ /// - (a.b, .c)
+ ///
+ /// Given a place without projections, the iterator is empty.
+ #[inline]
+ pub fn iter_projections(
+ self,
+ ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
+ self.projection.iter().enumerate().map(move |(i, proj)| {
+ let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
+ (base, *proj)
+ })
+ }
+}
+
+impl Debug for Place<'_> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ for elem in self.projection.iter().rev() {
+ match elem {
+ ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => {
+ write!(fmt, "(").unwrap();
+ }
+ ProjectionElem::Deref => {
+ write!(fmt, "(*").unwrap();
+ }
+ ProjectionElem::Index(_)
+ | ProjectionElem::ConstantIndex { .. }
+ | ProjectionElem::Subslice { .. } => {}
+ }
+ }
+
+ write!(fmt, "{:?}", self.local)?;
+
+ for elem in self.projection.iter() {
+ match elem {
+ ProjectionElem::Downcast(Some(name), _index) => {
+ write!(fmt, " as {})", name)?;
+ }
+ ProjectionElem::Downcast(None, index) => {
+ write!(fmt, " as variant#{:?})", index)?;
+ }
+ ProjectionElem::Deref => {
+ write!(fmt, ")")?;
+ }
+ ProjectionElem::Field(field, ty) => {
+ write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
+ }
+ ProjectionElem::Index(ref index) => {
+ write!(fmt, "[{:?}]", index)?;
+ }
+ ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
+ write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
+ }
+ ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
+ write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
+ }
+ ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
+ write!(fmt, "[{:?}:]", from)?;
+ }
+ ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
+ write!(fmt, "[:-{:?}]", to)?;
+ }
+ ProjectionElem::Subslice { from, to, from_end: true } => {
+ write!(fmt, "[{:?}:-{:?}]", from, to)?;
+ }
+ ProjectionElem::Subslice { from, to, from_end: false } => {
+ write!(fmt, "[{:?}..{:?}]", from, to)?;
+ }
+ }
+ }
+
+ Ok(())
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Scopes
+
+rustc_index::newtype_index! {
+ pub struct SourceScope {
+ derive [HashStable]
+ DEBUG_FORMAT = "scope[{}]",
+ const OUTERMOST_SOURCE_SCOPE = 0,
+ }
+}
+
+impl SourceScope {
+ /// Finds the original HirId this MIR item came from.
+ /// This is necessary after MIR optimizations, as otherwise we get a HirId
+ /// from the function that was inlined instead of the function call site.
+ pub fn lint_root<'tcx>(
+ self,
+ source_scopes: &IndexVec<SourceScope, SourceScopeData<'tcx>>,
+ ) -> Option<HirId> {
+ let mut data = &source_scopes[self];
+ // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
+ // does not work as I thought it would. Needs more investigation and documentation.
+ while data.inlined.is_some() {
+ trace!(?data);
+ data = &source_scopes[data.parent_scope.unwrap()];
+ }
+ trace!(?data);
+ match &data.local_data {
+ ClearCrossCrate::Set(data) => Some(data.lint_root),
+ ClearCrossCrate::Clear => None,
+ }
+ }
+
+ /// The instance this source scope was inlined from, if any.
+ #[inline]
+ pub fn inlined_instance<'tcx>(
+ self,
+ source_scopes: &IndexVec<SourceScope, SourceScopeData<'tcx>>,
+ ) -> Option<ty::Instance<'tcx>> {
+ let scope_data = &source_scopes[self];
+ if let Some((inlined_instance, _)) = scope_data.inlined {
+ Some(inlined_instance)
+ } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
+ Some(source_scopes[inlined_scope].inlined.unwrap().0)
+ } else {
+ None
+ }
+ }
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct SourceScopeData<'tcx> {
+ pub span: Span,
+ pub parent_scope: Option<SourceScope>,
+
+ /// Whether this scope is the root of a scope tree of another body,
+ /// inlined into this body by the MIR inliner.
+ /// `ty::Instance` is the callee, and the `Span` is the call site.
+ pub inlined: Option<(ty::Instance<'tcx>, Span)>,
+
+ /// Nearest (transitive) parent scope (if any) which is inlined.
+ /// This is an optimization over walking up `parent_scope`
+ /// until a scope with `inlined: Some(...)` is found.
+ pub inlined_parent_scope: Option<SourceScope>,
+
+ /// Crate-local information for this source scope, that can't (and
+ /// needn't) be tracked across crates.
+ pub local_data: ClearCrossCrate<SourceScopeLocalData>,
+}
+
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
+pub struct SourceScopeLocalData {
+ /// An `HirId` with lint levels equivalent to this scope's lint levels.
+ pub lint_root: hir::HirId,
+ /// The unsafe block that contains this node.
+ pub safety: Safety,
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Operands
+
+impl<'tcx> Debug for Operand<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ use self::Operand::*;
+ match *self {
+ Constant(ref a) => write!(fmt, "{:?}", a),
+ Copy(ref place) => write!(fmt, "{:?}", place),
+ Move(ref place) => write!(fmt, "move {:?}", place),
+ }
+ }
+}
+
+impl<'tcx> Operand<'tcx> {
+ /// Convenience helper to make a constant that refers to the fn
+ /// with given `DefId` and substs. Since this is used to synthesize
+ /// MIR, assumes `user_ty` is None.
