summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_build/src/thir/pattern/usefulness.rs')
-rw-r--r--compiler/rustc_mir_build/src/thir/pattern/usefulness.rs1205
1 files changed, 0 insertions, 1205 deletions
diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
deleted file mode 100644
index da7b6587a..000000000
--- a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
+++ /dev/null
@@ -1,1205 +0,0 @@
-//! Note: tests specific to this file can be found in:
-//!
-//! - `ui/pattern/usefulness`
-//! - `ui/or-patterns`
-//! - `ui/consts/const_in_pattern`
-//! - `ui/rfc-2008-non-exhaustive`
-//! - `ui/half-open-range-patterns`
-//! - probably many others
-//!
-//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
-//! reason not to, for example if they depend on a particular feature like `or_patterns`.
-//!
-//! -----
-//!
-//! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
-//! Specifically, given a list of patterns for a type, we can tell whether:
-//! (a) each pattern is reachable (reachability)
-//! (b) the patterns cover every possible value for the type (exhaustiveness)
-//!
-//! The algorithm implemented here is a modified version of the one described in [this
-//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
-//! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
-//! without being as rigorous.
-//!
-//!
-//! # Summary
-//!
-//! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
-//! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
-//! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
-//! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
-//! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
-//! file is to compute it efficiently.
-//!
-//! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
-//! is useful w.r.t. the patterns above it:
-//! ```rust
-//! # fn foo(x: Option<i32>) {
-//! match x {
-//! Some(_) => {},
-//! None => {}, // reachable: `None` is matched by this but not the branch above
-//! Some(0) => {}, // unreachable: all the values this matches are already matched by
-//! // `Some(_)` above
-//! }
-//! # }
-//! ```
-//!
-//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
-//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
-//! are used to tell the user which values are missing.
-//! ```compile_fail,E0004
-//! # fn foo(x: Option<i32>) {
-//! match x {
-//! Some(0) => {},
-//! None => {},
-//! // not exhaustive: `_` is useful because it matches `Some(1)`
-//! }
-//! # }
-//! ```
-//!
-//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
-//! reachability for each match branch and exhaustiveness for the whole match.
-//!
-//!
-//! # Constructors and fields
-//!
-//! Note: we will often abbreviate "constructor" as "ctor".
-//!
-//! The idea that powers everything that is done in this file is the following: a (matchable)
-//! value is made from a constructor applied to a number of subvalues. Examples of constructors are
-//! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
-//! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
-//! pattern-matching, and this is the basis for what follows.
-//!
-//! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
-//! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
-//! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
-//! `enum`, with one variant for each number. This allows us to see any matchable value as made up
-//! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
-//! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
-//!
-//! This idea can be extended to patterns: they are also made from constructors applied to fields.
-//! A pattern for a given type is allowed to use all the ctors for values of that type (which we
-//! call "value constructors"), but there are also pattern-only ctors. The most important one is
-//! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
-//! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
-//! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
-//! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
-//!
-//! From this deconstruction we can compute whether a given value matches a given pattern; we
-//! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
-//! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
-//! we compare their fields recursively. A few representative examples:
-//!
-//! - `matches!(v, _) := true`
-//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
-//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
-//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
-//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
-//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
-//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
-//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
-//! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
-//!
-//! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
-//!
-//! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
-//! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
-//! infinitude of constructors. There are also subtleties with visibility of fields and
-//! uninhabitedness and various other things. The constructors idea can be extended to handle most
-//! of these subtleties though; caveats are documented where relevant throughout the code.
-//!
-//! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
-//!
-//!
-//! # Specialization
-//!
-//! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
-//! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
-//! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
-//! enumerate all possible values. From the discussion above we see that we can proceed
-//! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
-//! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
-//! say from knowing only the first constructor of our candidate value.
-//!
-//! Let's take the following example:
-//! ```compile_fail,E0004
-//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
-//! # fn foo(x: Enum) {
-//! match x {
-//! Enum::Variant1(_) => {} // `p1`
-//! Enum::Variant2(None, 0) => {} // `p2`
-//! Enum::Variant2(Some(_), 0) => {} // `q`
-//! }
-//! # }
-//! ```
-//!
-//! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
-//! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
-//! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
-//! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
-//!
-//! ```compile_fail,E0004
-//! # fn foo(x: (Option<bool>, u32)) {
-//! match x {
-//! (None, 0) => {} // `p2'`
-//! (Some(_), 0) => {} // `q'`
-//! }
-//! # }
-//! ```
-//!
-//! This motivates a new step in computing usefulness, that we call _specialization_.
-//! Specialization consist of filtering a list of patterns for those that match a constructor, and
-//! then looking into the constructor's fields. This enables usefulness to be computed recursively.
