summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/ty/sty.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/ty/sty.rs')
-rw-r--r--compiler/rustc_middle/src/ty/sty.rs2295
1 files changed, 2295 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/sty.rs b/compiler/rustc_middle/src/ty/sty.rs
new file mode 100644
index 000000000..52c3a3886
--- /dev/null
+++ b/compiler/rustc_middle/src/ty/sty.rs
@@ -0,0 +1,2295 @@
+//! This module contains `TyKind` and its major components.
+
+#![allow(rustc::usage_of_ty_tykind)]
+
+use crate::infer::canonical::Canonical;
+use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
+use crate::ty::visit::ValidateBoundVars;
+use crate::ty::InferTy::*;
+use crate::ty::{
+ self, AdtDef, DefIdTree, Discr, Term, Ty, TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable,
+ TypeVisitor,
+};
+use crate::ty::{List, ParamEnv};
+use polonius_engine::Atom;
+use rustc_data_structures::captures::Captures;
+use rustc_data_structures::intern::Interned;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_index::vec::Idx;
+use rustc_macros::HashStable;
+use rustc_span::symbol::{kw, Symbol};
+use rustc_target::abi::VariantIdx;
+use rustc_target::spec::abi;
+use std::borrow::Cow;
+use std::cmp::Ordering;
+use std::fmt;
+use std::marker::PhantomData;
+use std::ops::{ControlFlow, Deref, Range};
+use ty::util::IntTypeExt;
+
+use rustc_type_ir::sty::TyKind::*;
+use rustc_type_ir::RegionKind as IrRegionKind;
+use rustc_type_ir::TyKind as IrTyKind;
+
+// Re-export the `TyKind` from `rustc_type_ir` here for convenience
+#[rustc_diagnostic_item = "TyKind"]
+pub type TyKind<'tcx> = IrTyKind<TyCtxt<'tcx>>;
+pub type RegionKind<'tcx> = IrRegionKind<TyCtxt<'tcx>>;
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
+pub struct TypeAndMut<'tcx> {
+ pub ty: Ty<'tcx>,
+ pub mutbl: hir::Mutability,
+}
+
+#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
+#[derive(HashStable)]
+/// A "free" region `fr` can be interpreted as "some region
+/// at least as big as the scope `fr.scope`".
+pub struct FreeRegion {
+ pub scope: DefId,
+ pub bound_region: BoundRegionKind,
+}
+
+#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
+#[derive(HashStable)]
+pub enum BoundRegionKind {
+ /// An anonymous region parameter for a given fn (&T)
+ BrAnon(u32),
+
+ /// Named region parameters for functions (a in &'a T)
+ ///
+ /// The `DefId` is needed to distinguish free regions in
+ /// the event of shadowing.
+ BrNamed(DefId, Symbol),
+
+ /// Anonymous region for the implicit env pointer parameter
+ /// to a closure
+ BrEnv,
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, Debug, PartialOrd, Ord)]
+#[derive(HashStable)]
+pub struct BoundRegion {
+ pub var: BoundVar,
+ pub kind: BoundRegionKind,
+}
+
+impl BoundRegionKind {
+ pub fn is_named(&self) -> bool {
+ match *self {
+ BoundRegionKind::BrNamed(_, name) => name != kw::UnderscoreLifetime,
+ _ => false,
+ }
+ }
+}
+
+pub trait Article {
+ fn article(&self) -> &'static str;
+}
+
+impl<'tcx> Article for TyKind<'tcx> {
+ /// Get the article ("a" or "an") to use with this type.
+ fn article(&self) -> &'static str {
+ match self {
+ Int(_) | Float(_) | Array(_, _) => "an",
+ Adt(def, _) if def.is_enum() => "an",
+ // This should never happen, but ICEing and causing the user's code
+ // to not compile felt too harsh.
+ Error(_) => "a",
+ _ => "a",
+ }
+ }
+}
+
+// `TyKind` is used a lot. Make sure it doesn't unintentionally get bigger.
+#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
+static_assert_size!(TyKind<'_>, 32);
+
+/// A closure can be modeled as a struct that looks like:
+/// ```ignore (illustrative)
+/// struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
+/// ```
+/// where:
+///
+/// - 'l0...'li and T0...Tj are the generic parameters
+/// in scope on the function that defined the closure,
+/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
+/// is rather hackily encoded via a scalar type. See
+/// `Ty::to_opt_closure_kind` for details.
+/// - CS represents the *closure signature*, representing as a `fn()`
+/// type. For example, `fn(u32, u32) -> u32` would mean that the closure
+/// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
+/// specified above.
+/// - U is a type parameter representing the types of its upvars, tupled up
+/// (borrowed, if appropriate; that is, if a U field represents a by-ref upvar,
+/// and the up-var has the type `Foo`, then that field of U will be `&Foo`).
+///
+/// So, for example, given this function:
+/// ```ignore (illustrative)
+/// fn foo<'a, T>(data: &'a mut T) {
+/// do(|| data.count += 1)
+/// }
+/// ```
+/// the type of the closure would be something like:
+/// ```ignore (illustrative)
+/// struct Closure<'a, T, U>(...U);
+/// ```
+/// Note that the type of the upvar is not specified in the struct.
+/// You may wonder how the impl would then be able to use the upvar,
+/// if it doesn't know it's type? The answer is that the impl is
+/// (conceptually) not fully generic over Closure but rather tied to
+/// instances with the expected upvar types:
+/// ```ignore (illustrative)
+/// impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
+/// ...
+/// }
+/// ```
+/// You can see that the *impl* fully specified the type of the upvar
+/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
+/// (Here, I am assuming that `data` is mut-borrowed.)
+///
+/// Now, the last question you may ask is: Why include the upvar types
+/// in an extra type parameter? The reason for this design is that the
+/// upvar types can reference lifetimes that are internal to the
+/// creating function. In my example above, for example, the lifetime
+/// `'b` represents the scope of the closure itself; this is some
+/// subset of `foo`, probably just the scope of the call to the to
+/// `do()`. If we just had the lifetime/type parameters from the
+/// enclosing function, we couldn't name this lifetime `'b`. Note that
+/// there can also be lifetimes in the types of the upvars themselves,
+/// if one of them happens to be a reference to something that the
+/// creating fn owns.
+///
+/// OK, you say, so why not create a more minimal set of parameters
+/// that just includes the extra lifetime parameters? The answer is
+/// primarily that it would be hard --- we don't know at the time when
+/// we create the closure type what the full types of the upvars are,
+/// nor do we know which are borrowed and which are not. In this
+/// design, we can just supply a fresh type parameter and figure that
+/// out later.
+///
+/// All right, you say, but why include the type parameters from the
+/// original function then? The answer is that codegen may need them
+/// when monomorphizing, and they may not appear in the upvars. A
+/// closure could capture no variables but still make use of some
+/// in-scope type parameter with a bound (e.g., if our example above
+/// had an extra `U: Default`, and the closure called `U::default()`).
+///
+/// There is another reason. This design (implicitly) prohibits
+/// closures from capturing themselves (except via a trait
+/// object). This simplifies closure inference considerably, since it
+/// means that when we infer the kind of a closure or its upvars, we
+/// don't have to handle cycles where the decisions we make for
+/// closure C wind up influencing the decisions we ought to make for
+/// closure C (which would then require fixed point iteration to
+/// handle). Plus it fixes an ICE. :P
+///
+/// ## Generators
+///
+/// Generators are handled similarly in `GeneratorSubsts`. The set of
+/// type parameters is similar, but `CK` and `CS` are replaced by the
+/// following type parameters:
+///
+/// * `GS`: The generator's "resume type", which is the type of the
+/// argument passed to `resume`, and the type of `yield` expressions
+/// inside the generator.
+/// * `GY`: The "yield type", which is the type of values passed to
+/// `yield` inside the generator.
+/// * `GR`: The "return type", which is the type of value returned upon
+/// completion of the generator.
+/// * `GW`: The "generator witness".
+#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
+pub struct ClosureSubsts<'tcx> {
+ /// Lifetime and type parameters from the enclosing function,
+ /// concatenated with a tuple containing the types of the upvars.
+ ///
+ /// These are separated out because codegen wants to pass them around
+ /// when monomorphizing.
+ pub substs: SubstsRef<'tcx>,
+}
+
+/// Struct returned by `split()`.
+pub struct ClosureSubstsParts<'tcx, T> {
+ pub parent_substs: &'tcx [GenericArg<'tcx>],
+ pub closure_kind_ty: T,
+ pub closure_sig_as_fn_ptr_ty: T,
+ pub tupled_upvars_ty: T,
+}
+
+impl<'tcx> ClosureSubsts<'tcx> {
+ /// Construct `ClosureSubsts` from `ClosureSubstsParts`, containing `Substs`
+ /// for the closure parent, alongside additional closure-specific components.
+ pub fn new(
+ tcx: TyCtxt<'tcx>,
+ parts: ClosureSubstsParts<'tcx, Ty<'tcx>>,
+ ) -> ClosureSubsts<'tcx> {
+ ClosureSubsts {
+ substs: tcx.mk_substs(
+ parts.parent_substs.iter().copied().chain(
+ [parts.closure_kind_ty, parts.closure_sig_as_fn_ptr_ty, parts.tupled_upvars_ty]
+ .iter()
+ .map(|&ty| ty.into()),
+ ),
+ ),
+ }
+ }
+
+ /// Divides the closure substs into their respective components.
+ /// The ordering assumed here must match that used by `ClosureSubsts::new` above.
