summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/ty/util.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/ty/util.rs')
-rw-r--r--compiler/rustc_middle/src/ty/util.rs1294
1 files changed, 1294 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/util.rs b/compiler/rustc_middle/src/ty/util.rs
new file mode 100644
index 000000000..591bb7831
--- /dev/null
+++ b/compiler/rustc_middle/src/ty/util.rs
@@ -0,0 +1,1294 @@
+//! Miscellaneous type-system utilities that are too small to deserve their own modules.
+
+use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
+use crate::ty::layout::IntegerExt;
+use crate::ty::query::TyCtxtAt;
+use crate::ty::subst::{GenericArgKind, Subst, SubstsRef};
+use crate::ty::{
+ self, DefIdTree, FallibleTypeFolder, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
+ TypeVisitable,
+};
+use rustc_apfloat::Float as _;
+use rustc_ast as ast;
+use rustc_attr::{self as attr, SignedInt, UnsignedInt};
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_index::bit_set::GrowableBitSet;
+use rustc_macros::HashStable;
+use rustc_span::{sym, DUMMY_SP};
+use rustc_target::abi::{Integer, Size, TargetDataLayout};
+use rustc_target::spec::abi::Abi;
+use smallvec::SmallVec;
+use std::{fmt, iter};
+
+#[derive(Copy, Clone, Debug)]
+pub struct Discr<'tcx> {
+ /// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`).
+ pub val: u128,
+ pub ty: Ty<'tcx>,
+}
+
+/// Used as an input to [`TyCtxt::uses_unique_generic_params`].
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum IgnoreRegions {
+ Yes,
+ No,
+}
+
+#[derive(Copy, Clone, Debug)]
+pub enum NotUniqueParam<'tcx> {
+ DuplicateParam(ty::GenericArg<'tcx>),
+ NotParam(ty::GenericArg<'tcx>),
+}
+
+impl<'tcx> fmt::Display for Discr<'tcx> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match *self.ty.kind() {
+ ty::Int(ity) => {
+ let size = ty::tls::with(|tcx| Integer::from_int_ty(&tcx, ity).size());
+ let x = self.val;
+ // sign extend the raw representation to be an i128
+ let x = size.sign_extend(x) as i128;
+ write!(fmt, "{}", x)
+ }
+ _ => write!(fmt, "{}", self.val),
+ }
+ }
+}
+
+fn int_size_and_signed<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> (Size, bool) {
+ let (int, signed) = match *ty.kind() {
+ ty::Int(ity) => (Integer::from_int_ty(&tcx, ity), true),
+ ty::Uint(uty) => (Integer::from_uint_ty(&tcx, uty), false),
+ _ => bug!("non integer discriminant"),
+ };
+ (int.size(), signed)
+}
+
+impl<'tcx> Discr<'tcx> {
+ /// Adds `1` to the value and wraps around if the maximum for the type is reached.
+ pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self {
+ self.checked_add(tcx, 1).0
+ }
+ pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) {
+ let (size, signed) = int_size_and_signed(tcx, self.ty);
+ let (val, oflo) = if signed {
+ let min = size.signed_int_min();
+ let max = size.signed_int_max();
+ let val = size.sign_extend(self.val) as i128;
+ assert!(n < (i128::MAX as u128));
+ let n = n as i128;
+ let oflo = val > max - n;
+ let val = if oflo { min + (n - (max - val) - 1) } else { val + n };
+ // zero the upper bits
+ let val = val as u128;
+ let val = size.truncate(val);
+ (val, oflo)
+ } else {
+ let max = size.unsigned_int_max();
+ let val = self.val;
+ let oflo = val > max - n;
+ let val = if oflo { n - (max - val) - 1 } else { val + n };
+ (val, oflo)
+ };
+ (Self { val, ty: self.ty }, oflo)
+ }
+}
+
+pub trait IntTypeExt {
+ fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
+ fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>;
+ fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>;
+}
+
+impl IntTypeExt for attr::IntType {
+ fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
+ match *self {
+ SignedInt(ast::IntTy::I8) => tcx.types.i8,
+ SignedInt(ast::IntTy::I16) => tcx.types.i16,
+ SignedInt(ast::IntTy::I32) => tcx.types.i32,
+ SignedInt(ast::IntTy::I64) => tcx.types.i64,
+ SignedInt(ast::IntTy::I128) => tcx.types.i128,
+ SignedInt(ast::IntTy::Isize) => tcx.types.isize,
+ UnsignedInt(ast::UintTy::U8) => tcx.types.u8,
+ UnsignedInt(ast::UintTy::U16) => tcx.types.u16,
+ UnsignedInt(ast::UintTy::U32) => tcx.types.u32,
+ UnsignedInt(ast::UintTy::U64) => tcx.types.u64,
+ UnsignedInt(ast::UintTy::U128) => tcx.types.u128,
+ UnsignedInt(ast::UintTy::Usize) => tcx.types.usize,
+ }
+ }
+
+ fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> {
+ Discr { val: 0, ty: self.to_ty(tcx) }
+ }
+
+ fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> {
+ if let Some(val) = val {
+ assert_eq!(self.to_ty(tcx), val.ty);
+ let (new, oflo) = val.checked_add(tcx, 1);
+ if oflo { None } else { Some(new) }
+ } else {
+ Some(self.initial_discriminant(tcx))
+ }
+ }
+}
+
+impl<'tcx> TyCtxt<'tcx> {
+ /// Creates a hash of the type `Ty` which will be the same no matter what crate
+ /// context it's calculated within. This is used by the `type_id` intrinsic.
+ pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 {
+ // We want the type_id be independent of the types free regions, so we
+ // erase them. The erase_regions() call will also anonymize bound
+ // regions, which is desirable too.