+ pub fn function_handle(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+ span: Span,
+ ) -> Self {
+ let ty = tcx.bound_type_of(def_id).subst(tcx, substs);
+ Operand::Constant(Box::new(Constant {
+ span,
+ user_ty: None,
+ literal: ConstantKind::Val(ConstValue::ZeroSized, ty),
+ }))
+ }
+
+ pub fn is_move(&self) -> bool {
+ matches!(self, Operand::Move(..))
+ }
+
+ /// Convenience helper to make a literal-like constant from a given scalar value.
+ /// Since this is used to synthesize MIR, assumes `user_ty` is None.
+ pub fn const_from_scalar(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ val: Scalar,
+ span: Span,
+ ) -> Operand<'tcx> {
+ debug_assert!({
+ let param_env_and_ty = ty::ParamEnv::empty().and(ty);
+ let type_size = tcx
+ .layout_of(param_env_and_ty)
+ .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
+ .size;
+ let scalar_size = match val {
+ Scalar::Int(int) => int.size(),
+ _ => panic!("Invalid scalar type {:?}", val),
+ };
+ scalar_size == type_size
+ });
+ Operand::Constant(Box::new(Constant {
+ span,
+ user_ty: None,
+ literal: ConstantKind::Val(ConstValue::Scalar(val), ty),
+ }))
+ }
+
+ pub fn to_copy(&self) -> Self {
+ match *self {
+ Operand::Copy(_) | Operand::Constant(_) => self.clone(),
+ Operand::Move(place) => Operand::Copy(place),
+ }
+ }
+
+ /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
+ /// constant.
+ pub fn place(&self) -> Option<Place<'tcx>> {
+ match self {
+ Operand::Copy(place) | Operand::Move(place) => Some(*place),
+ Operand::Constant(_) => None,
+ }
+ }
+
+ /// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
+ /// place.
+ pub fn constant(&self) -> Option<&Constant<'tcx>> {
+ match self {
+ Operand::Constant(x) => Some(&**x),
+ Operand::Copy(_) | Operand::Move(_) => None,
+ }
+ }
+
+ /// Gets the `ty::FnDef` from an operand if it's a constant function item.
+ ///
+ /// While this is unlikely in general, it's the normal case of what you'll
+ /// find as the `func` in a [`TerminatorKind::Call`].
+ pub fn const_fn_def(&self) -> Option<(DefId, SubstsRef<'tcx>)> {
+ let const_ty = self.constant()?.literal.ty();
+ if let ty::FnDef(def_id, substs) = *const_ty.kind() { Some((def_id, substs)) } else { None }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+/// Rvalues
+
+impl<'tcx> Rvalue<'tcx> {
+ /// Returns true if rvalue can be safely removed when the result is unused.
+ #[inline]
+ pub fn is_safe_to_remove(&self) -> bool {
+ match self {
+ // Pointer to int casts may be side-effects due to exposing the provenance.
+ // While the model is undecided, we should be conservative. See
+ // <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
+ Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => false,
+
+ Rvalue::Use(_)
+ | Rvalue::CopyForDeref(_)
+ | Rvalue::Repeat(_, _)
+ | Rvalue::Ref(_, _, _)
+ | Rvalue::ThreadLocalRef(_)
+ | Rvalue::AddressOf(_, _)
+ | Rvalue::Len(_)
+ | Rvalue::Cast(
+ CastKind::Misc | CastKind::Pointer(_) | CastKind::PointerFromExposedAddress,
+ _,
+ _,
+ )
+ | Rvalue::BinaryOp(_, _)
+ | Rvalue::CheckedBinaryOp(_, _)
+ | Rvalue::NullaryOp(_, _)
+ | Rvalue::UnaryOp(_, _)
+ | Rvalue::Discriminant(_)
+ | Rvalue::Aggregate(_, _)
+ | Rvalue::ShallowInitBox(_, _) => true,
+ }
+ }
+}
+
+impl BorrowKind {
+ pub fn allows_two_phase_borrow(&self) -> bool {
+ match *self {
+ BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
+ BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
+ }
+ }
+
+ pub fn describe_mutability(&self) -> &str {
+ match *self {
+ BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => "immutable",
+ BorrowKind::Mut { .. } => "mutable",
+ }
+ }
+}
+
+impl BinOp {
+ pub fn is_checkable(self) -> bool {
+ use self::BinOp::*;
+ matches!(self, Add | Sub | Mul | Shl | Shr)
+ }
+}
+
+impl<'tcx> Debug for Rvalue<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ use self::Rvalue::*;
+
+ match *self {
+ Use(ref place) => write!(fmt, "{:?}", place),
+ Repeat(ref a, b) => {
+ write!(fmt, "[{:?}; ", a)?;
+ pretty_print_const(b, fmt, false)?;
+ write!(fmt, "]")
+ }
+ Len(ref a) => write!(fmt, "Len({:?})", a),
+ Cast(ref kind, ref place, ref ty) => {
+ write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
+ }
+ BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
+ CheckedBinaryOp(ref op, box (ref a, ref b)) => {
+ write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
+ }
+ UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
+ Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
+ NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
+ ThreadLocalRef(did) => ty::tls::with(|tcx| {
+ let muta = tcx.static_mutability(did).unwrap().prefix_str();
+ write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
+ }),
+ Ref(region, borrow_kind, ref place) => {
+ let kind_str = match borrow_kind {
+ BorrowKind::Shared => "",
+ BorrowKind::Shallow => "shallow ",
+ BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
+ };
+
+ // When printing regions, add trailing space if necessary.
