summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/ty/relate.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/ty/relate.rs')
-rw-r--r--compiler/rustc_middle/src/ty/relate.rs841
1 files changed, 841 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/relate.rs b/compiler/rustc_middle/src/ty/relate.rs
new file mode 100644
index 000000000..818affa71
--- /dev/null
+++ b/compiler/rustc_middle/src/ty/relate.rs
@@ -0,0 +1,841 @@
+//! Generalized type relating mechanism.
+//!
+//! A type relation `R` relates a pair of values `(A, B)`. `A and B` are usually
+//! types or regions but can be other things. Examples of type relations are
+//! subtyping, type equality, etc.
+
+use crate::ty::error::{ExpectedFound, TypeError};
+use crate::ty::subst::{GenericArg, GenericArgKind, Subst, SubstsRef};
+use crate::ty::{self, ImplSubject, Term, Ty, TyCtxt, TypeFoldable};
+use rustc_hir as ast;
+use rustc_hir::def_id::DefId;
+use rustc_span::DUMMY_SP;
+use rustc_target::spec::abi;
+use std::iter;
+
+pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
+
+#[derive(Clone, Debug)]
+pub enum Cause {
+ ExistentialRegionBound, // relating an existential region bound
+}
+
+pub trait TypeRelation<'tcx>: Sized {
+ fn tcx(&self) -> TyCtxt<'tcx>;
+
+ fn param_env(&self) -> ty::ParamEnv<'tcx>;
+
+ /// Returns a static string we can use for printouts.
+ fn tag(&self) -> &'static str;
+
+ /// Returns `true` if the value `a` is the "expected" type in the
+ /// relation. Just affects error messages.
+ fn a_is_expected(&self) -> bool;
+
+ fn with_cause<F, R>(&mut self, _cause: Cause, f: F) -> R
+ where
+ F: FnOnce(&mut Self) -> R,
+ {
+ f(self)
+ }
+
+ /// Generic relation routine suitable for most anything.
+ fn relate<T: Relate<'tcx>>(&mut self, a: T, b: T) -> RelateResult<'tcx, T> {
+ Relate::relate(self, a, b)
+ }
+
+ /// Relate the two substitutions for the given item. The default
+ /// is to look up the variance for the item and proceed
+ /// accordingly.
+ fn relate_item_substs(
+ &mut self,
+ item_def_id: DefId,
+ a_subst: SubstsRef<'tcx>,
+ b_subst: SubstsRef<'tcx>,
+ ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
+ debug!(
+ "relate_item_substs(item_def_id={:?}, a_subst={:?}, b_subst={:?})",
+ item_def_id, a_subst, b_subst
+ );
+
+ let tcx = self.tcx();
+ let opt_variances = tcx.variances_of(item_def_id);
+ relate_substs_with_variances(self, item_def_id, opt_variances, a_subst, b_subst)
+ }
+
+ /// Switch variance for the purpose of relating `a` and `b`.
+ fn relate_with_variance<T: Relate<'tcx>>(
+ &mut self,
+ variance: ty::Variance,
+ info: ty::VarianceDiagInfo<'tcx>,
+ a: T,
+ b: T,
+ ) -> RelateResult<'tcx, T>;
+
+ // Overridable relations. You shouldn't typically call these
+ // directly, instead call `relate()`, which in turn calls
+ // these. This is both more uniform but also allows us to add
+ // additional hooks for other types in the future if needed
+ // without making older code, which called `relate`, obsolete.
