summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs')
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs1711
1 files changed, 1711 insertions, 0 deletions
diff --git a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
new file mode 100644
index 000000000..8d6f8efb6
--- /dev/null
+++ b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
@@ -0,0 +1,1711 @@
+//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
+//! values and patterns are made from constructors applied to fields. This file defines a
+//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
+//! them from/to patterns.
+//!
+//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
+//! needed there: _constructor splitting_.
+//!
+//! # Constructor splitting
+//!
+//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
+//! with all the value constructors that are covered by `c`, and compute usefulness for each.
+//! Instead of listing all those constructors (which is intractable), we group those value
+//! constructors together as much as possible. Example:
+//!
+//! ```compile_fail,E0004
+//! match (0, false) {
+//! (0 ..=100, true) => {} // `p_1`
+//! (50..=150, false) => {} // `p_2`
+//! (0 ..=200, _) => {} // `q`
+//! }
+//! ```
+//!
+//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
+//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
+//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
+//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
+//! more tractable.
+//!
+//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
+//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
+//! return an equivalent set of witnesses after specializing and computing usefulness.
+//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
+//! in their first element.
+//!
+//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
+//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
+//! is empty of not. We use this in the wildcard `_` case.
+//!
+//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
+//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
+//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
+//! [`SplitVarLenSlice`].
+
+use self::Constructor::*;
+use self::SliceKind::*;
+
+use super::compare_const_vals;
+use super::usefulness::{MatchCheckCtxt, PatCtxt};
+
+use rustc_data_structures::captures::Captures;
+use rustc_index::vec::Idx;
+
+use rustc_hir::{HirId, RangeEnd};
+use rustc_middle::mir::{self, Field};
+use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
+use rustc_middle::ty::layout::IntegerExt;
+use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
+use rustc_middle::{middle::stability::EvalResult, mir::interpret::ConstValue};
+use rustc_session::lint;
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::abi::{Integer, Size, VariantIdx};
+
+use smallvec::{smallvec, SmallVec};
+use std::cell::Cell;
+use std::cmp::{self, max, min, Ordering};
+use std::fmt;
+use std::iter::{once, IntoIterator};
+use std::ops::RangeInclusive;
+
+/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
+fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
+ fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
+ if let PatKind::Or { pats } = pat.kind.as_ref() {
+ for pat in pats {
+ expand(pat, vec);
+ }
+ } else {
+ vec.push(pat)
+ }
+ }
+
+ let mut pats = Vec::new();
+ expand(pat, &mut pats);
+ pats
+}
+
+/// An inclusive interval, used for precise integer exhaustiveness checking.
+/// `IntRange`s always store a contiguous range. This means that values are
+/// encoded such that `0` encodes the minimum value for the integer,
+/// regardless of the signedness.
+/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
+/// This makes comparisons and arithmetic on interval endpoints much more
+/// straightforward. See `signed_bias` for details.
+///
+/// `IntRange` is never used to encode an empty range or a "range" that wraps
+/// around the (offset) space: i.e., `range.lo <= range.hi`.
+#[derive(Clone, PartialEq, Eq)]
+pub(super) struct IntRange {
+ range: RangeInclusive<u128>,
+ /// Keeps the bias used for encoding the range. It depends on the type of the range and
+ /// possibly the pointer size of the current architecture. The algorithm ensures we never
+ /// compare `IntRange`s with different types/architectures.
+ bias: u128,
+}
+
+impl IntRange {
+ #[inline]
+ fn is_integral(ty: Ty<'_>) -> bool {
+ matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
+ }
+
+ fn is_singleton(&self) -> bool {
+ self.range.start() == self.range.end()
+ }
+
+ fn boundaries(&self) -> (u128, u128) {
+ (*self.range.start(), *self.range.end())
+ }
+
+ #[inline]
+ fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
+ match *ty.kind() {
+ ty::Bool => Some((Size::from_bytes(1), 0)),
+ ty::Char => Some((Size::from_bytes(4), 0)),
+ ty::Int(ity) => {
+ let size = Integer::from_int_ty(&tcx, ity).size();
+ Some((size, 1u128 << (size.bits() as u128 - 1)))
+ }
+ ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
+ _ => None,
+ }
+ }
+
+ #[inline]
+ fn from_constant<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ value: mir::ConstantKind<'tcx>,
+ ) -> Option<IntRange> {
+ let ty = value.ty();
+ if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, ty) {
+ let val = (|| {
+ match value {
+ mir::ConstantKind::Val(ConstValue::Scalar(scalar), _) => {
+ // For this specific pattern we can skip a lot of effort and go
+ // straight to the result, after doing a bit of checking. (We
+ // could remove this branch and just fall through, which
+ // is more general but much slower.)
+ if let Ok(Ok(bits)) = scalar.to_bits_or_ptr_internal(target_size) {
+ return Some(bits);
+ } else {
+ return None;
+ }
+ }
+ mir::ConstantKind::Ty(c) => match c.kind() {
+ ty::ConstKind::Value(_) => bug!(
+ "encountered ConstValue in mir::ConstantKind::Ty, whereas this is expected to be in ConstantKind::Val"
+ ),
+ _ => {}
+ },
+ _ => {}
+ }
+
+ // This is a more general form of the previous case.
+ value.try_eval_bits(tcx, param_env, ty)
+ })()?;
+ let val = val ^ bias;
+ Some(IntRange { range: val..=val, bias })
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ fn from_range<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ lo: u128,
+ hi: u128,
+ ty: Ty<'tcx>,
+ end: &RangeEnd,
+ ) -> Option<IntRange> {
+ if Self::is_integral(ty) {
+ // Perform a shift if the underlying types are signed,
+ // which makes the interval arithmetic simpler.
+ let bias = IntRange::signed_bias(tcx, ty);
+ let (lo, hi) = (lo ^ bias, hi ^ bias);
+ let offset = (*end == RangeEnd::Excluded) as u128;
+ if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
+ // This should have been caught earlier by E0030.
