summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_query_system/src/query/plumbing.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_query_system/src/query/plumbing.rs')
-rw-r--r--compiler/rustc_query_system/src/query/plumbing.rs742
1 files changed, 742 insertions, 0 deletions
diff --git a/compiler/rustc_query_system/src/query/plumbing.rs b/compiler/rustc_query_system/src/query/plumbing.rs
new file mode 100644
index 000000000..5e8ea07d0
--- /dev/null
+++ b/compiler/rustc_query_system/src/query/plumbing.rs
@@ -0,0 +1,742 @@
+//! The implementation of the query system itself. This defines the macros that
+//! generate the actual methods on tcx which find and execute the provider,
+//! manage the caches, and so forth.
+
+use crate::dep_graph::{DepContext, DepNode, DepNodeIndex, DepNodeParams};
+use crate::query::caches::QueryCache;
+use crate::query::config::{QueryDescription, QueryVTable};
+use crate::query::job::{report_cycle, QueryInfo, QueryJob, QueryJobId, QueryJobInfo};
+use crate::query::{QueryContext, QueryMap, QuerySideEffects, QueryStackFrame};
+use rustc_data_structures::fingerprint::Fingerprint;
+use rustc_data_structures::fx::FxHashMap;
+#[cfg(parallel_compiler)]
+use rustc_data_structures::profiling::TimingGuard;
+#[cfg(parallel_compiler)]
+use rustc_data_structures::sharded::Sharded;
+use rustc_data_structures::sync::Lock;
+use rustc_data_structures::thin_vec::ThinVec;
+use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed, FatalError};
+use rustc_session::Session;
+use rustc_span::{Span, DUMMY_SP};
+use std::cell::Cell;
+use std::collections::hash_map::Entry;
+use std::fmt::Debug;
+use std::hash::Hash;
+use std::mem;
+use std::ptr;
+
+pub struct QueryState<K> {
+ #[cfg(parallel_compiler)]
+ active: Sharded<FxHashMap<K, QueryResult>>,
+ #[cfg(not(parallel_compiler))]
+ active: Lock<FxHashMap<K, QueryResult>>,
+}
+
+/// Indicates the state of a query for a given key in a query map.
+enum QueryResult {
+ /// An already executing query. The query job can be used to await for its completion.
+ Started(QueryJob),
+
+ /// The query panicked. Queries trying to wait on this will raise a fatal error which will
+ /// silently panic.
+ Poisoned,
+}
+
+impl<K> QueryState<K>
+where
+ K: Eq + Hash + Clone + Debug,
+{
+ pub fn all_inactive(&self) -> bool {
+ #[cfg(parallel_compiler)]
+ {
+ let shards = self.active.lock_shards();
+ shards.iter().all(|shard| shard.is_empty())
+ }
+ #[cfg(not(parallel_compiler))]
+ {
+ self.active.lock().is_empty()
+ }
+ }
+
+ pub fn try_collect_active_jobs<CTX: Copy>(
+ &self,
+ tcx: CTX,
+ make_query: fn(CTX, K) -> QueryStackFrame,
+ jobs: &mut QueryMap,
+ ) -> Option<()> {
+ #[cfg(parallel_compiler)]
+ {
+ // We use try_lock_shards here since we are called from the
+ // deadlock handler, and this shouldn't be locked.
+ let shards = self.active.try_lock_shards()?;
+ for shard in shards.iter() {
+ for (k, v) in shard.iter() {
+ if let QueryResult::Started(ref job) = *v {
+ let query = make_query(tcx, k.clone());
+ jobs.insert(job.id, QueryJobInfo { query, job: job.clone() });
+ }
+ }
+ }
+ }
+ #[cfg(not(parallel_compiler))]
+ {
+ // We use try_lock here since we are called from the
+ // deadlock handler, and this shouldn't be locked.
+ // (FIXME: Is this relevant for non-parallel compilers? It doesn't
+ // really hurt much.)
