summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_monomorphize/src/collector.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_monomorphize/src/collector.rs')
-rw-r--r--compiler/rustc_monomorphize/src/collector.rs1463
1 files changed, 1463 insertions, 0 deletions
diff --git a/compiler/rustc_monomorphize/src/collector.rs b/compiler/rustc_monomorphize/src/collector.rs
new file mode 100644
index 000000000..68b65658c
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/collector.rs
@@ -0,0 +1,1463 @@
+//! Mono Item Collection
+//! ====================
+//!
+//! This module is responsible for discovering all items that will contribute
+//! to code generation of the crate. The important part here is that it not only
+//! needs to find syntax-level items (functions, structs, etc) but also all
+//! their monomorphized instantiations. Every non-generic, non-const function
+//! maps to one LLVM artifact. Every generic function can produce
+//! from zero to N artifacts, depending on the sets of type arguments it
+//! is instantiated with.
+//! This also applies to generic items from other crates: A generic definition
+//! in crate X might produce monomorphizations that are compiled into crate Y.
+//! We also have to collect these here.
+//!
+//! The following kinds of "mono items" are handled here:
+//!
+//! - Functions
+//! - Methods
+//! - Closures
+//! - Statics
+//! - Drop glue
+//!
+//! The following things also result in LLVM artifacts, but are not collected
+//! here, since we instantiate them locally on demand when needed in a given
+//! codegen unit:
+//!
+//! - Constants
+//! - VTables
+//! - Object Shims
+//!
+//!
+//! General Algorithm
+//! -----------------
+//! Let's define some terms first:
+//!
+//! - A "mono item" is something that results in a function or global in
+//! the LLVM IR of a codegen unit. Mono items do not stand on their
+//! own, they can reference other mono items. For example, if function
+//! `foo()` calls function `bar()` then the mono item for `foo()`
+//! references the mono item for function `bar()`. In general, the
+//! definition for mono item A referencing a mono item B is that
+//! the LLVM artifact produced for A references the LLVM artifact produced
+//! for B.
+//!
+//! - Mono items and the references between them form a directed graph,
+//! where the mono items are the nodes and references form the edges.
+//! Let's call this graph the "mono item graph".
+//!
+//! - The mono item graph for a program contains all mono items
+//! that are needed in order to produce the complete LLVM IR of the program.
+//!
+//! The purpose of the algorithm implemented in this module is to build the
+//! mono item graph for the current crate. It runs in two phases:
+//!
+//! 1. Discover the roots of the graph by traversing the HIR of the crate.
+//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
+//! representation of the item corresponding to a given node, until no more
+//! new nodes are found.
+//!
+//! ### Discovering roots
+//!
+//! The roots of the mono item graph correspond to the public non-generic
+//! syntactic items in the source code. We find them by walking the HIR of the
+//! crate, and whenever we hit upon a public function, method, or static item,
+//! we create a mono item consisting of the items DefId and, since we only
+//! consider non-generic items, an empty type-substitution set. (In eager
+//! collection mode, during incremental compilation, all non-generic functions
+//! are considered as roots, as well as when the `-Clink-dead-code` option is
+//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
+//! functions also always act as roots.)
+//!
+//! ### Finding neighbor nodes
+//! Given a mono item node, we can discover neighbors by inspecting its
+//! MIR. We walk the MIR and any time we hit upon something that signifies a
+//! reference to another mono item, we have found a neighbor. Since the
+//! mono item we are currently at is always monomorphic, we also know the
+//! concrete type arguments of its neighbors, and so all neighbors again will be
+//! monomorphic. The specific forms a reference to a neighboring node can take
+//! in MIR are quite diverse. Here is an overview:
+//!
+//! #### Calling Functions/Methods
+//! The most obvious form of one mono item referencing another is a
+//! function or method call (represented by a CALL terminator in MIR). But
+//! calls are not the only thing that might introduce a reference between two
+//! function mono items, and as we will see below, they are just a
+//! specialization of the form described next, and consequently will not get any
+//! special treatment in the algorithm.
+//!
+//! #### Taking a reference to a function or method
+//! A function does not need to actually be called in order to be a neighbor of
+//! another function. It suffices to just take a reference in order to introduce
+//! an edge. Consider the following example:
+//!
+//! ```
+//! # use core::fmt::Display;
+//! fn print_val<T: Display>(x: T) {
+//! println!("{}", x);
+//! }
+//!
+//! fn call_fn(f: &dyn Fn(i32), x: i32) {
+//! f(x);
+//! }
+//!
+//! fn main() {
+//! let print_i32 = print_val::<i32>;
+//! call_fn(&print_i32, 0);
+//! }
+//! ```
+//! The MIR of none of these functions will contain an explicit call to
+//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
+//! an instance of this function. Thus, whenever we encounter a function or
+//! method in operand position, we treat it as a neighbor of the current
+//! mono item. Calls are just a special case of that.
+//!
+//! #### Closures
+//! In a way, closures are a simple case. Since every closure object needs to be
+//! constructed somewhere, we can reliably discover them by observing
+//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
+//! true for closures inlined from other crates.
+//!
+//! #### Drop glue
+//! Drop glue mono items are introduced by MIR drop-statements. The
+//! generated mono item will again have drop-glue item neighbors if the
+//! type to be dropped contains nested values that also need to be dropped. It
+//! might also have a function item neighbor for the explicit `Drop::drop`
+//! implementation of its type.
+//!
+//! #### Unsizing Casts
+//! A subtle way of introducing neighbor edges is by casting to a trait object.
+//! Since the resulting fat-pointer contains a reference to a vtable, we need to
+//! instantiate all object-save methods of the trait, as we need to store
+//! pointers to these functions even if they never get called anywhere. This can
+//! be seen as a special case of taking a function reference.