+ bug!("malformed range pattern: {}..={}", lo, (hi - offset));
+ }
+ Some(IntRange { range: lo..=(hi - offset), bias })
+ } else {
+ None
+ }
+ }
+
+ // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
+ fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
+ match *ty.kind() {
+ ty::Int(ity) => {
+ let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
+ 1u128 << (bits - 1)
+ }
+ _ => 0,
+ }
+ }
+
+ fn is_subrange(&self, other: &Self) -> bool {
+ other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
+ }
+
+ fn intersection(&self, other: &Self) -> Option<Self> {
+ let (lo, hi) = self.boundaries();
+ let (other_lo, other_hi) = other.boundaries();
+ if lo <= other_hi && other_lo <= hi {
+ Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
+ } else {
+ None
+ }
+ }
+
+ fn suspicious_intersection(&self, other: &Self) -> bool {
+ // `false` in the following cases:
+ // 1 ---- // 1 ---------- // 1 ---- // 1 ----
+ // 2 ---------- // 2 ---- // 2 ---- // 2 ----
+ //
+ // The following are currently `false`, but could be `true` in the future (#64007):
+ // 1 --------- // 1 ---------
+ // 2 ---------- // 2 ----------
+ //
+ // `true` in the following cases:
+ // 1 ------- // 1 -------
+ // 2 -------- // 2 -------
+ let (lo, hi) = self.boundaries();
+ let (other_lo, other_hi) = other.boundaries();
+ (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
+ }
+
+ /// Only used for displaying the range properly.
+ fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
+ let (lo, hi) = self.boundaries();
+
+ let bias = self.bias;
+ let (lo, hi) = (lo ^ bias, hi ^ bias);
+
+ let env = ty::ParamEnv::empty().and(ty);
+ let lo_const = mir::ConstantKind::from_bits(tcx, lo, env);
+ let hi_const = mir::ConstantKind::from_bits(tcx, hi, env);
+
+ let kind = if lo == hi {
+ PatKind::Constant { value: lo_const }
+ } else {
+ PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
+ };
+
+ Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
+ }
+
+ /// Lint on likely incorrect range patterns (#63987)
+ pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
+ &self,
+ pcx: &PatCtxt<'_, 'p, 'tcx>,
+ pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
+ column_count: usize,
+ hir_id: HirId,
+ ) {
+ if self.is_singleton() {
+ return;
+ }
+
+ if column_count != 1 {
+ // FIXME: for now, only check for overlapping ranges on simple range
+ // patterns. Otherwise with the current logic the following is detected
+ // as overlapping:
+ // ```
+ // match (0u8, true) {
+ // (0 ..= 125, false) => {}
+ // (125 ..= 255, true) => {}
+ // _ => {}
+ // }
+ // ```
+ return;
+ }
+
+ let overlaps: Vec<_> = pats
+ .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
+ .filter(|(range, _)| self.suspicious_intersection(range))
+ .map(|(range, span)| (self.intersection(&range).unwrap(), span))
+ .collect();
+
+ if !overlaps.is_empty() {
+ pcx.cx.tcx.struct_span_lint_hir(
+ lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
+ hir_id,
+ pcx.span,
+ |lint| {
+ let mut err = lint.build("multiple patterns overlap on their endpoints");
+ for (int_range, span) in overlaps {
+ err.span_label(
+ span,
+ &format!(
+ "this range overlaps on `{}`...",
+ int_range.to_pat(pcx.cx.tcx, pcx.ty)
+ ),
+ );
+ }
+ err.span_label(pcx.span, "... with this range");
+ err.note("you likely meant to write mutually exclusive ranges");
+ err.emit();
+ },
+ );
+ }
+ }
+
+ /// See `Constructor::is_covered_by`
+ fn is_covered_by(&self, other: &Self) -> bool {
+ if self.intersection(other).is_some() {
+ // Constructor splitting should ensure that all intersections we encounter are actually
+ // inclusions.
+ assert!(self.is_subrange(other));
+ true
+ } else {
+ false
+ }
+ }
+}
+
+/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
+/// would be displayed as such. To render properly, convert to a pattern first.
+impl fmt::Debug for IntRange {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ let (lo, hi) = self.boundaries();
+ let bias = self.bias;
+ let (lo, hi) = (lo ^ bias, hi ^ bias);
+ write!(f, "{}", lo)?;
+ write!(f, "{}", RangeEnd::Included)?;
+ write!(f, "{}", hi)
+ }
+}
+
+/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
+/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+enum IntBorder {
+ JustBefore(u128),
+ AfterMax,
+}
+
+/// A range of integers that is partitioned into disjoint subranges. This does constructor
+/// splitting for integer ranges as explained at the top of the file.
+///
+/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
+/// the only intersections between an output range and a seen range are inclusions. No output range
+/// straddles the boundary of one of the inputs.
+///
+/// The following input:
+/// ```text
+/// |-------------------------| // `self`
+/// |------| |----------| |----|
+/// |-------| |-------|
+/// ```
+/// would be iterated over as follows:
+/// ```text
+/// ||---|--||-|---|---|---|--|
+/// ```
+#[derive(Debug, Clone)]
+struct SplitIntRange {
+ /// The range we are splitting
+ range: IntRange,
+ /// The borders of ranges we have seen. They are all contained within `range`. This is kept
+ /// sorted.
+ borders: Vec<IntBorder>,
+}
+
+impl SplitIntRange {
+ fn new(range: IntRange) -> Self {
+ SplitIntRange { range, borders: Vec::new() }
+ }
+
+ /// Internal use
+ fn to_borders(r: IntRange) -> [IntBorder; 2] {
+ use IntBorder::*;
+ let (lo, hi) = r.boundaries();
+ let lo = JustBefore(lo);
+ let hi = match hi.checked_add(1) {
+ Some(m) => JustBefore(m),
+ None => AfterMax,
+ };
+ [lo, hi]
+ }
+
+ /// Add ranges relative to which we split.
+ fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
+ let this_range = &self.range;
+ let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
+ let included_borders = included_ranges.flat_map(|r| {
+ let borders = Self::to_borders(r);
+ once(borders[0]).chain(once(borders[1]))
+ });
+ self.borders.extend(included_borders);
+ self.borders.sort_unstable();
+ }
+
+ /// Iterate over the contained ranges.
+ fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
+ use IntBorder::*;
+
+ let self_range = Self::to_borders(self.range.clone());
+ // Start with the start of the range.
+ let mut prev_border = self_range[0];
+ self.borders
+ .iter()
+ .copied()
+ // End with the end of the range.
+ .chain(once(self_range[1]))
+ // List pairs of adjacent borders.
+ .map(move |border| {
+ let ret = (prev_border, border);
+ prev_border = border;
+ ret
+ })
+ // Skip duplicates.
+ .filter(|(prev_border, border)| prev_border != border)
+ // Finally, convert to ranges.
+ .map(move |(prev_border, border)| {
+ let range = match (prev_border, border) {
+ (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
+ (JustBefore(n), AfterMax) => n..=u128::MAX,
+ _ => unreachable!(), // Ruled out by the sorting and filtering we did
+ };
+ IntRange { range, bias: self.range.bias }
+ })
+ }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+enum SliceKind {
+ /// Patterns of length `n` (`[x, y]`).
+ FixedLen(usize),
+ /// Patterns using the `..` notation (`[x, .., y]`).
+ /// Captures any array constructor of `length >= i + j`.