+ fn split(self) -> ClosureSubstsParts<'tcx, GenericArg<'tcx>> {
+ match self.substs[..] {
+ [
+ ref parent_substs @ ..,
+ closure_kind_ty,
+ closure_sig_as_fn_ptr_ty,
+ tupled_upvars_ty,
+ ] => ClosureSubstsParts {
+ parent_substs,
+ closure_kind_ty,
+ closure_sig_as_fn_ptr_ty,
+ tupled_upvars_ty,
+ },
+ _ => bug!("closure substs missing synthetics"),
+ }
+ }
+
+ /// Returns `true` only if enough of the synthetic types are known to
+ /// allow using all of the methods on `ClosureSubsts` without panicking.
+ ///
+ /// Used primarily by `ty::print::pretty` to be able to handle closure
+ /// types that haven't had their synthetic types substituted in.
+ pub fn is_valid(self) -> bool {
+ self.substs.len() >= 3
+ && matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
+ }
+
+ /// Returns the substitutions of the closure's parent.
+ pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
+ self.split().parent_substs
+ }
+
+ /// Returns an iterator over the list of types of captured paths by the closure.
+ /// In case there was a type error in figuring out the types of the captured path, an
+ /// empty iterator is returned.
+ #[inline]
+ pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
+ match self.tupled_upvars_ty().kind() {
+ TyKind::Error(_) => None,
+ TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
+ TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
+ ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
+ }
+ .into_iter()
+ .flatten()
+ }
+
+ /// Returns the tuple type representing the upvars for this closure.
+ #[inline]
+ pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
+ self.split().tupled_upvars_ty.expect_ty()
+ }
+
+ /// Returns the closure kind for this closure; may return a type
+ /// variable during inference. To get the closure kind during
+ /// inference, use `infcx.closure_kind(substs)`.
+ pub fn kind_ty(self) -> Ty<'tcx> {
+ self.split().closure_kind_ty.expect_ty()
+ }
+
+ /// Returns the `fn` pointer type representing the closure signature for this
+ /// closure.
+ // FIXME(eddyb) this should be unnecessary, as the shallowly resolved
+ // type is known at the time of the creation of `ClosureSubsts`,
+ // see `rustc_typeck::check::closure`.
+ pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
+ self.split().closure_sig_as_fn_ptr_ty.expect_ty()
+ }
+
+ /// Returns the closure kind for this closure; only usable outside
+ /// of an inference context, because in that context we know that
+ /// there are no type variables.
+ ///
+ /// If you have an inference context, use `infcx.closure_kind()`.
+ pub fn kind(self) -> ty::ClosureKind {
+ self.kind_ty().to_opt_closure_kind().unwrap()
+ }
+
+ /// Extracts the signature from the closure.
+ pub fn sig(self) -> ty::PolyFnSig<'tcx> {
+ let ty = self.sig_as_fn_ptr_ty();
+ match ty.kind() {
+ ty::FnPtr(sig) => *sig,
+ _ => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {:?}", ty.kind()),
+ }
+ }
+}
+
+/// Similar to `ClosureSubsts`; see the above documentation for more.
+#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
+pub struct GeneratorSubsts<'tcx> {
+ pub substs: SubstsRef<'tcx>,
+}
+
+pub struct GeneratorSubstsParts<'tcx, T> {
+ pub parent_substs: &'tcx [GenericArg<'tcx>],
+ pub resume_ty: T,
+ pub yield_ty: T,
+ pub return_ty: T,
+ pub witness: T,
+ pub tupled_upvars_ty: T,
+}
+
+impl<'tcx> GeneratorSubsts<'tcx> {
+ /// Construct `GeneratorSubsts` from `GeneratorSubstsParts`, containing `Substs`
+ /// for the generator parent, alongside additional generator-specific components.
+ pub fn new(
+ tcx: TyCtxt<'tcx>,
+ parts: GeneratorSubstsParts<'tcx, Ty<'tcx>>,
+ ) -> GeneratorSubsts<'tcx> {
+ GeneratorSubsts {
+ substs: tcx.mk_substs(
+ parts.parent_substs.iter().copied().chain(
+ [
+ parts.resume_ty,
+ parts.yield_ty,
+ parts.return_ty,
+ parts.witness,
+ parts.tupled_upvars_ty,
+ ]
+ .iter()
+ .map(|&ty| ty.into()),
+ ),
+ ),
+ }
+ }
+
+ /// Divides the generator substs into their respective components.
+ /// The ordering assumed here must match that used by `GeneratorSubsts::new` above.
+ fn split(self) -> GeneratorSubstsParts<'tcx, GenericArg<'tcx>> {
+ match self.substs[..] {
+ [ref parent_substs @ .., resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty] => {
+ GeneratorSubstsParts {
+ parent_substs,
+ resume_ty,
+ yield_ty,
+ return_ty,
+ witness,
+ tupled_upvars_ty,
+ }
+ }
+ _ => bug!("generator substs missing synthetics"),
+ }
+ }
+
+ /// Returns `true` only if enough of the synthetic types are known to
+ /// allow using all of the methods on `GeneratorSubsts` without panicking.
+ ///
+ /// Used primarily by `ty::print::pretty` to be able to handle generator
+ /// types that haven't had their synthetic types substituted in.
+ pub fn is_valid(self) -> bool {
+ self.substs.len() >= 5
+ && matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
+ }
+
+ /// Returns the substitutions of the generator's parent.
+ pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
+ self.split().parent_substs
+ }
+
+ /// This describes the types that can be contained in a generator.
+ /// It will be a type variable initially and unified in the last stages of typeck of a body.
+ /// It contains a tuple of all the types that could end up on a generator frame.
+ /// The state transformation MIR pass may only produce layouts which mention types
+ /// in this tuple. Upvars are not counted here.
+ pub fn witness(self) -> Ty<'tcx> {
+ self.split().witness.expect_ty()
+ }
+
+ /// Returns an iterator over the list of types of captured paths by the generator.
+ /// In case there was a type error in figuring out the types of the captured path, an
+ /// empty iterator is returned.
+ #[inline]
+ pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
+ match self.tupled_upvars_ty().kind() {
+ TyKind::Error(_) => None,
+ TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
+ TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
+ ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
+ }
+ .into_iter()
+ .flatten()
+ }
+
+ /// Returns the tuple type representing the upvars for this generator.
+ #[inline]
+ pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
+ self.split().tupled_upvars_ty.expect_ty()
+ }
+
+ /// Returns the type representing the resume type of the generator.
+ pub fn resume_ty(self) -> Ty<'tcx> {
+ self.split().resume_ty.expect_ty()
+ }
+
+ /// Returns the type representing the yield type of the generator.
+ pub fn yield_ty(self) -> Ty<'tcx> {
+ self.split().yield_ty.expect_ty()
+ }
+
+ /// Returns the type representing the return type of the generator.
+ pub fn return_ty(self) -> Ty<'tcx> {
+ self.split().return_ty.expect_ty()
+ }
+
+ /// Returns the "generator signature", which consists of its yield
+ /// and return types.
+ ///
+ /// N.B., some bits of the code prefers to see this wrapped in a
+ /// binder, but it never contains bound regions. Probably this
+ /// function should be removed.
+ pub fn poly_sig(self) -> PolyGenSig<'tcx> {
+ ty::Binder::dummy(self.sig())
+ }
+
+ /// Returns the "generator signature", which consists of its resume, yield
+ /// and return types.
+ pub fn sig(self) -> GenSig<'tcx> {
+ ty::GenSig {
+ resume_ty: self.resume_ty(),
+ yield_ty: self.yield_ty(),
+ return_ty: self.return_ty(),
+ }
+ }
+}
+
+impl<'tcx> GeneratorSubsts<'tcx> {
+ /// Generator has not been resumed yet.
+ pub const UNRESUMED: usize = 0;
+ /// Generator has returned or is completed.
+ pub const RETURNED: usize = 1;
+ /// Generator has been poisoned.
+ pub const POISONED: usize = 2;
+
+ const UNRESUMED_NAME: &'static str = "Unresumed";
+ const RETURNED_NAME: &'static str = "Returned";
+ const POISONED_NAME: &'static str = "Panicked";
+
+ /// The valid variant indices of this generator.
+ #[inline]
+ pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
+ // FIXME requires optimized MIR
+ let num_variants = tcx.generator_layout(def_id).unwrap().variant_fields.len();
+ VariantIdx::new(0)..VariantIdx::new(num_variants)
+ }
+
+ /// The discriminant for the given variant. Panics if the `variant_index` is
+ /// out of range.
+ #[inline]
+ pub fn discriminant_for_variant(
+ &self,
+ def_id: DefId,
+ tcx: TyCtxt<'tcx>,
+ variant_index: VariantIdx,
+ ) -> Discr<'tcx> {
+ // Generators don't support explicit discriminant values, so they are
+ // the same as the variant index.
+ assert!(self.variant_range(def_id, tcx).contains(&variant_index));
+ Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
+ }
+
+ /// The set of all discriminants for the generator, enumerated with their
+ /// variant indices.
+ #[inline]
+ pub fn discriminants(
+ self,
+ def_id: DefId,
+ tcx: TyCtxt<'tcx>,
+ ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
+ self.variant_range(def_id, tcx).map(move |index| {
+ (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
+ })
+ }
+
+ /// Calls `f` with a reference to the name of the enumerator for the given
+ /// variant `v`.
+ pub fn variant_name(v: VariantIdx) -> Cow<'static, str> {
+ match v.as_usize() {
+ Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
+ Self::RETURNED => Cow::from(Self::RETURNED_NAME),
+ Self::POISONED => Cow::from(Self::POISONED_NAME),
+ _ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
+ }
+ }
+
+ /// The type of the state discriminant used in the generator type.