+ for (k, v) in self.active.try_lock()?.iter() {
+ if let QueryResult::Started(ref job) = *v {
+ let query = make_query(tcx, k.clone());
+ jobs.insert(job.id, QueryJobInfo { query, job: job.clone() });
+ }
+ }
+ }
+
+ Some(())
+ }
+}
+
+impl<K> Default for QueryState<K> {
+ fn default() -> QueryState<K> {
+ QueryState { active: Default::default() }
+ }
+}
+
+/// A type representing the responsibility to execute the job in the `job` field.
+/// This will poison the relevant query if dropped.
+struct JobOwner<'tcx, K>
+where
+ K: Eq + Hash + Clone,
+{
+ state: &'tcx QueryState<K>,
+ key: K,
+ id: QueryJobId,
+}
+
+#[cold]
+#[inline(never)]
+fn mk_cycle<CTX, V, R>(
+ tcx: CTX,
+ error: CycleError,
+ handle_cycle_error: fn(CTX, DiagnosticBuilder<'_, ErrorGuaranteed>) -> V,
+ cache: &dyn crate::query::QueryStorage<Value = V, Stored = R>,
+) -> R
+where
+ CTX: QueryContext,
+ V: std::fmt::Debug,
+ R: Clone,
+{
+ let error = report_cycle(tcx.dep_context().sess(), error);
+ let value = handle_cycle_error(tcx, error);
+ cache.store_nocache(value)
+}
+
+impl<'tcx, K> JobOwner<'tcx, K>
+where
+ K: Eq + Hash + Clone,
+{
+ /// Either gets a `JobOwner` corresponding the query, allowing us to
+ /// start executing the query, or returns with the result of the query.
+ /// This function assumes that `try_get_cached` is already called and returned `lookup`.
+ /// If the query is executing elsewhere, this will wait for it and return the result.
+ /// If the query panicked, this will silently panic.
+ ///
+ /// This function is inlined because that results in a noticeable speed-up
+ /// for some compile-time benchmarks.
+ #[inline(always)]
+ fn try_start<'b, CTX>(
+ tcx: &'b CTX,
+ state: &'b QueryState<K>,
+ span: Span,
+ key: K,
+ ) -> TryGetJob<'b, K>
+ where
+ CTX: QueryContext,
+ {
+ #[cfg(parallel_compiler)]
+ let mut state_lock = state.active.get_shard_by_value(&key).lock();
+ #[cfg(not(parallel_compiler))]
+ let mut state_lock = state.active.lock();
+ let lock = &mut *state_lock;
+
+ match lock.entry(key) {
+ Entry::Vacant(entry) => {
+ let id = tcx.next_job_id();
+ let job = tcx.current_query_job();
+ let job = QueryJob::new(id, span, job);
+
+ let key = entry.key().clone();
+ entry.insert(QueryResult::Started(job));
+
+ let owner = JobOwner { state, id, key };
+ return TryGetJob::NotYetStarted(owner);
+ }
+ Entry::Occupied(mut entry) => {
+ match entry.get_mut() {
+ #[cfg(not(parallel_compiler))]
+ QueryResult::Started(job) => {
+ let id = job.id;
+ drop(state_lock);
+
+ // If we are single-threaded we know that we have cycle error,
+ // so we just return the error.
+ return TryGetJob::Cycle(id.find_cycle_in_stack(
+ tcx.try_collect_active_jobs().unwrap(),
+ &tcx.current_query_job(),
+ span,
+ ));
+ }
+ #[cfg(parallel_compiler)]
+ QueryResult::Started(job) => {
+ // For parallel queries, we'll block and wait until the query running
+ // in another thread has completed. Record how long we wait in the
+ // self-profiler.
+ let query_blocked_prof_timer = tcx.dep_context().profiler().query_blocked();
+
+ // Get the latch out
+ let latch = job.latch();
+
+ drop(state_lock);
+
+ // With parallel queries we might just have to wait on some other
+ // thread.