+ /// In the case where `array_len` is `Some(_)`,
+ /// this indicates that we only care about the first `i` and the last `j` values of the array,
+ /// and everything in between is a wildcard `_`.
+ VarLen(usize, usize),
+}
+
+impl SliceKind {
+ fn arity(self) -> usize {
+ match self {
+ FixedLen(length) => length,
+ VarLen(prefix, suffix) => prefix + suffix,
+ }
+ }
+
+ /// Whether this pattern includes patterns of length `other_len`.
+ fn covers_length(self, other_len: usize) -> bool {
+ match self {
+ FixedLen(len) => len == other_len,
+ VarLen(prefix, suffix) => prefix + suffix <= other_len,
+ }
+ }
+}
+
+/// A constructor for array and slice patterns.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub(super) struct Slice {
+ /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
+ array_len: Option<usize>,
+ /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
+ kind: SliceKind,
+}
+
+impl Slice {
+ fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
+ let kind = match (array_len, kind) {
+ // If the middle `..` is empty, we effectively have a fixed-length pattern.
+ (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
+ _ => kind,
+ };
+ Slice { array_len, kind }
+ }
+
+ fn arity(self) -> usize {
+ self.kind.arity()
+ }
+
+ /// See `Constructor::is_covered_by`
+ fn is_covered_by(self, other: Self) -> bool {
+ other.kind.covers_length(self.arity())
+ }
+}
+
+/// This computes constructor splitting for variable-length slices, as explained at the top of the
+/// file.
+///
+/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
+/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
+/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
+/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
+/// are equivalent.
+///
+/// Let's look at an example, where we are trying to split the last pattern:
+/// ```
+/// # fn foo(x: &[bool]) {
+/// match x {
+/// [true, true, ..] => {}
+/// [.., false, false] => {}
+/// [..] => {}
+/// }
+/// # }
+/// ```
+/// Here are the results of specialization for the first few lengths:
+/// ```
+/// # fn foo(x: &[bool]) { match x {
+/// // length 0
+/// [] => {}
+/// // length 1
+/// [_] => {}
+/// // length 2
+/// [true, true] => {}
+/// [false, false] => {}
+/// [_, _] => {}
+/// // length 3
+/// [true, true, _ ] => {}
+/// [_, false, false] => {}
+/// [_, _, _ ] => {}
+/// // length 4
+/// [true, true, _, _ ] => {}
+/// [_, _, false, false] => {}
+/// [_, _, _, _ ] => {}
+/// // length 5
+/// [true, true, _, _, _ ] => {}
+/// [_, _, _, false, false] => {}
+/// [_, _, _, _, _ ] => {}
+/// # _ => {}
+/// # }}
+/// ```
+///
+/// If we went above length 5, we would simply be inserting more columns full of wildcards in the
+/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
+/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
+///
+/// This applies to any set of slice patterns: there will be a length `L` above which all lengths
+/// behave the same. This is exactly what we need for constructor splitting. Therefore a
+/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
+/// fixed-length slices of lengths `< L`.
+///
+/// For each variable-length pattern `p` with a prefix of length `plₚ` and suffix of length `slₚ`,
+/// only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as long as `L` is
+/// positive (to avoid concerns about empty types), all elements after the maximum prefix length
+/// and before the maximum suffix length are not examined by any variable-length pattern, and
+/// therefore can be added/removed without affecting them - creating equivalent patterns from any
+/// sufficiently-large length.
+///
+/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
+/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
+///
+/// `max_slice` below will be made to have arity `L`.
+#[derive(Debug)]
+struct SplitVarLenSlice {
+ /// If the type is an array, this is its size.
+ array_len: Option<usize>,
+ /// The arity of the input slice.
+ arity: usize,
+ /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
+ /// described above.
+ max_slice: SliceKind,
+}
+
+impl SplitVarLenSlice {
+ fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
+ SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
+ }
+
+ /// Pass a set of slices relative to which to split this one.
+ fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
+ let VarLen(max_prefix_len, max_suffix_len) = &mut self.max_slice else {
+ // No need to split
+ return;
+ };
+ // We grow `self.max_slice` to be larger than all slices encountered, as described above.
+ // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
+ // `L = max_prefix_len + max_suffix_len`.
+ let mut max_fixed_len = 0;
+ for slice in slices {
+ match slice {
+ FixedLen(len) => {
+ max_fixed_len = cmp::max(max_fixed_len, len);
+ }
+ VarLen(prefix, suffix) => {
+ *max_prefix_len = cmp::max(*max_prefix_len, prefix);
+ *max_suffix_len = cmp::max(*max_suffix_len, suffix);
+ }
+ }
+ }
+ // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
+ // suffix separate.
+ if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
+ // The subtraction can't overflow thanks to the above check.
+ // The new `max_prefix_len` is larger than its previous value.
+ *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
+ }
+
+ // We cap the arity of `max_slice` at the array size.
+ match self.array_len {
+ Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
+ _ => {}
+ }
+ }
+
+ /// Iterate over the partition of this slice.
+ fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
+ let smaller_lengths = match self.array_len {
+ // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
+ // is fixed-length or variable-length, it will be the only relevant slice to output
+ // here.
+ Some(_) => 0..0, // empty range
+ // We cover all arities in the range `(self.arity..infinity)`. We split that range into
+ // two: lengths smaller than `max_slice.arity()` are treated independently as
+ // fixed-lengths slices, and lengths above are captured by `max_slice`.
+ None => self.arity..self.max_slice.arity(),
+ };
+ smaller_lengths
+ .map(FixedLen)
+ .chain(once(self.max_slice))
+ .map(move |kind| Slice::new(self.array_len, kind))
+ }
+}
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// the constructor. See also `Fields`.
+///
+/// `pat_constructor` retrieves the constructor corresponding to a pattern.
+/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
+/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
+/// `Fields`.
+#[derive(Clone, Debug, PartialEq)]
+pub(super) enum Constructor<'tcx> {
+ /// The constructor for patterns that have a single constructor, like tuples, struct patterns
+ /// and fixed-length arrays.
+ Single,
+ /// Enum variants.
+ Variant(VariantIdx),
+ /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
+ IntRange(IntRange),
+ /// Ranges of floating-point literal values (`2.0..=5.2`).
+ FloatRange(mir::ConstantKind<'tcx>, mir::ConstantKind<'tcx>, RangeEnd),
+ /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
+ Str(mir::ConstantKind<'tcx>),
+ /// Array and slice patterns.
+ Slice(Slice),
+ /// Constants that must not be matched structurally. They are treated as black
+ /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
+ /// don't count towards making a match exhaustive.
+ Opaque,
+ /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
+ /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
+ NonExhaustive,
+ /// Stands for constructors that are not seen in the matrix, as explained in the documentation
+ /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
+ /// lint.