+ let ty = self.erase_regions(ty);
+
+ self.with_stable_hashing_context(|mut hcx| {
+ let mut hasher = StableHasher::new();
+ hcx.while_hashing_spans(false, |hcx| ty.hash_stable(hcx, &mut hasher));
+ hasher.finish()
+ })
+ }
+
+ pub fn res_generics_def_id(self, res: Res) -> Option<DefId> {
+ match res {
+ Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id) => {
+ Some(self.parent(self.parent(def_id)))
+ }
+ Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Struct, _), def_id) => {
+ Some(self.parent(def_id))
+ }
+ // Other `DefKind`s don't have generics and would ICE when calling
+ // `generics_of`.
+ Res::Def(
+ DefKind::Struct
+ | DefKind::Union
+ | DefKind::Enum
+ | DefKind::Trait
+ | DefKind::OpaqueTy
+ | DefKind::TyAlias
+ | DefKind::ForeignTy
+ | DefKind::TraitAlias
+ | DefKind::AssocTy
+ | DefKind::Fn
+ | DefKind::AssocFn
+ | DefKind::AssocConst
+ | DefKind::Impl,
+ def_id,
+ ) => Some(def_id),
+ Res::Err => None,
+ _ => None,
+ }
+ }
+
+ pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
+ if let ty::Adt(def, substs) = *ty.kind() {
+ for field in def.all_fields() {
+ let field_ty = field.ty(self, substs);
+ if let ty::Error(_) = field_ty.kind() {
+ return true;
+ }
+ }
+ }
+ false
+ }
+
+ /// Attempts to returns the deeply last field of nested structures, but
+ /// does not apply any normalization in its search. Returns the same type
+ /// if input `ty` is not a structure at all.
+ pub fn struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ let tcx = self;
+ tcx.struct_tail_with_normalize(ty, |ty| ty, || {})
+ }
+
+ /// Returns the deeply last field of nested structures, or the same type if
+ /// not a structure at all. Corresponds to the only possible unsized field,
+ /// and its type can be used to determine unsizing strategy.
+ ///
+ /// Should only be called if `ty` has no inference variables and does not
+ /// need its lifetimes preserved (e.g. as part of codegen); otherwise
+ /// normalization attempt may cause compiler bugs.
+ pub fn struct_tail_erasing_lifetimes(
+ self,
+ ty: Ty<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self;
+ tcx.struct_tail_with_normalize(ty, |ty| tcx.normalize_erasing_regions(param_env, ty), || {})
+ }
+
+ /// Returns the deeply last field of nested structures, or the same type if
+ /// not a structure at all. Corresponds to the only possible unsized field,
+ /// and its type can be used to determine unsizing strategy.
+ ///
+ /// This is parameterized over the normalization strategy (i.e. how to
+ /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
+ /// function to indicate no normalization should take place.
+ ///
+ /// See also `struct_tail_erasing_lifetimes`, which is suitable for use
+ /// during codegen.
+ pub fn struct_tail_with_normalize(
+ self,
+ mut ty: Ty<'tcx>,
+ mut normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
+ // This is currently used to allow us to walk a ValTree
+ // in lockstep with the type in order to get the ValTree branch that
+ // corresponds to an unsized field.
+ mut f: impl FnMut() -> (),
+ ) -> Ty<'tcx> {
+ let recursion_limit = self.recursion_limit();
+ for iteration in 0.. {
+ if !recursion_limit.value_within_limit(iteration) {
+ return self.ty_error_with_message(
+ DUMMY_SP,
+ &format!("reached the recursion limit finding the struct tail for {}", ty),
+ );
+ }
+ match *ty.kind() {
+ ty::Adt(def, substs) => {
+ if !def.is_struct() {
+ break;
+ }
+ match def.non_enum_variant().fields.last() {
+ Some(field) => {
+ f();
+ ty = field.ty(self, substs);
+ }
+ None => break,
+ }
+ }
+
+ ty::Tuple(tys) if let Some((&last_ty, _)) = tys.split_last() => {
+ f();
+ ty = last_ty;
+ }
+
+ ty::Tuple(_) => break,
+
+ ty::Projection(_) | ty::Opaque(..) => {
+ let normalized = normalize(ty);
+ if ty == normalized {
+ return ty;
+ } else {
+ ty = normalized;
+ }
+ }
+
+ _ => {
+ break;
+ }
+ }
+ }
+ ty
+ }
+
+ /// Same as applying `struct_tail` on `source` and `target`, but only
+ /// keeps going as long as the two types are instances of the same
+ /// structure definitions.
+ /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
+ /// whereas struct_tail produces `T`, and `Trait`, respectively.
+ ///
+ /// Should only be called if the types have no inference variables and do
+ /// not need their lifetimes preserved (e.g., as part of codegen); otherwise,
+ /// normalization attempt may cause compiler bugs.
+ pub fn struct_lockstep_tails_erasing_lifetimes(
+ self,
+ source: Ty<'tcx>,
+ target: Ty<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> (Ty<'tcx>, Ty<'tcx>) {
+ let tcx = self;
+ tcx.struct_lockstep_tails_with_normalize(source, target, |ty| {
+ tcx.normalize_erasing_regions(param_env, ty)
+ })
+ }
+
+ /// Same as applying `struct_tail` on `source` and `target`, but only
+ /// keeps going as long as the two types are instances of the same
+ /// structure definitions.
+ /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
+ /// whereas struct_tail produces `T`, and `Trait`, respectively.
+ ///
+ /// See also `struct_lockstep_tails_erasing_lifetimes`, which is suitable for use
+ /// during codegen.
+ pub fn struct_lockstep_tails_with_normalize(
+ self,
+ source: Ty<'tcx>,
+ target: Ty<'tcx>,
+ normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>,
+ ) -> (Ty<'tcx>, Ty<'tcx>) {
+ let (mut a, mut b) = (source, target);
+ loop {
+ match (&a.kind(), &b.kind()) {
+ (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
+ if a_def == b_def && a_def.is_struct() =>
+ {
+ if let Some(f) = a_def.non_enum_variant().fields.last() {
+ a = f.ty(self, a_substs);
+ b = f.ty(self, b_substs);
+ } else {
+ break;
+ }
+ }
+ (&ty::Tuple(a_tys), &ty::Tuple(b_tys)) if a_tys.len() == b_tys.len() => {
+ if let Some(&a_last) = a_tys.last() {
+ a = a_last;
+ b = *b_tys.last().unwrap();
+ } else {
+ break;
+ }
+ }
+ (ty::Projection(_) | ty::Opaque(..), _)
+ | (_, ty::Projection(_) | ty::Opaque(..)) => {
+ // If either side is a projection, attempt to
+ // progress via normalization. (Should be safe to
+ // apply to both sides as normalization is
+ // idempotent.)