+ let print_region = ty::tls::with(|tcx| {
+ tcx.sess.verbose() || tcx.sess.opts.unstable_opts.identify_regions
+ });
+ let region = if print_region {
+ let mut region = region.to_string();
+ if !region.is_empty() {
+ region.push(' ');
+ }
+ region
+ } else {
+ // Do not even print 'static
+ String::new()
+ };
+ write!(fmt, "&{}{}{:?}", region, kind_str, place)
+ }
+
+ CopyForDeref(ref place) => write!(fmt, "deref_copy {:#?}", place),
+
+ AddressOf(mutability, ref place) => {
+ let kind_str = match mutability {
+ Mutability::Mut => "mut",
+ Mutability::Not => "const",
+ };
+
+ write!(fmt, "&raw {} {:?}", kind_str, place)
+ }
+
+ Aggregate(ref kind, ref places) => {
+ let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
+ let mut tuple_fmt = fmt.debug_tuple(name);
+ for place in places {
+ tuple_fmt.field(place);
+ }
+ tuple_fmt.finish()
+ };
+
+ match **kind {
+ AggregateKind::Array(_) => write!(fmt, "{:?}", places),
+
+ AggregateKind::Tuple => {
+ if places.is_empty() {
+ write!(fmt, "()")
+ } else {
+ fmt_tuple(fmt, "")
+ }
+ }
+
+ AggregateKind::Adt(adt_did, variant, substs, _user_ty, _) => {
+ ty::tls::with(|tcx| {
+ let variant_def = &tcx.adt_def(adt_did).variant(variant);
+ let substs = tcx.lift(substs).expect("could not lift for printing");
+ let name = FmtPrinter::new(tcx, Namespace::ValueNS)
+ .print_def_path(variant_def.def_id, substs)?
+ .into_buffer();
+
+ match variant_def.ctor_kind {
+ CtorKind::Const => fmt.write_str(&name),
+ CtorKind::Fn => fmt_tuple(fmt, &name),
+ CtorKind::Fictive => {
+ let mut struct_fmt = fmt.debug_struct(&name);
+ for (field, place) in iter::zip(&variant_def.fields, places) {
+ struct_fmt.field(field.name.as_str(), place);
+ }
+ struct_fmt.finish()
+ }
+ }
+ })
+ }
+
+ AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| {
+ let name = if tcx.sess.opts.unstable_opts.span_free_formats {
+ let substs = tcx.lift(substs).unwrap();
+ format!(
+ "[closure@{}]",
+ tcx.def_path_str_with_substs(def_id.to_def_id(), substs),
+ )
+ } else {
+ let span = tcx.def_span(def_id);
+ format!(
+ "[closure@{}]",
+ tcx.sess.source_map().span_to_diagnostic_string(span)
+ )
+ };
+ let mut struct_fmt = fmt.debug_struct(&name);
+
+ // FIXME(project-rfc-2229#48): This should be a list of capture names/places
+ if let Some(upvars) = tcx.upvars_mentioned(def_id) {
+ for (&var_id, place) in iter::zip(upvars.keys(), places) {
+ let var_name = tcx.hir().name(var_id);
+ struct_fmt.field(var_name.as_str(), place);
+ }
+ }
+
+ struct_fmt.finish()
+ }),
+
+ AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
+ let name = format!("[generator@{:?}]", tcx.def_span(def_id));
+ let mut struct_fmt = fmt.debug_struct(&name);
+
+ // FIXME(project-rfc-2229#48): This should be a list of capture names/places
+ if let Some(upvars) = tcx.upvars_mentioned(def_id) {
+ for (&var_id, place) in iter::zip(upvars.keys(), places) {
+ let var_name = tcx.hir().name(var_id);
+ struct_fmt.field(var_name.as_str(), place);
+ }
+ }
+
+ struct_fmt.finish()
+ }),
+ }
+ }
+
+ ShallowInitBox(ref place, ref ty) => {
+ write!(fmt, "ShallowInitBox({:?}, {:?})", place, ty)
+ }
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+/// Constants
+///
+/// Two constants are equal if they are the same constant. Note that
+/// this does not necessarily mean that they are `==` in Rust. In
+/// particular, one must be wary of `NaN`!
+
+#[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
+pub struct Constant<'tcx> {
+ pub span: Span,
+
+ /// Optional user-given type: for something like
+ /// `collect::<Vec<_>>`, this would be present and would
+ /// indicate that `Vec<_>` was explicitly specified.
+ ///
+ /// Needed for NLL to impose user-given type constraints.
+ pub user_ty: Option<UserTypeAnnotationIndex>,
+
+ pub literal: ConstantKind<'tcx>,
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
+#[derive(Lift)]
+pub enum ConstantKind<'tcx> {
+ /// This constant came from the type system
+ Ty(ty::Const<'tcx>),
+ /// This constant cannot go back into the type system, as it represents
+ /// something the type system cannot handle (e.g. pointers).
+ Val(interpret::ConstValue<'tcx>, Ty<'tcx>),
+}
+
+impl<'tcx> Constant<'tcx> {
+ pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
+ match self.literal.try_to_scalar() {
+ Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance) {
+ GlobalAlloc::Static(def_id) => {
+ assert!(!tcx.is_thread_local_static(def_id));
+ Some(def_id)
+ }
+ _ => None,
+ },
+ _ => None,
+ }
+ }
+ #[inline]
+ pub fn ty(&self) -> Ty<'tcx> {
+ self.literal.ty()
+ }
+}
+
+impl<'tcx> ConstantKind<'tcx> {
+ /// Returns `None` if the constant is not trivially safe for use in the type system.