+
+ fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>;
+
+ fn regions(
+ &mut self,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ ) -> RelateResult<'tcx, ty::Region<'tcx>>;
+
+ fn consts(
+ &mut self,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>>;
+
+ fn binders<T>(
+ &mut self,
+ a: ty::Binder<'tcx, T>,
+ b: ty::Binder<'tcx, T>,
+ ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
+ where
+ T: Relate<'tcx>;
+}
+
+pub trait Relate<'tcx>: TypeFoldable<'tcx> + Copy {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: Self,
+ b: Self,
+ ) -> RelateResult<'tcx, Self>;
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Relate impls
+
+pub fn relate_type_and_mut<'tcx, R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::TypeAndMut<'tcx>,
+ b: ty::TypeAndMut<'tcx>,
+ base_ty: Ty<'tcx>,
+) -> RelateResult<'tcx, ty::TypeAndMut<'tcx>> {
+ debug!("{}.mts({:?}, {:?})", relation.tag(), a, b);
+ if a.mutbl != b.mutbl {
+ Err(TypeError::Mutability)
+ } else {
+ let mutbl = a.mutbl;
+ let (variance, info) = match mutbl {
+ ast::Mutability::Not => (ty::Covariant, ty::VarianceDiagInfo::None),
+ ast::Mutability::Mut => {
+ (ty::Invariant, ty::VarianceDiagInfo::Invariant { ty: base_ty, param_index: 0 })
+ }
+ };
+ let ty = relation.relate_with_variance(variance, info, a.ty, b.ty)?;
+ Ok(ty::TypeAndMut { ty, mutbl })
+ }
+}
+
+#[inline]
+pub fn relate_substs<'tcx, R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a_subst: SubstsRef<'tcx>,
+ b_subst: SubstsRef<'tcx>,
+) -> RelateResult<'tcx, SubstsRef<'tcx>> {
+ relation.tcx().mk_substs(iter::zip(a_subst, b_subst).map(|(a, b)| {
+ relation.relate_with_variance(ty::Invariant, ty::VarianceDiagInfo::default(), a, b)
+ }))
+}
+
+pub fn relate_substs_with_variances<'tcx, R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ ty_def_id: DefId,
+ variances: &[ty::Variance],
+ a_subst: SubstsRef<'tcx>,
+ b_subst: SubstsRef<'tcx>,
+) -> RelateResult<'tcx, SubstsRef<'tcx>> {
+ let tcx = relation.tcx();
+
+ let mut cached_ty = None;
+ let params = iter::zip(a_subst, b_subst).enumerate().map(|(i, (a, b))| {
+ let variance = variances[i];
+ let variance_info = if variance == ty::Invariant {
+ let ty =
+ *cached_ty.get_or_insert_with(|| tcx.bound_type_of(ty_def_id).subst(tcx, a_subst));
+ ty::VarianceDiagInfo::Invariant { ty, param_index: i.try_into().unwrap() }
+ } else {
+ ty::VarianceDiagInfo::default()
+ };
+ relation.relate_with_variance(variance, variance_info, a, b)
+ });
+
+ tcx.mk_substs(params)
+}
+
+impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::FnSig<'tcx>,
+ b: ty::FnSig<'tcx>,
+ ) -> RelateResult<'tcx, ty::FnSig<'tcx>> {
+ let tcx = relation.tcx();
+
+ if a.c_variadic != b.c_variadic {
+ return Err(TypeError::VariadicMismatch(expected_found(
+ relation,
+ a.c_variadic,
+ b.c_variadic,
+ )));
+ }
+ let unsafety = relation.relate(a.unsafety, b.unsafety)?;
+ let abi = relation.relate(a.abi, b.abi)?;
+
+ if a.inputs().len() != b.inputs().len() {
+ return Err(TypeError::ArgCount);
+ }
+
+ let inputs_and_output = iter::zip(a.inputs(), b.inputs())
+ .map(|(&a, &b)| ((a, b), false))
+ .chain(iter::once(((a.output(), b.output()), true)))
+ .map(|((a, b), is_output)| {
+ if is_output {
+ relation.relate(a, b)
+ } else {
+ relation.relate_with_variance(
+ ty::Contravariant,
+ ty::VarianceDiagInfo::default(),
+ a,
+ b,
+ )
+ }
+ })
+ .enumerate()
+ .map(|(i, r)| match r {
+ Err(TypeError::Sorts(exp_found) | TypeError::ArgumentSorts(exp_found, _)) => {
+ Err(TypeError::ArgumentSorts(exp_found, i))
+ }
+ Err(TypeError::Mutability | TypeError::ArgumentMutability(_)) => {
+ Err(TypeError::ArgumentMutability(i))
+ }
+ r => r,
+ });
+ Ok(ty::FnSig {
+ inputs_and_output: tcx.mk_type_list(inputs_and_output)?,
+ c_variadic: a.c_variadic,
+ unsafety,
+ abi,
+ })
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::BoundConstness {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::BoundConstness,
+ b: ty::BoundConstness,
+ ) -> RelateResult<'tcx, ty::BoundConstness> {
+ if a != b {
+ Err(TypeError::ConstnessMismatch(expected_found(relation, a, b)))
+ } else {
+ Ok(a)