+//!
+//! #### Boxes
+//! Since `Box` expression have special compiler support, no explicit calls to
+//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
+//! compiler will generate them. We have to observe `Rvalue::Box` expressions
+//! and Box-typed drop-statements for that purpose.
+//!
+//!
+//! Interaction with Cross-Crate Inlining
+//! -------------------------------------
+//! The binary of a crate will not only contain machine code for the items
+//! defined in the source code of that crate. It will also contain monomorphic
+//! instantiations of any extern generic functions and of functions marked with
+//! `#[inline]`.
+//! The collection algorithm handles this more or less mono. If it is
+//! about to create a mono item for something with an external `DefId`,
+//! it will take a look if the MIR for that item is available, and if so just
+//! proceed normally. If the MIR is not available, it assumes that the item is
+//! just linked to and no node is created; which is exactly what we want, since
+//! no machine code should be generated in the current crate for such an item.
+//!
+//! Eager and Lazy Collection Mode
+//! ------------------------------
+//! Mono item collection can be performed in one of two modes:
+//!
+//! - Lazy mode means that items will only be instantiated when actually
+//! referenced. The goal is to produce the least amount of machine code
+//! possible.
+//!
+//! - Eager mode is meant to be used in conjunction with incremental compilation
+//! where a stable set of mono items is more important than a minimal
+//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
+//! in the crate, even if no drop call for that type exists (yet). It will
+//! also instantiate default implementations of trait methods, something that
+//! otherwise is only done on demand.
+//!
+//!
+//! Open Issues
+//! -----------
+//! Some things are not yet fully implemented in the current version of this
+//! module.
+//!
+//! ### Const Fns
+//! Ideally, no mono item should be generated for const fns unless there
+//! is a call to them that cannot be evaluated at compile time. At the moment
+//! this is not implemented however: a mono item will be produced
+//! regardless of whether it is actually needed or not.
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync::{par_for_each_in, MTLock, MTRef};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_index::bit_set::GrowableBitSet;
+use rustc_middle::mir::interpret::{AllocId, ConstValue};
+use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
+use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
+use rustc_middle::mir::visit::Visitor as MirVisitor;
+use rustc_middle::mir::{self, Local, Location};
+use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
+use rustc_middle::ty::{
+ self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitable, VtblEntry,
+};
+use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
+use rustc_session::config::EntryFnType;
+use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
+use rustc_session::Limit;
+use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
+use rustc_target::abi::Size;
+use std::iter;
+use std::ops::Range;
+use std::path::PathBuf;
+
+#[derive(PartialEq)]
+pub enum MonoItemCollectionMode {
+ Eager,
+ Lazy,
+}
+
+/// Maps every mono item to all mono items it references in its
+/// body.
+pub struct InliningMap<'tcx> {
+ // Maps a source mono item to the range of mono items
+ // accessed by it.
+ // The range selects elements within the `targets` vecs.
+ index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
+ targets: Vec<MonoItem<'tcx>>,
+
+ // Contains one bit per mono item in the `targets` field. That bit
+ // is true if that mono item needs to be inlined into every CGU.
+ inlines: GrowableBitSet<usize>,
+}
+
+/// Struct to store mono items in each collecting and if they should
+/// be inlined. We call `instantiation_mode` to get their inlining
+/// status when inserting new elements, which avoids calling it in
+/// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation
+/// below.
+struct MonoItems<'tcx> {
+ // If this is false, we do not need to compute whether items
+ // will need to be inlined.
+ compute_inlining: bool,
+
+ // The TyCtxt used to determine whether the a item should
+ // be inlined.
+ tcx: TyCtxt<'tcx>,
+
+ // The collected mono items. The bool field in each element
+ // indicates whether this element should be inlined.
+ items: Vec<(Spanned<MonoItem<'tcx>>, bool /*inlined*/)>,
+}
+
+impl<'tcx> MonoItems<'tcx> {
+ #[inline]
+ fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
+ self.extend([item]);
+ }
+
+ #[inline]
+ fn extend<T: IntoIterator<Item = Spanned<MonoItem<'tcx>>>>(&mut self, iter: T) {
+ self.items.extend(iter.into_iter().map(|mono_item| {
+ let inlined = if !self.compute_inlining {
+ false
+ } else {
+ mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy
+ };
+ (mono_item, inlined)
+ }))
+ }
+}
+
+impl<'tcx> InliningMap<'tcx> {
+ fn new() -> InliningMap<'tcx> {
+ InliningMap {
+ index: FxHashMap::default(),
+ targets: Vec::new(),
+ inlines: GrowableBitSet::with_capacity(1024),
+ }
+ }
+
+ fn record_accesses<'a>(
+ &mut self,
+ source: MonoItem<'tcx>,
+ new_targets: &'a [(Spanned<MonoItem<'tcx>>, bool)],
+ ) where
+ 'tcx: 'a,
+ {
+ let start_index = self.targets.len();
+ let new_items_count = new_targets.len();
+ let new_items_count_total = new_items_count + self.targets.len();
+
+ self.targets.reserve(new_items_count);
+ self.inlines.ensure(new_items_count_total);
+
+ for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() {
+ self.targets.push(*mono_item);
+ if *inlined {
+ self.inlines.insert(i + start_index);
+ }
+ }
+
+ let end_index = self.targets.len();
+ assert!(self.index.insert(source, start_index..end_index).is_none());
+ }
+
+ // Internally iterate over all items referenced by `source` which will be
+ // made available for inlining.
+ pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
+ where
+ F: FnMut(MonoItem<'tcx>),
+ {
+ if let Some(range) = self.index.get(&source) {
+ for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
+ if self.inlines.contains(range.start + i) {
+ f(*candidate);
+ }
+ }
+ }
+ }
+
+ // Internally iterate over all items and the things each accesses.
