summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_resolve/src/late.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_resolve/src/late.rs')
-rw-r--r--compiler/rustc_resolve/src/late.rs3984
1 files changed, 3984 insertions, 0 deletions
diff --git a/compiler/rustc_resolve/src/late.rs b/compiler/rustc_resolve/src/late.rs
new file mode 100644
index 000000000..dea3eaecd
--- /dev/null
+++ b/compiler/rustc_resolve/src/late.rs
@@ -0,0 +1,3984 @@
+// ignore-tidy-filelength
+//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
+//! It runs when the crate is fully expanded and its module structure is fully built.
+//! So it just walks through the crate and resolves all the expressions, types, etc.
+//!
+//! If you wonder why there's no `early.rs`, that's because it's split into three files -
+//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
+
+use RibKind::*;
+
+use crate::{path_names_to_string, BindingError, Finalize, LexicalScopeBinding};
+use crate::{Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult};
+use crate::{ResolutionError, Resolver, Segment, UseError};
+
+use rustc_ast::ptr::P;
+use rustc_ast::visit::{self, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
+use rustc_ast::*;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
+use rustc_errors::DiagnosticId;
+use rustc_hir::def::Namespace::{self, *};
+use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, PartialRes, PerNS};
+use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
+use rustc_hir::{PrimTy, TraitCandidate};
+use rustc_middle::middle::resolve_lifetime::Set1;
+use rustc_middle::ty::DefIdTree;
+use rustc_middle::{bug, span_bug};
+use rustc_session::lint;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{BytePos, Span};
+use smallvec::{smallvec, SmallVec};
+
+use rustc_span::source_map::{respan, Spanned};
+use std::collections::{hash_map::Entry, BTreeSet};
+use std::mem::{replace, take};
+use tracing::debug;
+
+mod diagnostics;
+pub(crate) mod lifetimes;
+
+type Res = def::Res<NodeId>;
+
+type IdentMap<T> = FxHashMap<Ident, T>;
+
+/// Map from the name in a pattern to its binding mode.
+type BindingMap = IdentMap<BindingInfo>;
+
+use diagnostics::{
+ ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime, MissingLifetimeKind,
+};
+
+#[derive(Copy, Clone, Debug)]
+struct BindingInfo {
+ span: Span,
+ binding_mode: BindingMode,
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub enum PatternSource {
+ Match,
+ Let,
+ For,
+ FnParam,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+enum IsRepeatExpr {
+ No,
+ Yes,
+}
+
+impl PatternSource {
+ pub fn descr(self) -> &'static str {
+ match self {
+ PatternSource::Match => "match binding",
+ PatternSource::Let => "let binding",
+ PatternSource::For => "for binding",
+ PatternSource::FnParam => "function parameter",
+ }
+ }
+}
+
+/// Denotes whether the context for the set of already bound bindings is a `Product`
+/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
+/// See those functions for more information.
+#[derive(PartialEq)]
+enum PatBoundCtx {
+ /// A product pattern context, e.g., `Variant(a, b)`.
+ Product,
+ /// An or-pattern context, e.g., `p_0 | ... | p_n`.
+ Or,
+}
+
+/// Does this the item (from the item rib scope) allow generic parameters?
+#[derive(Copy, Clone, Debug, Eq, PartialEq)]
+pub(crate) enum HasGenericParams {
+ Yes,
+ No,
+}
+
+impl HasGenericParams {
+ fn force_yes_if(self, b: bool) -> Self {
+ if b { Self::Yes } else { self }
+ }
+}
+
+#[derive(Copy, Clone, Debug, Eq, PartialEq)]
+pub(crate) enum ConstantItemKind {
+ Const,
+ Static,
+}
+
+/// The rib kind restricts certain accesses,
+/// e.g. to a `Res::Local` of an outer item.
+#[derive(Copy, Clone, Debug)]
+pub(crate) enum RibKind<'a> {
+ /// No restriction needs to be applied.
+ NormalRibKind,
+
+ /// We passed through an impl or trait and are now in one of its
+ /// methods or associated types. Allow references to ty params that impl or trait
+ /// binds. Disallow any other upvars (including other ty params that are
+ /// upvars).