-//!
-//! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
-//! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
-//! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
-//! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
-//! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
-//! happening:
-//! ```ignore (illustrative)
-//! [Enum::Variant1(_)]
-//! [Enum::Variant2(None, 0)]
-//! [Enum::Variant2(Some(_), 0)]
-//! //==>> specialize with `Variant2`
-//! [None, 0]
-//! [Some(_), 0]
-//! //==>> specialize with `Some`
-//! [_, 0]
-//! //==>> specialize with `true` (say the type was `bool`)
-//! [0]
-//! //==>> specialize with `0`
-//! []
-//! ```
-//!
-//! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
-//! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
-//! otherwise if returns the fields of the constructor. This only returns more than one
-//! pattern-stack if `p` has a pattern-only constructor.
-//!
-//! - Specializing for the wrong constructor returns nothing
-//!
-//! `specialize(None, Some(p0)) := []`
-//!
-//! - Specializing for the correct constructor returns a single row with the fields
-//!
-//! `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
-//!
-//! `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
-//!
-//! - For or-patterns, we specialize each branch and concatenate the results
-//!
-//! `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
-//!
-//! - We treat the other pattern constructors as if they were a large or-pattern of all the
-//! possibilities:
-//!
-//! `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
-//!
-//! `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
-//!
-//! `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
-//!
-//! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
-//! the discussion about constructor splitting in [`super::deconstruct_pat`].
-//!
-//!
-//! We then extend this function to work with pattern-stacks as input, by acting on the first
-//! column and keeping the other columns untouched.
-//!
-//! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
-//! or-patterns in the first column are expanded before being stored in the matrix. Specialization
-//! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
-//! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
-//! [`super::deconstruct_pat::Fields`] struct.
-//!
-//!
-//! # Computing usefulness
-//!
-//! We now have all we need to compute usefulness. The inputs to usefulness are a list of
-//! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
-//! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
-//! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
-//! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
-//!
-//! - base case: `n_columns == 0`.
-//! Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
-//! unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
-//!
-//! - inductive case: `n_columns > 0`.
-//! We need a way to list the constructors we want to try. We will be more clever in the next
-//! section but for now assume we list all value constructors for the type of the first column.
-//!
-//! - for each such ctor `c`:
-//!
-//! - for each `q'` returned by `specialize(c, q)`:
-//!
-//! - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
-//!
-//! - for each witness found, we revert specialization by pushing the constructor `c` on top.
-//!
-//! - We return the concatenation of all the witnesses found, if any.
-//!
-//! Example:
-//! ```ignore (illustrative)
-//! [Some(true)] // p_1
-//! [None] // p_2
-//! [Some(_)] // q
-//! //==>> try `None`: `specialize(None, q)` returns nothing
-//! //==>> try `Some`: `specialize(Some, q)` returns a single row
-//! [true] // p_1'
-//! [_] // q'
-//! //==>> try `true`: `specialize(true, q')` returns a single row
-//! [] // p_1''
-//! [] // q''
-//! //==>> base case; `n != 0` so `q''` is not useful.
-//! //==>> go back up a step
-//! [true] // p_1'
-//! [_] // q'
-//! //==>> try `false`: `specialize(false, q')` returns a single row
-//! [] // q''
-//! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
-//! witnesses:
-//! []
-//! //==>> undo the specialization with `false`
-//! witnesses:
-//! [false]
-//! //==>> undo the specialization with `Some`
-//! witnesses:
-//! [Some(false)]
-//! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
-//! ```
-//!
-//! This computation is done in [`is_useful`]. In practice we don't care about the list of
-//! witnesses when computing reachability; we only need to know whether any exist. We do keep the
-//! witnesses when computing exhaustiveness to report them to the user.
-//!
-//!
-//! # Making usefulness tractable: constructor splitting
-//!
-//! We're missing one last detail: which constructors do we list? Naively listing all value
-//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
-//! first obvious insight is that we only want to list constructors that are covered by the head
-//! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
-//! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
-//! group together constructors that behave the same.
-//!
-//! The details are not necessary to understand this file, so we explain them in
-//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
-//!
-//! # Constants in patterns
-//!
-//! There are two kinds of constants in patterns:
-//!
-//! * literals (`1`, `true`, `"foo"`)
-//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
-//!
-//! The latter are converted into other patterns with literals at the leaves. For example
-//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
-//! pattern. This gets problematic when comparing the constant via `==` would behave differently
-//! from matching on the constant converted to a pattern. Situations like that can occur, when
-//! the user implements `PartialEq` manually, and thus could make `==` behave arbitrarily different.
-//! In order to honor the `==` implementation, constants of types that implement `PartialEq` manually
-//! stay as a full constant and become an `Opaque` pattern. These `Opaque` patterns do not participate
-//! in exhaustiveness, specialization or overlap checking.