+ pub fn iter_accesses<F>(&self, mut f: F)
+ where
+ F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
+ {
+ for (&accessor, range) in &self.index {
+ f(accessor, &self.targets[range.clone()])
+ }
+ }
+}
+
+#[instrument(skip(tcx, mode), level = "debug")]
+pub fn collect_crate_mono_items(
+ tcx: TyCtxt<'_>,
+ mode: MonoItemCollectionMode,
+) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
+ let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
+
+ let roots =
+ tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
+
+ debug!("building mono item graph, beginning at roots");
+
+ let mut visited = MTLock::new(FxHashSet::default());
+ let mut inlining_map = MTLock::new(InliningMap::new());
+ let recursion_limit = tcx.recursion_limit();
+
+ {
+ let visited: MTRef<'_, _> = &mut visited;
+ let inlining_map: MTRef<'_, _> = &mut inlining_map;
+
+ tcx.sess.time("monomorphization_collector_graph_walk", || {
+ par_for_each_in(roots, |root| {
+ let mut recursion_depths = DefIdMap::default();
+ collect_items_rec(
+ tcx,
+ dummy_spanned(root),
+ visited,
+ &mut recursion_depths,
+ recursion_limit,
+ inlining_map,
+ );
+ });
+ });
+ }
+
+ (visited.into_inner(), inlining_map.into_inner())
+}
+
+// Find all non-generic items by walking the HIR. These items serve as roots to
+// start monomorphizing from.
+#[instrument(skip(tcx, mode), level = "debug")]
+fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
+ debug!("collecting roots");
+ let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() };
+
+ {
+ let entry_fn = tcx.entry_fn(());
+
+ debug!("collect_roots: entry_fn = {:?}", entry_fn);
+
+ let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots };
+
+ let crate_items = tcx.hir_crate_items(());
+
+ for id in crate_items.items() {
+ collector.process_item(id);
+ }
+
+ for id in crate_items.impl_items() {
+ collector.process_impl_item(id);
+ }
+
+ collector.push_extra_entry_roots();
+ }
+
+ // We can only codegen items that are instantiable - items all of
+ // whose predicates hold. Luckily, items that aren't instantiable
+ // can't actually be used, so we can just skip codegenning them.
+ roots
+ .items
+ .into_iter()
+ .filter_map(|(Spanned { node: mono_item, .. }, _)| {
+ mono_item.is_instantiable(tcx).then_some(mono_item)
+ })
+ .collect()
+}
+
+/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
+/// post-monorphization error is encountered during a collection step.
+#[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")]
+fn collect_items_rec<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ starting_point: Spanned<MonoItem<'tcx>>,
+ visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
+ recursion_depths: &mut DefIdMap<usize>,
+ recursion_limit: Limit,
+ inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
+) {
+ if !visited.lock_mut().insert(starting_point.node) {
+ // We've been here already, no need to search again.
+ return;
+ }
+ debug!("BEGIN collect_items_rec({})", starting_point.node);
+
+ let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() };
+ let recursion_depth_reset;
+
+ //
+ // Post-monomorphization errors MVP
+ //
+ // We can encounter errors while monomorphizing an item, but we don't have a good way of
+ // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
+ // (It's also currently unclear exactly which diagnostics and information would be interesting
+ // to report in such cases)
+ //
+ // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
+ // shown with just a spanned piece of code causing the error, without information on where
+ // it was called from. This is especially obscure if the erroneous mono item is in a
+ // dependency. See for example issue #85155, where, before minimization, a PME happened two
+ // crates downstream from libcore's stdarch, without a way to know which dependency was the
+ // cause.
+ //
+ // If such an error occurs in the current crate, its span will be enough to locate the
+ // source. If the cause is in another crate, the goal here is to quickly locate which mono
+ // item in the current crate is ultimately responsible for causing the error.
+ //
+ // To give at least _some_ context to the user: while collecting mono items, we check the
+ // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
+ // current step of mono items collection.
+ //
+ // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
+ let error_count = tcx.sess.diagnostic().err_count();
+
+ match starting_point.node {
+ MonoItem::Static(def_id) => {
+ let instance = Instance::mono(tcx, def_id);
+
+ // Sanity check whether this ended up being collected accidentally
+ debug_assert!(should_codegen_locally(tcx, &instance));
+
+ let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
+ visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
+
+ recursion_depth_reset = None;
+
+ if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
+ for &id in alloc.inner().relocations().values() {
+ collect_miri(tcx, id, &mut neighbors);
+ }
+ }
+ }
+ MonoItem::Fn(instance) => {
+ // Sanity check whether this ended up being collected accidentally
+ debug_assert!(should_codegen_locally(tcx, &instance));
+
+ // Keep track of the monomorphization recursion depth
+ recursion_depth_reset = Some(check_recursion_limit(
+ tcx,
+ instance,
+ starting_point.span,
+ recursion_depths,
+ recursion_limit,
+ ));
+ check_type_length_limit(tcx, instance);
+
+ rustc_data_structures::stack::ensure_sufficient_stack(|| {
+ collect_neighbours(tcx, instance, &mut neighbors);
+ });
+ }
+ MonoItem::GlobalAsm(item_id) => {
+ recursion_depth_reset = None;
+
+ let item = tcx.hir().item(item_id);
+ if let hir::ItemKind::GlobalAsm(asm) = item.kind {
+ for (op, op_sp) in asm.operands {
+ match op {
+ hir::InlineAsmOperand::Const { .. } => {
+ // Only constants which resolve to a plain integer
+ // are supported. Therefore the value should not
+ // depend on any other items.