+ AssocItemRibKind,
+
+ /// We passed through a closure. Disallow labels.
+ ClosureOrAsyncRibKind,
+
+ /// We passed through a function definition. Disallow upvars.
+ /// Permit only those const parameters that are specified in the function's generics.
+ FnItemRibKind,
+
+ /// We passed through an item scope. Disallow upvars.
+ ItemRibKind(HasGenericParams),
+
+ /// We're in a constant item. Can't refer to dynamic stuff.
+ ///
+ /// The item may reference generic parameters in trivial constant expressions.
+ /// All other constants aren't allowed to use generic params at all.
+ ConstantItemRibKind(HasGenericParams, Option<(Ident, ConstantItemKind)>),
+
+ /// We passed through a module.
+ ModuleRibKind(Module<'a>),
+
+ /// We passed through a `macro_rules!` statement
+ MacroDefinition(DefId),
+
+ /// All bindings in this rib are generic parameters that can't be used
+ /// from the default of a generic parameter because they're not declared
+ /// before said generic parameter. Also see the `visit_generics` override.
+ ForwardGenericParamBanRibKind,
+
+ /// We are inside of the type of a const parameter. Can't refer to any
+ /// parameters.
+ ConstParamTyRibKind,
+
+ /// We are inside a `sym` inline assembly operand. Can only refer to
+ /// globals.
+ InlineAsmSymRibKind,
+}
+
+impl RibKind<'_> {
+ /// Whether this rib kind contains generic parameters, as opposed to local
+ /// variables.
+ pub(crate) fn contains_params(&self) -> bool {
+ match self {
+ NormalRibKind
+ | ClosureOrAsyncRibKind
+ | FnItemRibKind
+ | ConstantItemRibKind(..)
+ | ModuleRibKind(_)
+ | MacroDefinition(_)
+ | ConstParamTyRibKind
+ | InlineAsmSymRibKind => false,
+ AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
+ }
+ }
+
+ /// This rib forbids referring to labels defined in upwards ribs.
+ fn is_label_barrier(self) -> bool {
+ match self {
+ NormalRibKind | MacroDefinition(..) => false,
+
+ AssocItemRibKind
+ | ClosureOrAsyncRibKind
+ | FnItemRibKind
+ | ItemRibKind(..)
+ | ConstantItemRibKind(..)
+ | ModuleRibKind(..)
+ | ForwardGenericParamBanRibKind
+ | ConstParamTyRibKind
+ | InlineAsmSymRibKind => true,
+ }
+ }
+}
+
+/// A single local scope.
+///
+/// A rib represents a scope names can live in. Note that these appear in many places, not just
+/// around braces. At any place where the list of accessible names (of the given namespace)
+/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
+/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
+/// etc.
+///
+/// Different [rib kinds](enum@RibKind) are transparent for different names.
+///
+/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
+/// resolving, the name is looked up from inside out.
+#[derive(Debug)]
+pub(crate) struct Rib<'a, R = Res> {
+ pub bindings: IdentMap<R>,
+ pub kind: RibKind<'a>,
+}
+
+impl<'a, R> Rib<'a, R> {
+ fn new(kind: RibKind<'a>) -> Rib<'a, R> {
+ Rib { bindings: Default::default(), kind }
+ }
+}
+
+#[derive(Clone, Copy, Debug)]
+enum LifetimeUseSet {
+ One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
+ Many,
+}
+
+#[derive(Copy, Clone, Debug)]
+enum LifetimeRibKind {
+ /// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
+ Item,
+
+ /// This rib declares generic parameters.
+ Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },
+
+ /// FIXME(const_generics): This patches over an ICE caused by non-'static lifetimes in const
+ /// generics. We are disallowing this until we can decide on how we want to handle non-'static
+ /// lifetimes in const generics. See issue #74052 for discussion.
+ ConstGeneric,
+
+ /// Non-static lifetimes are prohibited in anonymous constants under `min_const_generics`.