+ let a_norm = normalize(a);
+ let b_norm = normalize(b);
+ if a == a_norm && b == b_norm {
+ break;
+ } else {
+ a = a_norm;
+ b = b_norm;
+ }
+ }
+
+ _ => break,
+ }
+ }
+ (a, b)
+ }
+
+ /// Calculate the destructor of a given type.
+ pub fn calculate_dtor(
+ self,
+ adt_did: DefId,
+ validate: impl Fn(Self, DefId) -> Result<(), ErrorGuaranteed>,
+ ) -> Option<ty::Destructor> {
+ let drop_trait = self.lang_items().drop_trait()?;
+ self.ensure().coherent_trait(drop_trait);
+
+ let ty = self.type_of(adt_did);
+ let (did, constness) = self.find_map_relevant_impl(drop_trait, ty, |impl_did| {
+ if let Some(item_id) = self.associated_item_def_ids(impl_did).first() {
+ if validate(self, impl_did).is_ok() {
+ return Some((*item_id, self.constness(impl_did)));
+ }
+ }
+ None
+ })?;
+
+ Some(ty::Destructor { did, constness })
+ }
+
+ /// Returns the set of types that are required to be alive in
+ /// order to run the destructor of `def` (see RFCs 769 and
+ /// 1238).
+ ///
+ /// Note that this returns only the constraints for the
+ /// destructor of `def` itself. For the destructors of the
+ /// contents, you need `adt_dtorck_constraint`.
+ pub fn destructor_constraints(self, def: ty::AdtDef<'tcx>) -> Vec<ty::subst::GenericArg<'tcx>> {
+ let dtor = match def.destructor(self) {
+ None => {
+ debug!("destructor_constraints({:?}) - no dtor", def.did());
+ return vec![];
+ }
+ Some(dtor) => dtor.did,
+ };
+
+ let impl_def_id = self.parent(dtor);
+ let impl_generics = self.generics_of(impl_def_id);
+
+ // We have a destructor - all the parameters that are not
+ // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
+ // must be live.
+
+ // We need to return the list of parameters from the ADTs
+ // generics/substs that correspond to impure parameters on the
+ // impl's generics. This is a bit ugly, but conceptually simple:
+ //
+ // Suppose our ADT looks like the following
+ //
+ // struct S<X, Y, Z>(X, Y, Z);
+ //
+ // and the impl is
+ //
+ // impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
+ //
+ // We want to return the parameters (X, Y). For that, we match
+ // up the item-substs <X, Y, Z> with the substs on the impl ADT,
+ // <P1, P2, P0>, and then look up which of the impl substs refer to
+ // parameters marked as pure.
+
+ let impl_substs = match *self.type_of(impl_def_id).kind() {
+ ty::Adt(def_, substs) if def_ == def => substs,
+ _ => bug!(),
+ };
+
+ let item_substs = match *self.type_of(def.did()).kind() {
+ ty::Adt(def_, substs) if def_ == def => substs,
+ _ => bug!(),
+ };
+
+ let result = iter::zip(item_substs, impl_substs)
+ .filter(|&(_, k)| {
+ match k.unpack() {
+ GenericArgKind::Lifetime(region) => match region.kind() {
+ ty::ReEarlyBound(ref ebr) => {
+ !impl_generics.region_param(ebr, self).pure_wrt_drop
+ }
+ // Error: not a region param
+ _ => false,
+ },
+ GenericArgKind::Type(ty) => match ty.kind() {
+ ty::Param(ref pt) => !impl_generics.type_param(pt, self).pure_wrt_drop,
+ // Error: not a type param
+ _ => false,
+ },
+ GenericArgKind::Const(ct) => match ct.kind() {
+ ty::ConstKind::Param(ref pc) => {
+ !impl_generics.const_param(pc, self).pure_wrt_drop
+ }
+ // Error: not a const param
+ _ => false,
+ },
+ }
+ })
+ .map(|(item_param, _)| item_param)
+ .collect();
+ debug!("destructor_constraint({:?}) = {:?}", def.did(), result);
+ result
+ }
+
+ /// Checks whether each generic argument is simply a unique generic parameter.
+ pub fn uses_unique_generic_params(
+ self,
+ substs: SubstsRef<'tcx>,
+ ignore_regions: IgnoreRegions,
+ ) -> Result<(), NotUniqueParam<'tcx>> {
+ let mut seen = GrowableBitSet::default();
+ for arg in substs {
+ match arg.unpack() {
+ GenericArgKind::Lifetime(lt) => {
+ if ignore_regions == IgnoreRegions::No {
+ let ty::ReEarlyBound(p) = lt.kind() else {
+ return Err(NotUniqueParam::NotParam(lt.into()))
+ };
+ if !seen.insert(p.index) {
+ return Err(NotUniqueParam::DuplicateParam(lt.into()));
+ }
+ }
+ }
+ GenericArgKind::Type(t) => match t.kind() {
+ ty::Param(p) => {
+ if !seen.insert(p.index) {
+ return Err(NotUniqueParam::DuplicateParam(t.into()));
+ }
+ }
+ _ => return Err(NotUniqueParam::NotParam(t.into())),
+ },
+ GenericArgKind::Const(c) => match c.kind() {
+ ty::ConstKind::Param(p) => {
+ if !seen.insert(p.index) {
+ return Err(NotUniqueParam::DuplicateParam(c.into()));
+ }
+ }
+ _ => return Err(NotUniqueParam::NotParam(c.into())),
+ },
+ }
+ }
+
+ Ok(())
+ }
+
+ /// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note
+ /// that closures have a `DefId`, but the closure *expression* also
+ /// has a `HirId` that is located within the context where the
+ /// closure appears (and, sadly, a corresponding `NodeId`, since
+ /// those are not yet phased out). The parent of the closure's
+ /// `DefId` will also be the context where it appears.