+ }
+ hir::InlineAsmOperand::SymFn { anon_const } => {
+ let fn_ty =
+ tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
+ visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors);
+ }
+ hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
+ let instance = Instance::mono(tcx, *def_id);
+ if should_codegen_locally(tcx, &instance) {
+ trace!("collecting static {:?}", def_id);
+ neighbors.push(dummy_spanned(MonoItem::Static(*def_id)));
+ }
+ }
+ hir::InlineAsmOperand::In { .. }
+ | hir::InlineAsmOperand::Out { .. }
+ | hir::InlineAsmOperand::InOut { .. }
+ | hir::InlineAsmOperand::SplitInOut { .. } => {
+ span_bug!(*op_sp, "invalid operand type for global_asm!")
+ }
+ }
+ }
+ } else {
+ span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
+ }
+ }
+ }
+
+ // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
+ // mono item graph.
+ if tcx.sess.diagnostic().err_count() > error_count
+ && starting_point.node.is_generic_fn()
+ && starting_point.node.is_user_defined()
+ {
+ let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string());
+ tcx.sess.span_note_without_error(
+ starting_point.span,
+ &format!("the above error was encountered while instantiating `{}`", formatted_item),
+ );
+ }
+ inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items);
+
+ for (neighbour, _) in neighbors.items {
+ collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
+ }
+
+ if let Some((def_id, depth)) = recursion_depth_reset {
+ recursion_depths.insert(def_id, depth);
+ }
+
+ debug!("END collect_items_rec({})", starting_point.node);
+}
+
+/// Format instance name that is already known to be too long for rustc.
+/// Show only the first and last 32 characters to avoid blasting
+/// the user's terminal with thousands of lines of type-name.
+///
+/// If the type name is longer than before+after, it will be written to a file.
+fn shrunk_instance_name<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: &Instance<'tcx>,
+ before: usize,
+ after: usize,
+) -> (String, Option<PathBuf>) {
+ let s = instance.to_string();
+
+ // Only use the shrunk version if it's really shorter.
+ // This also avoids the case where before and after slices overlap.
+ if s.chars().nth(before + after + 1).is_some() {
+ // An iterator of all byte positions including the end of the string.
+ let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
+
+ let shrunk = format!(
+ "{before}...{after}",
+ before = &s[..positions().nth(before).unwrap_or(s.len())],
+ after = &s[positions().rev().nth(after).unwrap_or(0)..],
+ );
+
+ let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
+ let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
+
+ (shrunk, written_to_path)
+ } else {
+ (s, None)
+ }
+}
+
+fn check_recursion_limit<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ span: Span,
+ recursion_depths: &mut DefIdMap<usize>,
+ recursion_limit: Limit,
+) -> (DefId, usize) {
+ let def_id = instance.def_id();
+ let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
+ debug!(" => recursion depth={}", recursion_depth);
+
+ let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
+ // HACK: drop_in_place creates tight monomorphization loops. Give
+ // it more margin.
+ recursion_depth / 4
+ } else {
+ recursion_depth
+ };
+
+ // Code that needs to instantiate the same function recursively
+ // more than the recursion limit is assumed to be causing an
+ // infinite expansion.
+ if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
+ let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+ let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
+ let mut err = tcx.sess.struct_span_fatal(span, &error);
+ err.span_note(
+ tcx.def_span(def_id),
+ &format!("`{}` defined here", tcx.def_path_str(def_id)),
+ );
+ if let Some(path) = written_to_path {
+ err.note(&format!("the full type name has been written to '{}'", path.display()));
+ }
+ err.emit()
+ }
+
+ recursion_depths.insert(def_id, recursion_depth + 1);
+
+ (def_id, recursion_depth)
+}
+
+fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
+ let type_length = instance
+ .substs
+ .iter()
+ .flat_map(|arg| arg.walk())
+ .filter(|arg| match arg.unpack() {
+ GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
+ GenericArgKind::Lifetime(_) => false,
+ })
+ .count();
+ debug!(" => type length={}", type_length);
+
+ // Rust code can easily create exponentially-long types using only a
+ // polynomial recursion depth. Even with the default recursion
+ // depth, you can easily get cases that take >2^60 steps to run,
+ // which means that rustc basically hangs.
+ //
+ // Bail out in these cases to avoid that bad user experience.
+ if !tcx.type_length_limit().value_within_limit(type_length) {
+ let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+ let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
+ let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
+ if let Some(path) = written_to_path {
+ diag.note(&format!("the full type name has been written to '{}'", path.display()));
+ }
+ diag.help(&format!(
+ "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
+ type_length
+ ));
+ diag.emit()
+ }
+}
+
+struct MirNeighborCollector<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ body: &'a mir::Body<'tcx>,
+ output: &'a mut MonoItems<'tcx>,
+ instance: Instance<'tcx>,
+}
+
+impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
+ pub fn monomorphize<T>(&self, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ debug!("monomorphize: self.instance={:?}", self.instance);
+ self.instance.subst_mir_and_normalize_erasing_regions(
+ self.tcx,
+ ty::ParamEnv::reveal_all(),
+ value,
+ )
+ }
+}
+
+impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
+ fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
+ debug!("visiting rvalue {:?}", *rvalue);
+
+ let span = self.body.source_info(location).span;
+
+ match *rvalue {
+ // When doing an cast from a regular pointer to a fat pointer, we
+ // have to instantiate all methods of the trait being cast to, so we
+ // can build the appropriate vtable.
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::Unsize),
+ ref operand,
+ target_ty,
+ ) => {
+ let target_ty = self.monomorphize(target_ty);
+ let source_ty = operand.ty(self.body, self.tcx);
+ let source_ty = self.monomorphize(source_ty);
+ let (source_ty, target_ty) =
+ find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
+ // This could also be a different Unsize instruction, like
+ // from a fixed sized array to a slice. But we are only
+ // interested in things that produce a vtable.