+ let result = latch.wait_on(tcx.current_query_job(), span);
+
+ match result {
+ Ok(()) => TryGetJob::JobCompleted(query_blocked_prof_timer),
+ Err(cycle) => TryGetJob::Cycle(cycle),
+ }
+ }
+ QueryResult::Poisoned => FatalError.raise(),
+ }
+ }
+ }
+ }
+
+ /// Completes the query by updating the query cache with the `result`,
+ /// signals the waiter and forgets the JobOwner, so it won't poison the query
+ fn complete<C>(self, cache: &C, result: C::Value, dep_node_index: DepNodeIndex) -> C::Stored
+ where
+ C: QueryCache<Key = K>,
+ {
+ // We can move out of `self` here because we `mem::forget` it below
+ let key = unsafe { ptr::read(&self.key) };
+ let state = self.state;
+
+ // Forget ourself so our destructor won't poison the query
+ mem::forget(self);
+
+ let (job, result) = {
+ let job = {
+ #[cfg(parallel_compiler)]
+ let mut lock = state.active.get_shard_by_value(&key).lock();
+ #[cfg(not(parallel_compiler))]
+ let mut lock = state.active.lock();
+ match lock.remove(&key).unwrap() {
+ QueryResult::Started(job) => job,
+ QueryResult::Poisoned => panic!(),
+ }
+ };
+ let result = cache.complete(key, result, dep_node_index);
+ (job, result)
+ };
+
+ job.signal_complete();
+ result
+ }
+}
+
+impl<'tcx, K> Drop for JobOwner<'tcx, K>
+where
+ K: Eq + Hash + Clone,
+{
+ #[inline(never)]
+ #[cold]
+ fn drop(&mut self) {
+ // Poison the query so jobs waiting on it panic.
+ let state = self.state;
+ let job = {
+ #[cfg(parallel_compiler)]
+ let mut shard = state.active.get_shard_by_value(&self.key).lock();
+ #[cfg(not(parallel_compiler))]
+ let mut shard = state.active.lock();
+ let job = match shard.remove(&self.key).unwrap() {
+ QueryResult::Started(job) => job,
+ QueryResult::Poisoned => panic!(),
+ };
+ shard.insert(self.key.clone(), QueryResult::Poisoned);
+ job
+ };
+ // Also signal the completion of the job, so waiters
+ // will continue execution.
+ job.signal_complete();
+ }
+}
+
+#[derive(Clone)]
+pub(crate) struct CycleError {
+ /// The query and related span that uses the cycle.
+ pub usage: Option<(Span, QueryStackFrame)>,
+ pub cycle: Vec<QueryInfo>,
+}
+
+/// The result of `try_start`.
+enum TryGetJob<'tcx, K>
+where
+ K: Eq + Hash + Clone,
+{
+ /// The query is not yet started. Contains a guard to the cache eventually used to start it.
+ NotYetStarted(JobOwner<'tcx, K>),
+
+ /// The query was already completed.
+ /// Returns the result of the query and its dep-node index
+ /// if it succeeded or a cycle error if it failed.
+ #[cfg(parallel_compiler)]
+ JobCompleted(TimingGuard<'tcx>),
+
+ /// Trying to execute the query resulted in a cycle.
+ Cycle(CycleError),
+}
+
+/// Checks if the query is already computed and in the cache.
+/// It returns the shard index and a lock guard to the shard,
+/// which will be used if the query is not in the cache and we need
+/// to compute it.