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ast::Unsafety {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ast::Unsafety,
+ b: ast::Unsafety,
+ ) -> RelateResult<'tcx, ast::Unsafety> {
+ if a != b {
+ Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
+ } else {
+ Ok(a)
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for abi::Abi {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: abi::Abi,
+ b: abi::Abi,
+ ) -> RelateResult<'tcx, abi::Abi> {
+ if a == b { Ok(a) } else { Err(TypeError::AbiMismatch(expected_found(relation, a, b))) }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ProjectionTy<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ProjectionTy<'tcx>,
+ b: ty::ProjectionTy<'tcx>,
+ ) -> RelateResult<'tcx, ty::ProjectionTy<'tcx>> {
+ if a.item_def_id != b.item_def_id {
+ Err(TypeError::ProjectionMismatched(expected_found(
+ relation,
+ a.item_def_id,
+ b.item_def_id,
+ )))
+ } else {
+ let substs = relation.relate(a.substs, b.substs)?;
+ Ok(ty::ProjectionTy { item_def_id: a.item_def_id, substs: &substs })
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ExistentialProjection<'tcx>,
+ b: ty::ExistentialProjection<'tcx>,
+ ) -> RelateResult<'tcx, ty::ExistentialProjection<'tcx>> {
+ if a.item_def_id != b.item_def_id {
+ Err(TypeError::ProjectionMismatched(expected_found(
+ relation,
+ a.item_def_id,
+ b.item_def_id,
+ )))
+ } else {
+ let term = relation.relate_with_variance(
+ ty::Invariant,
+ ty::VarianceDiagInfo::default(),
+ a.term,
+ b.term,
+ )?;
+ let substs = relation.relate_with_variance(
+ ty::Invariant,
+ ty::VarianceDiagInfo::default(),
+ a.substs,
+ b.substs,
+ )?;
+ Ok(ty::ExistentialProjection { item_def_id: a.item_def_id, substs, term })
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::TraitRef<'tcx>,
+ b: ty::TraitRef<'tcx>,
+ ) -> RelateResult<'tcx, ty::TraitRef<'tcx>> {
+ // Different traits cannot be related.
+ if a.def_id != b.def_id {
+ Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
+ } else {
+ let substs = relate_substs(relation, a.substs, b.substs)?;
+ Ok(ty::TraitRef { def_id: a.def_id, substs })
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ExistentialTraitRef<'tcx>,
+ b: ty::ExistentialTraitRef<'tcx>,
+ ) -> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>> {
+ // Different traits cannot be related.
+ if a.def_id != b.def_id {
+ Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
+ } else {
+ let substs = relate_substs(relation, a.substs, b.substs)?;
+ Ok(ty::ExistentialTraitRef { def_id: a.def_id, substs })
+ }
+ }
+}
+
+#[derive(Copy, Debug, Clone, TypeFoldable, TypeVisitable)]
+struct GeneratorWitness<'tcx>(&'tcx ty::List<Ty<'tcx>>);
+
+impl<'tcx> Relate<'tcx> for GeneratorWitness<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: GeneratorWitness<'tcx>,
+ b: GeneratorWitness<'tcx>,
+ ) -> RelateResult<'tcx, GeneratorWitness<'tcx>> {
+ assert_eq!(a.0.len(), b.0.len());
+ let tcx = relation.tcx();
+ let types = tcx.mk_type_list(iter::zip(a.0, b.0).map(|(a, b)| relation.relate(a, b)))?;
+ Ok(GeneratorWitness(types))
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ImplSubject<'tcx> {
+ #[inline]
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ImplSubject<'tcx>,
+ b: ImplSubject<'tcx>,
+ ) -> RelateResult<'tcx, ImplSubject<'tcx>> {
+ match (a, b) {
+ (ImplSubject::Trait(trait_ref_a), ImplSubject::Trait(trait_ref_b)) => {
+ let trait_ref = ty::TraitRef::relate(relation, trait_ref_a, trait_ref_b)?;
+ Ok(ImplSubject::Trait(trait_ref))
+ }
+ (ImplSubject::Inherent(ty_a), ImplSubject::Inherent(ty_b)) => {
+ let ty = Ty::relate(relation, ty_a, ty_b)?;
+ Ok(ImplSubject::Inherent(ty))
+ }
+ (ImplSubject::Trait(_), ImplSubject::Inherent(_))
+ | (ImplSubject::Inherent(_), ImplSubject::Trait(_)) => {
+ bug!("can not relate TraitRef and Ty");
+ }
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for Ty<'tcx> {
+ #[inline]
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ ) -> RelateResult<'tcx, Ty<'tcx>> {
+ relation.tys(a, b)
+ }
+}
+
+/// The main "type relation" routine. Note that this does not handle
+/// inference artifacts, so you should filter those out before calling
+/// it.