+ if target_ty.is_trait() && !source_ty.is_trait() {
+ create_mono_items_for_vtable_methods(
+ self.tcx,
+ target_ty,
+ source_ty,
+ span,
+ self.output,
+ );
+ }
+ }
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
+ ref operand,
+ _,
+ ) => {
+ let fn_ty = operand.ty(self.body, self.tcx);
+ let fn_ty = self.monomorphize(fn_ty);
+ visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
+ }
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
+ ref operand,
+ _,
+ ) => {
+ let source_ty = operand.ty(self.body, self.tcx);
+ let source_ty = self.monomorphize(source_ty);
+ match *source_ty.kind() {
+ ty::Closure(def_id, substs) => {
+ let instance = Instance::resolve_closure(
+ self.tcx,
+ def_id,
+ substs,
+ ty::ClosureKind::FnOnce,
+ )
+ .expect("failed to normalize and resolve closure during codegen");
+ if should_codegen_locally(self.tcx, &instance) {
+ self.output.push(create_fn_mono_item(self.tcx, instance, span));
+ }
+ }
+ _ => bug!(),
+ }
+ }
+ mir::Rvalue::ThreadLocalRef(def_id) => {
+ assert!(self.tcx.is_thread_local_static(def_id));
+ let instance = Instance::mono(self.tcx, def_id);
+ if should_codegen_locally(self.tcx, &instance) {
+ trace!("collecting thread-local static {:?}", def_id);
+ self.output.push(respan(span, MonoItem::Static(def_id)));
+ }
+ }
+ _ => { /* not interesting */ }
+ }
+
+ self.super_rvalue(rvalue, location);
+ }
+
+ /// This does not walk the constant, as it has been handled entirely here and trying
+ /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
+ /// work, as some constants cannot be represented in the type system.
+ #[instrument(skip(self), level = "debug")]
+ fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
+ let literal = self.monomorphize(constant.literal);
+ let val = match literal {
+ mir::ConstantKind::Val(val, _) => val,
+ mir::ConstantKind::Ty(ct) => match ct.kind() {
+ ty::ConstKind::Value(val) => self.tcx.valtree_to_const_val((ct.ty(), val)),
+ ty::ConstKind::Unevaluated(ct) => {
+ debug!(?ct);
+ let param_env = ty::ParamEnv::reveal_all();
+ match self.tcx.const_eval_resolve(param_env, ct, None) {
+ // The `monomorphize` call should have evaluated that constant already.
+ Ok(val) => val,
+ Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => return,
+ Err(ErrorHandled::TooGeneric) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered polymorphic constant: {:?}",
+ literal
+ ),
+ }
+ }
+ _ => return,
+ },
+ };
+ collect_const_value(self.tcx, val, self.output);
+ self.visit_ty(literal.ty(), TyContext::Location(location));
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn visit_const(&mut self, constant: ty::Const<'tcx>, location: Location) {
+ debug!("visiting const {:?} @ {:?}", constant, location);
+
+ let substituted_constant = self.monomorphize(constant);
+ let param_env = ty::ParamEnv::reveal_all();
+
+ match substituted_constant.kind() {
+ ty::ConstKind::Value(val) => {
+ let const_val = self.tcx.valtree_to_const_val((constant.ty(), val));
+ collect_const_value(self.tcx, const_val, self.output)
+ }
+ ty::ConstKind::Unevaluated(unevaluated) => {
+ match self.tcx.const_eval_resolve(param_env, unevaluated, None) {
+ // The `monomorphize` call should have evaluated that constant already.
+ Ok(val) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered the unevaluated constant {} which evaluated to {:?}",
+ substituted_constant,
+ val
+ ),
+ Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => {}
+ Err(ErrorHandled::TooGeneric) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered polymorphic constant: {}",
+ substituted_constant
+ ),
+ }
+ }
+ _ => {}
+ }
+
+ self.super_const(constant);
+ }
+
+ fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
+ debug!("visiting terminator {:?} @ {:?}", terminator, location);
+ let source = self.body.source_info(location).span;
+
+ let tcx = self.tcx;
+ match terminator.kind {
+ mir::TerminatorKind::Call { ref func, .. } => {
+ let callee_ty = func.ty(self.body, tcx);
+ let callee_ty = self.monomorphize(callee_ty);
+ visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
+ }
+ mir::TerminatorKind::Drop { ref place, .. }
+ | mir::TerminatorKind::DropAndReplace { ref place, .. } => {
+ let ty = place.ty(self.body, self.tcx).ty;
+ let ty = self.monomorphize(ty);
+ visit_drop_use(self.tcx, ty, true, source, self.output);
+ }
+ mir::TerminatorKind::InlineAsm { ref operands, .. } => {
+ for op in operands {
+ match *op {
+ mir::InlineAsmOperand::SymFn { ref value } => {
+ let fn_ty = self.monomorphize(value.literal.ty());
+ visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
+ }
+ mir::InlineAsmOperand::SymStatic { def_id } => {
+ let instance = Instance::mono(self.tcx, def_id);
+ if should_codegen_locally(self.tcx, &instance) {
+ trace!("collecting asm sym static {:?}", def_id);
+ self.output.push(respan(source, MonoItem::Static(def_id)));
+ }
+ }
+ _ => {}
+ }
+ }
+ }
+ mir::TerminatorKind::Assert { ref msg, .. } => {
+ let lang_item = match msg {
+ mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck,
+ _ => LangItem::Panic,
+ };
+ let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
+ if should_codegen_locally(tcx, &instance) {
+ self.output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ mir::TerminatorKind::Abort { .. } => {
+ let instance = Instance::mono(
+ tcx,
+ tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)),
+ );
+ if should_codegen_locally(tcx, &instance) {
+ self.output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ mir::TerminatorKind::Goto { .. }
+ | mir::TerminatorKind::SwitchInt { .. }
+ | mir::TerminatorKind::Resume
+ | mir::TerminatorKind::Return
+ | mir::TerminatorKind::Unreachable => {}
+ mir::TerminatorKind::GeneratorDrop
+ | mir::TerminatorKind::Yield { .. }
+ | mir::TerminatorKind::FalseEdge { .. }
+ | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
+ }
+
+ self.super_terminator(terminator, location);
+ }
+
+ fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
+ self.super_operand(operand, location);
+ let limit = self.tcx.move_size_limit().0;
+ if limit == 0 {
+ return;
+ }
+ let limit = Size::from_bytes(limit);
+ let ty = operand.ty(self.body, self.tcx);
+ let ty = self.monomorphize(ty);
+ let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty));
+ if let Ok(layout) = layout {
+ if layout.size > limit {
+ debug!(?layout);
+ let source_info = self.body.source_info(location);
+ debug!(?source_info);
+ let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
+ debug!(?lint_root);
+ let Some(lint_root) = lint_root else {
+ // This happens when the issue is in a function from a foreign crate that
+ // we monomorphized in the current crate. We can't get a `HirId` for things
+ // in other crates.
+ // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
+ // but correct span? This would make the lint at least accept crate-level lint attributes.
+ return;
+ };
+ self.tcx.struct_span_lint_hir(
+ LARGE_ASSIGNMENTS,
+ lint_root,
+ source_info.span,
+ |lint| {
+ let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes()));
+ err.span_label(source_info.span, "value moved from here");
+ err.note(&format!(r#"The current maximum size is {}, but it can be customized with the move_size_limit attribute: `#![move_size_limit = "..."]`"#, limit.bytes()));
+ err.emit();
+ },
+ );
+ }
+ }
+ }
+
+ fn visit_local(
+ &mut self,
+ _place_local: Local,
+ _context: mir::visit::PlaceContext,
+ _location: Location,
+ ) {
+ }
+}
+
+fn visit_drop_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ let instance = Instance::resolve_drop_in_place(tcx, ty);
+ visit_instance_use(tcx, instance, is_direct_call, source, output);
+}
+
+fn visit_fn_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ if let ty::FnDef(def_id, substs) = *ty.kind() {
+ let instance = if is_direct_call {
+ ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
+ } else {
+ ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
+ .unwrap()
+ };
+ visit_instance_use(tcx, instance, is_direct_call, source, output);
+ }
+}
+
+fn visit_instance_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: ty::Instance<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
+ if !should_codegen_locally(tcx, &instance) {
+ return;
+ }
+
+ match instance.def {
+ ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
+ if !is_direct_call {
+ bug!("{:?} being reified", instance);
+ }
+ }
+ ty::InstanceDef::DropGlue(_, None) => {
+ // Don't need to emit noop drop glue if we are calling directly.
+ if !is_direct_call {
+ output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ ty::InstanceDef::DropGlue(_, Some(_))
+ | ty::InstanceDef::VTableShim(..)
+ | ty::InstanceDef::ReifyShim(..)
+ | ty::InstanceDef::ClosureOnceShim { .. }
+ | ty::InstanceDef::Item(..)
+ | ty::InstanceDef::FnPtrShim(..)
+ | ty::InstanceDef::CloneShim(..) => {
+ output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+}
+
+/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
+/// can just link to the upstream crate and therefore don't need a mono item.
+fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
+ let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
+ return true;
+ };
+
+ if tcx.is_foreign_item(def_id) {
+ // Foreign items are always linked against, there's no way of instantiating them.
+ return false;
+ }
+
+ if def_id.is_local() {
+ // Local items cannot be referred to locally without monomorphizing them locally.
+ return true;
+ }
+
+ if tcx.is_reachable_non_generic(def_id)
+ || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
+ {
+ // We can link to the item in question, no instance needed in this crate.
+ return false;
+ }
+
+ if !tcx.is_mir_available(def_id) {
+ bug!("no MIR available for {:?}", def_id);
+ }
+
+ true
+}
+
+/// For a given pair of source and target type that occur in an unsizing coercion,
+/// this function finds the pair of types that determines the vtable linking
+/// them.
+///
+/// For example, the source type might be `&SomeStruct` and the target type
+/// might be `&SomeTrait` in a cast like:
+///
+/// let src: &SomeStruct = ...;
+/// let target = src as &SomeTrait;
+///
+/// Then the output of this function would be (SomeStruct, SomeTrait) since for
+/// constructing the `target` fat-pointer we need the vtable for that pair.
+///
+/// Things can get more complicated though because there's also the case where
+/// the unsized type occurs as a field:
+///
+/// ```rust
+/// struct ComplexStruct<T: ?Sized> {
+/// a: u32,
+/// b: f64,
+/// c: T
+/// }
+/// ```
+///
+/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
+/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
+/// for the pair of `T` (which is a trait) and the concrete type that `T` was
+/// originally coerced from:
+///
+/// let src: &ComplexStruct<SomeStruct> = ...;
+/// let target = src as &ComplexStruct<SomeTrait>;
+///
+/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
+/// `(SomeStruct, SomeTrait)`.
+///
+/// Finally, there is also the case of custom unsizing coercions, e.g., for
+/// smart pointers such as `Rc` and `Arc`.