+ #[inline]
+ pub fn const_for_ty(&self) -> Option<ty::Const<'tcx>> {
+ match self {
+ ConstantKind::Ty(c) => Some(*c),
+ ConstantKind::Val(..) => None,
+ }
+ }
+
+ #[inline(always)]
+ pub fn ty(&self) -> Ty<'tcx> {
+ match self {
+ ConstantKind::Ty(c) => c.ty(),
+ ConstantKind::Val(_, ty) => *ty,
+ }
+ }
+
+ #[inline]
+ pub fn try_to_value(self, tcx: TyCtxt<'tcx>) -> Option<interpret::ConstValue<'tcx>> {
+ match self {
+ ConstantKind::Ty(c) => match c.kind() {
+ ty::ConstKind::Value(valtree) => Some(tcx.valtree_to_const_val((c.ty(), valtree))),
+ _ => None,
+ },
+ ConstantKind::Val(val, _) => Some(val),
+ }
+ }
+
+ #[inline]
+ pub fn try_to_scalar(self) -> Option<Scalar> {
+ match self {
+ ConstantKind::Ty(c) => match c.kind() {
+ ty::ConstKind::Value(valtree) => match valtree {
+ ty::ValTree::Leaf(scalar_int) => Some(Scalar::Int(scalar_int)),
+ ty::ValTree::Branch(_) => None,
+ },
+ _ => None,
+ },
+ ConstantKind::Val(val, _) => val.try_to_scalar(),
+ }
+ }
+
+ #[inline]
+ pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
+ Some(self.try_to_scalar()?.assert_int())
+ }
+
+ #[inline]
+ pub fn try_to_bits(self, size: Size) -> Option<u128> {
+ self.try_to_scalar_int()?.to_bits(size).ok()
+ }
+
+ #[inline]
+ pub fn try_to_bool(self) -> Option<bool> {
+ self.try_to_scalar_int()?.try_into().ok()
+ }
+
+ #[inline]
+ pub fn eval(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Self {
+ match self {
+ Self::Ty(c) => {
+ if let Some(val) = c.kind().try_eval_for_mir(tcx, param_env) {
+ match val {
+ Ok(val) => Self::Val(val, c.ty()),
+ Err(_) => Self::Ty(tcx.const_error(self.ty())),
+ }
+ } else {
+ self
+ }
+ }
+ Self::Val(_, _) => self,
+ }
+ }
+
+ /// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
+ #[inline]
+ pub fn eval_bits(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> u128 {
+ self.try_eval_bits(tcx, param_env, ty)
+ .unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", ty, self))
+ }
+
+ #[inline]
+ pub fn try_eval_bits(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ty: Ty<'tcx>,
+ ) -> Option<u128> {
+ match self {
+ Self::Ty(ct) => ct.try_eval_bits(tcx, param_env, ty),
+ Self::Val(val, t) => {
+ assert_eq!(*t, ty);
+ let size =
+ tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
+ val.try_to_bits(size)
+ }
+ }
+ }
+
+ #[inline]
+ pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
+ match self {
+ Self::Ty(ct) => ct.try_eval_bool(tcx, param_env),
+ Self::Val(val, _) => val.try_to_bool(),
+ }
+ }
+
+ #[inline]
+ pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u64> {
+ match self {
+ Self::Ty(ct) => ct.try_eval_usize(tcx, param_env),
+ Self::Val(val, _) => val.try_to_machine_usize(tcx),
+ }
+ }
+
+ #[inline]
+ pub fn from_value(val: ConstValue<'tcx>, ty: Ty<'tcx>) -> Self {
+ Self::Val(val, ty)
+ }
+
+ pub fn from_bits(
+ tcx: TyCtxt<'tcx>,
+ bits: u128,
+ param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
+ ) -> Self {
+ let size = tcx
+ .layout_of(param_env_ty)
+ .unwrap_or_else(|e| {
+ bug!("could not compute layout for {:?}: {:?}", param_env_ty.value, e)
+ })
+ .size;
+ let cv = ConstValue::Scalar(Scalar::from_uint(bits, size));
+
+ Self::Val(cv, param_env_ty.value)
+ }
+
+ #[inline]
+ pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
+ let cv = ConstValue::from_bool(v);
+ Self::Val(cv, tcx.types.bool)
+ }
+
+ #[inline]
+ pub fn zero_sized(ty: Ty<'tcx>) -> Self {
+ let cv = ConstValue::ZeroSized;
+ Self::Val(cv, ty)
+ }
+
+ pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
+ let ty = tcx.types.usize;
+ Self::from_bits(tcx, n as u128, ty::ParamEnv::empty().and(ty))
+ }
+
+ #[inline]
+ pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self {
+ let val = ConstValue::Scalar(s);
+ Self::Val(val, ty)
+ }
+
+ /// Literals are converted to `ConstantKindVal`, const generic parameters are eagerly
+ /// converted to a constant, everything else becomes `Unevaluated`.