-
-use self::ArmType::*;
-use self::Usefulness::*;
-use super::deconstruct_pat::{
- Constructor, ConstructorSet, DeconstructedPat, IntRange, MaybeInfiniteInt, SplitConstructorSet,
- WitnessPat,
-};
-use crate::errors::{
- NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
- OverlappingRangeEndpoints, Uncovered,
-};
-
-use rustc_data_structures::captures::Captures;
-
-use rustc_arena::TypedArena;
-use rustc_data_structures::stack::ensure_sufficient_stack;
-use rustc_hir::def_id::DefId;
-use rustc_hir::HirId;
-use rustc_middle::ty::{self, Ty, TyCtxt};
-use rustc_session::lint;
-use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
-use rustc_span::{Span, DUMMY_SP};
-
-use smallvec::{smallvec, SmallVec};
-use std::fmt;
-
-pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
- pub(crate) tcx: TyCtxt<'tcx>,
- /// The module in which the match occurs. This is necessary for
- /// checking inhabited-ness of types because whether a type is (visibly)
- /// inhabited can depend on whether it was defined in the current module or
- /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
- /// outside its module and should not be matchable with an empty match statement.
- pub(crate) module: DefId,
- pub(crate) param_env: ty::ParamEnv<'tcx>,
- pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
- /// The span of the whole match, if applicable.
- pub(crate) match_span: Option<Span>,
- /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
- pub(crate) refutable: bool,
-}
-
-impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
- pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
- if self.tcx.features().exhaustive_patterns {
- !ty.is_inhabited_from(self.tcx, self.module, self.param_env)
- } else {
- false
- }
- }
-
- /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
- pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
- match ty.kind() {
- ty::Adt(def, ..) => {
- def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
- }
- _ => false,
- }
- }
-}
-
-#[derive(Copy, Clone)]
-pub(super) struct PatCtxt<'a, 'p, 'tcx> {
- pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
- /// Type of the current column under investigation.
- pub(super) ty: Ty<'tcx>,
- /// Span of the current pattern under investigation.
- pub(super) span: Span,
- /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
- /// subpattern.
- pub(super) is_top_level: bool,
-}
-
-impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
- }
-}
-
-/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
-/// works well.
-#[derive(Clone)]
-pub(crate) struct PatStack<'p, 'tcx> {
- pub(crate) pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
-}
-
-impl<'p, 'tcx> PatStack<'p, 'tcx> {
- fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
- Self::from_vec(smallvec![pat])
- }
-
- fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
- PatStack { pats: vec }
- }
-
- fn is_empty(&self) -> bool {
- self.pats.is_empty()
- }
-
- fn len(&self) -> usize {
- self.pats.len()
- }
-
- fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
- self.pats[0]
- }
-
- fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
- self.pats.iter().copied()
- }
-
- // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
- // or-pattern. Panics if `self` is empty.
- fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
- self.head().iter_fields().map(move |pat| {
- let mut new_patstack = PatStack::from_pattern(pat);
- new_patstack.pats.extend_from_slice(&self.pats[1..]);
- new_patstack
- })
- }
-
- // Recursively expand all patterns into their subpatterns and push each `PatStack` to matrix.
- fn expand_and_extend<'a>(&'a self, matrix: &mut Matrix<'p, 'tcx>) {
- if !self.is_empty() && self.head().is_or_pat() {
- for pat in self.head().iter_fields() {
- let mut new_patstack = PatStack::from_pattern(pat);
- new_patstack.pats.extend_from_slice(&self.pats[1..]);
- if !new_patstack.is_empty() && new_patstack.head().is_or_pat() {
- new_patstack.expand_and_extend(matrix);
- } else if !new_patstack.is_empty() {
- matrix.push(new_patstack);
- }
- }
- }
- }
-
- /// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
- ///
- /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
- /// fields filled with wild patterns.
- ///
- /// This is roughly the inverse of `Constructor::apply`.
- fn pop_head_constructor(
- &self,
- pcx: &PatCtxt<'_, 'p, 'tcx>,
- ctor: &Constructor<'tcx>,
- ) -> PatStack<'p, 'tcx> {
- // We pop the head pattern and push the new fields extracted from the arguments of
- // `self.head()`.
- let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(pcx, ctor);
- new_fields.extend_from_slice(&self.pats[1..]);
- PatStack::from_vec(new_fields)
- }
-}
-
-/// Pretty-printing for matrix row.
-impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- write!(f, "+")?;
- for pat in self.iter() {
- write!(f, " {pat:?} +")?;
- }
- Ok(())
- }
-}
-
-/// A 2D matrix.