+ #[inline]
+ pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
+ tcx.types.u32
+ }
+
+ /// This returns the types of the MIR locals which had to be stored across suspension points.
+ /// It is calculated in rustc_mir_transform::generator::StateTransform.
+ /// All the types here must be in the tuple in GeneratorInterior.
+ ///
+ /// The locals are grouped by their variant number. Note that some locals may
+ /// be repeated in multiple variants.
+ #[inline]
+ pub fn state_tys(
+ self,
+ def_id: DefId,
+ tcx: TyCtxt<'tcx>,
+ ) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
+ let layout = tcx.generator_layout(def_id).unwrap();
+ layout.variant_fields.iter().map(move |variant| {
+ variant
+ .iter()
+ .map(move |field| EarlyBinder(layout.field_tys[*field]).subst(tcx, self.substs))
+ })
+ }
+
+ /// This is the types of the fields of a generator which are not stored in a
+ /// variant.
+ #[inline]
+ pub fn prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>> {
+ self.upvar_tys()
+ }
+}
+
+#[derive(Debug, Copy, Clone, HashStable)]
+pub enum UpvarSubsts<'tcx> {
+ Closure(SubstsRef<'tcx>),
+ Generator(SubstsRef<'tcx>),
+}
+
+impl<'tcx> UpvarSubsts<'tcx> {
+ /// Returns an iterator over the list of types of captured paths by the closure/generator.
+ /// In case there was a type error in figuring out the types of the captured path, an
+ /// empty iterator is returned.
+ #[inline]
+ pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
+ let tupled_tys = match self {
+ UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
+ UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
+ };
+
+ match tupled_tys.kind() {
+ TyKind::Error(_) => None,
+ TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
+ TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
+ ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
+ }
+ .into_iter()
+ .flatten()
+ }
+
+ #[inline]
+ pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
+ match self {
+ UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
+ UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
+ }
+ }
+}
+
+/// An inline const is modeled like
+/// ```ignore (illustrative)
+/// const InlineConst<'l0...'li, T0...Tj, R>: R;
+/// ```
+/// where:
+///
+/// - 'l0...'li and T0...Tj are the generic parameters
+/// inherited from the item that defined the inline const,
+/// - R represents the type of the constant.
+///
+/// When the inline const is instantiated, `R` is substituted as the actual inferred
+/// type of the constant. The reason that `R` is represented as an extra type parameter
+/// is the same reason that [`ClosureSubsts`] have `CS` and `U` as type parameters:
+/// inline const can reference lifetimes that are internal to the creating function.
+#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
+pub struct InlineConstSubsts<'tcx> {
+ /// Generic parameters from the enclosing item,
+ /// concatenated with the inferred type of the constant.
+ pub substs: SubstsRef<'tcx>,
+}
+
+/// Struct returned by `split()`.
+pub struct InlineConstSubstsParts<'tcx, T> {
+ pub parent_substs: &'tcx [GenericArg<'tcx>],
+ pub ty: T,
+}
+
+impl<'tcx> InlineConstSubsts<'tcx> {
+ /// Construct `InlineConstSubsts` from `InlineConstSubstsParts`.
+ pub fn new(
+ tcx: TyCtxt<'tcx>,
+ parts: InlineConstSubstsParts<'tcx, Ty<'tcx>>,
+ ) -> InlineConstSubsts<'tcx> {
+ InlineConstSubsts {
+ substs: tcx.mk_substs(
+ parts.parent_substs.iter().copied().chain(std::iter::once(parts.ty.into())),
+ ),
+ }
+ }
+
+ /// Divides the inline const substs into their respective components.
+ /// The ordering assumed here must match that used by `InlineConstSubsts::new` above.
+ fn split(self) -> InlineConstSubstsParts<'tcx, GenericArg<'tcx>> {
+ match self.substs[..] {
+ [ref parent_substs @ .., ty] => InlineConstSubstsParts { parent_substs, ty },
+ _ => bug!("inline const substs missing synthetics"),
+ }
+ }
+
+ /// Returns the substitutions of the inline const's parent.
+ pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
+ self.split().parent_substs
+ }
+
+ /// Returns the type of this inline const.
+ pub fn ty(self) -> Ty<'tcx> {
+ self.split().ty.expect_ty()
+ }
+}
+
+#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub enum ExistentialPredicate<'tcx> {
+ /// E.g., `Iterator`.
+ Trait(ExistentialTraitRef<'tcx>),
+ /// E.g., `Iterator::Item = T`.
+ Projection(ExistentialProjection<'tcx>),
+ /// E.g., `Send`.
+ AutoTrait(DefId),
+}
+
+impl<'tcx> ExistentialPredicate<'tcx> {
+ /// Compares via an ordering that will not change if modules are reordered or other changes are
+ /// made to the tree. In particular, this ordering is preserved across incremental compilations.
+ pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
+ use self::ExistentialPredicate::*;
+ match (*self, *other) {
+ (Trait(_), Trait(_)) => Ordering::Equal,
+ (Projection(ref a), Projection(ref b)) => {
+ tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id))
+ }
+ (AutoTrait(ref a), AutoTrait(ref b)) => {
+ tcx.def_path_hash(*a).cmp(&tcx.def_path_hash(*b))
+ }
+ (Trait(_), _) => Ordering::Less,
+ (Projection(_), Trait(_)) => Ordering::Greater,
+ (Projection(_), _) => Ordering::Less,
+ (AutoTrait(_), _) => Ordering::Greater,
+ }
+ }
+}
+
+impl<'tcx> Binder<'tcx, ExistentialPredicate<'tcx>> {
+ pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx> {
+ use crate::ty::ToPredicate;
+ match self.skip_binder() {
+ ExistentialPredicate::Trait(tr) => {
+ self.rebind(tr).with_self_ty(tcx, self_ty).without_const().to_predicate(tcx)
+ }
+ ExistentialPredicate::Projection(p) => {
+ self.rebind(p.with_self_ty(tcx, self_ty)).to_predicate(tcx)
+ }
+ ExistentialPredicate::AutoTrait(did) => {
+ let trait_ref = self.rebind(ty::TraitRef {
+ def_id: did,
+ substs: tcx.mk_substs_trait(self_ty, &[]),
+ });
+ trait_ref.without_const().to_predicate(tcx)
+ }
+ }
+ }
+}
+
+impl<'tcx> List<ty::Binder<'tcx, ExistentialPredicate<'tcx>>> {
+ /// Returns the "principal `DefId`" of this set of existential predicates.
+ ///
+ /// A Rust trait object type consists (in addition to a lifetime bound)
+ /// of a set of trait bounds, which are separated into any number
+ /// of auto-trait bounds, and at most one non-auto-trait bound. The
+ /// non-auto-trait bound is called the "principal" of the trait
+ /// object.
+ ///
+ /// Only the principal can have methods or type parameters (because
+ /// auto traits can have neither of them). This is important, because
+ /// it means the auto traits can be treated as an unordered set (methods
+ /// would force an order for the vtable, while relating traits with
+ /// type parameters without knowing the order to relate them in is
+ /// a rather non-trivial task).
+ ///
+ /// For example, in the trait object `dyn fmt::Debug + Sync`, the
+ /// principal bound is `Some(fmt::Debug)`, while the auto-trait bounds
+ /// are the set `{Sync}`.
+ ///
+ /// It is also possible to have a "trivial" trait object that
+ /// consists only of auto traits, with no principal - for example,
+ /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
+ /// is `{Send, Sync}`, while there is no principal. These trait objects
+ /// have a "trivial" vtable consisting of just the size, alignment,
+ /// and destructor.
+ pub fn principal(&self) -> Option<ty::Binder<'tcx, ExistentialTraitRef<'tcx>>> {
+ self[0]
+ .map_bound(|this| match this {
+ ExistentialPredicate::Trait(tr) => Some(tr),
+ _ => None,
+ })
+ .transpose()
+ }
+
+ pub fn principal_def_id(&self) -> Option<DefId> {
+ self.principal().map(|trait_ref| trait_ref.skip_binder().def_id)
+ }
+
+ #[inline]
+ pub fn projection_bounds<'a>(
+ &'a self,
+ ) -> impl Iterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> + 'a {
+ self.iter().filter_map(|predicate| {
+ predicate
+ .map_bound(|pred| match pred {
+ ExistentialPredicate::Projection(projection) => Some(projection),
+ _ => None,
+ })
+ .transpose()
+ })
+ }
+
+ #[inline]
+ pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + Captures<'tcx> + 'a {
+ self.iter().filter_map(|predicate| match predicate.skip_binder() {
+ ExistentialPredicate::AutoTrait(did) => Some(did),
+ _ => None,
+ })
+ }
+}
+
+/// A complete reference to a trait. These take numerous guises in syntax,
+/// but perhaps the most recognizable form is in a where-clause:
+/// ```ignore (illustrative)
+/// T: Foo<U>
+/// ```
+/// This would be represented by a trait-reference where the `DefId` is the
+/// `DefId` for the trait `Foo` and the substs define `T` as parameter 0,
+/// and `U` as parameter 1.
+///
+/// Trait references also appear in object types like `Foo<U>`, but in
+/// that case the `Self` parameter is absent from the substitutions.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub struct TraitRef<'tcx> {
+ pub def_id: DefId,
+ pub substs: SubstsRef<'tcx>,
+}
+
+impl<'tcx> TraitRef<'tcx> {
+ pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx> {
+ TraitRef { def_id, substs }
+ }
+
+ /// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
+ /// are the parameters defined on trait.
+ pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> Binder<'tcx, TraitRef<'tcx>> {
+ ty::Binder::dummy(TraitRef {
+ def_id,
+ substs: InternalSubsts::identity_for_item(tcx, def_id),
+ })
+ }
+
+ #[inline]
+ pub fn self_ty(&self) -> Ty<'tcx> {
+ self.substs.type_at(0)
+ }
+
+ pub fn from_method(
+ tcx: TyCtxt<'tcx>,
+ trait_id: DefId,
+ substs: SubstsRef<'tcx>,
+ ) -> ty::TraitRef<'tcx> {
+ let defs = tcx.generics_of(trait_id);
+ ty::TraitRef { def_id: trait_id, substs: tcx.intern_substs(&substs[..defs.params.len()]) }
+ }
+}
+
+pub type PolyTraitRef<'tcx> = Binder<'tcx, TraitRef<'tcx>>;
+
+impl<'tcx> PolyTraitRef<'tcx> {
+ pub fn self_ty(&self) -> Binder<'tcx, Ty<'tcx>> {
+ self.map_bound_ref(|tr| tr.self_ty())
+ }
+
+ pub fn def_id(&self) -> DefId {
+ self.skip_binder().def_id
+ }
+
+ pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
+ self.map_bound(|trait_ref| ty::TraitPredicate {
+ trait_ref,
+ constness: ty::BoundConstness::NotConst,
+ polarity: ty::ImplPolarity::Positive,
+ })
+ }
+
+ /// Same as [`PolyTraitRef::to_poly_trait_predicate`] but sets a negative polarity instead.
+ pub fn to_poly_trait_predicate_negative_polarity(&self) -> ty::PolyTraitPredicate<'tcx> {
+ self.map_bound(|trait_ref| ty::TraitPredicate {
+ trait_ref,
+ constness: ty::BoundConstness::NotConst,
+ polarity: ty::ImplPolarity::Negative,
+ })
+ }
+}
+
+/// An existential reference to a trait, where `Self` is erased.
+/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
+/// ```ignore (illustrative)
+/// exists T. T: Trait<'a, 'b, X, Y>
+/// ```
+/// The substitutions don't include the erased `Self`, only trait
+/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub struct ExistentialTraitRef<'tcx> {
+ pub def_id: DefId,
+ pub substs: SubstsRef<'tcx>,
+}
+
+impl<'tcx> ExistentialTraitRef<'tcx> {
+ pub fn erase_self_ty(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+ ) -> ty::ExistentialTraitRef<'tcx> {
+ // Assert there is a Self.
+ trait_ref.substs.type_at(0);
+
+ ty::ExistentialTraitRef {
+ def_id: trait_ref.def_id,
+ substs: tcx.intern_substs(&trait_ref.substs[1..]),
+ }
+ }
+
+ /// Object types don't have a self type specified. Therefore, when
+ /// we convert the principal trait-ref into a normal trait-ref,
+ /// you must give *some* self type. A common choice is `mk_err()`
+ /// or some placeholder type.
+ pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
+ // otherwise the escaping vars would be captured by the binder
+ // debug_assert!(!self_ty.has_escaping_bound_vars());
+
+ ty::TraitRef { def_id: self.def_id, substs: tcx.mk_substs_trait(self_ty, self.substs) }
+ }
+}
+
+pub type PolyExistentialTraitRef<'tcx> = Binder<'tcx, ExistentialTraitRef<'tcx>>;
+
+impl<'tcx> PolyExistentialTraitRef<'tcx> {
+ pub fn def_id(&self) -> DefId {
+ self.skip_binder().def_id
+ }
+
+ /// Object types don't have a self type specified. Therefore, when
+ /// we convert the principal trait-ref into a normal trait-ref,
+ /// you must give *some* self type. A common choice is `mk_err()`
+ /// or some placeholder type.
+ pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
+ self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
+#[derive(Encodable, Decodable, HashStable)]
+pub struct EarlyBinder<T>(pub T);
+
+impl<T> EarlyBinder<T> {
+ pub fn as_ref(&self) -> EarlyBinder<&T> {
+ EarlyBinder(&self.0)
+ }
+
+ pub fn map_bound_ref<F, U>(&self, f: F) -> EarlyBinder<U>
+ where
+ F: FnOnce(&T) -> U,
+ {
+ self.as_ref().map_bound(f)
+ }
+
+ pub fn map_bound<F, U>(self, f: F) -> EarlyBinder<U>
+ where
+ F: FnOnce(T) -> U,
+ {
+ let value = f(self.0);
+ EarlyBinder(value)
+ }
+
+ pub fn try_map_bound<F, U, E>(self, f: F) -> Result<EarlyBinder<U>, E>
+ where
+ F: FnOnce(T) -> Result<U, E>,
+ {
+ let value = f(self.0)?;
+ Ok(EarlyBinder(value))
+ }
+
+ pub fn rebind<U>(&self, value: U) -> EarlyBinder<U> {
+ EarlyBinder(value)
+ }
+}
+
+impl<T> EarlyBinder<Option<T>> {
+ pub fn transpose(self) -> Option<EarlyBinder<T>> {
+ self.0.map(|v| EarlyBinder(v))
+ }
+}
+
+impl<T, U> EarlyBinder<(T, U)> {
+ pub fn transpose_tuple2(self) -> (EarlyBinder<T>, EarlyBinder<U>) {
+ (EarlyBinder(self.0.0), EarlyBinder(self.0.1))
+ }
+}
+
+pub struct EarlyBinderIter<T> {
+ t: T,
+}
+
+impl<T: IntoIterator> EarlyBinder<T> {
+ pub fn transpose_iter(self) -> EarlyBinderIter<T::IntoIter> {
+ EarlyBinderIter { t: self.0.into_iter() }
+ }
+}
+
+impl<T: Iterator> Iterator for EarlyBinderIter<T> {
+ type Item = EarlyBinder<T::Item>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.t.next().map(|i| EarlyBinder(i))
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable)]
+pub enum BoundVariableKind {
+ Ty(BoundTyKind),
+ Region(BoundRegionKind),
+ Const,
+}
+
+impl BoundVariableKind {
+ pub fn expect_region(self) -> BoundRegionKind {
+ match self {
+ BoundVariableKind::Region(lt) => lt,
+ _ => bug!("expected a region, but found another kind"),
+ }
+ }
+
+ pub fn expect_ty(self) -> BoundTyKind {
+ match self {
+ BoundVariableKind::Ty(ty) => ty,
+ _ => bug!("expected a type, but found another kind"),
+ }
+ }
+
+ pub fn expect_const(self) {
+ match self {
+ BoundVariableKind::Const => (),
+ _ => bug!("expected a const, but found another kind"),
+ }
+ }
+}
+
+/// Binder is a binder for higher-ranked lifetimes or types. It is part of the
+/// compiler's representation for things like `for<'a> Fn(&'a isize)`
+/// (which would be represented by the type `PolyTraitRef ==
+/// Binder<'tcx, TraitRef>`). Note that when we instantiate,
+/// erase, or otherwise "discharge" these bound vars, we change the
+/// type from `Binder<'tcx, T>` to just `T` (see
+/// e.g., `liberate_late_bound_regions`).
+///
+/// `Decodable` and `Encodable` are implemented for `Binder<T>` using the `impl_binder_encode_decode!` macro.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
+#[derive(HashStable)]
+pub struct Binder<'tcx, T>(T, &'tcx List<BoundVariableKind>);
+
+impl<'tcx, T> Binder<'tcx, T>
+where
+ T: TypeVisitable<'tcx>,
+{
+ /// Wraps `value` in a binder, asserting that `value` does not
+ /// contain any bound vars that would be bound by the
+ /// binder. This is commonly used to 'inject' a value T into a
+ /// different binding level.
+ pub fn dummy(value: T) -> Binder<'tcx, T> {
+ assert!(!value.has_escaping_bound_vars());
+ Binder(value, ty::List::empty())
+ }
+
+ pub fn bind_with_vars(value: T, vars: &'tcx List<BoundVariableKind>) -> Binder<'tcx, T> {
+ if cfg!(debug_assertions) {
+ let mut validator = ValidateBoundVars::new(vars);
+ value.visit_with(&mut validator);
+ }
+ Binder(value, vars)
+ }
+}
+
+impl<'tcx, T> Binder<'tcx, T> {
+ /// Skips the binder and returns the "bound" value. This is a
+ /// risky thing to do because it's easy to get confused about
+ /// De Bruijn indices and the like. It is usually better to
+ /// discharge the binder using `no_bound_vars` or
+ /// `replace_late_bound_regions` or something like
+ /// that. `skip_binder` is only valid when you are either
+ /// extracting data that has nothing to do with bound vars, you
+ /// are doing some sort of test that does not involve bound
+ /// regions, or you are being very careful about your depth
+ /// accounting.