+ pub fn from_anon_const(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Self {
+ Self::from_opt_const_arg_anon_const(tcx, ty::WithOptConstParam::unknown(def_id), param_env)
+ }
+
+ #[instrument(skip(tcx), level = "debug")]
+ pub fn from_inline_const(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> Self {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let body_id = match tcx.hir().get(hir_id) {
+ hir::Node::AnonConst(ac) => ac.body,
+ _ => span_bug!(
+ tcx.def_span(def_id.to_def_id()),
+ "from_inline_const can only process anonymous constants"
+ ),
+ };
+ let expr = &tcx.hir().body(body_id).value;
+ let ty = tcx.typeck(def_id).node_type(hir_id);
+
+ let lit_input = match expr.kind {
+ hir::ExprKind::Lit(ref lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
+ hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => match expr.kind {
+ hir::ExprKind::Lit(ref lit) => {
+ Some(LitToConstInput { lit: &lit.node, ty, neg: true })
+ }
+ _ => None,
+ },
+ _ => None,
+ };
+ if let Some(lit_input) = lit_input {
+ // If an error occurred, ignore that it's a literal and leave reporting the error up to
+ // mir.
+ match tcx.at(expr.span).lit_to_mir_constant(lit_input) {
+ Ok(c) => return c,
+ Err(_) => {}
+ }
+ }
+
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id());
+ let parent_substs =
+ tcx.erase_regions(InternalSubsts::identity_for_item(tcx, typeck_root_def_id));
+ let substs =
+ ty::InlineConstSubsts::new(tcx, ty::InlineConstSubstsParts { parent_substs, ty })
+ .substs;
+ let uneval_const = tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Unevaluated(ty::Unevaluated {
+ def: ty::WithOptConstParam::unknown(def_id).to_global(),
+ substs,
+ promoted: None,
+ }),
+ ty,
+ });
+ debug!(?uneval_const);
+ debug_assert!(!uneval_const.has_free_regions());
+
+ Self::Ty(uneval_const)
+ }
+
+ #[instrument(skip(tcx), level = "debug")]
+ fn from_opt_const_arg_anon_const(
+ tcx: TyCtxt<'tcx>,
+ def: ty::WithOptConstParam<LocalDefId>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Self {
+ let body_id = match tcx.hir().get_by_def_id(def.did) {
+ hir::Node::AnonConst(ac) => ac.body,
+ _ => span_bug!(
+ tcx.def_span(def.did.to_def_id()),
+ "from_anon_const can only process anonymous constants"
+ ),
+ };
+
+ let expr = &tcx.hir().body(body_id).value;
+ debug!(?expr);
+
+ // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
+ // currently have to be wrapped in curly brackets, so it's necessary to special-case.
+ let expr = match &expr.kind {
+ hir::ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() => {
+ block.expr.as_ref().unwrap()
+ }
+ _ => expr,
+ };
+ debug!("expr.kind: {:?}", expr.kind);
+
+ let ty = tcx.type_of(def.def_id_for_type_of());
+ debug!(?ty);
+
+ // FIXME(const_generics): We currently have to special case parameters because `min_const_generics`
+ // does not provide the parents generics to anonymous constants. We still allow generic const
+ // parameters by themselves however, e.g. `N`. These constants would cause an ICE if we were to
+ // ever try to substitute the generic parameters in their bodies.
+ //
+ // While this doesn't happen as these constants are always used as `ty::ConstKind::Param`, it does
+ // cause issues if we were to remove that special-case and try to evaluate the constant instead.
+ use hir::{def::DefKind::ConstParam, def::Res, ExprKind, Path, QPath};
+ match expr.kind {
+ ExprKind::Path(QPath::Resolved(_, &Path { res: Res::Def(ConstParam, def_id), .. })) => {
+ // Find the name and index of the const parameter by indexing the generics of
+ // the parent item and construct a `ParamConst`.
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ let item_id = tcx.hir().get_parent_node(hir_id);
+ let item_def_id = tcx.hir().local_def_id(item_id);
+ let generics = tcx.generics_of(item_def_id.to_def_id());
+ let index = generics.param_def_id_to_index[&def_id];
+ let name = tcx.hir().name(hir_id);
+ let ty_const = tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Param(ty::ParamConst::new(index, name)),
+ ty,
+ });
+ debug!(?ty_const);
+
+ return Self::Ty(ty_const);
+ }
+ _ => {}
+ }
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
+ let parent_substs = if let Some(parent_hir_id) = tcx.hir().find_parent_node(hir_id) {
+ if let Some(parent_did) = tcx.hir().opt_local_def_id(parent_hir_id) {
+ InternalSubsts::identity_for_item(tcx, parent_did.to_def_id())
+ } else {
+ tcx.mk_substs(Vec::<GenericArg<'tcx>>::new().into_iter())
+ }
+ } else {
+ tcx.mk_substs(Vec::<GenericArg<'tcx>>::new().into_iter())
+ };
+ debug!(?parent_substs);
+
+ let did = def.did.to_def_id();
+ let child_substs = InternalSubsts::identity_for_item(tcx, did);
+ let substs = tcx.mk_substs(parent_substs.into_iter().chain(child_substs.into_iter()));
+ debug!(?substs);
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
+ let span = tcx.hir().span(hir_id);
+ let uneval = ty::Unevaluated::new(def.to_global(), substs);
+ debug!(?span, ?param_env);
+
+ match tcx.const_eval_resolve(param_env, uneval, Some(span)) {
+ Ok(val) => {
+ debug!("evaluated const value: {:?}", val);
+ Self::Val(val, ty)
+ }
+ Err(_) => {
+ debug!("error encountered during evaluation");
+ // Error was handled in `const_eval_resolve`. Here we just create a
+ // new unevaluated const and error hard later in codegen
+ let ty_const = tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Unevaluated(ty::Unevaluated {
+ def: def.to_global(),
+ substs: InternalSubsts::identity_for_item(tcx, def.did.to_def_id()),
+ promoted: None,
+ }),
+ ty,
+ });
+ debug!(?ty_const);
+
+ Self::Ty(ty_const)
+ }
+ }
+ }
+
+ pub fn from_const(c: ty::Const<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
+ match c.kind() {
+ ty::ConstKind::Value(valtree) => {
+ let const_val = tcx.valtree_to_const_val((c.ty(), valtree));
+ Self::Val(const_val, c.ty())
+ }
+ _ => Self::Ty(c),
+ }
+ }
+}
+
+/// A collection of projections into user types.