+#[inline]
+pub fn try_get_cached<'a, CTX, C, R, OnHit>(
+ tcx: CTX,
+ cache: &'a C,
+ key: &C::Key,
+ // `on_hit` can be called while holding a lock to the query cache
+ on_hit: OnHit,
+) -> Result<R, ()>
+where
+ C: QueryCache,
+ CTX: DepContext,
+ OnHit: FnOnce(&C::Stored) -> R,
+{
+ cache.lookup(&key, |value, index| {
+ if std::intrinsics::unlikely(tcx.profiler().enabled()) {
+ tcx.profiler().query_cache_hit(index.into());
+ }
+ tcx.dep_graph().read_index(index);
+ on_hit(value)
+ })
+}
+
+fn try_execute_query<CTX, C>(
+ tcx: CTX,
+ state: &QueryState<C::Key>,
+ cache: &C,
+ span: Span,
+ key: C::Key,
+ dep_node: Option<DepNode<CTX::DepKind>>,
+ query: &QueryVTable<CTX, C::Key, C::Value>,
+) -> (C::Stored, Option<DepNodeIndex>)
+where
+ C: QueryCache,
+ C::Key: Clone + DepNodeParams<CTX::DepContext>,
+ CTX: QueryContext,
+{
+ match JobOwner::<'_, C::Key>::try_start(&tcx, state, span, key.clone()) {
+ TryGetJob::NotYetStarted(job) => {
+ let (result, dep_node_index) = execute_job(tcx, key, dep_node, query, job.id);
+ let result = job.complete(cache, result, dep_node_index);
+ (result, Some(dep_node_index))
+ }
+ TryGetJob::Cycle(error) => {
+ let result = mk_cycle(tcx, error, query.handle_cycle_error, cache);
+ (result, None)
+ }
+ #[cfg(parallel_compiler)]
+ TryGetJob::JobCompleted(query_blocked_prof_timer) => {
+ let (v, index) = cache
+ .lookup(&key, |value, index| (value.clone(), index))
+ .unwrap_or_else(|_| panic!("value must be in cache after waiting"));
+
+ if std::intrinsics::unlikely(tcx.dep_context().profiler().enabled()) {
+ tcx.dep_context().profiler().query_cache_hit(index.into());
+ }
+ query_blocked_prof_timer.finish_with_query_invocation_id(index.into());
+
+ (v, Some(index))
+ }
+ }
+}
+
+fn execute_job<CTX, K, V>(
+ tcx: CTX,
+ key: K,
+ mut dep_node_opt: Option<DepNode<CTX::DepKind>>,
+ query: &QueryVTable<CTX, K, V>,
+ job_id: QueryJobId,
+) -> (V, DepNodeIndex)
+where
+ K: Clone + DepNodeParams<CTX::DepContext>,
+ V: Debug,
+ CTX: QueryContext,
+{
+ let dep_graph = tcx.dep_context().dep_graph();
+
+ // Fast path for when incr. comp. is off.
+ if !dep_graph.is_fully_enabled() {
+ let prof_timer = tcx.dep_context().profiler().query_provider();
+ let result = tcx.start_query(job_id, None, || query.compute(*tcx.dep_context(), key));
+ let dep_node_index = dep_graph.next_virtual_depnode_index();
+ prof_timer.finish_with_query_invocation_id(dep_node_index.into());
+ return (result, dep_node_index);
+ }
+
+ if !query.anon && !query.eval_always {
+ // `to_dep_node` is expensive for some `DepKind`s.
+ let dep_node =
+ dep_node_opt.get_or_insert_with(|| query.to_dep_node(*tcx.dep_context(), &key));
+
+ // The diagnostics for this query will be promoted to the current session during
+ // `try_mark_green()`, so we can ignore them here.
+ if let Some(ret) = tcx.start_query(job_id, None, || {
+ try_load_from_disk_and_cache_in_memory(tcx, &key, &dep_node, query)
+ }) {
+ return ret;
+ }
+ }
+
+ let prof_timer = tcx.dep_context().profiler().query_provider();
+ let diagnostics = Lock::new(ThinVec::new());
+
+ let (result, dep_node_index) = tcx.start_query(job_id, Some(&diagnostics), || {
+ if query.anon {
+ return dep_graph.with_anon_task(*tcx.dep_context(), query.dep_kind, || {
+ query.compute(*tcx.dep_context(), key)
+ });
+ }
+
+ // `to_dep_node` is expensive for some `DepKind`s.