+ ///
+ /// Some examples where `skip_binder` is reasonable:
+ ///
+ /// - extracting the `DefId` from a PolyTraitRef;
+ /// - comparing the self type of a PolyTraitRef to see if it is equal to
+ /// a type parameter `X`, since the type `X` does not reference any regions
+ pub fn skip_binder(self) -> T {
+ self.0
+ }
+
+ pub fn bound_vars(&self) -> &'tcx List<BoundVariableKind> {
+ self.1
+ }
+
+ pub fn as_ref(&self) -> Binder<'tcx, &T> {
+ Binder(&self.0, self.1)
+ }
+
+ pub fn as_deref(&self) -> Binder<'tcx, &T::Target>
+ where
+ T: Deref,
+ {
+ Binder(&self.0, self.1)
+ }
+
+ pub fn map_bound_ref_unchecked<F, U>(&self, f: F) -> Binder<'tcx, U>
+ where
+ F: FnOnce(&T) -> U,
+ {
+ let value = f(&self.0);
+ Binder(value, self.1)
+ }
+
+ pub fn map_bound_ref<F, U: TypeVisitable<'tcx>>(&self, f: F) -> Binder<'tcx, U>
+ where
+ F: FnOnce(&T) -> U,
+ {
+ self.as_ref().map_bound(f)
+ }
+
+ pub fn map_bound<F, U: TypeVisitable<'tcx>>(self, f: F) -> Binder<'tcx, U>
+ where
+ F: FnOnce(T) -> U,
+ {
+ let value = f(self.0);
+ if cfg!(debug_assertions) {
+ let mut validator = ValidateBoundVars::new(self.1);
+ value.visit_with(&mut validator);
+ }
+ Binder(value, self.1)
+ }
+
+ pub fn try_map_bound<F, U: TypeVisitable<'tcx>, E>(self, f: F) -> Result<Binder<'tcx, U>, E>
+ where
+ F: FnOnce(T) -> Result<U, E>,
+ {
+ let value = f(self.0)?;
+ if cfg!(debug_assertions) {
+ let mut validator = ValidateBoundVars::new(self.1);
+ value.visit_with(&mut validator);
+ }
+ Ok(Binder(value, self.1))
+ }
+
+ /// Wraps a `value` in a binder, using the same bound variables as the
+ /// current `Binder`. This should not be used if the new value *changes*
+ /// the bound variables. Note: the (old or new) value itself does not
+ /// necessarily need to *name* all the bound variables.
+ ///
+ /// This currently doesn't do anything different than `bind`, because we
+ /// don't actually track bound vars. However, semantically, it is different
+ /// because bound vars aren't allowed to change here, whereas they are
+ /// in `bind`. This may be (debug) asserted in the future.
+ pub fn rebind<U>(&self, value: U) -> Binder<'tcx, U>
+ where
+ U: TypeVisitable<'tcx>,
+ {
+ if cfg!(debug_assertions) {
+ let mut validator = ValidateBoundVars::new(self.bound_vars());
+ value.visit_with(&mut validator);
+ }
+ Binder(value, self.1)
+ }
+
+ /// Unwraps and returns the value within, but only if it contains
+ /// no bound vars at all. (In other words, if this binder --
+ /// and indeed any enclosing binder -- doesn't bind anything at
+ /// all.) Otherwise, returns `None`.
+ ///
+ /// (One could imagine having a method that just unwraps a single
+ /// binder, but permits late-bound vars bound by enclosing
+ /// binders, but that would require adjusting the debruijn
+ /// indices, and given the shallow binding structure we often use,
+ /// would not be that useful.)
+ pub fn no_bound_vars(self) -> Option<T>
+ where
+ T: TypeVisitable<'tcx>,
+ {
+ if self.0.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
+ }
+
+ /// Splits the contents into two things that share the same binder
+ /// level as the original, returning two distinct binders.
+ ///
+ /// `f` should consider bound regions at depth 1 to be free, and
+ /// anything it produces with bound regions at depth 1 will be
+ /// bound in the resulting return values.
+ pub fn split<U, V, F>(self, f: F) -> (Binder<'tcx, U>, Binder<'tcx, V>)
+ where
+ F: FnOnce(T) -> (U, V),
+ {
+ let (u, v) = f(self.0);
+ (Binder(u, self.1), Binder(v, self.1))
+ }
+}
+
+impl<'tcx, T> Binder<'tcx, Option<T>> {
+ pub fn transpose(self) -> Option<Binder<'tcx, T>> {
+ let bound_vars = self.1;
+ self.0.map(|v| Binder(v, bound_vars))
+ }
+}
+
+/// Represents the projection of an associated type. In explicit UFCS
+/// form this would be written `<T as Trait<..>>::N`.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub struct ProjectionTy<'tcx> {
+ /// The parameters of the associated item.
+ pub substs: SubstsRef<'tcx>,
+
+ /// The `DefId` of the `TraitItem` for the associated type `N`.
+ ///
+ /// Note that this is not the `DefId` of the `TraitRef` containing this
+ /// associated type, which is in `tcx.associated_item(item_def_id).container`,
+ /// aka. `tcx.parent(item_def_id).unwrap()`.
+ pub item_def_id: DefId,
+}
+
+impl<'tcx> ProjectionTy<'tcx> {
+ pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
+ tcx.parent(self.item_def_id)
+ }
+
+ /// Extracts the underlying trait reference and own substs from this projection.
+ /// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
+ /// then this function would return a `T: Iterator` trait reference and `['a]` as the own substs
+ pub fn trait_ref_and_own_substs(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ ) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
+ let def_id = tcx.parent(self.item_def_id);
+ let trait_generics = tcx.generics_of(def_id);
+ (
+ ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, trait_generics) },
+ &self.substs[trait_generics.count()..],
+ )
+ }
+
+ /// Extracts the underlying trait reference from this projection.
+ /// For example, if this is a projection of `<T as Iterator>::Item`,
+ /// then this function would return a `T: Iterator` trait reference.
+ ///
+ /// WARNING: This will drop the substs for generic associated types
+ /// consider calling [Self::trait_ref_and_own_substs] to get those
+ /// as well.
+ pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
+ let def_id = self.trait_def_id(tcx);
+ ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, tcx.generics_of(def_id)) }
+ }
+
+ pub fn self_ty(&self) -> Ty<'tcx> {
+ self.substs.type_at(0)
+ }
+}
+
+#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
+pub struct GenSig<'tcx> {
+ pub resume_ty: Ty<'tcx>,
+ pub yield_ty: Ty<'tcx>,
+ pub return_ty: Ty<'tcx>,
+}
+
+pub type PolyGenSig<'tcx> = Binder<'tcx, GenSig<'tcx>>;
+
+/// Signature of a function type, which we have arbitrarily
+/// decided to use to refer to the input/output types.
+///
+/// - `inputs`: is the list of arguments and their modes.
+/// - `output`: is the return type.
+/// - `c_variadic`: indicates whether this is a C-variadic function.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub struct FnSig<'tcx> {
+ pub inputs_and_output: &'tcx List<Ty<'tcx>>,
+ pub c_variadic: bool,
+ pub unsafety: hir::Unsafety,
+ pub abi: abi::Abi,
+}
+
+impl<'tcx> FnSig<'tcx> {
+ pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
+ &self.inputs_and_output[..self.inputs_and_output.len() - 1]
+ }
+
+ pub fn output(&self) -> Ty<'tcx> {
+ self.inputs_and_output[self.inputs_and_output.len() - 1]
+ }
+
+ // Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
+ // method.
+ fn fake() -> FnSig<'tcx> {
+ FnSig {
+ inputs_and_output: List::empty(),
+ c_variadic: false,
+ unsafety: hir::Unsafety::Normal,
+ abi: abi::Abi::Rust,
+ }
+ }
+}
+
+pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
+
+impl<'tcx> PolyFnSig<'tcx> {
+ #[inline]
+ pub fn inputs(&self) -> Binder<'tcx, &'tcx [Ty<'tcx>]> {
+ self.map_bound_ref_unchecked(|fn_sig| fn_sig.inputs())
+ }
+ #[inline]
+ pub fn input(&self, index: usize) -> ty::Binder<'tcx, Ty<'tcx>> {
+ self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
+ }
+ pub fn inputs_and_output(&self) -> ty::Binder<'tcx, &'tcx List<Ty<'tcx>>> {
+ self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
+ }
+ #[inline]
+ pub fn output(&self) -> ty::Binder<'tcx, Ty<'tcx>> {
+ self.map_bound_ref(|fn_sig| fn_sig.output())
+ }
+ pub fn c_variadic(&self) -> bool {
+ self.skip_binder().c_variadic
+ }
+ pub fn unsafety(&self) -> hir::Unsafety {
+ self.skip_binder().unsafety
+ }
+ pub fn abi(&self) -> abi::Abi {
+ self.skip_binder().abi
+ }
+}
+
+pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
+#[derive(HashStable)]
+pub struct ParamTy {
+ pub index: u32,
+ pub name: Symbol,
+}
+
+impl<'tcx> ParamTy {
+ pub fn new(index: u32, name: Symbol) -> ParamTy {
+ ParamTy { index, name }
+ }
+
+ pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
+ ParamTy::new(def.index, def.name)
+ }
+
+ #[inline]
+ pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
+ tcx.mk_ty_param(self.index, self.name)
+ }
+}
+
+#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
+#[derive(HashStable)]
+pub struct ParamConst {
+ pub index: u32,
+ pub name: Symbol,
+}
+
+impl ParamConst {
+ pub fn new(index: u32, name: Symbol) -> ParamConst {
+ ParamConst { index, name }
+ }
+
+ pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
+ ParamConst::new(def.index, def.name)
+ }
+}
+
+/// Use this rather than `RegionKind`, whenever possible.
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable)]
+#[rustc_pass_by_value]
+pub struct Region<'tcx>(pub Interned<'tcx, RegionKind<'tcx>>);
+
+impl<'tcx> Deref for Region<'tcx> {
+ type Target = RegionKind<'tcx>;
+
+ #[inline]
+ fn deref(&self) -> &RegionKind<'tcx> {
+ &self.0.0
+ }
+}
+
+impl<'tcx> fmt::Debug for Region<'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "{:?}", self.kind())
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
+#[derive(HashStable)]
+pub struct EarlyBoundRegion {
+ pub def_id: DefId,
+ pub index: u32,
+ pub name: Symbol,
+}
+
+impl fmt::Debug for EarlyBoundRegion {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "{}, {}", self.index, self.name)
+ }
+}
+
+/// A **`const`** **v**ariable **ID**.