+ pub fn is_closure(self, def_id: DefId) -> bool {
+ matches!(self.def_kind(def_id), DefKind::Closure | DefKind::Generator)
+ }
+
+ /// Returns `true` if `def_id` refers to a definition that does not have its own
+ /// type-checking context, i.e. closure, generator or inline const.
+ pub fn is_typeck_child(self, def_id: DefId) -> bool {
+ matches!(
+ self.def_kind(def_id),
+ DefKind::Closure | DefKind::Generator | DefKind::InlineConst
+ )
+ }
+
+ /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`).
+ pub fn is_trait(self, def_id: DefId) -> bool {
+ self.def_kind(def_id) == DefKind::Trait
+ }
+
+ /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`),
+ /// and `false` otherwise.
+ pub fn is_trait_alias(self, def_id: DefId) -> bool {
+ self.def_kind(def_id) == DefKind::TraitAlias
+ }
+
+ /// Returns `true` if this `DefId` refers to the implicit constructor for
+ /// a tuple struct like `struct Foo(u32)`, and `false` otherwise.
+ pub fn is_constructor(self, def_id: DefId) -> bool {
+ matches!(self.def_kind(def_id), DefKind::Ctor(..))
+ }
+
+ /// Given the `DefId`, returns the `DefId` of the innermost item that
+ /// has its own type-checking context or "inference environment".
+ ///
+ /// For example, a closure has its own `DefId`, but it is type-checked
+ /// with the containing item. Similarly, an inline const block has its
+ /// own `DefId` but it is type-checked together with the containing item.
+ ///
+ /// Therefore, when we fetch the
+ /// `typeck` the closure, for example, we really wind up
+ /// fetching the `typeck` the enclosing fn item.
+ pub fn typeck_root_def_id(self, def_id: DefId) -> DefId {
+ let mut def_id = def_id;
+ while self.is_typeck_child(def_id) {
+ def_id = self.parent(def_id);
+ }
+ def_id
+ }
+
+ /// Given the `DefId` and substs a closure, creates the type of
+ /// `self` argument that the closure expects. For example, for a
+ /// `Fn` closure, this would return a reference type `&T` where
+ /// `T = closure_ty`.
+ ///
+ /// Returns `None` if this closure's kind has not yet been inferred.
+ /// This should only be possible during type checking.
+ ///
+ /// Note that the return value is a late-bound region and hence
+ /// wrapped in a binder.
+ pub fn closure_env_ty(
+ self,
+ closure_def_id: DefId,
+ closure_substs: SubstsRef<'tcx>,
+ env_region: ty::RegionKind<'tcx>,
+ ) -> Option<Ty<'tcx>> {
+ let closure_ty = self.mk_closure(closure_def_id, closure_substs);
+ let closure_kind_ty = closure_substs.as_closure().kind_ty();
+ let closure_kind = closure_kind_ty.to_opt_closure_kind()?;
+ let env_ty = match closure_kind {
+ ty::ClosureKind::Fn => self.mk_imm_ref(self.mk_region(env_region), closure_ty),
+ ty::ClosureKind::FnMut => self.mk_mut_ref(self.mk_region(env_region), closure_ty),
+ ty::ClosureKind::FnOnce => closure_ty,
+ };
+ Some(env_ty)
+ }
+
+ /// Returns `true` if the node pointed to by `def_id` is a `static` item.
+ #[inline]
+ pub fn is_static(self, def_id: DefId) -> bool {
+ matches!(self.def_kind(def_id), DefKind::Static(_))
+ }
+
+ #[inline]
+ pub fn static_mutability(self, def_id: DefId) -> Option<hir::Mutability> {
+ if let DefKind::Static(mt) = self.def_kind(def_id) { Some(mt) } else { None }
+ }
+
+ /// Returns `true` if this is a `static` item with the `#[thread_local]` attribute.
+ pub fn is_thread_local_static(self, def_id: DefId) -> bool {
+ self.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::THREAD_LOCAL)
+ }
+
+ /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item.
+ #[inline]
+ pub fn is_mutable_static(self, def_id: DefId) -> bool {
+ self.static_mutability(def_id) == Some(hir::Mutability::Mut)
+ }
+
+ /// Get the type of the pointer to the static that we use in MIR.
+ pub fn static_ptr_ty(self, def_id: DefId) -> Ty<'tcx> {
+ // Make sure that any constants in the static's type are evaluated.
+ let static_ty = self.normalize_erasing_regions(ty::ParamEnv::empty(), self.type_of(def_id));
+
+ // Make sure that accesses to unsafe statics end up using raw pointers.
+ // For thread-locals, this needs to be kept in sync with `Rvalue::ty`.
+ if self.is_mutable_static(def_id) {
+ self.mk_mut_ptr(static_ty)
+ } else if self.is_foreign_item(def_id) {
+ self.mk_imm_ptr(static_ty)
+ } else {
+ self.mk_imm_ref(self.lifetimes.re_erased, static_ty)
+ }
+ }
+
+ /// Expands the given impl trait type, stopping if the type is recursive.