+ Missing { nonexhaustive_enum_missing_real_variants: bool },
+ /// Wildcard pattern.
+ Wildcard,
+ /// Or-pattern.
+ Or,
+}
+
+impl<'tcx> Constructor<'tcx> {
+ pub(super) fn is_wildcard(&self) -> bool {
+ matches!(self, Wildcard)
+ }
+
+ pub(super) fn is_non_exhaustive(&self) -> bool {
+ matches!(self, NonExhaustive)
+ }
+
+ fn as_int_range(&self) -> Option<&IntRange> {
+ match self {
+ IntRange(range) => Some(range),
+ _ => None,
+ }
+ }
+
+ fn as_slice(&self) -> Option<Slice> {
+ match self {
+ Slice(slice) => Some(*slice),
+ _ => None,
+ }
+ }
+
+ /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns
+ /// `EvalResult::Deny { .. }`.
+ ///
+ /// This means that the variant has a stdlib unstable feature marking it.
+ pub(super) fn is_unstable_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
+ if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
+ let variant_def_id = adt.variant(*idx).def_id;
+ // Filter variants that depend on a disabled unstable feature.
+ return matches!(
+ pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
+ EvalResult::Deny { .. }
+ );
+ }
+ false
+ }
+
+ /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]`
+ /// attribute from a type not local to the current crate.
+ pub(super) fn is_doc_hidden_variant(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
+ if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
+ let variant_def_id = adt.variants()[*idx].def_id;
+ return pcx.cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
+ }
+ false
+ }
+
+ fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
+ match *self {
+ Variant(idx) => idx,
+ Single => {
+ assert!(!adt.is_enum());
+ VariantIdx::new(0)
+ }
+ _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
+ }
+ }
+
+ /// The number of fields for this constructor. This must be kept in sync with
+ /// `Fields::wildcards`.
+ pub(super) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
+ match self {
+ Single | Variant(_) => match pcx.ty.kind() {
+ ty::Tuple(fs) => fs.len(),
+ ty::Ref(..) => 1,
+ ty::Adt(adt, ..) => {
+ if adt.is_box() {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ 1
+ } else {
+ let variant = &adt.variant(self.variant_index_for_adt(*adt));
+ Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
+ }
+ }
+ _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
+ },
+ Slice(slice) => slice.arity(),
+ Str(..)
+ | FloatRange(..)
+ | IntRange(..)
+ | NonExhaustive
+ | Opaque
+ | Missing { .. }
+ | Wildcard => 0,
+ Or => bug!("The `Or` constructor doesn't have a fixed arity"),
+ }
+ }
+
+ /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
+ /// constructors (like variants, integers or fixed-sized slices). When specializing for these
+ /// constructors, we want to be specialising for the actual underlying constructors.
+ /// Naively, we would simply return the list of constructors they correspond to. We instead are
+ /// more clever: if there are constructors that we know will behave the same wrt the current
+ /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
+ /// will either be all useful or all non-useful with a given matrix.
+ ///
+ /// See the branches for details on how the splitting is done.
+ ///
+ /// This function may discard some irrelevant constructors if this preserves behavior and
+ /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
+ /// matrix, unless all of them are.
+ pub(super) fn split<'a>(
+ &self,
+ pcx: &PatCtxt<'_, '_, 'tcx>,
+ ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
+ ) -> SmallVec<[Self; 1]>
+ where
+ 'tcx: 'a,
+ {
+ match self {
+ Wildcard => {
+ let mut split_wildcard = SplitWildcard::new(pcx);
+ split_wildcard.split(pcx, ctors);
+ split_wildcard.into_ctors(pcx)
+ }
+ // Fast-track if the range is trivial. In particular, we don't do the overlapping
+ // ranges check.
+ IntRange(ctor_range) if !ctor_range.is_singleton() => {
+ let mut split_range = SplitIntRange::new(ctor_range.clone());
+ let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
+ split_range.split(int_ranges.cloned());
+ split_range.iter().map(IntRange).collect()
+ }
+ &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
+ let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
+ let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
+ split_self.split(slices);
+ split_self.iter().map(Slice).collect()
+ }
+ // Any other constructor can be used unchanged.
+ _ => smallvec![self.clone()],
+ }
+ }
+
+ /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
+ /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
+ /// this checks for inclusion.
+ // We inline because this has a single call site in `Matrix::specialize_constructor`.
+ #[inline]
+ pub(super) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
+ // This must be kept in sync with `is_covered_by_any`.
+ match (self, other) {
+ // Wildcards cover anything
+ (_, Wildcard) => true,
+ // The missing ctors are not covered by anything in the matrix except wildcards.
+ (Missing { .. } | Wildcard, _) => false,
+
+ (Single, Single) => true,
+ (Variant(self_id), Variant(other_id)) => self_id == other_id,
+
+ (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
+ (
+ FloatRange(self_from, self_to, self_end),
+ FloatRange(other_from, other_to, other_end),
+ ) => {
+ match (
+ compare_const_vals(pcx.cx.tcx, *self_to, *other_to, pcx.cx.param_env),
+ compare_const_vals(pcx.cx.tcx, *self_from, *other_from, pcx.cx.param_env),
+ ) {
+ (Some(to), Some(from)) => {
+ (from == Ordering::Greater || from == Ordering::Equal)
+ && (to == Ordering::Less
+ || (other_end == self_end && to == Ordering::Equal))
+ }
+ _ => false,
+ }
+ }
+ (Str(self_val), Str(other_val)) => {
+ // FIXME Once valtrees are available we can directly use the bytes
+ // in the `Str` variant of the valtree for the comparison here.
+ self_val == other_val
+ }
+ (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
+
+ // We are trying to inspect an opaque constant. Thus we skip the row.
+ (Opaque, _) | (_, Opaque) => false,
+ // Only a wildcard pattern can match the special extra constructor.
+ (NonExhaustive, _) => false,
+
+ _ => span_bug!(
+ pcx.span,
+ "trying to compare incompatible constructors {:?} and {:?}",
+ self,
+ other
+ ),
+ }
+ }
+
+ /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
+ /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
+ /// assumed to have been split from a wildcard.
+ fn is_covered_by_any<'p>(
+ &self,
+ pcx: &PatCtxt<'_, 'p, 'tcx>,
+ used_ctors: &[Constructor<'tcx>],
+ ) -> bool {
+ if used_ctors.is_empty() {
+ return false;
+ }
+
+ // This must be kept in sync with `is_covered_by`.