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
+#[derive(HashStable, TyEncodable, TyDecodable)]
+pub struct ConstVid<'tcx> {
+ pub index: u32,
+ pub phantom: PhantomData<&'tcx ()>,
+}
+
+rustc_index::newtype_index! {
+ /// A **region** (lifetime) **v**ariable **ID**.
+ #[derive(HashStable)]
+ pub struct RegionVid {
+ DEBUG_FORMAT = custom,
+ }
+}
+
+impl Atom for RegionVid {
+ fn index(self) -> usize {
+ Idx::index(self)
+ }
+}
+
+rustc_index::newtype_index! {
+ #[derive(HashStable)]
+ pub struct BoundVar { .. }
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable)]
+pub struct BoundTy {
+ pub var: BoundVar,
+ pub kind: BoundTyKind,
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable)]
+pub enum BoundTyKind {
+ Anon,
+ Param(Symbol),
+}
+
+impl From<BoundVar> for BoundTy {
+ fn from(var: BoundVar) -> Self {
+ BoundTy { var, kind: BoundTyKind::Anon }
+ }
+}
+
+/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
+#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
+#[derive(HashStable, TypeFoldable, TypeVisitable)]
+pub struct ExistentialProjection<'tcx> {
+ pub item_def_id: DefId,
+ pub substs: SubstsRef<'tcx>,
+ pub term: Term<'tcx>,
+}
+
+pub type PolyExistentialProjection<'tcx> = Binder<'tcx, ExistentialProjection<'tcx>>;
+
+impl<'tcx> ExistentialProjection<'tcx> {
+ /// Extracts the underlying existential trait reference from this projection.
+ /// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
+ /// then this function would return an `exists T. T: Iterator` existential trait
+ /// reference.
+ pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx> {
+ let def_id = tcx.parent(self.item_def_id);
+ let subst_count = tcx.generics_of(def_id).count() - 1;
+ let substs = tcx.intern_substs(&self.substs[..subst_count]);
+ ty::ExistentialTraitRef { def_id, substs }
+ }
+
+ pub fn with_self_ty(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ self_ty: Ty<'tcx>,
+ ) -> ty::ProjectionPredicate<'tcx> {
+ // otherwise the escaping regions would be captured by the binders
+ debug_assert!(!self_ty.has_escaping_bound_vars());
+
+ ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy {
+ item_def_id: self.item_def_id,
+ substs: tcx.mk_substs_trait(self_ty, self.substs),
+ },
+ term: self.term,
+ }
+ }
+
+ pub fn erase_self_ty(
+ tcx: TyCtxt<'tcx>,
+ projection_predicate: ty::ProjectionPredicate<'tcx>,
+ ) -> Self {
+ // Assert there is a Self.
+ projection_predicate.projection_ty.substs.type_at(0);
+
+ Self {
+ item_def_id: projection_predicate.projection_ty.item_def_id,
+ substs: tcx.intern_substs(&projection_predicate.projection_ty.substs[1..]),
+ term: projection_predicate.term,
+ }
+ }
+}
+
+impl<'tcx> PolyExistentialProjection<'tcx> {
+ pub fn with_self_ty(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ self_ty: Ty<'tcx>,
+ ) -> ty::PolyProjectionPredicate<'tcx> {
+ self.map_bound(|p| p.with_self_ty(tcx, self_ty))
+ }
+
+ pub fn item_def_id(&self) -> DefId {
+ self.skip_binder().item_def_id
+ }
+}
+
+/// Region utilities
+impl<'tcx> Region<'tcx> {
+ pub fn kind(self) -> RegionKind<'tcx> {
+ *self.0.0
+ }
+
+ /// Is this region named by the user?
+ pub fn has_name(self) -> bool {
+ match *self {
+ ty::ReEarlyBound(ebr) => ebr.has_name(),
+ ty::ReLateBound(_, br) => br.kind.is_named(),
+ ty::ReFree(fr) => fr.bound_region.is_named(),
+ ty::ReStatic => true,
+ ty::ReVar(..) => false,
+ ty::RePlaceholder(placeholder) => placeholder.name.is_named(),
+ ty::ReEmpty(_) => false,
+ ty::ReErased => false,
+ }
+ }
+
+ #[inline]
+ pub fn is_static(self) -> bool {
+ matches!(*self, ty::ReStatic)
+ }
+
+ #[inline]
+ pub fn is_erased(self) -> bool {
+ matches!(*self, ty::ReErased)
+ }
+
+ #[inline]
+ pub fn is_late_bound(self) -> bool {
+ matches!(*self, ty::ReLateBound(..))
+ }
+
+ #[inline]
+ pub fn is_placeholder(self) -> bool {
+ matches!(*self, ty::RePlaceholder(..))
+ }
+
+ #[inline]
+ pub fn is_empty(self) -> bool {
+ matches!(*self, ty::ReEmpty(..))
+ }
+
+ #[inline]
+ pub fn bound_at_or_above_binder(self, index: ty::DebruijnIndex) -> bool {
+ match *self {
+ ty::ReLateBound(debruijn, _) => debruijn >= index,
+ _ => false,
+ }
+ }
+
+ pub fn type_flags(self) -> TypeFlags {
+ let mut flags = TypeFlags::empty();
+
+ match *self {
+ ty::ReVar(..) => {
+ flags = flags | TypeFlags::HAS_FREE_REGIONS;
+ flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
+ flags = flags | TypeFlags::HAS_RE_INFER;
+ }
+ ty::RePlaceholder(..) => {
+ flags = flags | TypeFlags::HAS_FREE_REGIONS;
+ flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
+ flags = flags | TypeFlags::HAS_RE_PLACEHOLDER;
+ }
+ ty::ReEarlyBound(..) => {
+ flags = flags | TypeFlags::HAS_FREE_REGIONS;
+ flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
+ flags = flags | TypeFlags::HAS_RE_PARAM;
+ }
+ ty::ReFree { .. } => {
+ flags = flags | TypeFlags::HAS_FREE_REGIONS;
+ flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
+ }
+ ty::ReEmpty(_) | ty::ReStatic => {
+ flags = flags | TypeFlags::HAS_FREE_REGIONS;
+ }
+ ty::ReLateBound(..) => {
+ flags = flags | TypeFlags::HAS_RE_LATE_BOUND;
+ }
+ ty::ReErased => {
+ flags = flags | TypeFlags::HAS_RE_ERASED;
+ }
+ }
+
+ debug!("type_flags({:?}) = {:?}", self, flags);
+
+ flags
+ }
+
+ /// Given an early-bound or free region, returns the `DefId` where it was bound.
+ /// For example, consider the regions in this snippet of code:
+ ///
+ /// ```ignore (illustrative)
+ /// impl<'a> Foo {
+ /// // ^^ -- early bound, declared on an impl
+ ///
+ /// fn bar<'b, 'c>(x: &self, y: &'b u32, z: &'c u64) where 'static: 'c
+ /// // ^^ ^^ ^ anonymous, late-bound
+ /// // | early-bound, appears in where-clauses
+ /// // late-bound, appears only in fn args
+ /// {..}
+ /// }
+ /// ```
+ ///
+ /// Here, `free_region_binding_scope('a)` would return the `DefId`
+ /// of the impl, and for all the other highlighted regions, it
+ /// would return the `DefId` of the function. In other cases (not shown), this
+ /// function might return the `DefId` of a closure.
+ pub fn free_region_binding_scope(self, tcx: TyCtxt<'_>) -> DefId {
+ match *self {
+ ty::ReEarlyBound(br) => tcx.parent(br.def_id),
+ ty::ReFree(fr) => fr.scope,
+ _ => bug!("free_region_binding_scope invoked on inappropriate region: {:?}", self),
+ }
+ }
+
+ /// True for free regions other than `'static`.
+ pub fn is_free(self) -> bool {
+ matches!(*self, ty::ReEarlyBound(_) | ty::ReFree(_))
+ }
+
+ /// True if `self` is a free region or static.
+ pub fn is_free_or_static(self) -> bool {
+ match *self {
+ ty::ReStatic => true,
+ _ => self.is_free(),
+ }
+ }
+}
+
+/// Type utilities
+impl<'tcx> Ty<'tcx> {
+ #[inline(always)]
+ pub fn kind(self) -> &'tcx TyKind<'tcx> {
+ &self.0.0.kind
+ }
+
+ #[inline(always)]
+ pub fn flags(self) -> TypeFlags {
+ self.0.0.flags
+ }
+
+ #[inline]
+ pub fn is_unit(self) -> bool {
+ match self.kind() {
+ Tuple(ref tys) => tys.is_empty(),
+ _ => false,
+ }
+ }
+
+ #[inline]
+ pub fn is_never(self) -> bool {
+ matches!(self.kind(), Never)
+ }
+
+ #[inline]
+ pub fn is_primitive(self) -> bool {
+ self.kind().is_primitive()
+ }
+
+ #[inline]
+ pub fn is_adt(self) -> bool {
+ matches!(self.kind(), Adt(..))
+ }
+
+ #[inline]
+ pub fn is_ref(self) -> bool {
+ matches!(self.kind(), Ref(..))