+fn find_vtable_types_for_unsizing<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ source_ty: Ty<'tcx>,
+ target_ty: Ty<'tcx>,
+) -> (Ty<'tcx>, Ty<'tcx>) {
+ let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
+ let param_env = ty::ParamEnv::reveal_all();
+ let type_has_metadata = |ty: Ty<'tcx>| -> bool {
+ if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
+ return false;
+ }
+ let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
+ match tail.kind() {
+ ty::Foreign(..) => false,
+ ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
+ _ => bug!("unexpected unsized tail: {:?}", tail),
+ }
+ };
+ if type_has_metadata(inner_source) {
+ (inner_source, inner_target)
+ } else {
+ tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
+ }
+ };
+
+ match (&source_ty.kind(), &target_ty.kind()) {
+ (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
+ | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
+ ptr_vtable(*a, *b)
+ }
+ (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
+ ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
+ }
+
+ (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
+ assert_eq!(source_adt_def, target_adt_def);
+
+ let CustomCoerceUnsized::Struct(coerce_index) =
+ crate::custom_coerce_unsize_info(tcx, source_ty, target_ty);
+
+ let source_fields = &source_adt_def.non_enum_variant().fields;
+ let target_fields = &target_adt_def.non_enum_variant().fields;
+
+ assert!(
+ coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
+ );
+
+ find_vtable_types_for_unsizing(
+ tcx,
+ source_fields[coerce_index].ty(tcx, source_substs),
+ target_fields[coerce_index].ty(tcx, target_substs),
+ )
+ }
+ _ => bug!(
+ "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
+ source_ty,
+ target_ty
+ ),
+ }
+}
+
+#[instrument(skip(tcx), level = "debug")]
+fn create_fn_mono_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ source: Span,
+) -> Spanned<MonoItem<'tcx>> {
+ debug!("create_fn_mono_item(instance={})", instance);
+
+ let def_id = instance.def_id();
+ if tcx.sess.opts.unstable_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id) {
+ crate::util::dump_closure_profile(tcx, instance);
+ }
+
+ let respanned = respan(source, MonoItem::Fn(instance.polymorphize(tcx)));
+ debug!(?respanned);
+
+ respanned
+}
+
+/// Creates a `MonoItem` for each method that is referenced by the vtable for
+/// the given trait/impl pair.
+fn create_mono_items_for_vtable_methods<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ty: Ty<'tcx>,
+ impl_ty: Ty<'tcx>,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
+
+ if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
+ if let Some(principal) = trait_ty.principal() {
+ let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
+ assert!(!poly_trait_ref.has_escaping_bound_vars());
+
+ // Walk all methods of the trait, including those of its supertraits
+ let entries = tcx.vtable_entries(poly_trait_ref);
+ let methods = entries
+ .iter()
+ .filter_map(|entry| match entry {
+ VtblEntry::MetadataDropInPlace
+ | VtblEntry::MetadataSize
+ | VtblEntry::MetadataAlign
+ | VtblEntry::Vacant => None,
+ VtblEntry::TraitVPtr(_) => {
+ // all super trait items already covered, so skip them.
+ None
+ }
+ VtblEntry::Method(instance) => {
+ Some(*instance).filter(|instance| should_codegen_locally(tcx, instance))
+ }
+ })
+ .map(|item| create_fn_mono_item(tcx, item, source));
+ output.extend(methods);
+ }
+
+ // Also add the destructor.
+ visit_drop_use(tcx, impl_ty, false, source, output);
+ }
+}
+
+//=-----------------------------------------------------------------------------
+// Root Collection
+//=-----------------------------------------------------------------------------
+
+struct RootCollector<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ mode: MonoItemCollectionMode,
+ output: &'a mut MonoItems<'tcx>,
+ entry_fn: Option<(DefId, EntryFnType)>,
+}
+
+impl<'v> RootCollector<'_, 'v> {
+ fn process_item(&mut self, id: hir::ItemId) {
+ match self.tcx.def_kind(id.def_id) {
+ DefKind::Enum | DefKind::Struct | DefKind::Union => {
+ let item = self.tcx.hir().item(id);
+ match item.kind {
+ hir::ItemKind::Enum(_, ref generics)
+ | hir::ItemKind::Struct(_, ref generics)
+ | hir::ItemKind::Union(_, ref generics) => {
+ if generics.params.is_empty() {
+ if self.mode == MonoItemCollectionMode::Eager {
+ debug!(
+ "RootCollector: ADT drop-glue for {}",
+ self.tcx.def_path_str(item.def_id.to_def_id())
+ );
+
+ let ty =
+ Instance::new(item.def_id.to_def_id(), InternalSubsts::empty())
+ .ty(self.tcx, ty::ParamEnv::reveal_all());
+ visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
+ }
+ }
+ }
+ _ => bug!(),
+ }
+ }
+ DefKind::GlobalAsm => {
+ debug!(
+ "RootCollector: ItemKind::GlobalAsm({})",
+ self.tcx.def_path_str(id.def_id.to_def_id())
+ );
+ self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
+ }
+ DefKind::Static(..) => {
+ debug!(
+ "RootCollector: ItemKind::Static({})",
+ self.tcx.def_path_str(id.def_id.to_def_id())
+ );
+ self.output.push(dummy_spanned(MonoItem::Static(id.def_id.to_def_id())));
+ }
+ DefKind::Const => {
+ // const items only generate mono items if they are
+ // actually used somewhere. Just declaring them is insufficient.