-#[derive(Clone)]
-pub(super) struct Matrix<'p, 'tcx> {
- pub patterns: Vec<PatStack<'p, 'tcx>>,
-}
-
-impl<'p, 'tcx> Matrix<'p, 'tcx> {
- fn empty() -> Self {
- Matrix { patterns: vec![] }
- }
-
- /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
- /// expands it.
- fn push(&mut self, row: PatStack<'p, 'tcx>) {
- if !row.is_empty() && row.head().is_or_pat() {
- row.expand_and_extend(self);
- } else {
- self.patterns.push(row);
- }
- }
-
- /// Iterate over the first component of each row
- fn heads<'a>(
- &'a self,
- ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
- self.patterns.iter().map(|r| r.head())
- }
-
- /// This computes `S(constructor, self)`. See top of the file for explanations.
- fn specialize_constructor(
- &self,
- pcx: &PatCtxt<'_, 'p, 'tcx>,
- ctor: &Constructor<'tcx>,
- ) -> Matrix<'p, 'tcx> {
- let mut matrix = Matrix::empty();
- for row in &self.patterns {
- if ctor.is_covered_by(pcx, row.head().ctor()) {
- let new_row = row.pop_head_constructor(pcx, ctor);
- matrix.push(new_row);
- }
- }
- matrix
- }
-}
-
-/// Pretty-printer for matrices of patterns, example:
-///
-/// ```text
-/// + _ + [] +
-/// + true + [First] +
-/// + true + [Second(true)] +
-/// + false + [_] +
-/// + _ + [_, _, tail @ ..] +
-/// ```
-impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- write!(f, "\n")?;
-
- let Matrix { patterns: m, .. } = self;
- let pretty_printed_matrix: Vec<Vec<String>> =
- m.iter().map(|row| row.iter().map(|pat| format!("{pat:?}")).collect()).collect();
-
- let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
- assert!(m.iter().all(|row| row.len() == column_count));
- let column_widths: Vec<usize> = (0..column_count)
- .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
- .collect();
-
- for row in pretty_printed_matrix {
- write!(f, "+")?;
- for (column, pat_str) in row.into_iter().enumerate() {
- write!(f, " ")?;
- write!(f, "{:1$}", pat_str, column_widths[column])?;
- write!(f, " +")?;
- }
- write!(f, "\n")?;
- }
- Ok(())
- }
-}
-
-/// This carries the results of computing usefulness, as described at the top of the file. When
-/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
-/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
-/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
-/// witnesses of non-exhaustiveness when there are any.
-/// Which variant to use is dictated by `ArmType`.
-#[derive(Debug, Clone)]
-enum Usefulness<'tcx> {
- /// If we don't care about witnesses, simply remember if the pattern was useful.
- NoWitnesses { useful: bool },
- /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
- /// pattern is unreachable.
- WithWitnesses(Vec<WitnessStack<'tcx>>),
-}
-
-impl<'tcx> Usefulness<'tcx> {
- fn new_useful(preference: ArmType) -> Self {
- match preference {
- // A single (empty) witness of reachability.
- FakeExtraWildcard => WithWitnesses(vec![WitnessStack(vec![])]),
- RealArm => NoWitnesses { useful: true },
- }
- }
-
- fn new_not_useful(preference: ArmType) -> Self {
- match preference {
- FakeExtraWildcard => WithWitnesses(vec![]),
- RealArm => NoWitnesses { useful: false },
- }
- }
-
- fn is_useful(&self) -> bool {
- match self {
- Usefulness::NoWitnesses { useful } => *useful,
- Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
- }
- }
-
- /// Combine usefulnesses from two branches. This is an associative operation.
- fn extend(&mut self, other: Self) {
- match (&mut *self, other) {
- (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
- (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
- (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
- (NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
- *s_useful = *s_useful || o_useful
- }
- _ => unreachable!(),
- }
- }
-
- /// After calculating usefulness after a specialization, call this to reconstruct a usefulness
- /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
- /// with the results of specializing with the other constructors.
- fn apply_constructor(
- self,
- pcx: &PatCtxt<'_, '_, 'tcx>,
- matrix: &Matrix<'_, 'tcx>, // used to compute missing ctors
- ctor: &Constructor<'tcx>,
- ) -> Self {
- match self {
- NoWitnesses { .. } => self,
- WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
- WithWitnesses(witnesses) => {
- let new_witnesses = if let Constructor::Missing { .. } = ctor {
- let mut missing = ConstructorSet::for_ty(pcx.cx, pcx.ty)
- .compute_missing(pcx, matrix.heads().map(DeconstructedPat::ctor));
- if missing.iter().any(|c| c.is_non_exhaustive()) {
- // We only report `_` here; listing other constructors would be redundant.