+pub fn super_relate_tys<'tcx, R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+) -> RelateResult<'tcx, Ty<'tcx>> {
+ let tcx = relation.tcx();
+ debug!("super_relate_tys: a={:?} b={:?}", a, b);
+ match (a.kind(), b.kind()) {
+ (&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
+ // The caller should handle these cases!
+ bug!("var types encountered in super_relate_tys")
+ }
+
+ (ty::Bound(..), _) | (_, ty::Bound(..)) => {
+ bug!("bound types encountered in super_relate_tys")
+ }
+
+ (&ty::Error(_), _) | (_, &ty::Error(_)) => Ok(tcx.ty_error()),
+
+ (&ty::Never, _)
+ | (&ty::Char, _)
+ | (&ty::Bool, _)
+ | (&ty::Int(_), _)
+ | (&ty::Uint(_), _)
+ | (&ty::Float(_), _)
+ | (&ty::Str, _)
+ if a == b =>
+ {
+ Ok(a)
+ }
+
+ (&ty::Param(ref a_p), &ty::Param(ref b_p)) if a_p.index == b_p.index => Ok(a),
+
+ (ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a),
+
+ (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs)) if a_def == b_def => {
+ let substs = relation.relate_item_substs(a_def.did(), a_substs, b_substs)?;
+ Ok(tcx.mk_adt(a_def, substs))
+ }
+
+ (&ty::Foreign(a_id), &ty::Foreign(b_id)) if a_id == b_id => Ok(tcx.mk_foreign(a_id)),
+
+ (&ty::Dynamic(a_obj, a_region), &ty::Dynamic(b_obj, b_region)) => {
+ let region_bound = relation.with_cause(Cause::ExistentialRegionBound, |relation| {
+ relation.relate_with_variance(
+ ty::Contravariant,
+ ty::VarianceDiagInfo::default(),
+ a_region,
+ b_region,
+ )
+ })?;
+ Ok(tcx.mk_dynamic(relation.relate(a_obj, b_obj)?, region_bound))
+ }
+
+ (&ty::Generator(a_id, a_substs, movability), &ty::Generator(b_id, b_substs, _))
+ if a_id == b_id =>
+ {
+ // All Generator types with the same id represent
+ // the (anonymous) type of the same generator expression. So
+ // all of their regions should be equated.
+ let substs = relation.relate(a_substs, b_substs)?;
+ Ok(tcx.mk_generator(a_id, substs, movability))
+ }
+
+ (&ty::GeneratorWitness(a_types), &ty::GeneratorWitness(b_types)) => {
+ // Wrap our types with a temporary GeneratorWitness struct
+ // inside the binder so we can related them
+ let a_types = a_types.map_bound(GeneratorWitness);
+ let b_types = b_types.map_bound(GeneratorWitness);
+ // Then remove the GeneratorWitness for the result
+ let types = relation.relate(a_types, b_types)?.map_bound(|witness| witness.0);
+ Ok(tcx.mk_generator_witness(types))
+ }
+
+ (&ty::Closure(a_id, a_substs), &ty::Closure(b_id, b_substs)) if a_id == b_id => {
+ // All Closure types with the same id represent
+ // the (anonymous) type of the same closure expression. So
+ // all of their regions should be equated.