+
+ // but even just declaring them must collect the items they refer to
+ if let Ok(val) = self.tcx.const_eval_poly(id.def_id.to_def_id()) {
+ collect_const_value(self.tcx, val, &mut self.output);
+ }
+ }
+ DefKind::Impl => {
+ if self.mode == MonoItemCollectionMode::Eager {
+ let item = self.tcx.hir().item(id);
+ create_mono_items_for_default_impls(self.tcx, item, self.output);
+ }
+ }
+ DefKind::Fn => {
+ self.push_if_root(id.def_id);
+ }
+ _ => {}
+ }
+ }
+
+ fn process_impl_item(&mut self, id: hir::ImplItemId) {
+ if matches!(self.tcx.def_kind(id.def_id), DefKind::AssocFn) {
+ self.push_if_root(id.def_id);
+ }
+ }
+
+ fn is_root(&self, def_id: LocalDefId) -> bool {
+ !item_requires_monomorphization(self.tcx, def_id)
+ && match self.mode {
+ MonoItemCollectionMode::Eager => true,
+ MonoItemCollectionMode::Lazy => {
+ self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
+ || self.tcx.is_reachable_non_generic(def_id)
+ || self
+ .tcx
+ .codegen_fn_attrs(def_id)
+ .flags
+ .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
+ }
+ }
+ }
+
+ /// If `def_id` represents a root, pushes it onto the list of
+ /// outputs. (Note that all roots must be monomorphic.)
+ #[instrument(skip(self), level = "debug")]
+ fn push_if_root(&mut self, def_id: LocalDefId) {
+ if self.is_root(def_id) {
+ debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
+
+ let instance = Instance::mono(self.tcx, def_id.to_def_id());
+ self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
+ }
+ }
+
+ /// As a special case, when/if we encounter the
+ /// `main()` function, we also have to generate a
+ /// monomorphized copy of the start lang item based on
+ /// the return type of `main`. This is not needed when
+ /// the user writes their own `start` manually.
+ fn push_extra_entry_roots(&mut self) {
+ let Some((main_def_id, EntryFnType::Main)) = self.entry_fn else {
+ return;
+ };
+
+ let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
+ Ok(s) => s,
+ Err(err) => self.tcx.sess.fatal(&err),
+ };
+ let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
+
+ // Given that `main()` has no arguments,
+ // then its return type cannot have
+ // late-bound regions, since late-bound
+ // regions must appear in the argument
+ // listing.
+ let main_ret_ty = self.tcx.normalize_erasing_regions(
+ ty::ParamEnv::reveal_all(),
+ main_ret_ty.no_bound_vars().unwrap(),
+ );
+
+ let start_instance = Instance::resolve(
+ self.tcx,
+ ty::ParamEnv::reveal_all(),
+ start_def_id,
+ self.tcx.intern_substs(&[main_ret_ty.into()]),
+ )
+ .unwrap()
+ .unwrap();
+
+ self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
+ }
+}
+
+fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
+ let generics = tcx.generics_of(def_id);
+ generics.requires_monomorphization(tcx)
+}
+
+fn create_mono_items_for_default_impls<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &'tcx hir::Item<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ match item.kind {
+ hir::ItemKind::Impl(ref impl_) => {
+ for param in impl_.generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {}
+ hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
+ return;
+ }
+ }
+ }
+
+ debug!(
+ "create_mono_items_for_default_impls(item={})",
+ tcx.def_path_str(item.def_id.to_def_id())
+ );
+
+ if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) {
+ let param_env = ty::ParamEnv::reveal_all();
+ let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
+ let overridden_methods = tcx.impl_item_implementor_ids(item.def_id);
+ for method in tcx.provided_trait_methods(trait_ref.def_id) {
+ if overridden_methods.contains_key(&method.def_id) {
+ continue;
+ }
+
+ if tcx.generics_of(method.def_id).own_requires_monomorphization() {
+ continue;
+ }
+
+ let substs =
+ InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
+ GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
+ GenericParamDefKind::Type { .. }
+ | GenericParamDefKind::Const { .. } => {
+ trait_ref.substs[param.index as usize]
+ }
+ });
+ let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
+ .unwrap()
+ .unwrap();
+
+ let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
+ if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
+ {
+ output.push(mono_item);
+ }
+ }
+ }
+ }
+ _ => bug!(),
+ }
+}
+
+/// Scans the miri alloc in order to find function calls, closures, and drop-glue.
+fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
+ match tcx.global_alloc(alloc_id) {
+ GlobalAlloc::Static(def_id) => {
+ assert!(!tcx.is_thread_local_static(def_id));
+ let instance = Instance::mono(tcx, def_id);
+ if should_codegen_locally(tcx, &instance) {
+ trace!("collecting static {:?}", def_id);
+ output.push(dummy_spanned(MonoItem::Static(def_id)));
+ }
+ }
+ GlobalAlloc::Memory(alloc) => {
+ trace!("collecting {:?} with {:#?}", alloc_id, alloc);
+ for &inner in alloc.inner().relocations().values() {
+ rustc_data_structures::stack::ensure_sufficient_stack(|| {
+ collect_miri(tcx, inner, output);
+ });
+ }
+ }
+ GlobalAlloc::Function(fn_instance) => {
+ if should_codegen_locally(tcx, &fn_instance) {
+ trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
+ output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
+ }
+ }
+ GlobalAlloc::VTable(ty, trait_ref) => {
+ let alloc_id = tcx.vtable_allocation((ty, trait_ref));
+ collect_miri(tcx, alloc_id, output)
+ }
+ }
+}
+
+/// Scans the MIR in order to find function calls, closures, and drop-glue.
+#[instrument(skip(tcx, output), level = "debug")]
+fn collect_neighbours<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ let body = tcx.instance_mir(instance.def);
+ MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
+}
+
+#[instrument(skip(tcx, output), level = "debug")]
+fn collect_const_value<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ value: ConstValue<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ match value {
+ ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output),
+ ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
+ for &id in alloc.inner().relocations().values() {
+ collect_miri(tcx, id, output);
+ }
+ }
+ _ => {}
+ }
+}