- missing = vec![Constructor::NonExhaustive];
- }
-
- // We got the special `Missing` constructor, so each of the missing constructors
- // gives a new pattern that is not caught by the match.
- // We construct for each missing constructor a version of this constructor with
- // wildcards for fields, i.e. that matches everything that can be built with it.
- // For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get
- // the pattern `Some(_)`.
- let new_patterns: Vec<WitnessPat<'_>> = missing
- .into_iter()
- .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor.clone()))
- .collect();
-
- witnesses
- .into_iter()
- .flat_map(|witness| {
- new_patterns.iter().map(move |pat| {
- let mut stack = witness.clone();
- stack.0.push(pat.clone());
- stack
- })
- })
- .collect()
- } else {
- witnesses
- .into_iter()
- .map(|witness| witness.apply_constructor(pcx, &ctor))
- .collect()
- };
- WithWitnesses(new_witnesses)
- }
- }
- }
-}
-
-#[derive(Copy, Clone, Debug)]
-enum ArmType {
- FakeExtraWildcard,
- RealArm,
-}
-
-/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
-/// reverse order of construction) with wildcards inside to represent elements that can take any
-/// inhabitant of the type as a value.
-///
-/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
-/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
-/// FIXME(Nadrieril): use the same order of patterns for both
-///
-/// A `WitnessStack` should have the same types and length as the `PatStacks` we are inspecting
-/// (except we store the patterns in reverse order). Because Rust `match` is always against a single
-/// pattern, at the end the stack will have length 1. In the middle of the algorithm, it can contain
-/// multiple patterns.
-///
-/// For example, if we are constructing a witness for the match against
-///
-/// ```compile_fail,E0004
-/// struct Pair(Option<(u32, u32)>, bool);
-/// # fn foo(p: Pair) {
-/// match p {
-/// Pair(None, _) => {}
-/// Pair(_, false) => {}
-/// }
-/// # }
-/// ```
-///
-/// We'll perform the following steps (among others):
-/// - Start with a matrix representing the match
-/// `PatStack(vec![Pair(None, _)])`
-/// `PatStack(vec![Pair(_, false)])`
-/// - Specialize with `Pair`
-/// `PatStack(vec![None, _])`
-/// `PatStack(vec![_, false])`
-/// - Specialize with `Some`
-/// `PatStack(vec![_, false])`
-/// - Specialize with `_`
-/// `PatStack(vec![false])`
-/// - Specialize with `true`
-/// // no patstacks left
-/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
-/// `WitnessStack(vec![])`
-/// - Apply `true`
-/// `WitnessStack(vec![true])`
-/// - Apply `_`
-/// `WitnessStack(vec![true, _])`
-/// - Apply `Some`
-/// `WitnessStack(vec![true, Some(_)])`
-/// - Apply `Pair`
-/// `WitnessStack(vec![Pair(Some(_), true)])`
-///
-/// The final `Pair(Some(_), true)` is then the resulting witness.
-#[derive(Debug, Clone)]
-pub(crate) struct WitnessStack<'tcx>(Vec<WitnessPat<'tcx>>);
-
-impl<'tcx> WitnessStack<'tcx> {
- /// Asserts that the witness contains a single pattern, and returns it.
- fn single_pattern(self) -> WitnessPat<'tcx> {
- assert_eq!(self.0.len(), 1);
- self.0.into_iter().next().unwrap()
- }
-
- /// Constructs a partial witness for a pattern given a list of
- /// patterns expanded by the specialization step.
- ///
- /// When a pattern P is discovered to be useful, this function is used bottom-up
- /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
- /// of values, V, where each value in that set is not covered by any previously
- /// used patterns and is covered by the pattern P'. Examples:
- ///
- /// left_ty: tuple of 3 elements
- /// pats: [10, 20, _] => (10, 20, _)
- ///
- /// left_ty: struct X { a: (bool, &'static str), b: usize}
- /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
- fn apply_constructor(mut self, pcx: &PatCtxt<'_, '_, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
- let pat = {
- let len = self.0.len();
- let arity = ctor.arity(pcx);
- let fields = self.0.drain((len - arity)..).rev().collect();
- WitnessPat::new(ctor.clone(), fields, pcx.ty)
- };
-
- self.0.push(pat);
-
- self
- }
-}
-
-/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
-/// The algorithm from the paper has been modified to correctly handle empty
-/// types. The changes are:
-/// (0) We don't exit early if the pattern matrix has zero rows. We just
-/// continue to recurse over columns.
-/// (1) all_constructors will only return constructors that are statically
-/// possible. E.g., it will only return `Ok` for `Result<T, !>`.