+ let dep_node = dep_node_opt.unwrap_or_else(|| query.to_dep_node(*tcx.dep_context(), &key));
+
+ dep_graph.with_task(dep_node, *tcx.dep_context(), key, query.compute, query.hash_result)
+ });
+
+ prof_timer.finish_with_query_invocation_id(dep_node_index.into());
+
+ let diagnostics = diagnostics.into_inner();
+ let side_effects = QuerySideEffects { diagnostics };
+
+ if std::intrinsics::unlikely(!side_effects.is_empty()) {
+ if query.anon {
+ tcx.store_side_effects_for_anon_node(dep_node_index, side_effects);
+ } else {
+ tcx.store_side_effects(dep_node_index, side_effects);
+ }
+ }
+
+ (result, dep_node_index)
+}
+
+fn try_load_from_disk_and_cache_in_memory<CTX, K, V>(
+ tcx: CTX,
+ key: &K,
+ dep_node: &DepNode<CTX::DepKind>,
+ query: &QueryVTable<CTX, K, V>,
+) -> Option<(V, DepNodeIndex)>
+where
+ K: Clone,
+ CTX: QueryContext,
+ V: Debug,
+{
+ // Note this function can be called concurrently from the same query
+ // We must ensure that this is handled correctly.
+
+ let dep_graph = tcx.dep_context().dep_graph();
+ let (prev_dep_node_index, dep_node_index) = dep_graph.try_mark_green(tcx, &dep_node)?;
+
+ debug_assert!(dep_graph.is_green(dep_node));
+
+ // First we try to load the result from the on-disk cache.
+ // Some things are never cached on disk.
+ if query.cache_on_disk {
+ let prof_timer = tcx.dep_context().profiler().incr_cache_loading();
+
+ // The call to `with_query_deserialization` enforces that no new `DepNodes`
+ // are created during deserialization. See the docs of that method for more
+ // details.
+ let result = dep_graph
+ .with_query_deserialization(|| query.try_load_from_disk(tcx, prev_dep_node_index));
+
+ prof_timer.finish_with_query_invocation_id(dep_node_index.into());
+
+ if let Some(result) = result {
+ if std::intrinsics::unlikely(
+ tcx.dep_context().sess().opts.unstable_opts.query_dep_graph,
+ ) {
+ dep_graph.mark_debug_loaded_from_disk(*dep_node)
+ }
+
+ let prev_fingerprint = tcx
+ .dep_context()
+ .dep_graph()
+ .prev_fingerprint_of(dep_node)
+ .unwrap_or(Fingerprint::ZERO);
+ // If `-Zincremental-verify-ich` is specified, re-hash results from
+ // the cache and make sure that they have the expected fingerprint.
+ //
+ // If not, we still seek to verify a subset of fingerprints loaded
+ // from disk. Re-hashing results is fairly expensive, so we can't
+ // currently afford to verify every hash. This subset should still
+ // give us some coverage of potential bugs though.
+ let try_verify = prev_fingerprint.as_value().1 % 32 == 0;
+ if std::intrinsics::unlikely(
+ try_verify || tcx.dep_context().sess().opts.unstable_opts.incremental_verify_ich,
+ ) {
+ incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
+ }
+
+ return Some((result, dep_node_index));
+ }
+
+ // We always expect to find a cached result for things that
+ // can be forced from `DepNode`.
+ debug_assert!(
+ !tcx.dep_context().fingerprint_style(dep_node.kind).reconstructible(),
+ "missing on-disk cache entry for {:?}",
+ dep_node
+ );
+ }
+
+ // We could not load a result from the on-disk cache, so
+ // recompute.
+ let prof_timer = tcx.dep_context().profiler().query_provider();
+
+ // The dep-graph for this computation is already in-place.
+ let result = dep_graph.with_ignore(|| query.compute(*tcx.dep_context(), key.clone()));
+
+ prof_timer.finish_with_query_invocation_id(dep_node_index.into());
+
+ // Verify that re-running the query produced a result with the expected hash
+ // This catches bugs in query implementations, turning them into ICEs.
+ // For example, a query might sort its result by `DefId` - since `DefId`s are
+ // not stable across compilation sessions, the result could get up getting sorted
+ // in a different order when the query is re-run, even though all of the inputs
+ // (e.g. `DefPathHash` values) were green.