+ }
+
+ #[inline]
+ pub fn is_ty_var(self) -> bool {
+ matches!(self.kind(), Infer(TyVar(_)))
+ }
+
+ #[inline]
+ pub fn ty_vid(self) -> Option<ty::TyVid> {
+ match self.kind() {
+ &Infer(TyVar(vid)) => Some(vid),
+ _ => None,
+ }
+ }
+
+ #[inline]
+ pub fn is_ty_infer(self) -> bool {
+ matches!(self.kind(), Infer(_))
+ }
+
+ #[inline]
+ pub fn is_phantom_data(self) -> bool {
+ if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
+ }
+
+ #[inline]
+ pub fn is_bool(self) -> bool {
+ *self.kind() == Bool
+ }
+
+ /// Returns `true` if this type is a `str`.
+ #[inline]
+ pub fn is_str(self) -> bool {
+ *self.kind() == Str
+ }
+
+ #[inline]
+ pub fn is_param(self, index: u32) -> bool {
+ match self.kind() {
+ ty::Param(ref data) => data.index == index,
+ _ => false,
+ }
+ }
+
+ #[inline]
+ pub fn is_slice(self) -> bool {
+ matches!(self.kind(), Slice(_))
+ }
+
+ #[inline]
+ pub fn is_array_slice(self) -> bool {
+ match self.kind() {
+ Slice(_) => true,
+ RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
+ _ => false,
+ }
+ }
+
+ #[inline]
+ pub fn is_array(self) -> bool {
+ matches!(self.kind(), Array(..))
+ }
+
+ #[inline]
+ pub fn is_simd(self) -> bool {
+ match self.kind() {
+ Adt(def, _) => def.repr().simd(),
+ _ => false,
+ }
+ }
+
+ pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
+ match self.kind() {
+ Array(ty, _) | Slice(ty) => *ty,
+ Str => tcx.types.u8,
+ _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
+ }
+ }
+
+ pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
+ match self.kind() {
+ Adt(def, substs) => {
+ assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
+ let variant = def.non_enum_variant();
+ let f0_ty = variant.fields[0].ty(tcx, substs);
+
+ match f0_ty.kind() {
+ // If the first field is an array, we assume it is the only field and its
+ // elements are the SIMD components.
+ Array(f0_elem_ty, f0_len) => {
+ // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
+ // The way we evaluate the `N` in `[T; N]` here only works since we use
+ // `simd_size_and_type` post-monomorphization. It will probably start to ICE
+ // if we use it in generic code. See the `simd-array-trait` ui test.
+ (f0_len.eval_usize(tcx, ParamEnv::empty()) as u64, *f0_elem_ty)
+ }
+ // Otherwise, the fields of this Adt are the SIMD components (and we assume they
+ // all have the same type).
+ _ => (variant.fields.len() as u64, f0_ty),
+ }
+ }
+ _ => bug!("`simd_size_and_type` called on invalid type"),
+ }
+ }
+
+ #[inline]
+ pub fn is_region_ptr(self) -> bool {
+ matches!(self.kind(), Ref(..))
+ }
+
+ #[inline]
+ pub fn is_mutable_ptr(self) -> bool {
+ matches!(
+ self.kind(),
+ RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
+ | Ref(_, _, hir::Mutability::Mut)
+ )
+ }
+
+ /// Get the mutability of the reference or `None` when not a reference
+ #[inline]
+ pub fn ref_mutability(self) -> Option<hir::Mutability> {
+ match self.kind() {
+ Ref(_, _, mutability) => Some(*mutability),
+ _ => None,
+ }
+ }
+
+ #[inline]
+ pub fn is_unsafe_ptr(self) -> bool {
+ matches!(self.kind(), RawPtr(_))
+ }
+
+ /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
+ #[inline]
+ pub fn is_any_ptr(self) -> bool {
+ self.is_region_ptr() || self.is_unsafe_ptr() || self.is_fn_ptr()
+ }
+
+ #[inline]
+ pub fn is_box(self) -> bool {
+ match self.kind() {
+ Adt(def, _) => def.is_box(),
+ _ => false,
+ }
+ }
+
+ /// Panics if called on any type other than `Box<T>`.
+ pub fn boxed_ty(self) -> Ty<'tcx> {
+ match self.kind() {
+ Adt(def, substs) if def.is_box() => substs.type_at(0),
+ _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
+ }
+ }
+
+ /// A scalar type is one that denotes an atomic datum, with no sub-components.
+ /// (A RawPtr is scalar because it represents a non-managed pointer, so its
+ /// contents are abstract to rustc.)
+ #[inline]
+ pub fn is_scalar(self) -> bool {
+ matches!(
+ self.kind(),
+ Bool | Char
+ | Int(_)
+ | Float(_)
+ | Uint(_)
+ | FnDef(..)
+ | FnPtr(_)
+ | RawPtr(_)
+ | Infer(IntVar(_) | FloatVar(_))
+ )
+ }
+
+ /// Returns `true` if this type is a floating point type.
+ #[inline]
+ pub fn is_floating_point(self) -> bool {
+ matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
+ }
+
+ #[inline]
+ pub fn is_trait(self) -> bool {
+ matches!(self.kind(), Dynamic(..))
+ }
+
+ #[inline]
+ pub fn is_enum(self) -> bool {
+ matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
+ }
+
+ #[inline]
+ pub fn is_union(self) -> bool {
+ matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
+ }
+
+ #[inline]
+ pub fn is_closure(self) -> bool {
+ matches!(self.kind(), Closure(..))
+ }
+
+ #[inline]
+ pub fn is_generator(self) -> bool {
+ matches!(self.kind(), Generator(..))
+ }
+
+ #[inline]
+ pub fn is_integral(self) -> bool {
+ matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
+ }
+
+ #[inline]
+ pub fn is_fresh_ty(self) -> bool {
+ matches!(self.kind(), Infer(FreshTy(_)))
+ }
+
+ #[inline]
+ pub fn is_fresh(self) -> bool {
+ matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
+ }
+
+ #[inline]
+ pub fn is_char(self) -> bool {
+ matches!(self.kind(), Char)
+ }
+
+ #[inline]
+ pub fn is_numeric(self) -> bool {
+ self.is_integral() || self.is_floating_point()
+ }
+
+ #[inline]
+ pub fn is_signed(self) -> bool {
+ matches!(self.kind(), Int(_))
+ }
+
+ #[inline]
+ pub fn is_ptr_sized_integral(self) -> bool {
+ matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
+ }
+
+ #[inline]
+ pub fn has_concrete_skeleton(self) -> bool {
+ !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
+ }
+
+ /// Checks whether a type recursively contains another type
+ ///
+ /// Example: `Option<()>` contains `()`
+ pub fn contains(self, other: Ty<'tcx>) -> bool {
+ struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
+
+ impl<'tcx> TypeVisitor<'tcx> for ContainsTyVisitor<'tcx> {
+ type BreakTy = ();
+
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if self.0 == t { ControlFlow::BREAK } else { t.super_visit_with(self) }
+ }
+ }
+
+ let cf = self.visit_with(&mut ContainsTyVisitor(other));
+ cf.is_break()
+ }
+
+ /// Returns the type and mutability of `*ty`.
+ ///
+ /// The parameter `explicit` indicates if this is an *explicit* dereference.
+ /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
+ pub fn builtin_deref(self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
+ match self.kind() {
+ Adt(def, _) if def.is_box() => {
+ Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
+ }
+ Ref(_, ty, mutbl) => Some(TypeAndMut { ty: *ty, mutbl: *mutbl }),
+ RawPtr(mt) if explicit => Some(*mt),
+ _ => None,
+ }
+ }
+
+ /// Returns the type of `ty[i]`.
+ pub fn builtin_index(self) -> Option<Ty<'tcx>> {
+ match self.kind() {
+ Array(ty, _) | Slice(ty) => Some(*ty),
+ _ => None,
+ }
+ }
+
+ pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
+ match self.kind() {
+ FnDef(def_id, substs) => tcx.bound_fn_sig(*def_id).subst(tcx, substs),
+ FnPtr(f) => *f,
+ Error(_) => {
+ // ignore errors (#54954)
+ ty::Binder::dummy(FnSig::fake())
+ }
+ Closure(..) => bug!(
+ "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
+ ),
+ _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
+ }
+ }
+
+ #[inline]
+ pub fn is_fn(self) -> bool {
+ matches!(self.kind(), FnDef(..) | FnPtr(_))
+ }
+
+ #[inline]
+ pub fn is_fn_ptr(self) -> bool {
+ matches!(self.kind(), FnPtr(_))
+ }
+
+ #[inline]
+ pub fn is_impl_trait(self) -> bool {
+ matches!(self.kind(), Opaque(..))
+ }
+
+ #[inline]
+ pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
+ match self.kind() {
+ Adt(adt, _) => Some(*adt),
+ _ => None,
+ }
+ }
+
+ /// Iterates over tuple fields.
+ /// Panics when called on anything but a tuple.
+ #[inline]
+ pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
+ match self.kind() {
+ Tuple(substs) => substs,
+ _ => bug!("tuple_fields called on non-tuple"),
+ }
+ }
+
+ /// If the type contains variants, returns the valid range of variant indices.
+ //
+ // FIXME: This requires the optimized MIR in the case of generators.
+ #[inline]
+ pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
+ match self.kind() {
+ TyKind::Adt(adt, _) => Some(adt.variant_range()),
+ TyKind::Generator(def_id, substs, _) => {
+ Some(substs.as_generator().variant_range(*def_id, tcx))
+ }
+ _ => None,
+ }
+ }
+
+ /// If the type contains variants, returns the variant for `variant_index`.
+ /// Panics if `variant_index` is out of range.
+ //
+ // FIXME: This requires the optimized MIR in the case of generators.