-///
-/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
-/// to a set of such vectors `m` - this is defined as there being a set of
-/// inputs that will match `v` but not any of the sets in `m`.
-///
-/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
-///
-/// This is used both for reachability checking (if a pattern isn't useful in
-/// relation to preceding patterns, it is not reachable) and exhaustiveness
-/// checking (if a wildcard pattern is useful in relation to a matrix, the
-/// matrix isn't exhaustive).
-///
-/// `is_under_guard` is used to inform if the pattern has a guard. If it
-/// has one it must not be inserted into the matrix. This shouldn't be
-/// relied on for soundness.
-#[instrument(level = "debug", skip(cx, matrix, lint_root), ret)]
-fn is_useful<'p, 'tcx>(
- cx: &MatchCheckCtxt<'p, 'tcx>,
- matrix: &Matrix<'p, 'tcx>,
- v: &PatStack<'p, 'tcx>,
- witness_preference: ArmType,
- lint_root: HirId,
- is_under_guard: bool,
- is_top_level: bool,
-) -> Usefulness<'tcx> {
- debug!(?matrix, ?v);
- let Matrix { patterns: rows, .. } = matrix;
-
- // The base case. We are pattern-matching on () and the return value is
- // based on whether our matrix has a row or not.
- // NOTE: This could potentially be optimized by checking rows.is_empty()
- // first and then, if v is non-empty, the return value is based on whether
- // the type of the tuple we're checking is inhabited or not.
- if v.is_empty() {
- let ret = if rows.is_empty() {
- Usefulness::new_useful(witness_preference)
- } else {
- Usefulness::new_not_useful(witness_preference)
- };
- debug!(?ret);
- return ret;
- }
-
- debug_assert!(rows.iter().all(|r| r.len() == v.len()));
-
- // If the first pattern is an or-pattern, expand it.
- let mut ret = Usefulness::new_not_useful(witness_preference);
- if v.head().is_or_pat() {
- debug!("expanding or-pattern");
- // We try each or-pattern branch in turn.
- let mut matrix = matrix.clone();
- for v in v.expand_or_pat() {
- debug!(?v);
- let usefulness = ensure_sufficient_stack(|| {
- is_useful(cx, &matrix, &v, witness_preference, lint_root, is_under_guard, false)
- });
- debug!(?usefulness);
- ret.extend(usefulness);
- // If pattern has a guard don't add it to the matrix.
- if !is_under_guard {
- // We push the already-seen patterns into the matrix in order to detect redundant
- // branches like `Some(_) | Some(0)`.
- matrix.push(v);
- }
- }
- } else {
- let mut ty = v.head().ty();
-
- // Opaque types can't get destructured/split, but the patterns can
- // actually hint at hidden types, so we use the patterns' types instead.
- if let ty::Alias(ty::Opaque, ..) = ty.kind() {
- if let Some(row) = rows.first() {
- ty = row.head().ty();
- }
- }
- debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span());
- let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level };
-
- let v_ctor = v.head().ctor();
- debug!(?v_ctor);
- // We split the head constructor of `v`.
- let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
- // For each constructor, we compute whether there's a value that starts with it that would
- // witness the usefulness of `v`.
- let start_matrix = &matrix;
- for ctor in split_ctors {
- debug!("specialize({:?})", ctor);
- // We cache the result of `Fields::wildcards` because it is used a lot.
- let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
- let v = v.pop_head_constructor(pcx, &ctor);
- let usefulness = ensure_sufficient_stack(|| {
- is_useful(
- cx,
- &spec_matrix,
- &v,
- witness_preference,
- lint_root,
- is_under_guard,
- false,
- )
- });
- let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);
- ret.extend(usefulness);
- }
- }
-
- if ret.is_useful() {
- v.head().set_reachable();
- }
-
- ret
-}
-
-/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
-/// inspect the same subvalue".
-/// This is used to traverse patterns column-by-column for lints. Despite similarities with
-/// `is_useful`, this is a different traversal. Notably this is linear in the depth of patterns,
-/// whereas `is_useful` is worst-case exponential (exhaustiveness is NP-complete).
-#[derive(Debug)]
-struct PatternColumn<'p, 'tcx> {
- patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
-}
-
-impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
- fn new(patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>) -> Self {
- Self { patterns }
- }
-
- fn is_empty(&self) -> bool {
- self.patterns.is_empty()
- }
- fn head_ty(&self) -> Option<Ty<'tcx>> {
- if self.patterns.len() == 0 {
- return None;
- }
- // If the type is opaque and it is revealed anywhere in the column, we take the revealed
- // version. Otherwise we could encounter constructors for the revealed type and crash.