+ let substs = relation.relate(a_substs, b_substs)?;
+ Ok(tcx.mk_closure(a_id, &substs))
+ }
+
+ (&ty::RawPtr(a_mt), &ty::RawPtr(b_mt)) => {
+ let mt = relate_type_and_mut(relation, a_mt, b_mt, a)?;
+ Ok(tcx.mk_ptr(mt))
+ }
+
+ (&ty::Ref(a_r, a_ty, a_mutbl), &ty::Ref(b_r, b_ty, b_mutbl)) => {
+ let r = relation.relate_with_variance(
+ ty::Contravariant,
+ ty::VarianceDiagInfo::default(),
+ a_r,
+ b_r,
+ )?;
+ let a_mt = ty::TypeAndMut { ty: a_ty, mutbl: a_mutbl };
+ let b_mt = ty::TypeAndMut { ty: b_ty, mutbl: b_mutbl };
+ let mt = relate_type_and_mut(relation, a_mt, b_mt, a)?;
+ Ok(tcx.mk_ref(r, mt))
+ }
+
+ (&ty::Array(a_t, sz_a), &ty::Array(b_t, sz_b)) => {
+ let t = relation.relate(a_t, b_t)?;
+ match relation.relate(sz_a, sz_b) {
+ Ok(sz) => Ok(tcx.mk_ty(ty::Array(t, sz))),
+ Err(err) => {
+ // Check whether the lengths are both concrete/known values,
+ // but are unequal, for better diagnostics.
+ //
+ // It might seem dubious to eagerly evaluate these constants here,
+ // we however cannot end up with errors in `Relate` during both
+ // `type_of` and `predicates_of`. This means that evaluating the
+ // constants should not cause cycle errors here.
+ let sz_a = sz_a.try_eval_usize(tcx, relation.param_env());
+ let sz_b = sz_b.try_eval_usize(tcx, relation.param_env());
+ match (sz_a, sz_b) {
+ (Some(sz_a_val), Some(sz_b_val)) if sz_a_val != sz_b_val => Err(
+ TypeError::FixedArraySize(expected_found(relation, sz_a_val, sz_b_val)),
+ ),
+ _ => Err(err),
+ }
+ }
+ }
+ }
+
+ (&ty::Slice(a_t), &ty::Slice(b_t)) => {
+ let t = relation.relate(a_t, b_t)?;
+ Ok(tcx.mk_slice(t))
+ }
+
+ (&ty::Tuple(as_), &ty::Tuple(bs)) => {
+ if as_.len() == bs.len() {
+ Ok(tcx.mk_tup(iter::zip(as_, bs).map(|(a, b)| relation.relate(a, b)))?)
+ } else if !(as_.is_empty() || bs.is_empty()) {
+ Err(TypeError::TupleSize(expected_found(relation, as_.len(), bs.len())))
+ } else {
+ Err(TypeError::Sorts(expected_found(relation, a, b)))
+ }
+ }
+
+ (&ty::FnDef(a_def_id, a_substs), &ty::FnDef(b_def_id, b_substs))
+ if a_def_id == b_def_id =>
+ {
+ let substs = relation.relate_item_substs(a_def_id, a_substs, b_substs)?;
+ Ok(tcx.mk_fn_def(a_def_id, substs))
+ }
+
+ (&ty::FnPtr(a_fty), &ty::FnPtr(b_fty)) => {
+ let fty = relation.relate(a_fty, b_fty)?;
+ Ok(tcx.mk_fn_ptr(fty))
+ }
+
+ // these two are already handled downstream in case of lazy normalization
+ (&ty::Projection(a_data), &ty::Projection(b_data)) => {
+ let projection_ty = relation.relate(a_data, b_data)?;
+ Ok(tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs))
+ }
+
+ (&ty::Opaque(a_def_id, a_substs), &ty::Opaque(b_def_id, b_substs))
+ if a_def_id == b_def_id =>
+ {
+ let substs = relate_substs(relation, a_substs, b_substs)?;
+ Ok(tcx.mk_opaque(a_def_id, substs))
+ }
+
+ _ => Err(TypeError::Sorts(expected_found(relation, a, b))),
+ }
+}
+
+/// The main "const relation" routine. Note that this does not handle
+/// inference artifacts, so you should filter those out before calling
+/// it.