+ //
+ // See issue #82920 for an example of a miscompilation that would get turned into
+ // an ICE by this check
+ incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
+
+ Some((result, dep_node_index))
+}
+
+fn incremental_verify_ich<CTX, K, V: Debug>(
+ tcx: CTX::DepContext,
+ result: &V,
+ dep_node: &DepNode<CTX::DepKind>,
+ query: &QueryVTable<CTX, K, V>,
+) where
+ CTX: QueryContext,
+{
+ assert!(
+ tcx.dep_graph().is_green(dep_node),
+ "fingerprint for green query instance not loaded from cache: {:?}",
+ dep_node,
+ );
+
+ debug!("BEGIN verify_ich({:?})", dep_node);
+ let new_hash = query.hash_result.map_or(Fingerprint::ZERO, |f| {
+ tcx.with_stable_hashing_context(|mut hcx| f(&mut hcx, result))
+ });
+ let old_hash = tcx.dep_graph().prev_fingerprint_of(dep_node);
+ debug!("END verify_ich({:?})", dep_node);
+
+ if Some(new_hash) != old_hash {
+ incremental_verify_ich_cold(tcx.sess(), DebugArg::from(&dep_node), DebugArg::from(&result));
+ }
+}
+
+// This DebugArg business is largely a mirror of std::fmt::ArgumentV1, which is
+// currently not exposed publicly.
+//
+// The PR which added this attempted to use `&dyn Debug` instead, but that
+// showed statistically significant worse compiler performance. It's not
+// actually clear what the cause there was -- the code should be cold. If this
+// can be replaced with `&dyn Debug` with on perf impact, then it probably
+// should be.
+extern "C" {
+ type Opaque;
+}
+
+struct DebugArg<'a> {
+ value: &'a Opaque,
+ fmt: fn(&Opaque, &mut std::fmt::Formatter<'_>) -> std::fmt::Result,
+}
+
+impl<'a, T> From<&'a T> for DebugArg<'a>
+where
+ T: std::fmt::Debug,
+{
+ fn from(value: &'a T) -> DebugArg<'a> {
+ DebugArg {
+ value: unsafe { std::mem::transmute(value) },
+ fmt: unsafe {
+ std::mem::transmute(<T as std::fmt::Debug>::fmt as fn(_, _) -> std::fmt::Result)
+ },
+ }
+ }
+}
+
+impl std::fmt::Debug for DebugArg<'_> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ (self.fmt)(self.value, f)
+ }
+}
+
+// Note that this is marked #[cold] and intentionally takes the equivalent of
+// `dyn Debug` for its arguments, as we want to avoid generating a bunch of
+// different implementations for LLVM to chew on (and filling up the final
+// binary, too).
+#[cold]
+fn incremental_verify_ich_cold(sess: &Session, dep_node: DebugArg<'_>, result: DebugArg<'_>) {
+ let run_cmd = if let Some(crate_name) = &sess.opts.crate_name {
+ format!("`cargo clean -p {}` or `cargo clean`", crate_name)
+ } else {
+ "`cargo clean`".to_string()
+ };
+
+ // When we emit an error message and panic, we try to debug-print the `DepNode`
+ // and query result. Unfortunately, this can cause us to run additional queries,
+ // which may result in another fingerprint mismatch while we're in the middle
+ // of processing this one. To avoid a double-panic (which kills the process
+ // before we can print out the query static), we print out a terse
+ // but 'safe' message if we detect a re-entrant call to this method.
+ thread_local! {
+ static INSIDE_VERIFY_PANIC: Cell<bool> = const { Cell::new(false) };
+ };
+
+ let old_in_panic = INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.replace(true));
+
+ if old_in_panic {
+ sess.struct_err(
+ "internal compiler error: re-entrant incremental verify failure, suppressing message",
+ )
+ .emit();
+ } else {
+ sess.struct_err(&format!("internal compiler error: encountered incremental compilation error with {:?}", dep_node))
+ .help(&format!("This is a known issue with the compiler. Run {} to allow your project to compile", run_cmd))
+ .note("Please follow the instructions below to create a bug report with the provided information")
+ .note("See <https://github.com/rust-lang/rust/issues/84970> for more information")
+ .emit();
+ panic!("Found unstable fingerprints for {:?}: {:?}", dep_node, result);
+ }
+
+ INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.set(old_in_panic));
+}
+
+/// Ensure that either this query has all green inputs or been executed.