+ #[inline]
+ pub fn discriminant_for_variant(
+ self,
+ tcx: TyCtxt<'tcx>,
+ variant_index: VariantIdx,
+ ) -> Option<Discr<'tcx>> {
+ match self.kind() {
+ TyKind::Adt(adt, _) if adt.variants().is_empty() => {
+ // This can actually happen during CTFE, see
+ // https://github.com/rust-lang/rust/issues/89765.
+ None
+ }
+ TyKind::Adt(adt, _) if adt.is_enum() => {
+ Some(adt.discriminant_for_variant(tcx, variant_index))
+ }
+ TyKind::Generator(def_id, substs, _) => {
+ Some(substs.as_generator().discriminant_for_variant(*def_id, tcx, variant_index))
+ }
+ _ => None,
+ }
+ }
+
+ /// Returns the type of the discriminant of this type.
+ pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
+ match self.kind() {
+ ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
+ ty::Generator(_, substs, _) => substs.as_generator().discr_ty(tcx),
+
+ ty::Param(_) | ty::Projection(_) | ty::Opaque(..) | ty::Infer(ty::TyVar(_)) => {
+ let assoc_items = tcx.associated_item_def_ids(
+ tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
+ );
+ tcx.mk_projection(assoc_items[0], tcx.intern_substs(&[self.into()]))
+ }
+
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Adt(..)
+ | ty::Foreign(_)
+ | ty::Str
+ | ty::Array(..)
+ | ty::Slice(_)
+ | ty::RawPtr(_)
+ | ty::Ref(..)
+ | ty::FnDef(..)
+ | ty::FnPtr(..)
+ | ty::Dynamic(..)
+ | ty::Closure(..)
+ | ty::GeneratorWitness(..)
+ | ty::Never
+ | ty::Tuple(_)
+ | ty::Error(_)
+ | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
+
+ ty::Bound(..)
+ | ty::Placeholder(_)
+ | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+ bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
+ }
+ }
+ }
+
+ /// Returns the type of metadata for (potentially fat) pointers to this type,
+ /// and a boolean signifying if this is conditional on this type being `Sized`.
+ pub fn ptr_metadata_ty(
+ self,
+ tcx: TyCtxt<'tcx>,
+ normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
+ ) -> (Ty<'tcx>, bool) {
+ let tail = tcx.struct_tail_with_normalize(self, normalize, || {});
+ match tail.kind() {
+ // Sized types
+ ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+ | ty::Uint(_)
+ | ty::Int(_)
+ | ty::Bool
+ | ty::Float(_)
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::RawPtr(..)
+ | ty::Char
+ | ty::Ref(..)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(..)
+ | ty::Array(..)
+ | ty::Closure(..)
+ | ty::Never
+ | ty::Error(_)
+ // Extern types have metadata = ().
+ | ty::Foreign(..)
+ // If returned by `struct_tail_without_normalization` this is a unit struct
+ // without any fields, or not a struct, and therefore is Sized.
+ | ty::Adt(..)
+ // If returned by `struct_tail_without_normalization` this is the empty tuple,
+ // a.k.a. unit type, which is Sized
+ | ty::Tuple(..) => (tcx.types.unit, false),
+
+ ty::Str | ty::Slice(_) => (tcx.types.usize, false),
+ ty::Dynamic(..) => {
+ let dyn_metadata = tcx.lang_items().dyn_metadata().unwrap();
+ (tcx.bound_type_of(dyn_metadata).subst(tcx, &[tail.into()]), false)
+ },
+
+ // type parameters only have unit metadata if they're sized, so return true
+ // to make sure we double check this during confirmation
+ ty::Param(_) | ty::Projection(_) | ty::Opaque(..) => (tcx.types.unit, true),
+
+ ty::Infer(ty::TyVar(_))
+ | ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+ bug!("`ptr_metadata_ty` applied to unexpected type: {:?} (tail = {:?})", self, tail)
+ }
+ }
+ }
+
+ /// When we create a closure, we record its kind (i.e., what trait
+ /// it implements) into its `ClosureSubsts` using a type
+ /// parameter. This is kind of a phantom type, except that the
+ /// most convenient thing for us to are the integral types. This
+ /// function converts such a special type into the closure
+ /// kind. To go the other way, use
+ /// `tcx.closure_kind_ty(closure_kind)`.
+ ///
+ /// Note that during type checking, we use an inference variable
+ /// to represent the closure kind, because it has not yet been
+ /// inferred. Once upvar inference (in `rustc_typeck/src/check/upvar.rs`)
+ /// is complete, that type variable will be unified.
+ pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
+ match self.kind() {
+ Int(int_ty) => match int_ty {
+ ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
+ ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
+ ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
+ _ => bug!("cannot convert type `{:?}` to a closure kind", self),
+ },
+
+ // "Bound" types appear in canonical queries when the
+ // closure type is not yet known
+ Bound(..) | Infer(_) => None,
+
+ Error(_) => Some(ty::ClosureKind::Fn),
+
+ _ => bug!("cannot convert type `{:?}` to a closure kind", self),
+ }
+ }
+
+ /// Fast path helper for testing if a type is `Sized`.
+ ///
+ /// Returning true means the type is known to be sized. Returning
+ /// `false` means nothing -- could be sized, might not be.
+ ///
+ /// Note that we could never rely on the fact that a type such as `[_]` is
+ /// trivially `!Sized` because we could be in a type environment with a
+ /// bound such as `[_]: Copy`. A function with such a bound obviously never
+ /// can be called, but that doesn't mean it shouldn't typecheck. This is why
+ /// this method doesn't return `Option<bool>`.
+ pub fn is_trivially_sized(self, tcx: TyCtxt<'tcx>) -> bool {
+ match self.kind() {
+ ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+ | ty::Uint(_)
+ | ty::Int(_)
+ | ty::Bool
+ | ty::Float(_)
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::RawPtr(..)
+ | ty::Char
+ | ty::Ref(..)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(..)
+ | ty::Array(..)
+ | ty::Closure(..)
+ | ty::Never
+ | ty::Error(_) => true,
+
+ ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,
+
+ ty::Tuple(tys) => tys.iter().all(|ty| ty.is_trivially_sized(tcx)),
+
+ ty::Adt(def, _substs) => def.sized_constraint(tcx).0.is_empty(),
+
+ ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => false,
+
+ ty::Infer(ty::TyVar(_)) => false,
+
+ ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+ bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
+ }
+ }
+ }
+
+ /// Fast path helper for primitives which are always `Copy` and which
+ /// have a side-effect-free `Clone` impl.
+ ///
+ /// Returning true means the type is known to be pure and `Copy+Clone`.
+ /// Returning `false` means nothing -- could be `Copy`, might not be.
+ ///
+ /// This is mostly useful for optimizations, as there are the types
+ /// on which we can replace cloning with dereferencing.
+ pub fn is_trivially_pure_clone_copy(self) -> bool {
+ match self.kind() {
+ ty::Bool | ty::Char | ty::Never => true,
+
+ // These aren't even `Clone`
+ ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
+
+ ty::Int(..) | ty::Uint(..) | ty::Float(..) => true,
+
+ // The voldemort ZSTs are fine.
+ ty::FnDef(..) => true,
+
+ ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
+
+ // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
+ ty::Tuple(field_tys) => {
+ field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
+ }
+
+ // Sometimes traits aren't implemented for every ABI or arity,
+ // because we can't be generic over everything yet.
+ ty::FnPtr(..) => false,
+
+ // Definitely absolutely not copy.
+ ty::Ref(_, _, hir::Mutability::Mut) => false,
+
+ // Thin pointers & thin shared references are pure-clone-copy, but for
+ // anything with custom metadata it might be more complicated.
+ ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => false,
+
+ ty::Generator(..) | ty::GeneratorWitness(..) => false,
+
+ // Might be, but not "trivial" so just giving the safe answer.
+ ty::Adt(..) | ty::Closure(..) | ty::Opaque(..) => false,
+
+ ty::Projection(..) | ty::Param(..) | ty::Infer(..) | ty::Error(..) => false,
+
+ ty::Bound(..) | ty::Placeholder(..) => {
+ bug!("`is_trivially_pure_clone_copy` applied to unexpected type: {:?}", self);
+ }
+ }
+ }
+}
+
+/// Extra information about why we ended up with a particular variance.
+/// This is only used to add more information to error messages, and
+/// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`
+/// may lead to confusing notes in error messages, it will never cause
+/// a miscompilation or unsoundness.
+///
+/// When in doubt, use `VarianceDiagInfo::default()`
+#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
+pub enum VarianceDiagInfo<'tcx> {
+ /// No additional information - this is the default.
+ /// We will not add any additional information to error messages.
+ #[default]
+ None,
+ /// We switched our variance because a generic argument occurs inside
+ /// the invariant generic argument of another type.
+ Invariant {
+ /// The generic type containing the generic parameter
+ /// that changes the variance (e.g. `*mut T`, `MyStruct<T>`)
+ ty: Ty<'tcx>,
+ /// The index of the generic parameter being used
+ /// (e.g. `0` for `*mut T`, `1` for `MyStruct<'CovariantParam, 'InvariantParam>`)
+ param_index: u32,
+ },
+}
+
+impl<'tcx> VarianceDiagInfo<'tcx> {
+ /// Mirrors `Variance::xform` - used to 'combine' the existing
+ /// and new `VarianceDiagInfo`s when our variance changes.
+ pub fn xform(self, other: VarianceDiagInfo<'tcx>) -> VarianceDiagInfo<'tcx> {
+ // For now, just use the first `VarianceDiagInfo::Invariant` that we see
+ match self {
+ VarianceDiagInfo::None => other,
+ VarianceDiagInfo::Invariant { .. } => self,
+ }
+ }
+}