- let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
- let first_ty = self.patterns[0].ty();
- if is_opaque(first_ty) {
- for pat in &self.patterns {
- let ty = pat.ty();
- if !is_opaque(ty) {
- return Some(ty);
- }
- }
- }
- Some(first_ty)
- }
-
- fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
- let column_ctors = self.patterns.iter().map(|p| p.ctor());
- ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, column_ctors)
- }
- fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
- self.patterns.iter().copied()
- }
-
- /// Does specialization: given a constructor, this takes the patterns from the column that match
- /// the constructor, and outputs their fields.
- /// This returns one column per field of the constructor. The normally all have the same length
- /// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
- /// which may change the lengths.
- fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
- let arity = ctor.arity(pcx);
- if arity == 0 {
- return Vec::new();
- }
-
- // We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
- // columns may have different lengths in the presence of or-patterns (this is why we can't
- // reuse `Matrix`).
- let mut specialized_columns: Vec<_> =
- (0..arity).map(|_| Self { patterns: Vec::new() }).collect();
- let relevant_patterns =
- self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
- for pat in relevant_patterns {
- let specialized = pat.specialize(pcx, &ctor);
- for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
- if subpat.is_or_pat() {
- column.patterns.extend(subpat.flatten_or_pat())
- } else {
- column.patterns.push(subpat)
- }
- }
- }
-
- assert!(
- !specialized_columns[0].is_empty(),
- "ctor {ctor:?} was listed as present but isn't;
- there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
- );
- specialized_columns
- }
-}
-
-/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
-/// in a given column.
-#[instrument(level = "debug", skip(cx), ret)]
-fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
- cx: &MatchCheckCtxt<'p, 'tcx>,
- column: &PatternColumn<'p, 'tcx>,
-) -> Vec<WitnessPat<'tcx>> {
- let Some(ty) = column.head_ty() else {
- return Vec::new();
- };
- let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
-
- let set = column.analyze_ctors(pcx);
- if set.present.is_empty() {
- // We can't consistently handle the case where no constructors are present (since this would
- // require digging deep through any type in case there's a non_exhaustive enum somewhere),
- // so for consistency we refuse to handle the top-level case, where we could handle it.
- return vec![];
- }
-
- let mut witnesses = Vec::new();
- if cx.is_foreign_non_exhaustive_enum(ty) {
- witnesses.extend(
- set.missing
- .into_iter()
- // This will list missing visible variants.
- .filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
- .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
- )
- }
-
- // Recurse into the fields.
- for ctor in set.present {
- let specialized_columns = column.specialize(pcx, &ctor);
- let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
- for (i, col_i) in specialized_columns.iter().enumerate() {
- // Compute witnesses for each column.
- let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
- // For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
- // adding enough wildcards to match `arity`.
- for wit in wits_for_col_i {
- let mut pat = wild_pat.clone();
- pat.fields[i] = wit;
- witnesses.push(pat);
- }
- }
- }
- witnesses
-}
-
-/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
-#[instrument(level = "debug", skip(cx, lint_root))]
-fn lint_overlapping_range_endpoints<'p, 'tcx>(
- cx: &MatchCheckCtxt<'p, 'tcx>,
- column: &PatternColumn<'p, 'tcx>,
- lint_root: HirId,
-) {
- let Some(ty) = column.head_ty() else {
- return;
- };
- let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
-
- let set = column.analyze_ctors(pcx);
-
- if IntRange::is_integral(ty) {
- let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
- let overlap_as_pat = overlap.to_diagnostic_pat(ty, cx.tcx);
- let overlaps: Vec<_> = overlapped_spans
- .iter()
- .copied()
- .map(|span| Overlap { range: overlap_as_pat.clone(), span })
- .collect();
- cx.tcx.emit_spanned_lint(
- lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
- lint_root,
- this_span,
- OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
- );
- };
-
- // If two ranges overlapped, the split set will contain their intersection as a singleton.
- let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
- for overlap_range in split_int_ranges.clone() {
- if overlap_range.is_singleton() {
- let overlap: MaybeInfiniteInt = overlap_range.lo;
- // Ranges that look like `lo..=overlap`.
- let mut prefixes: SmallVec<[_; 1]> = Default::default();
- // Ranges that look like `overlap..=hi`.
- let mut suffixes: SmallVec<[_; 1]> = Default::default();
- // Iterate on patterns that contained `overlap`.
- for pat in column.iter() {
- let this_span = pat.span();
- let Constructor::IntRange(this_range) = pat.ctor() else { continue };
- if this_range.is_singleton() {
- // Don't lint when one of the ranges is a singleton.
- continue;
- }
- if this_range.lo == overlap {
- // `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
- // ranges that look like `lo..=overlap`.