+/// Executing `query::ensure(D)` is considered a read of the dep-node `D`.
+/// Returns true if the query should still run.
+///
+/// This function is particularly useful when executing passes for their
+/// side-effects -- e.g., in order to report errors for erroneous programs.
+///
+/// Note: The optimization is only available during incr. comp.
+#[inline(never)]
+fn ensure_must_run<CTX, K, V>(
+ tcx: CTX,
+ key: &K,
+ query: &QueryVTable<CTX, K, V>,
+) -> (bool, Option<DepNode<CTX::DepKind>>)
+where
+ K: crate::dep_graph::DepNodeParams<CTX::DepContext>,
+ CTX: QueryContext,
+{
+ if query.eval_always {
+ return (true, None);
+ }
+
+ // Ensuring an anonymous query makes no sense
+ assert!(!query.anon);
+
+ let dep_node = query.to_dep_node(*tcx.dep_context(), key);
+
+ let dep_graph = tcx.dep_context().dep_graph();
+ match dep_graph.try_mark_green(tcx, &dep_node) {
+ None => {
+ // A None return from `try_mark_green` means that this is either
+ // a new dep node or that the dep node has already been marked red.
+ // Either way, we can't call `dep_graph.read()` as we don't have the
+ // DepNodeIndex. We must invoke the query itself. The performance cost
+ // this introduces should be negligible as we'll immediately hit the
+ // in-memory cache, or another query down the line will.
+ (true, Some(dep_node))
+ }
+ Some((_, dep_node_index)) => {
+ dep_graph.read_index(dep_node_index);
+ tcx.dep_context().profiler().query_cache_hit(dep_node_index.into());
+ (false, None)
+ }
+ }
+}
+
+#[derive(Debug)]
+pub enum QueryMode {
+ Get,
+ Ensure,
+}
+
+pub fn get_query<Q, CTX>(tcx: CTX, span: Span, key: Q::Key, mode: QueryMode) -> Option<Q::Stored>
+where
+ Q: QueryDescription<CTX>,
+ Q::Key: DepNodeParams<CTX::DepContext>,
+ CTX: QueryContext,
+{
+ let query = Q::make_vtable(tcx, &key);
+ let dep_node = if let QueryMode::Ensure = mode {
+ let (must_run, dep_node) = ensure_must_run(tcx, &key, &query);
+ if !must_run {
+ return None;
+ }
+ dep_node
+ } else {
+ None
+ };
+
+ let (result, dep_node_index) = try_execute_query(
+ tcx,
+ Q::query_state(tcx),
+ Q::query_cache(tcx),
+ span,
+ key,
+ dep_node,
+ &query,
+ );
+ if let Some(dep_node_index) = dep_node_index {
+ tcx.dep_context().dep_graph().read_index(dep_node_index)
+ }
+ Some(result)
+}
+
+pub fn force_query<Q, CTX>(tcx: CTX, key: Q::Key, dep_node: DepNode<CTX::DepKind>)
+where
+ Q: QueryDescription<CTX>,
+ Q::Key: DepNodeParams<CTX::DepContext>,
+ CTX: QueryContext,
+{
+ // We may be concurrently trying both execute and force a query.
+ // Ensure that only one of them runs the query.
+ let cache = Q::query_cache(tcx);
+ let cached = cache.lookup(&key, |_, index| {
+ if std::intrinsics::unlikely(tcx.dep_context().profiler().enabled()) {
+ tcx.dep_context().profiler().query_cache_hit(index.into());
+ }
+ });
+
+ match cached {
+ Ok(()) => return,
+ Err(()) => {}
+ }
+
+ let query = Q::make_vtable(tcx, &key);
+ let state = Q::query_state(tcx);
+ debug_assert!(!query.anon);
+
+ try_execute_query(tcx, state, cache, DUMMY_SP, key, Some(dep_node), &query);
+}