+ match self {
+ // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
+ Single => !used_ctors.is_empty(),
+ Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
+ IntRange(range) => used_ctors
+ .iter()
+ .filter_map(|c| c.as_int_range())
+ .any(|other| range.is_covered_by(other)),
+ Slice(slice) => used_ctors
+ .iter()
+ .filter_map(|c| c.as_slice())
+ .any(|other| slice.is_covered_by(other)),
+ // This constructor is never covered by anything else
+ NonExhaustive => false,
+ Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
+ span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
+ }
+ }
+ }
+}
+
+/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
+/// at the top of the file.
+///
+/// A constructor that is not present in the matrix rows will only be covered by the rows that have
+/// wildcards. Thus we can group all of those constructors together; we call them "missing
+/// constructors". Splitting a wildcard would therefore list all present constructors individually
+/// (or grouped if they are integers or slices), and then all missing constructors together as a
+/// group.
+///
+/// However we can go further: since any constructor will match the wildcard rows, and having more
+/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
+/// and only try the missing ones.
+/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
+/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
+/// in `to_ctors`: in some cases we only return `Missing`.
+#[derive(Debug)]
+pub(super) struct SplitWildcard<'tcx> {
+ /// Constructors seen in the matrix.
+ matrix_ctors: Vec<Constructor<'tcx>>,
+ /// All the constructors for this type
+ all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
+}
+
+impl<'tcx> SplitWildcard<'tcx> {
+ pub(super) fn new<'p>(pcx: &PatCtxt<'_, 'p, 'tcx>) -> Self {
+ debug!("SplitWildcard::new({:?})", pcx.ty);
+ let cx = pcx.cx;
+ let make_range = |start, end| {
+ IntRange(
+ // `unwrap()` is ok because we know the type is an integer.
+ IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
+ )
+ };
+ // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
+ // arrays and slices we use ranges and variable-length slices when appropriate.
+ //
+ // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
+ // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
+ // returned list of constructors.
+ // Invariant: this is empty if and only if the type is uninhabited (as determined by
+ // `cx.is_uninhabited()`).
+ let all_ctors = match pcx.ty.kind() {
+ ty::Bool => smallvec![make_range(0, 1)],
+ ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
+ let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
+ if len != 0 && cx.is_uninhabited(*sub_ty) {
+ smallvec![]
+ } else {
+ smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
+ }
+ }
+ // Treat arrays of a constant but unknown length like slices.
+ ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
+ let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
+ smallvec![Slice(Slice::new(None, kind))]
+ }
+ ty::Adt(def, substs) if def.is_enum() => {
+ // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
+ // additional "unknown" constructor.
+ // There is no point in enumerating all possible variants, because the user can't
+ // actually match against them all themselves. So we always return only the fictitious
+ // constructor.
+ // E.g., in an example like:
+ //
+ // ```
+ // let err: io::ErrorKind = ...;
+ // match err {
+ // io::ErrorKind::NotFound => {},
+ // }
+ // ```
+ //
+ // we don't want to show every possible IO error, but instead have only `_` as the
+ // witness.
+ let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);
+
+ let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;
+
+ // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
+ // as though it had an "unknown" constructor to avoid exposing its emptiness. The
+ // exception is if the pattern is at the top level, because we want empty matches to be
+ // considered exhaustive.
+ let is_secretly_empty =
+ def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level;
+
+ let mut ctors: SmallVec<[_; 1]> = def
+ .variants()
+ .iter_enumerated()
+ .filter(|(_, v)| {
+ // If `exhaustive_patterns` is enabled, we exclude variants known to be
+ // uninhabited.
+ let is_uninhabited = is_exhaustive_pat_feature
+ && v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
+ .contains(cx.tcx, cx.module);
+ !is_uninhabited
+ })
+ .map(|(idx, _)| Variant(idx))
+ .collect();
+
+ if is_secretly_empty || is_declared_nonexhaustive {
+ ctors.push(NonExhaustive);
+ }
+ ctors
+ }
+ ty::Char => {
+ smallvec![
+ // The valid Unicode Scalar Value ranges.
+ make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
+ make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
+ ]
+ }
+ ty::Int(_) | ty::Uint(_)
+ if pcx.ty.is_ptr_sized_integral()
+ && !cx.tcx.features().precise_pointer_size_matching =>
+ {
+ // `usize`/`isize` are not allowed to be matched exhaustively unless the
+ // `precise_pointer_size_matching` feature is enabled. So we treat those types like
+ // `#[non_exhaustive]` enums by returning a special unmatchable constructor.
+ smallvec![NonExhaustive]
+ }
+ &ty::Int(ity) => {
+ let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
+ let min = 1u128 << (bits - 1);
+ let max = min - 1;
+ smallvec![make_range(min, max)]
+ }
+ &ty::Uint(uty) => {
+ let size = Integer::from_uint_ty(&cx.tcx, uty).size();
+ let max = size.truncate(u128::MAX);
+ smallvec![make_range(0, max)]
+ }
+ // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
+ // expose its emptiness. The exception is if the pattern is at the top level, because we
+ // want empty matches to be considered exhaustive.
+ ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
+ smallvec![NonExhaustive]
+ }
+ ty::Never => smallvec![],
+ _ if cx.is_uninhabited(pcx.ty) => smallvec![],
+ ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
+ // This type is one for which we cannot list constructors, like `str` or `f64`.
+ _ => smallvec![NonExhaustive],
+ };
+
+ SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
+ }
+
+ /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
+ /// do what you want.
+ pub(super) fn split<'a>(
+ &mut self,
+ pcx: &PatCtxt<'_, '_, 'tcx>,
+ ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
+ ) where
+ 'tcx: 'a,
+ {
+ // Since `all_ctors` never contains wildcards, this won't recurse further.
+ self.all_ctors =
+ self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
+ self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
+ }
+
+ /// Whether there are any value constructors for this type that are not present in the matrix.
+ fn any_missing(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool {
+ self.iter_missing(pcx).next().is_some()
+ }
+
+ /// Iterate over the constructors for this type that are not present in the matrix.
+ pub(super) fn iter_missing<'a, 'p>(
+ &'a self,
+ pcx: &'a PatCtxt<'a, 'p, 'tcx>,
+ ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
+ self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
+ }
+
+ /// Return the set of constructors resulting from splitting the wildcard. As explained at the
+ /// top of the file, if any constructors are missing we can ignore the present ones.
+ fn into_ctors(self, pcx: &PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
+ if self.any_missing(pcx) {
+ // Some constructors are missing, thus we can specialize with the special `Missing`
+ // constructor, which stands for those constructors that are not seen in the matrix,
+ // and matches the same rows as any of them (namely the wildcard rows). See the top of
+ // the file for details.
+ // However, when all constructors are missing we can also specialize with the full
+ // `Wildcard` constructor. The difference will depend on what we want in diagnostics.