+ #[instrument(skip(self), level = "debug")]
+ pub fn try_expand_impl_trait_type(
+ self,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+ ) -> Result<Ty<'tcx>, Ty<'tcx>> {
+ let mut visitor = OpaqueTypeExpander {
+ seen_opaque_tys: FxHashSet::default(),
+ expanded_cache: FxHashMap::default(),
+ primary_def_id: Some(def_id),
+ found_recursion: false,
+ found_any_recursion: false,
+ check_recursion: true,
+ tcx: self,
+ };
+
+ let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap();
+ trace!(?expanded_type);
+ if visitor.found_recursion { Err(expanded_type) } else { Ok(expanded_type) }
+ }
+
+ pub fn bound_type_of(self, def_id: DefId) -> ty::EarlyBinder<Ty<'tcx>> {
+ ty::EarlyBinder(self.type_of(def_id))
+ }
+
+ pub fn bound_fn_sig(self, def_id: DefId) -> ty::EarlyBinder<ty::PolyFnSig<'tcx>> {
+ ty::EarlyBinder(self.fn_sig(def_id))
+ }
+
+ pub fn bound_impl_trait_ref(
+ self,
+ def_id: DefId,
+ ) -> Option<ty::EarlyBinder<ty::TraitRef<'tcx>>> {
+ self.impl_trait_ref(def_id).map(|i| ty::EarlyBinder(i))
+ }
+
+ pub fn bound_explicit_item_bounds(
+ self,
+ def_id: DefId,
+ ) -> ty::EarlyBinder<&'tcx [(ty::Predicate<'tcx>, rustc_span::Span)]> {
+ ty::EarlyBinder(self.explicit_item_bounds(def_id))
+ }
+
+ pub fn bound_item_bounds(
+ self,
+ def_id: DefId,
+ ) -> ty::EarlyBinder<&'tcx ty::List<ty::Predicate<'tcx>>> {
+ ty::EarlyBinder(self.item_bounds(def_id))
+ }
+
+ pub fn bound_const_param_default(self, def_id: DefId) -> ty::EarlyBinder<ty::Const<'tcx>> {
+ ty::EarlyBinder(self.const_param_default(def_id))
+ }
+
+ pub fn bound_predicates_of(
+ self,
+ def_id: DefId,
+ ) -> ty::EarlyBinder<ty::generics::GenericPredicates<'tcx>> {
+ ty::EarlyBinder(self.predicates_of(def_id))
+ }
+
+ pub fn bound_explicit_predicates_of(
+ self,
+ def_id: DefId,
+ ) -> ty::EarlyBinder<ty::generics::GenericPredicates<'tcx>> {
+ ty::EarlyBinder(self.explicit_predicates_of(def_id))
+ }
+
+ pub fn bound_impl_subject(self, def_id: DefId) -> ty::EarlyBinder<ty::ImplSubject<'tcx>> {
+ ty::EarlyBinder(self.impl_subject(def_id))
+ }
+}
+
+struct OpaqueTypeExpander<'tcx> {
+ // Contains the DefIds of the opaque types that are currently being
+ // expanded. When we expand an opaque type we insert the DefId of
+ // that type, and when we finish expanding that type we remove the
+ // its DefId.
+ seen_opaque_tys: FxHashSet<DefId>,
+ // Cache of all expansions we've seen so far. This is a critical
+ // optimization for some large types produced by async fn trees.
+ expanded_cache: FxHashMap<(DefId, SubstsRef<'tcx>), Ty<'tcx>>,
+ primary_def_id: Option<DefId>,
+ found_recursion: bool,
+ found_any_recursion: bool,
+ /// Whether or not to check for recursive opaque types.
+ /// This is `true` when we're explicitly checking for opaque type
+ /// recursion, and 'false' otherwise to avoid unnecessary work.
+ check_recursion: bool,
+ tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> OpaqueTypeExpander<'tcx> {
+ fn expand_opaque_ty(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> Option<Ty<'tcx>> {
+ if self.found_any_recursion {
+ return None;
+ }
+ let substs = substs.fold_with(self);
+ if !self.check_recursion || self.seen_opaque_tys.insert(def_id) {
+ let expanded_ty = match self.expanded_cache.get(&(def_id, substs)) {
+ Some(expanded_ty) => *expanded_ty,
+ None => {
+ let generic_ty = self.tcx.bound_type_of(def_id);
+ let concrete_ty = generic_ty.subst(self.tcx, substs);
+ let expanded_ty = self.fold_ty(concrete_ty);
+ self.expanded_cache.insert((def_id, substs), expanded_ty);
+ expanded_ty
+ }
+ };
+ if self.check_recursion {
+ self.seen_opaque_tys.remove(&def_id);
+ }
+ Some(expanded_ty)
+ } else {
+ // If another opaque type that we contain is recursive, then it
+ // will report the error, so we don't have to.
+ self.found_any_recursion = true;
+ self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap();
+ None
+ }
+ }
+}
+
+impl<'tcx> TypeFolder<'tcx> for OpaqueTypeExpander<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+ if let ty::Opaque(def_id, substs) = *t.kind() {
+ self.expand_opaque_ty(def_id, substs).unwrap_or(t)
+ } else if t.has_opaque_types() {
+ t.super_fold_with(self)
+ } else {
+ t
+ }
+ }
+}
+
+impl<'tcx> Ty<'tcx> {
+ /// Returns the maximum value for the given numeric type (including `char`s)
+ /// or returns `None` if the type is not numeric.
+ pub fn numeric_max_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> {
+ let val = match self.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let (size, signed) = int_size_and_signed(tcx, self);
+ let val =
+ if signed { size.signed_int_max() as u128 } else { size.unsigned_int_max() };
+ Some(val)
+ }
+ ty::Char => Some(std::char::MAX as u128),
+ ty::Float(fty) => Some(match fty {
+ ty::FloatTy::F32 => rustc_apfloat::ieee::Single::INFINITY.to_bits(),
+ ty::FloatTy::F64 => rustc_apfloat::ieee::Double::INFINITY.to_bits(),
+ }),
+ _ => None,
+ };
+
+ val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self)))
+ }
+
+ /// Returns the minimum value for the given numeric type (including `char`s)
+ /// or returns `None` if the type is not numeric.
+ pub fn numeric_min_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> {
+ let val = match self.kind() {
+ ty::Int(_) | ty::Uint(_) => {
+ let (size, signed) = int_size_and_signed(tcx, self);
+ let val = if signed { size.truncate(size.signed_int_min() as u128) } else { 0 };
+ Some(val)
+ }
+ ty::Char => Some(0),
+ ty::Float(fty) => Some(match fty {
+ ty::FloatTy::F32 => (-::rustc_apfloat::ieee::Single::INFINITY).to_bits(),
+ ty::FloatTy::F64 => (-::rustc_apfloat::ieee::Double::INFINITY).to_bits(),
+ }),
+ _ => None,
+ };
+
+ val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self)))
+ }
+
+ /// Checks whether values of this type `T` are *moved* or *copied*
+ /// when referenced -- this amounts to a check for whether `T:
+ /// Copy`, but note that we **don't** consider lifetimes when
+ /// doing this check. This means that we may generate MIR which
+ /// does copies even when the type actually doesn't satisfy the
+ /// full requirements for the `Copy` trait (cc #29149) -- this
+ /// winds up being reported as an error during NLL borrow check.