+///
+/// They are projections because a binding can occur a part of a
+/// parent pattern that has been ascribed a type.
+///
+/// Its a collection because there can be multiple type ascriptions on
+/// the path from the root of the pattern down to the binding itself.
+///
+/// An example:
+///
+/// ```ignore (illustrative)
+/// struct S<'a>((i32, &'a str), String);
+/// let S((_, w): (i32, &'static str), _): S = ...;
+/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
+/// // --------------------------------- ^ (2)
+/// ```
+///
+/// The highlights labelled `(1)` show the subpattern `(_, w)` being
+/// ascribed the type `(i32, &'static str)`.
+///
+/// The highlights labelled `(2)` show the whole pattern being
+/// ascribed the type `S`.
+///
+/// In this example, when we descend to `w`, we will have built up the
+/// following two projected types:
+///
+/// * base: `S`, projection: `(base.0).1`
+/// * base: `(i32, &'static str)`, projection: `base.1`
+///
+/// The first will lead to the constraint `w: &'1 str` (for some
+/// inferred region `'1`). The second will lead to the constraint `w:
+/// &'static str`.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
+pub struct UserTypeProjections {
+ pub contents: Vec<(UserTypeProjection, Span)>,
+}
+
+impl<'tcx> UserTypeProjections {
+ pub fn none() -> Self {
+ UserTypeProjections { contents: vec![] }
+ }
+
+ pub fn is_empty(&self) -> bool {
+ self.contents.is_empty()
+ }
+
+ pub fn projections_and_spans(
+ &self,
+ ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
+ self.contents.iter()
+ }
+
+ pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
+ self.contents.iter().map(|&(ref user_type, _span)| user_type)
+ }
+
+ pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
+ self.contents.push((user_ty.clone(), span));
+ self
+ }
+
+ fn map_projections(
+ mut self,
+ mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
+ ) -> Self {
+ self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
+ self
+ }
+
+ pub fn index(self) -> Self {
+ self.map_projections(|pat_ty_proj| pat_ty_proj.index())
+ }
+
+ pub fn subslice(self, from: u64, to: u64) -> Self {
+ self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
+ }
+
+ pub fn deref(self) -> Self {
+ self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
+ }
+
+ pub fn leaf(self, field: Field) -> Self {
+ self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
+ }
+
+ pub fn variant(self, adt_def: AdtDef<'tcx>, variant_index: VariantIdx, field: Field) -> Self {
+ self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
+ }
+}
+
+/// Encodes the effect of a user-supplied type annotation on the
+/// subcomponents of a pattern. The effect is determined by applying the
+/// given list of projections to some underlying base type. Often,
+/// the projection element list `projs` is empty, in which case this
+/// directly encodes a type in `base`. But in the case of complex patterns with
+/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
+/// in which case the `projs` vector is used.
+///
+/// Examples:
+///
+/// * `let x: T = ...` -- here, the `projs` vector is empty.
+///
+/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
+/// `field[0]` (aka `.0`), indicating that the type of `s` is
+/// determined by finding the type of the `.0` field from `T`.
+#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
+pub struct UserTypeProjection {
+ pub base: UserTypeAnnotationIndex,
+ pub projs: Vec<ProjectionKind>,
+}
+
+impl Copy for ProjectionKind {}
+
+impl UserTypeProjection {
+ pub(crate) fn index(mut self) -> Self {
+ self.projs.push(ProjectionElem::Index(()));
+ self
+ }
+
+ pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
+ self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
+ self
+ }
+
+ pub(crate) fn deref(mut self) -> Self {
+ self.projs.push(ProjectionElem::Deref);
+ self
+ }
+
+ pub(crate) fn leaf(mut self, field: Field) -> Self {
+ self.projs.push(ProjectionElem::Field(field, ()));
+ self
+ }
+
+ pub(crate) fn variant(
+ mut self,
+ adt_def: AdtDef<'_>,
+ variant_index: VariantIdx,
+ field: Field,
+ ) -> Self {
+ self.projs.push(ProjectionElem::Downcast(
+ Some(adt_def.variant(variant_index).name),
+ variant_index,
+ ));
+ self.projs.push(ProjectionElem::Field(field, ()));
+ self
+ }
+}
+
+TrivialTypeTraversalAndLiftImpls! { ProjectionKind, }
+
+impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
+ fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
+ Ok(UserTypeProjection {
+ base: self.base.try_fold_with(folder)?,
+ projs: self.projs.try_fold_with(folder)?,
+ })
+ }
+}
+
+impl<'tcx> TypeVisitable<'tcx> for UserTypeProjection {
+ fn visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> ControlFlow<Vs::BreakTy> {
+ self.base.visit_with(visitor)
+ // Note: there's nothing in `self.proj` to visit.