+
+ // If some constructors are missing, we typically want to report those constructors,
+ // e.g.:
+ // ```
+ // enum Direction { N, S, E, W }
+ // let Direction::N = ...;
+ // ```
+ // we can report 3 witnesses: `S`, `E`, and `W`.
+ //
+ // However, if the user didn't actually specify a constructor
+ // in this arm, e.g., in
+ // ```
+ // let x: (Direction, Direction, bool) = ...;
+ // let (_, _, false) = x;
+ // ```
+ // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
+ // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
+ // prefer to report just a wildcard `_`.
+ //
+ // The exception is: if we are at the top-level, for example in an empty match, we
+ // sometimes prefer reporting the list of constructors instead of just `_`.
+ let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
+ let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
+ if pcx.is_non_exhaustive {
+ Missing {
+ nonexhaustive_enum_missing_real_variants: self
+ .iter_missing(pcx)
+ .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))),
+ }
+ } else {
+ Missing { nonexhaustive_enum_missing_real_variants: false }
+ }
+ } else {
+ Wildcard
+ };
+ return smallvec![ctor];
+ }
+
+ // All the constructors are present in the matrix, so we just go through them all.
+ self.all_ctors
+ }
+}
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// those fields, generalized to allow patterns in each field. See also `Constructor`.
+///
+/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
+/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
+/// given a pattern we fill some of the fields with its subpatterns.
+/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
+/// `extract_pattern_arguments` we fill some of the entries, and the result is
+/// `[Some(0), _, _, _]`.
+/// ```compile_fail,E0004
+/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
+/// let x: [Option<u8>; 4] = foo();
+/// match x {
+/// [Some(0), ..] => {}
+/// }
+/// ```
+///
+/// Note that the number of fields of a constructor may not match the fields declared in the
+/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
+/// because the code mustn't observe that it is uninhabited. In that case that field is not
+/// included in `fields`. For that reason, when you have a `mir::Field` you must use
+/// `index_with_declared_idx`.
+#[derive(Debug, Clone, Copy)]
+pub(super) struct Fields<'p, 'tcx> {
+ fields: &'p [DeconstructedPat<'p, 'tcx>],
+}
+
+impl<'p, 'tcx> Fields<'p, 'tcx> {
+ fn empty() -> Self {
+ Fields { fields: &[] }
+ }
+
+ fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
+ let field: &_ = cx.pattern_arena.alloc(field);
+ Fields { fields: std::slice::from_ref(field) }
+ }
+
+ pub(super) fn from_iter(
+ cx: &MatchCheckCtxt<'p, 'tcx>,
+ fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
+ ) -> Self {
+ let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
+ Fields { fields }
+ }
+
+ fn wildcards_from_tys(
+ cx: &MatchCheckCtxt<'p, 'tcx>,
+ tys: impl IntoIterator<Item = Ty<'tcx>>,
+ ) -> Self {
+ Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
+ }
+
+ // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
+ // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
+ // This lists the fields we keep along with their types.
+ fn list_variant_nonhidden_fields<'a>(
+ cx: &'a MatchCheckCtxt<'p, 'tcx>,
+ ty: Ty<'tcx>,
+ variant: &'a VariantDef,
+ ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
+ let ty::Adt(adt, substs) = ty.kind() else { bug!() };
+ // Whether we must not match the fields of this variant exhaustively.
+ let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
+
+ variant.fields.iter().enumerate().filter_map(move |(i, field)| {
+ let ty = field.ty(cx.tcx, substs);
+ // `field.ty()` doesn't normalize after substituting.
+ let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
+ let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
+ let is_uninhabited = cx.is_uninhabited(ty);
+
+ if is_uninhabited && (!is_visible || is_non_exhaustive) {
+ None
+ } else {
+ Some((Field::new(i), ty))
+ }
+ })
+ }
+
+ /// Creates a new list of wildcard fields for a given constructor. The result must have a
+ /// length of `constructor.arity()`.
+ #[instrument(level = "trace")]
+ pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
+ let ret = match constructor {
+ Single | Variant(_) => match pcx.ty.kind() {
+ ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
+ ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
+ ty::Adt(adt, substs) => {
+ if adt.is_box() {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ Fields::wildcards_from_tys(pcx.cx, once(substs.type_at(0)))
+ } else {
+ let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
+ let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
+ .map(|(_, ty)| ty);
+ Fields::wildcards_from_tys(pcx.cx, tys)
+ }
+ }
+ _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
+ },
+ Slice(slice) => match *pcx.ty.kind() {
+ ty::Slice(ty) | ty::Array(ty, _) => {
+ let arity = slice.arity();
+ Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
+ }
+ _ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
+ },
+ Str(..)
+ | FloatRange(..)
+ | IntRange(..)
+ | NonExhaustive
+ | Opaque
+ | Missing { .. }
+ | Wildcard => Fields::empty(),
+ Or => {
+ bug!("called `Fields::wildcards` on an `Or` ctor")
+ }
+ };
+ debug!(?ret);
+ ret
+ }
+
+ /// Returns the list of patterns.
+ pub(super) fn iter_patterns<'a>(
+ &'a self,
+ ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
+ self.fields.iter()
+ }
+}
+
+/// Values and patterns can be represented as a constructor applied to some fields. This represents
+/// a pattern in this form.
+/// This also keeps track of whether the pattern has been found reachable during analysis. For this
+/// reason we should be careful not to clone patterns for which we care about that. Use
+/// `clone_and_forget_reachability` if you're sure.
+pub(crate) struct DeconstructedPat<'p, 'tcx> {
+ ctor: Constructor<'tcx>,
+ fields: Fields<'p, 'tcx>,
+ ty: Ty<'tcx>,
+ span: Span,
+ reachable: Cell<bool>,
+}
+
+impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
+ pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
+ Self::new(Wildcard, Fields::empty(), ty, DUMMY_SP)
+ }
+
+ pub(super) fn new(
+ ctor: Constructor<'tcx>,
+ fields: Fields<'p, 'tcx>,
+ ty: Ty<'tcx>,
+ span: Span,
+ ) -> Self {
+ DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
+ }
+
+ /// Construct a pattern that matches everything that starts with this constructor.
+ /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
+ /// `Some(_)`.
+ pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
+ let fields = Fields::wildcards(pcx, &ctor);
+ DeconstructedPat::new(ctor, fields, pcx.ty, DUMMY_SP)
+ }
+
+ /// Clone this value. This method emphasizes that cloning loses reachability information and
+ /// should be done carefully.