+ pub fn is_copy_modulo_regions(
+ self,
+ tcx_at: TyCtxtAt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> bool {
+ self.is_trivially_pure_clone_copy() || tcx_at.is_copy_raw(param_env.and(self))
+ }
+
+ /// Checks whether values of this type `T` have a size known at
+ /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored
+ /// for the purposes of this check, so it can be an
+ /// over-approximation in generic contexts, where one can have
+ /// strange rules like `<T as Foo<'static>>::Bar: Sized` that
+ /// actually carry lifetime requirements.
+ pub fn is_sized(self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
+ self.is_trivially_sized(tcx_at.tcx) || tcx_at.is_sized_raw(param_env.and(self))
+ }
+
+ /// Checks whether values of this type `T` implement the `Freeze`
+ /// trait -- frozen types are those that do not contain an
+ /// `UnsafeCell` anywhere. This is a language concept used to
+ /// distinguish "true immutability", which is relevant to
+ /// optimization as well as the rules around static values. Note
+ /// that the `Freeze` trait is not exposed to end users and is
+ /// effectively an implementation detail.
+ pub fn is_freeze(self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
+ self.is_trivially_freeze() || tcx_at.is_freeze_raw(param_env.and(self))
+ }
+
+ /// Fast path helper for testing if a type is `Freeze`.
+ ///
+ /// Returning true means the type is known to be `Freeze`. Returning
+ /// `false` means nothing -- could be `Freeze`, might not be.
+ fn is_trivially_freeze(self) -> bool {
+ match self.kind() {
+ ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Bool
+ | ty::Char
+ | ty::Str
+ | ty::Never
+ | ty::Ref(..)
+ | ty::RawPtr(_)
+ | ty::FnDef(..)
+ | ty::Error(_)
+ | ty::FnPtr(_) => true,
+ ty::Tuple(fields) => fields.iter().all(Self::is_trivially_freeze),
+ ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_freeze(),
+ ty::Adt(..)
+ | ty::Bound(..)
+ | ty::Closure(..)
+ | ty::Dynamic(..)
+ | ty::Foreign(_)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(_)
+ | ty::Infer(_)
+ | ty::Opaque(..)
+ | ty::Param(_)
+ | ty::Placeholder(_)
+ | ty::Projection(_) => false,
+ }
+ }
+
+ /// Checks whether values of this type `T` implement the `Unpin` trait.
+ pub fn is_unpin(self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
+ self.is_trivially_unpin() || tcx_at.is_unpin_raw(param_env.and(self))
+ }
+
+ /// Fast path helper for testing if a type is `Unpin`.
+ ///
+ /// Returning true means the type is known to be `Unpin`. Returning
+ /// `false` means nothing -- could be `Unpin`, might not be.
+ fn is_trivially_unpin(self) -> bool {
+ match self.kind() {
+ ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Bool
+ | ty::Char
+ | ty::Str
+ | ty::Never
+ | ty::Ref(..)
+ | ty::RawPtr(_)
+ | ty::FnDef(..)
+ | ty::Error(_)
+ | ty::FnPtr(_) => true,
+ ty::Tuple(fields) => fields.iter().all(Self::is_trivially_unpin),
+ ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_unpin(),
+ ty::Adt(..)
+ | ty::Bound(..)
+ | ty::Closure(..)
+ | ty::Dynamic(..)
+ | ty::Foreign(_)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(_)
+ | ty::Infer(_)
+ | ty::Opaque(..)
+ | ty::Param(_)
+ | ty::Placeholder(_)
+ | ty::Projection(_) => false,
+ }
+ }
+
+ /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
+ /// non-copy and *might* have a destructor attached; if it returns
+ /// `false`, then `ty` definitely has no destructor (i.e., no drop glue).
+ ///
+ /// (Note that this implies that if `ty` has a destructor attached,
+ /// then `needs_drop` will definitely return `true` for `ty`.)
+ ///
+ /// Note that this method is used to check eligible types in unions.
+ #[inline]
+ pub fn needs_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
+ // Avoid querying in simple cases.
+ match needs_drop_components(self, &tcx.data_layout) {
+ Err(AlwaysRequiresDrop) => true,
+ Ok(components) => {
+ let query_ty = match *components {
+ [] => return false,
+ // If we've got a single component, call the query with that
+ // to increase the chance that we hit the query cache.
+ [component_ty] => component_ty,
+ _ => self,
+ };
+
+ // This doesn't depend on regions, so try to minimize distinct
+ // query keys used.
+ // If normalization fails, we just use `query_ty`.
+ let query_ty =
+ tcx.try_normalize_erasing_regions(param_env, query_ty).unwrap_or(query_ty);
+
+ tcx.needs_drop_raw(param_env.and(query_ty))
+ }
+ }
+ }
+
+ /// Checks if `ty` has has a significant drop.
+ ///
+ /// Note that this method can return false even if `ty` has a destructor
+ /// attached; even if that is the case then the adt has been marked with
+ /// the attribute `rustc_insignificant_dtor`.
+ ///
+ /// Note that this method is used to check for change in drop order for
+ /// 2229 drop reorder migration analysis.
+ #[inline]
+ pub fn has_significant_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
+ // Avoid querying in simple cases.
+ match needs_drop_components(self, &tcx.data_layout) {
+ Err(AlwaysRequiresDrop) => true,
+ Ok(components) => {
+ let query_ty = match *components {
+ [] => return false,
+ // If we've got a single component, call the query with that
+ // to increase the chance that we hit the query cache.