- if !prefixes.is_empty() {
- emit_lint(overlap_range, this_span, &prefixes);
- }
- suffixes.push(this_span)
- } else if this_range.hi == overlap.plus_one() {
- // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
- // ranges that look like `overlap..=hi`.
- if !suffixes.is_empty() {
- emit_lint(overlap_range, this_span, &suffixes);
- }
- prefixes.push(this_span)
- }
- }
- }
- }
- } else {
- // Recurse into the fields.
- for ctor in set.present {
- for col in column.specialize(pcx, &ctor) {
- lint_overlapping_range_endpoints(cx, &col, lint_root);
- }
- }
- }
-}
-
-/// The arm of a match expression.
-#[derive(Clone, Copy, Debug)]
-pub(crate) struct MatchArm<'p, 'tcx> {
- /// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
- pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
- pub(crate) hir_id: HirId,
- pub(crate) has_guard: bool,
-}
-
-/// Indicates whether or not a given arm is reachable.
-#[derive(Clone, Debug)]
-pub(crate) enum Reachability {
- /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
- /// found to be unreachable despite the overall arm being reachable. Used only in the presence
- /// of or-patterns, otherwise it stays empty.
- Reachable(Vec<Span>),
- /// The arm is unreachable.
- Unreachable,
-}
-
-/// The output of checking a match for exhaustiveness and arm reachability.
-pub(crate) struct UsefulnessReport<'p, 'tcx> {
- /// For each arm of the input, whether that arm is reachable after the arms above it.
- pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
- /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
- /// exhaustiveness.
- pub(crate) non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
-}
-
-/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
-/// of its arms are reachable.
-///
-/// Note: the input patterns must have been lowered through
-/// `check_match::MatchVisitor::lower_pattern`.
-#[instrument(skip(cx, arms), level = "debug")]
-pub(crate) fn compute_match_usefulness<'p, 'tcx>(
- cx: &MatchCheckCtxt<'p, 'tcx>,
- arms: &[MatchArm<'p, 'tcx>],
- lint_root: HirId,
- scrut_ty: Ty<'tcx>,
- scrut_span: Span,
-) -> UsefulnessReport<'p, 'tcx> {
- let mut matrix = Matrix::empty();
- let arm_usefulness: Vec<_> = arms
- .iter()
- .copied()
- .map(|arm| {
- debug!(?arm);
- let v = PatStack::from_pattern(arm.pat);
- is_useful(cx, &matrix, &v, RealArm, arm.hir_id, arm.has_guard, true);
- if !arm.has_guard {
- matrix.push(v);
- }
- let reachability = if arm.pat.is_reachable() {
- Reachability::Reachable(arm.pat.unreachable_spans())
- } else {
- Reachability::Unreachable
- };
- (arm, reachability)
- })
- .collect();
-
- let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP));
- let v = PatStack::from_pattern(wild_pattern);
- let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, lint_root, false, true);
- let non_exhaustiveness_witnesses: Vec<_> = match usefulness {
- WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(),
- NoWitnesses { .. } => bug!(),
- };
-
- let pat_column = arms.iter().flat_map(|arm| arm.pat.flatten_or_pat()).collect::<Vec<_>>();
- let pat_column = PatternColumn::new(pat_column);
- lint_overlapping_range_endpoints(cx, &pat_column, lint_root);
-
- // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
- // `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
- if cx.refutable && non_exhaustiveness_witnesses.is_empty() {
- if !matches!(
- cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, lint_root).0,
- rustc_session::lint::Level::Allow
- ) {
- let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column);
-
- if !witnesses.is_empty() {
- // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
- // is not exhaustive enough.
- //
- // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
- cx.tcx.emit_spanned_lint(
- NON_EXHAUSTIVE_OMITTED_PATTERNS,
- lint_root,
- scrut_span,
- NonExhaustiveOmittedPattern {
- scrut_ty,
- uncovered: Uncovered::new(scrut_span, cx, witnesses),
- },
- );
- }
- } else {
- // We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
- // arm. This no longer makes sense so we warn users, to avoid silently breaking their
- // usage of the lint.
- for arm in arms {
- let (lint_level, lint_level_source) =
- cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id);
- if !matches!(lint_level, rustc_session::lint::Level::Allow) {
- let decorator = NonExhaustiveOmittedPatternLintOnArm {
- lint_span: lint_level_source.span(),
- suggest_lint_on_match: cx.match_span.map(|span| span.shrink_to_lo()),
- lint_level: lint_level.as_str(),
- lint_name: "non_exhaustive_omitted_patterns",
- };
-
- use rustc_errors::DecorateLint;
- let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), "");
- err.set_primary_message(decorator.msg());
- decorator.decorate_lint(&mut err);
- err.emit();
- }
- }
- }
- }
-
- UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
-}