+ pub(super) fn clone_and_forget_reachability(&self) -> Self {
+ DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span)
+ }
+
+ pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
+ let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
+ let ctor;
+ let fields;
+ match pat.kind.as_ref() {
+ PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
+ PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
+ PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
+ ctor = Wildcard;
+ fields = Fields::empty();
+ }
+ PatKind::Deref { subpattern } => {
+ ctor = Single;
+ fields = Fields::singleton(cx, mkpat(subpattern));
+ }
+ PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
+ match pat.ty.kind() {
+ ty::Tuple(fs) => {
+ ctor = Single;
+ let mut wilds: SmallVec<[_; 2]> =
+ fs.iter().map(DeconstructedPat::wildcard).collect();
+ for pat in subpatterns {
+ wilds[pat.field.index()] = mkpat(&pat.pattern);
+ }
+ fields = Fields::from_iter(cx, wilds);
+ }
+ ty::Adt(adt, substs) if adt.is_box() => {
+ // The only legal patterns of type `Box` (outside `std`) are `_` and box
+ // patterns. If we're here we can assume this is a box pattern.
+ // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
+ // _)` or a box pattern. As a hack to avoid an ICE with the former, we
+ // ignore other fields than the first one. This will trigger an error later
+ // anyway.
+ // See https://github.com/rust-lang/rust/issues/82772 ,
+ // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
+ // The problem is that we can't know from the type whether we'll match
+ // normally or through box-patterns. We'll have to figure out a proper
+ // solution when we introduce generalized deref patterns. Also need to
+ // prevent mixing of those two options.
+ let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
+ let pat = if let Some(pat) = pat {
+ mkpat(&pat.pattern)
+ } else {
+ DeconstructedPat::wildcard(substs.type_at(0))
+ };
+ ctor = Single;
+ fields = Fields::singleton(cx, pat);
+ }
+ ty::Adt(adt, _) => {
+ ctor = match pat.kind.as_ref() {
+ PatKind::Leaf { .. } => Single,
+ PatKind::Variant { variant_index, .. } => Variant(*variant_index),
+ _ => bug!(),
+ };
+ let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
+ // For each field in the variant, we store the relevant index into `self.fields` if any.
+ let mut field_id_to_id: Vec<Option<usize>> =
+ (0..variant.fields.len()).map(|_| None).collect();
+ let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
+ .enumerate()
+ .map(|(i, (field, ty))| {
+ field_id_to_id[field.index()] = Some(i);
+ ty
+ });
+ let mut wilds: SmallVec<[_; 2]> =
+ tys.map(DeconstructedPat::wildcard).collect();
+ for pat in subpatterns {
+ if let Some(i) = field_id_to_id[pat.field.index()] {
+ wilds[i] = mkpat(&pat.pattern);
+ }
+ }
+ fields = Fields::from_iter(cx, wilds);
+ }
+ _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
+ }
+ }
+ PatKind::Constant { value } => {
+ if let Some(int_range) = IntRange::from_constant(cx.tcx, cx.param_env, *value) {
+ ctor = IntRange(int_range);
+ fields = Fields::empty();
+ } else {
+ match pat.ty.kind() {
+ ty::Float(_) => {
+ ctor = FloatRange(*value, *value, RangeEnd::Included);
+ fields = Fields::empty();
+ }
+ ty::Ref(_, t, _) if t.is_str() => {
+ // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
+ // with other `Deref` patterns. This could have been done in `const_to_pat`,
+ // but that causes issues with the rest of the matching code.
+ // So here, the constructor for a `"foo"` pattern is `&` (represented by
+ // `Single`), and has one field. That field has constructor `Str(value)` and no
+ // fields.
+ // Note: `t` is `str`, not `&str`.
+ let subpattern =
+ DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
+ ctor = Single;
+ fields = Fields::singleton(cx, subpattern)
+ }
+ // All constants that can be structurally matched have already been expanded
+ // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
+ // opaque.
+ _ => {
+ ctor = Opaque;
+ fields = Fields::empty();
+ }
+ }
+ }
+ }
+ &PatKind::Range(PatRange { lo, hi, end }) => {
+ let ty = lo.ty();
+ ctor = if let Some(int_range) = IntRange::from_range(
+ cx.tcx,
+ lo.eval_bits(cx.tcx, cx.param_env, lo.ty()),
+ hi.eval_bits(cx.tcx, cx.param_env, hi.ty()),
+ ty,
+ &end,
+ ) {
+ IntRange(int_range)
+ } else {
+ FloatRange(lo, hi, end)
+ };
+ fields = Fields::empty();
+ }
+ PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
+ let array_len = match pat.ty.kind() {
+ ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
+ ty::Slice(_) => None,
+ _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
+ };
+ let kind = if slice.is_some() {
+ VarLen(prefix.len(), suffix.len())
+ } else {
+ FixedLen(prefix.len() + suffix.len())
+ };
+ ctor = Slice(Slice::new(array_len, kind));
+ fields = Fields::from_iter(cx, prefix.iter().chain(suffix).map(mkpat));
+ }
+ PatKind::Or { .. } => {
+ ctor = Or;
+ let pats = expand_or_pat(pat);
+ fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
+ }
+ }
+ DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
+ }
+
+ pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
+ let is_wildcard = |pat: &Pat<'_>| {
+ matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
+ };
+ let mut subpatterns = self.iter_fields().map(|p| p.to_pat(cx));
+ let pat = match &self.ctor {
+ Single | Variant(_) => match self.ty.kind() {
+ ty::Tuple(..) => PatKind::Leaf {
+ subpatterns: subpatterns
+ .enumerate()
+ .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
+ .collect(),
+ },
+ ty::Adt(adt_def, _) if adt_def.is_box() => {
+ // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+ // of `std`). So this branch is only reachable when the feature is enabled and
+ // the pattern is a box pattern.
+ PatKind::Deref { subpattern: subpatterns.next().unwrap() }
+ }
+ ty::Adt(adt_def, substs) => {
+ let variant_index = self.ctor.variant_index_for_adt(*adt_def);
+ let variant = &adt_def.variant(variant_index);
+ let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
+ .zip(subpatterns)
+ .map(|((field, _ty), pattern)| FieldPat { field, pattern })
+ .collect();
+
+ if adt_def.is_enum() {
+ PatKind::Variant { adt_def: *adt_def, substs, variant_index, subpatterns }
+ } else {
+ PatKind::Leaf { subpatterns }
+ }
+ }
+ // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+ // be careful to reconstruct the correct constant pattern here. However a string
+ // literal pattern will never be reported as a non-exhaustiveness witness, so we
+ // ignore this issue.
+ ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
+ _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
+ },
+ Slice(slice) => {
+ match slice.kind {
+ FixedLen(_) => PatKind::Slice {
+ prefix: subpatterns.collect(),
+ slice: None,
+ suffix: vec![],
+ },
+ VarLen(prefix, _) => {
+ let mut subpatterns = subpatterns.peekable();
+ let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
+ if slice.array_len.is_some() {
+ // Improves diagnostics a bit: if the type is a known-size array, instead
+ // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
+ // This is incorrect if the size is not known, since `[_, ..]` captures
+ // arrays of lengths `>= 1` whereas `[..]` captures any length.