+ [component_ty] => component_ty,
+ _ => self,
+ };
+
+ // FIXME(#86868): We should be canonicalizing, or else moving this to a method of inference
+ // context, or *something* like that, but for now just avoid passing inference
+ // variables to queries that can't cope with them. Instead, conservatively
+ // return "true" (may change drop order).
+ if query_ty.needs_infer() {
+ return true;
+ }
+
+ // This doesn't depend on regions, so try to minimize distinct
+ // query keys used.
+ let erased = tcx.normalize_erasing_regions(param_env, query_ty);
+ tcx.has_significant_drop_raw(param_env.and(erased))
+ }
+ }
+ }
+
+ /// Returns `true` if equality for this type is both reflexive and structural.
+ ///
+ /// Reflexive equality for a type is indicated by an `Eq` impl for that type.
+ ///
+ /// Primitive types (`u32`, `str`) have structural equality by definition. For composite data
+ /// types, equality for the type as a whole is structural when it is the same as equality
+ /// between all components (fields, array elements, etc.) of that type. For ADTs, structural
+ /// equality is indicated by an implementation of `PartialStructuralEq` and `StructuralEq` for
+ /// that type.
+ ///
+ /// This function is "shallow" because it may return `true` for a composite type whose fields
+ /// are not `StructuralEq`. For example, `[T; 4]` has structural equality regardless of `T`
+ /// because equality for arrays is determined by the equality of each array element. If you
+ /// want to know whether a given call to `PartialEq::eq` will proceed structurally all the way
+ /// down, you will need to use a type visitor.
+ #[inline]
+ pub fn is_structural_eq_shallow(self, tcx: TyCtxt<'tcx>) -> bool {
+ match self.kind() {
+ // Look for an impl of both `PartialStructuralEq` and `StructuralEq`.
+ ty::Adt(..) => tcx.has_structural_eq_impls(self),
+
+ // Primitive types that satisfy `Eq`.
+ ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Str | ty::Never => true,
+
+ // Composite types that satisfy `Eq` when all of their fields do.
+ //
+ // Because this function is "shallow", we return `true` for these composites regardless
+ // of the type(s) contained within.
+ ty::Ref(..) | ty::Array(..) | ty::Slice(_) | ty::Tuple(..) => true,
+
+ // Raw pointers use bitwise comparison.
+ ty::RawPtr(_) | ty::FnPtr(_) => true,
+
+ // Floating point numbers are not `Eq`.
+ ty::Float(_) => false,
+
+ // Conservatively return `false` for all others...
+
+ // Anonymous function types
+ ty::FnDef(..) | ty::Closure(..) | ty::Dynamic(..) | ty::Generator(..) => false,
+
+ // Generic or inferred types
+ //
+ // FIXME(ecstaticmorse): Maybe we should `bug` here? This should probably only be
+ // called for known, fully-monomorphized types.
+ ty::Projection(_)
+ | ty::Opaque(..)
+ | ty::Param(_)
+ | ty::Bound(..)
+ | ty::Placeholder(_)
+ | ty::Infer(_) => false,
+
+ ty::Foreign(_) | ty::GeneratorWitness(..) | ty::Error(_) => false,
+ }
+ }
+
+ /// Peel off all reference types in this type until there are none left.
+ ///
+ /// This method is idempotent, i.e. `ty.peel_refs().peel_refs() == ty.peel_refs()`.
+ ///
+ /// # Examples
+ ///
+ /// - `u8` -> `u8`
+ /// - `&'a mut u8` -> `u8`
+ /// - `&'a &'b u8` -> `u8`
+ /// - `&'a *const &'b u8 -> *const &'b u8`
+ pub fn peel_refs(self) -> Ty<'tcx> {
+ let mut ty = self;
+ while let ty::Ref(_, inner_ty, _) = ty.kind() {
+ ty = *inner_ty;
+ }
+ ty
+ }
+
+ #[inline]
+ pub fn outer_exclusive_binder(self) -> ty::DebruijnIndex {
+ self.0.outer_exclusive_binder
+ }
+}
+
+pub enum ExplicitSelf<'tcx> {
+ ByValue,
+ ByReference(ty::Region<'tcx>, hir::Mutability),
+ ByRawPointer(hir::Mutability),
+ ByBox,
+ Other,
+}
+
+impl<'tcx> ExplicitSelf<'tcx> {
+ /// Categorizes an explicit self declaration like `self: SomeType`
+ /// into either `self`, `&self`, `&mut self`, `Box<self>`, or
+ /// `Other`.
+ /// This is mainly used to require the arbitrary_self_types feature
+ /// in the case of `Other`, to improve error messages in the common cases,
+ /// and to make `Other` non-object-safe.
+ ///
+ /// Examples:
+ ///
+ /// ```ignore (illustrative)
+ /// impl<'a> Foo for &'a T {
+ /// // Legal declarations:
+ /// fn method1(self: &&'a T); // ExplicitSelf::ByReference
+ /// fn method2(self: &'a T); // ExplicitSelf::ByValue
+ /// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox
+ /// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other
+ ///
+ /// // Invalid cases will be caught by `check_method_receiver`:
+ /// fn method_err1(self: &'a mut T); // ExplicitSelf::Other
+ /// fn method_err2(self: &'static T) // ExplicitSelf::ByValue
+ /// fn method_err3(self: &&T) // ExplicitSelf::ByReference
+ /// }
+ /// ```
+ ///
+ pub fn determine<P>(self_arg_ty: Ty<'tcx>, is_self_ty: P) -> ExplicitSelf<'tcx>
+ where
+ P: Fn(Ty<'tcx>) -> bool,
+ {
+ use self::ExplicitSelf::*;
+
+ match *self_arg_ty.kind() {
+ _ if is_self_ty(self_arg_ty) => ByValue,
+ ty::Ref(region, ty, mutbl) if is_self_ty(ty) => ByReference(region, mutbl),
+ ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => ByRawPointer(mutbl),
+ ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => ByBox,
+ _ => Other,
+ }
+ }
+}
+
+/// Returns a list of types such that the given type needs drop if and only if
+/// *any* of the returned types need drop. Returns `Err(AlwaysRequiresDrop)` if
+/// this type always needs drop.