+pub fn super_relate_consts<'tcx, R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ debug!("{}.super_relate_consts(a = {:?}, b = {:?})", relation.tag(), a, b);
+ let tcx = relation.tcx();
+
+ let a_ty;
+ let b_ty;
+ if relation.tcx().features().adt_const_params {
+ a_ty = tcx.normalize_erasing_regions(relation.param_env(), a.ty());
+ b_ty = tcx.normalize_erasing_regions(relation.param_env(), b.ty());
+ } else {
+ a_ty = tcx.erase_regions(a.ty());
+ b_ty = tcx.erase_regions(b.ty());
+ }
+ if a_ty != b_ty {
+ relation.tcx().sess.delay_span_bug(
+ DUMMY_SP,
+ &format!("cannot relate constants of different types: {} != {}", a_ty, b_ty),
+ );
+ }
+
+ let eagerly_eval = |x: ty::Const<'tcx>| x.eval(tcx, relation.param_env());
+ let a = eagerly_eval(a);
+ let b = eagerly_eval(b);
+
+ // Currently, the values that can be unified are primitive types,
+ // and those that derive both `PartialEq` and `Eq`, corresponding
+ // to structural-match types.
+ let is_match = match (a.kind(), b.kind()) {
+ (ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
+ // The caller should handle these cases!
+ bug!("var types encountered in super_relate_consts: {:?} {:?}", a, b)
+ }
+
+ (ty::ConstKind::Error(_), _) => return Ok(a),
+ (_, ty::ConstKind::Error(_)) => return Ok(b),
+
+ (ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) => a_p.index == b_p.index,
+ (ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) => p1 == p2,
+ (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
+
+ (ty::ConstKind::Unevaluated(au), ty::ConstKind::Unevaluated(bu))
+ if tcx.features().generic_const_exprs =>
+ {
+ tcx.try_unify_abstract_consts(relation.param_env().and((au.shrink(), bu.shrink())))
+ }
+
+ // While this is slightly incorrect, it shouldn't matter for `min_const_generics`
+ // and is the better alternative to waiting until `generic_const_exprs` can
+ // be stabilized.
+ (ty::ConstKind::Unevaluated(au), ty::ConstKind::Unevaluated(bu))
+ if au.def == bu.def && au.promoted == bu.promoted =>
+ {
+ let substs = relation.relate_with_variance(
+ ty::Variance::Invariant,
+ ty::VarianceDiagInfo::default(),
+ au.substs,
+ bu.substs,
+ )?;
+ return Ok(tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Unevaluated(ty::Unevaluated {
+ def: au.def,
+ substs,
+ promoted: au.promoted,
+ }),
+ ty: a.ty(),
+ }));
+ }
+ _ => false,
+ };
+ if is_match { Ok(a) } else { Err(TypeError::ConstMismatch(expected_found(relation, a, b))) }
+}
+
+impl<'tcx> Relate<'tcx> for &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: Self,
+ b: Self,
+ ) -> RelateResult<'tcx, Self> {
+ let tcx = relation.tcx();
+
+ // FIXME: this is wasteful, but want to do a perf run to see how slow it is.
+ // We need to perform this deduplication as we sometimes generate duplicate projections
+ // in `a`.
+ let mut a_v: Vec<_> = a.into_iter().collect();
+ let mut b_v: Vec<_> = b.into_iter().collect();
+ // `skip_binder` here is okay because `stable_cmp` doesn't look at binders
+ a_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
+ a_v.dedup();
+ b_v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
+ b_v.dedup();
+ if a_v.len() != b_v.len() {
+ return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b)));
+ }
+
+ let v = iter::zip(a_v, b_v).map(|(ep_a, ep_b)| {
+ use crate::ty::ExistentialPredicate::*;
+ match (ep_a.skip_binder(), ep_b.skip_binder()) {
+ (Trait(a), Trait(b)) => Ok(ep_a
+ .rebind(Trait(relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder()))),
+ (Projection(a), Projection(b)) => Ok(ep_a.rebind(Projection(
+ relation.relate(ep_a.rebind(a), ep_b.rebind(b))?.skip_binder(),
+ ))),
+ (AutoTrait(a), AutoTrait(b)) if a == b => Ok(ep_a.rebind(AutoTrait(a))),
+ _ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b))),
+ }
+ });
+ tcx.mk_poly_existential_predicates(v)
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ClosureSubsts<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ClosureSubsts<'tcx>,