+ while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
+ prefix.pop();
+ }
+ while subpatterns.peek().is_some()
+ && is_wildcard(subpatterns.peek().unwrap())
+ {
+ subpatterns.next();
+ }
+ }
+ let suffix: Vec<_> = subpatterns.collect();
+ let wild = Pat::wildcard_from_ty(self.ty);
+ PatKind::Slice { prefix, slice: Some(wild), suffix }
+ }
+ }
+ }
+ &Str(value) => PatKind::Constant { value },
+ &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
+ IntRange(range) => return range.to_pat(cx.tcx, self.ty),
+ Wildcard | NonExhaustive => PatKind::Wild,
+ Missing { .. } => bug!(
+ "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
+ `Missing` should have been processed in `apply_constructors`"
+ ),
+ Opaque | Or => {
+ bug!("can't convert to pattern: {:?}", self)
+ }
+ };
+
+ Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(pat) }
+ }
+
+ pub(super) fn is_or_pat(&self) -> bool {
+ matches!(self.ctor, Or)
+ }
+
+ pub(super) fn ctor(&self) -> &Constructor<'tcx> {
+ &self.ctor
+ }
+ pub(super) fn ty(&self) -> Ty<'tcx> {
+ self.ty
+ }
+ pub(super) fn span(&self) -> Span {
+ self.span
+ }
+
+ pub(super) fn iter_fields<'a>(
+ &'a self,
+ ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
+ self.fields.iter_patterns()
+ }
+
+ /// Specialize this pattern with a constructor.
+ /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
+ pub(super) fn specialize<'a>(
+ &'a self,
+ pcx: &PatCtxt<'_, 'p, 'tcx>,
+ other_ctor: &Constructor<'tcx>,
+ ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
+ match (&self.ctor, other_ctor) {
+ (Wildcard, _) => {
+ // We return a wildcard for each field of `other_ctor`.
+ Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
+ }
+ (Slice(self_slice), Slice(other_slice))
+ if self_slice.arity() != other_slice.arity() =>
+ {
+ // The only tricky case: two slices of different arity. Since `self_slice` covers
+ // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
+ // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
+ // arity. So we fill the middle part with enough wildcards to reach the length of
+ // the new, larger slice.
+ match self_slice.kind {
+ FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
+ VarLen(prefix, suffix) => {
+ let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
+ bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
+ };
+ let prefix = &self.fields.fields[..prefix];
+ let suffix = &self.fields.fields[self_slice.arity() - suffix..];
+ let wildcard: &_ =
+ pcx.cx.pattern_arena.alloc(DeconstructedPat::wildcard(inner_ty));
+ let extra_wildcards = other_slice.arity() - self_slice.arity();
+ let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
+ prefix.iter().chain(extra_wildcards).chain(suffix).collect()
+ }
+ }
+ }
+ _ => self.fields.iter_patterns().collect(),
+ }
+ }
+
+ /// We keep track for each pattern if it was ever reachable during the analysis. This is used
+ /// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
+ pub(super) fn set_reachable(&self) {
+ self.reachable.set(true)
+ }
+ pub(super) fn is_reachable(&self) -> bool {
+ self.reachable.get()
+ }
+
+ /// Report the spans of subpatterns that were not reachable, if any.
+ pub(super) fn unreachable_spans(&self) -> Vec<Span> {
+ let mut spans = Vec::new();
+ self.collect_unreachable_spans(&mut spans);
+ spans
+ }
+
+ fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
+ // We don't look at subpatterns if we already reported the whole pattern as unreachable.
+ if !self.is_reachable() {
+ spans.push(self.span);
+ } else {
+ for p in self.iter_fields() {
+ p.collect_unreachable_spans(spans);
+ }
+ }
+ }
+}
+
+/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
+/// `Display` impl.
+impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ // Printing lists is a chore.
+ let mut first = true;
+ let mut start_or_continue = |s| {
+ if first {
+ first = false;
+ ""
+ } else {
+ s
+ }
+ };
+ let mut start_or_comma = || start_or_continue(", ");
+
+ match &self.ctor {
+ Single | Variant(_) => match self.ty.kind() {
+ ty::Adt(def, _) if def.is_box() => {
+ // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+ // of `std`). So this branch is only reachable when the feature is enabled and
+ // the pattern is a box pattern.
+ let subpattern = self.iter_fields().next().unwrap();
+ write!(f, "box {:?}", subpattern)
+ }
+ ty::Adt(..) | ty::Tuple(..) => {
+ let variant = match self.ty.kind() {
+ ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
+ ty::Tuple(_) => None,
+ _ => unreachable!(),
+ };
+
+ if let Some(variant) = variant {
+ write!(f, "{}", variant.name)?;
+ }
+
+ // Without `cx`, we can't know which field corresponds to which, so we can't
+ // get the names of the fields. Instead we just display everything as a tuple
+ // struct, which should be good enough.
+ write!(f, "(")?;
+ for p in self.iter_fields() {
+ write!(f, "{}", start_or_comma())?;
+ write!(f, "{:?}", p)?;
+ }
+ write!(f, ")")
+ }
+ // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+ // be careful to detect strings here. However a string literal pattern will never
+ // be reported as a non-exhaustiveness witness, so we can ignore this issue.
+ ty::Ref(_, _, mutbl) => {
+ let subpattern = self.iter_fields().next().unwrap();
+ write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
+ }
+ _ => write!(f, "_"),
+ },
+ Slice(slice) => {
+ let mut subpatterns = self.fields.iter_patterns();
+ write!(f, "[")?;
+ match slice.kind {
+ FixedLen(_) => {
+ for p in subpatterns {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ }
+ VarLen(prefix_len, _) => {
+ for p in subpatterns.by_ref().take(prefix_len) {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ write!(f, "{}", start_or_comma())?;
+ write!(f, "..")?;
+ for p in subpatterns {
+ write!(f, "{}{:?}", start_or_comma(), p)?;
+ }
+ }
+ }
+ write!(f, "]")
+ }
+ &FloatRange(lo, hi, end) => {
+ write!(f, "{}", lo)?;
+ write!(f, "{}", end)?;
+ write!(f, "{}", hi)
+ }
+ IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
+ Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty),
+ Or => {
+ for pat in self.iter_fields() {
+ write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
+ }
+ Ok(())
+ }
+ Str(value) => write!(f, "{}", value),
+ Opaque => write!(f, "<constant pattern>"),
+ }
+ }
+}