+pub fn needs_drop_components<'tcx>(
+ ty: Ty<'tcx>,
+ target_layout: &TargetDataLayout,
+) -> Result<SmallVec<[Ty<'tcx>; 2]>, AlwaysRequiresDrop> {
+ match ty.kind() {
+ ty::Infer(ty::FreshIntTy(_))
+ | ty::Infer(ty::FreshFloatTy(_))
+ | ty::Bool
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Never
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::Char
+ | ty::GeneratorWitness(..)
+ | ty::RawPtr(_)
+ | ty::Ref(..)
+ | ty::Str => Ok(SmallVec::new()),
+
+ // Foreign types can never have destructors.
+ ty::Foreign(..) => Ok(SmallVec::new()),
+
+ ty::Dynamic(..) | ty::Error(_) => Err(AlwaysRequiresDrop),
+
+ ty::Slice(ty) => needs_drop_components(*ty, target_layout),
+ ty::Array(elem_ty, size) => {
+ match needs_drop_components(*elem_ty, target_layout) {
+ Ok(v) if v.is_empty() => Ok(v),
+ res => match size.kind().try_to_bits(target_layout.pointer_size) {
+ // Arrays of size zero don't need drop, even if their element
+ // type does.
+ Some(0) => Ok(SmallVec::new()),
+ Some(_) => res,
+ // We don't know which of the cases above we are in, so
+ // return the whole type and let the caller decide what to
+ // do.
+ None => Ok(smallvec![ty]),
+ },
+ }
+ }
+ // If any field needs drop, then the whole tuple does.
+ ty::Tuple(fields) => fields.iter().try_fold(SmallVec::new(), move |mut acc, elem| {
+ acc.extend(needs_drop_components(elem, target_layout)?);
+ Ok(acc)
+ }),
+
+ // These require checking for `Copy` bounds or `Adt` destructors.
+ ty::Adt(..)
+ | ty::Projection(..)
+ | ty::Param(_)
+ | ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Opaque(..)
+ | ty::Infer(_)
+ | ty::Closure(..)
+ | ty::Generator(..) => Ok(smallvec![ty]),
+ }
+}
+
+pub fn is_trivially_const_drop<'tcx>(ty: Ty<'tcx>) -> bool {
+ match *ty.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Infer(ty::IntVar(_))
+ | ty::Infer(ty::FloatVar(_))
+ | ty::Str
+ | ty::RawPtr(_)
+ | ty::Ref(..)
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::Never
+ | ty::Foreign(_) => true,
+
+ ty::Opaque(..)
+ | ty::Dynamic(..)
+ | ty::Error(_)
+ | ty::Bound(..)
+ | ty::Param(_)
+ | ty::Placeholder(_)
+ | ty::Projection(_)
+ | ty::Infer(_) => false,
+
+ // Not trivial because they have components, and instead of looking inside,
+ // we'll just perform trait selection.
+ ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(_) | ty::Adt(..) => false,
+
+ ty::Array(ty, _) | ty::Slice(ty) => is_trivially_const_drop(ty),
+
+ ty::Tuple(tys) => tys.iter().all(|ty| is_trivially_const_drop(ty)),
+ }
+}
+
+// Does the equivalent of
+// ```
+// let v = self.iter().map(|p| p.fold_with(folder)).collect::<SmallVec<[_; 8]>>();
+// folder.tcx().intern_*(&v)
+// ```
+pub fn fold_list<'tcx, F, T>(
+ list: &'tcx ty::List<T>,
+ folder: &mut F,
+ intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> &'tcx ty::List<T>,
+) -> Result<&'tcx ty::List<T>, F::Error>
+where
+ F: FallibleTypeFolder<'tcx>,
+ T: TypeFoldable<'tcx> + PartialEq + Copy,
+{
+ let mut iter = list.iter();
+ // Look for the first element that changed
+ match iter.by_ref().enumerate().find_map(|(i, t)| match t.try_fold_with(folder) {
+ Ok(new_t) if new_t == t => None,
+ new_t => Some((i, new_t)),
+ }) {
+ Some((i, Ok(new_t))) => {
+ // An element changed, prepare to intern the resulting list
+ let mut new_list = SmallVec::<[_; 8]>::with_capacity(list.len());
+ new_list.extend_from_slice(&list[..i]);
+ new_list.push(new_t);
+ for t in iter {
+ new_list.push(t.try_fold_with(folder)?)
+ }
+ Ok(intern(folder.tcx(), &new_list))
+ }
+ Some((_, Err(err))) => {
+ return Err(err);
+ }
+ None => Ok(list),
+ }
+}
+
+#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
+pub struct AlwaysRequiresDrop;
+
+/// Normalizes all opaque types in the given value, replacing them
+/// with their underlying types.
+pub fn normalize_opaque_types<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ val: &'tcx ty::List<ty::Predicate<'tcx>>,
+) -> &'tcx ty::List<ty::Predicate<'tcx>> {
+ let mut visitor = OpaqueTypeExpander {
+ seen_opaque_tys: FxHashSet::default(),
+ expanded_cache: FxHashMap::default(),
+ primary_def_id: None,
+ found_recursion: false,
+ found_any_recursion: false,
+ check_recursion: false,
+ tcx,
+ };
+ val.fold_with(&mut visitor)
+}
+
+/// Determines whether an item is annotated with `doc(hidden)`.
+pub fn is_doc_hidden(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ tcx.get_attrs(def_id, sym::doc)
+ .filter_map(|attr| attr.meta_item_list())
+ .any(|items| items.iter().any(|item| item.has_name(sym::hidden)))
+}
+
+/// Determines whether an item is an intrinsic by Abi.
+pub fn is_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ matches!(tcx.fn_sig(def_id).abi(), Abi::RustIntrinsic | Abi::PlatformIntrinsic)
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ *providers =
+ ty::query::Providers { normalize_opaque_types, is_doc_hidden, is_intrinsic, ..*providers }
+}