+ b: ty::ClosureSubsts<'tcx>,
+ ) -> RelateResult<'tcx, ty::ClosureSubsts<'tcx>> {
+ let substs = relate_substs(relation, a.substs, b.substs)?;
+ Ok(ty::ClosureSubsts { substs })
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::GeneratorSubsts<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::GeneratorSubsts<'tcx>,
+ b: ty::GeneratorSubsts<'tcx>,
+ ) -> RelateResult<'tcx, ty::GeneratorSubsts<'tcx>> {
+ let substs = relate_substs(relation, a.substs, b.substs)?;
+ Ok(ty::GeneratorSubsts { substs })
+ }
+}
+
+impl<'tcx> Relate<'tcx> for SubstsRef<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: SubstsRef<'tcx>,
+ b: SubstsRef<'tcx>,
+ ) -> RelateResult<'tcx, SubstsRef<'tcx>> {
+ relate_substs(relation, a, b)
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ ) -> RelateResult<'tcx, ty::Region<'tcx>> {
+ relation.regions(a, b)
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::Const<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ relation.consts(a, b)
+ }
+}
+
+impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder<'tcx, T> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::Binder<'tcx, T>,
+ b: ty::Binder<'tcx, T>,
+ ) -> RelateResult<'tcx, ty::Binder<'tcx, T>> {
+ relation.binders(a, b)
+ }
+}
+
+impl<'tcx> Relate<'tcx> for GenericArg<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: GenericArg<'tcx>,
+ b: GenericArg<'tcx>,
+ ) -> RelateResult<'tcx, GenericArg<'tcx>> {
+ match (a.unpack(), b.unpack()) {
+ (GenericArgKind::Lifetime(a_lt), GenericArgKind::Lifetime(b_lt)) => {
+ Ok(relation.relate(a_lt, b_lt)?.into())
+ }
+ (GenericArgKind::Type(a_ty), GenericArgKind::Type(b_ty)) => {
+ Ok(relation.relate(a_ty, b_ty)?.into())
+ }
+ (GenericArgKind::Const(a_ct), GenericArgKind::Const(b_ct)) => {
+ Ok(relation.relate(a_ct, b_ct)?.into())
+ }
+ (GenericArgKind::Lifetime(unpacked), x) => {
+ bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
+ }
+ (GenericArgKind::Type(unpacked), x) => {
+ bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
+ }
+ (GenericArgKind::Const(unpacked), x) => {
+ bug!("impossible case reached: can't relate: {:?} with {:?}", unpacked, x)
+ }
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ImplPolarity {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ImplPolarity,
+ b: ty::ImplPolarity,
+ ) -> RelateResult<'tcx, ty::ImplPolarity> {
+ if a != b {
+ Err(TypeError::PolarityMismatch(expected_found(relation, a, b)))
+ } else {
+ Ok(a)
+ }
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::TraitPredicate<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::TraitPredicate<'tcx>,
+ b: ty::TraitPredicate<'tcx>,
+ ) -> RelateResult<'tcx, ty::TraitPredicate<'tcx>> {
+ Ok(ty::TraitPredicate {
+ trait_ref: relation.relate(a.trait_ref, b.trait_ref)?,
+ constness: relation.relate(a.constness, b.constness)?,
+ polarity: relation.relate(a.polarity, b.polarity)?,
+ })
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::Term<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: Self,
+ b: Self,
+ ) -> RelateResult<'tcx, Self> {
+ Ok(match (a, b) {
+ (Term::Ty(a), Term::Ty(b)) => relation.relate(a, b)?.into(),
+ (Term::Const(a), Term::Const(b)) => relation.relate(a, b)?.into(),
+ _ => return Err(TypeError::Mismatch),
+ })
+ }
+}
+
+impl<'tcx> Relate<'tcx> for ty::ProjectionPredicate<'tcx> {
+ fn relate<R: TypeRelation<'tcx>>(
+ relation: &mut R,
+ a: ty::ProjectionPredicate<'tcx>,
+ b: ty::ProjectionPredicate<'tcx>,
+ ) -> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>> {
+ Ok(ty::ProjectionPredicate {
+ projection_ty: relation.relate(a.projection_ty, b.projection_ty)?,
+ term: relation.relate(a.term, b.term)?,
+ })
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Error handling
+
+pub fn expected_found<'tcx, R, T>(relation: &mut R, a: T, b: T) -> ExpectedFound<T>
+where
+ R: TypeRelation<'tcx>,
+{
+ ExpectedFound::new(relation.a_is_expected(), a, b)
+}