+ }
+}
+
+rustc_index::newtype_index! {
+ pub struct Promoted {
+ derive [HashStable]
+ DEBUG_FORMAT = "promoted[{}]"
+ }
+}
+
+impl<'tcx> Debug for Constant<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ write!(fmt, "{}", self)
+ }
+}
+
+impl<'tcx> Display for Constant<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ match self.ty().kind() {
+ ty::FnDef(..) => {}
+ _ => write!(fmt, "const ")?,
+ }
+ Display::fmt(&self.literal, fmt)
+ }
+}
+
+impl<'tcx> Display for ConstantKind<'tcx> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
+ match *self {
+ ConstantKind::Ty(c) => pretty_print_const(c, fmt, true),
+ ConstantKind::Val(val, ty) => pretty_print_const_value(val, ty, fmt, true),
+ }
+ }
+}
+
+fn pretty_print_const<'tcx>(
+ c: ty::Const<'tcx>,
+ fmt: &mut Formatter<'_>,
+ print_types: bool,
+) -> fmt::Result {
+ use crate::ty::print::PrettyPrinter;
+ ty::tls::with(|tcx| {
+ let literal = tcx.lift(c).unwrap();
+ let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
+ cx.print_alloc_ids = true;
+ let cx = cx.pretty_print_const(literal, print_types)?;
+ fmt.write_str(&cx.into_buffer())?;
+ Ok(())
+ })
+}
+
+fn pretty_print_byte_str(fmt: &mut Formatter<'_>, byte_str: &[u8]) -> fmt::Result {
+ fmt.write_str("b\"")?;
+ for &c in byte_str {
+ for e in std::ascii::escape_default(c) {
+ fmt.write_char(e as char)?;
+ }
+ }
+ fmt.write_str("\"")?;
+
+ Ok(())
+}
+
+fn comma_sep<'tcx>(fmt: &mut Formatter<'_>, elems: Vec<ConstantKind<'tcx>>) -> fmt::Result {
+ let mut first = true;
+ for elem in elems {
+ if !first {
+ fmt.write_str(", ")?;
+ }
+ fmt.write_str(&format!("{}", elem))?;
+ first = false;
+ }
+ Ok(())
+}
+
+// FIXME: Move that into `mir/pretty.rs`.
+fn pretty_print_const_value<'tcx>(
+ ct: ConstValue<'tcx>,
+ ty: Ty<'tcx>,
+ fmt: &mut Formatter<'_>,
+ print_ty: bool,
+) -> fmt::Result {
+ use crate::ty::print::PrettyPrinter;
+
+ ty::tls::with(|tcx| {
+ let ct = tcx.lift(ct).unwrap();
+ let ty = tcx.lift(ty).unwrap();
+
+ if tcx.sess.verbose() {
+ fmt.write_str(&format!("ConstValue({:?}: {})", ct, ty))?;
+ return Ok(());
+ }
+
+ let u8_type = tcx.types.u8;
+ match (ct, ty.kind()) {
+ // Byte/string slices, printed as (byte) string literals.
+ (ConstValue::Slice { data, start, end }, ty::Ref(_, inner, _)) => {
+ match inner.kind() {
+ ty::Slice(t) => {
+ if *t == u8_type {
+ // The `inspect` here is okay since we checked the bounds, and there are
+ // no relocations (we have an active slice reference here). We don't use
+ // this result to affect interpreter execution.
+ let byte_str = data
+ .inner()
+ .inspect_with_uninit_and_ptr_outside_interpreter(start..end);
+ pretty_print_byte_str(fmt, byte_str)?;
+ return Ok(());
+ }
+ }
+ ty::Str => {
+ // The `inspect` here is okay since we checked the bounds, and there are no
+ // relocations (we have an active `str` reference here). We don't use this
+ // result to affect interpreter execution.
+ let slice = data
+ .inner()
+ .inspect_with_uninit_and_ptr_outside_interpreter(start..end);
+ fmt.write_str(&format!("{:?}", String::from_utf8_lossy(slice)))?;
+ return Ok(());
+ }
+ _ => {}
+ }
+ }
+ (ConstValue::ByRef { alloc, offset }, ty::Array(t, n)) if *t == u8_type => {
+ let n = n.kind().try_to_bits(tcx.data_layout.pointer_size).unwrap();
+ // cast is ok because we already checked for pointer size (32 or 64 bit) above
+ let range = AllocRange { start: offset, size: Size::from_bytes(n) };
+ let byte_str = alloc.inner().get_bytes(&tcx, range).unwrap();
+ fmt.write_str("*")?;
+ pretty_print_byte_str(fmt, byte_str)?;
+ return Ok(());
+ }
+ // Aggregates, printed as array/tuple/struct/variant construction syntax.
+ //
+ // NB: the `has_param_types_or_consts` check ensures that we can use
+ // the `destructure_const` query with an empty `ty::ParamEnv` without
+ // introducing ICEs (e.g. via `layout_of`) from missing bounds.
+ // E.g. `transmute([0usize; 2]): (u8, *mut T)` needs to know `T: Sized`
+ // to be able to destructure the tuple into `(0u8, *mut T)
+ //
+ // FIXME(eddyb) for `--emit=mir`/`-Z dump-mir`, we should provide the
+ // correct `ty::ParamEnv` to allow printing *all* constant values.
+ (_, ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) if !ty.has_param_types_or_consts() => {
+ let ct = tcx.lift(ct).unwrap();
+ let ty = tcx.lift(ty).unwrap();
+ if let Some(contents) = tcx.try_destructure_mir_constant(
+ ty::ParamEnv::reveal_all().and(ConstantKind::Val(ct, ty)),
+ ) {
+ let fields = contents.fields.iter().copied().collect::<Vec<_>>();
+ match *ty.kind() {
+ ty::Array(..) => {
+ fmt.write_str("[")?;
+ comma_sep(fmt, fields)?;
+ fmt.write_str("]")?;
+ }
+ ty::Tuple(..) => {
+ fmt.write_str("(")?;
+ comma_sep(fmt, fields)?;
+ if contents.fields.len() == 1 {
+ fmt.write_str(",")?;
+ }
+ fmt.write_str(")")?;
+ }
+ ty::Adt(def, _) if def.variants().is_empty() => {
+ fmt.write_str(&format!("{{unreachable(): {}}}", ty))?;
+ }
+ ty::Adt(def, substs) => {
+ let variant_idx = contents
+ .variant
+ .expect("destructed mir constant of adt without variant idx");
+ let variant_def = &def.variant(variant_idx);
+ let substs = tcx.lift(substs).unwrap();
+ let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
+ cx.print_alloc_ids = true;
+ let cx = cx.print_value_path(variant_def.def_id, substs)?;
+ fmt.write_str(&cx.into_buffer())?;
+
+ match variant_def.ctor_kind {
+ CtorKind::Const => {}
+ CtorKind::Fn => {
+ fmt.write_str("(")?;
+ comma_sep(fmt, fields)?;
+ fmt.write_str(")")?;
+ }
+ CtorKind::Fictive => {
+ fmt.write_str(" {{ ")?;
+ let mut first = true;
+ for (field_def, field) in iter::zip(&variant_def.fields, fields)
+ {
+ if !first {
+ fmt.write_str(", ")?;
+ }
+ fmt.write_str(&format!("{}: {}", field_def.name, field))?;
+ first = false;
+ }
+ fmt.write_str(" }}")?;
+ }
+ }
+ }
+ _ => unreachable!(),
+ }
+ return Ok(());
+ } else {
+ // Fall back to debug pretty printing for invalid constants.
+ fmt.write_str(&format!("{:?}", ct))?;
+ if print_ty {
+ fmt.write_str(&format!(": {}", ty))?;
+ }
+ return Ok(());
+ };
+ }
+ (ConstValue::Scalar(scalar), _) => {
+ let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
+ cx.print_alloc_ids = true;
+ let ty = tcx.lift(ty).unwrap();
+ cx = cx.pretty_print_const_scalar(scalar, ty, print_ty)?;
+ fmt.write_str(&cx.into_buffer())?;
+ return Ok(());
+ }
+ (ConstValue::ZeroSized, ty::FnDef(d, s)) => {
+ let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
+ cx.print_alloc_ids = true;
+ let cx = cx.print_value_path(*d, s)?;
+ fmt.write_str(&cx.into_buffer())?;
+ return Ok(());
+ }
+ // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
+ // their fields instead of just dumping the memory.
+ _ => {}
+ }
+ // fallback
+ fmt.write_str(&format!("{:?}", ct))?;
+ if print_ty {
+ fmt.write_str(&format!(": {}", ty))?;
+ }
+ Ok(())
+ })
+}
+
+/// `Location` represents the position of the start of the statement; or, if
+/// `statement_index` equals the number of statements, then the start of the
+/// terminator.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
+pub struct Location {
+ /// The block that the location is within.
+ pub block: BasicBlock,
+
+ pub statement_index: usize,
+}
+
+impl fmt::Debug for Location {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(fmt, "{:?}[{}]", self.block, self.statement_index)
+ }
+}
+
+impl Location {
+ pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
+
+ /// Returns the location immediately after this one within the enclosing block.
+ ///
+ /// Note that if this location represents a terminator, then the
+ /// resulting location would be out of bounds and invalid.
+ pub fn successor_within_block(&self) -> Location {
+ Location { block: self.block, statement_index: self.statement_index + 1 }
+ }
+
+ /// Returns `true` if `other` is earlier in the control flow graph than `self`.
+ pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
+ // If we are in the same block as the other location and are an earlier statement
+ // then we are a predecessor of `other`.
+ if self.block == other.block && self.statement_index < other.statement_index {
+ return true;
+ }
+
+ let predecessors = body.basic_blocks.predecessors();
+
+ // If we're in another block, then we want to check that block is a predecessor of `other`.
+ let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
+ let mut visited = FxHashSet::default();
+
+ while let Some(block) = queue.pop() {
+ // If we haven't visited this block before, then make sure we visit its predecessors.
+ if visited.insert(block) {
+ queue.extend(predecessors[block].iter().cloned());
+ } else {
+ continue;
+ }
+
+ // If we found the block that `self` is in, then we are a predecessor of `other` (since
+ // we found that block by looking at the predecessors of `other`).
+ if self.block == block {
+ return true;
+ }
+ }
+
+ false
+ }
+
+ pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
+ if self.block == other.block {
+ self.statement_index <= other.statement_index
+ } else {
+ dominators.is_dominated_by(other.block, self.block)
+ }
+ }
+}