+ /// This function will emit an error if `generic_const_exprs` is not enabled, the body identified by
+ /// `body_id` is an anonymous constant and `lifetime_ref` is non-static.
+ AnonConst,
+
+ /// Create a new anonymous lifetime parameter and reference it.
+ ///
+ /// If `report_in_path`, report an error when encountering lifetime elision in a path:
+ /// ```compile_fail
+ /// struct Foo<'a> { x: &'a () }
+ /// async fn foo(x: Foo) {}
+ /// ```
+ ///
+ /// Note: the error should not trigger when the elided lifetime is in a pattern or
+ /// expression-position path:
+ /// ```
+ /// struct Foo<'a> { x: &'a () }
+ /// async fn foo(Foo { x: _ }: Foo<'_>) {}
+ /// ```
+ AnonymousCreateParameter { binder: NodeId, report_in_path: bool },
+
+ /// Give a hard error when either `&` or `'_` is written. Used to
+ /// rule out things like `where T: Foo<'_>`. Does not imply an
+ /// error on default object bounds (e.g., `Box<dyn Foo>`).
+ AnonymousReportError,
+
+ /// Replace all anonymous lifetimes by provided lifetime.
+ Elided(LifetimeRes),
+
+ /// Signal we cannot find which should be the anonymous lifetime.
+ ElisionFailure,
+}
+
+#[derive(Copy, Clone, Debug)]
+enum LifetimeBinderKind {
+ BareFnType,
+ PolyTrait,
+ WhereBound,
+ Item,
+ Function,
+ Closure,
+ ImplBlock,
+}
+
+impl LifetimeBinderKind {
+ fn descr(self) -> &'static str {
+ use LifetimeBinderKind::*;
+ match self {
+ BareFnType => "type",
+ PolyTrait => "bound",
+ WhereBound => "bound",
+ Item => "item",
+ ImplBlock => "impl block",
+ Function => "function",
+ Closure => "closure",
+ }
+ }
+}
+
+#[derive(Debug)]
+struct LifetimeRib {
+ kind: LifetimeRibKind,
+ // We need to preserve insertion order for async fns.
+ bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
+}
+
+impl LifetimeRib {
+ fn new(kind: LifetimeRibKind) -> LifetimeRib {
+ LifetimeRib { bindings: Default::default(), kind }
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub(crate) enum AliasPossibility {
+ No,
+ Maybe,
+}
+
+#[derive(Copy, Clone, Debug)]
+pub(crate) enum PathSource<'a> {
+ // Type paths `Path`.
+ Type,
+ // Trait paths in bounds or impls.
+ Trait(AliasPossibility),
+ // Expression paths `path`, with optional parent context.
+ Expr(Option<&'a Expr>),
+ // Paths in path patterns `Path`.
+ Pat,
+ // Paths in struct expressions and patterns `Path { .. }`.
+ Struct,
+ // Paths in tuple struct patterns `Path(..)`.
+ TupleStruct(Span, &'a [Span]),
+ // `m::A::B` in `<T as m::A>::B::C`.
+ TraitItem(Namespace),
+}
+
+impl<'a> PathSource<'a> {
+ fn namespace(self) -> Namespace {
+ match self {
+ PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
+ PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
+ PathSource::TraitItem(ns) => ns,
+ }
+ }
+
+ fn defer_to_typeck(self) -> bool {
+ match self {
+ PathSource::Type
+ | PathSource::Expr(..)
+ | PathSource::Pat
+ | PathSource::Struct
+ | PathSource::TupleStruct(..) => true,
+ PathSource::Trait(_) | PathSource::TraitItem(..) => false,
+ }
+ }
+
+ fn descr_expected(self) -> &'static str {
+ match &self {
+ PathSource::Type => "type",
+ PathSource::Trait(_) => "trait",
+ PathSource::Pat => "unit struct, unit variant or constant",
+ PathSource::Struct => "struct, variant or union type",
+ PathSource::TupleStruct(..) => "tuple struct or tuple variant",
+ PathSource::TraitItem(ns) => match ns {
+ TypeNS => "associated type",
+ ValueNS => "method or associated constant",
+ MacroNS => bug!("associated macro"),
+ },
+ PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
+ // "function" here means "anything callable" rather than `DefKind::Fn`,
+ // this is not precise but usually more helpful than just "value".
+ Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
+ // the case of `::some_crate()`
+ ExprKind::Path(_, path)
+ if path.segments.len() == 2
+ && path.segments[0].ident.name == kw::PathRoot =>
+ {
+ "external crate"
+ }
+ ExprKind::Path(_, path) => {
+ let mut msg = "function";
+ if let Some(segment) = path.segments.iter().last() {
+ if let Some(c) = segment.ident.to_string().chars().next() {
+ if c.is_uppercase() {
+ msg = "function, tuple struct or tuple variant";
+ }
+ }
+ }
+ msg
+ }
+ _ => "function",
+ },
+ _ => "value",
+ },
+ }
+ }
+
+ fn is_call(self) -> bool {
+ matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
+ }
+
+ pub(crate) fn is_expected(self, res: Res) -> bool {
+ match self {
+ PathSource::Type => matches!(
+ res,
+ Res::Def(
+ DefKind::Struct
+ | DefKind::Union
+ | DefKind::Enum
+ | DefKind::Trait
+ | DefKind::TraitAlias
+ | DefKind::TyAlias
+ | DefKind::AssocTy
+ | DefKind::TyParam
+ | DefKind::OpaqueTy
+ | DefKind::ForeignTy,
+ _,
+ ) | Res::PrimTy(..)
+ | Res::SelfTy { .. }
+ ),
+ PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
+ PathSource::Trait(AliasPossibility::Maybe) => {
+ matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
+ }
+ PathSource::Expr(..) => matches!(
+ res,
+ Res::Def(
+ DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
+ | DefKind::Const
+ | DefKind::Static(_)
+ | DefKind::Fn
+ | DefKind::AssocFn
+ | DefKind::AssocConst
+ | DefKind::ConstParam,
+ _,
+ ) | Res::Local(..)
+ | Res::SelfCtor(..)
+ ),
+ PathSource::Pat => {
+ res.expected_in_unit_struct_pat()
+ || matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
+ }
+ PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
+ PathSource::Struct => matches!(
+ res,
+ Res::Def(
+ DefKind::Struct
+ | DefKind::Union
+ | DefKind::Variant
+ | DefKind::TyAlias
+ | DefKind::AssocTy,
+ _,
+ ) | Res::SelfTy { .. }
+ ),
+ PathSource::TraitItem(ns) => match res {
+ Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
+ Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
+ _ => false,
+ },
+ }
+ }
+
+ fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
+ use rustc_errors::error_code;
+ match (self, has_unexpected_resolution) {
+ (PathSource::Trait(_), true) => error_code!(E0404),
+ (PathSource::Trait(_), false) => error_code!(E0405),
+ (PathSource::Type, true) => error_code!(E0573),
+ (PathSource::Type, false) => error_code!(E0412),
+ (PathSource::Struct, true) => error_code!(E0574),
+ (PathSource::Struct, false) => error_code!(E0422),
+ (PathSource::Expr(..), true) => error_code!(E0423),
+ (PathSource::Expr(..), false) => error_code!(E0425),
+ (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
+ (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
+ (PathSource::TraitItem(..), true) => error_code!(E0575),
+ (PathSource::TraitItem(..), false) => error_code!(E0576),
+ }
+ }
+}
+
+#[derive(Default)]
+struct DiagnosticMetadata<'ast> {
+ /// The current trait's associated items' ident, used for diagnostic suggestions.
+ current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
+
+ /// The current self type if inside an impl (used for better errors).
+ current_self_type: Option<Ty>,
+
+ /// The current self item if inside an ADT (used for better errors).
+ current_self_item: Option<NodeId>,
+
+ /// The current trait (used to suggest).
+ current_item: Option<&'ast Item>,
+
+ /// When processing generics and encountering a type not found, suggest introducing a type
+ /// param.
+ currently_processing_generics: bool,
+
+ /// The current enclosing (non-closure) function (used for better errors).
+ current_function: Option<(FnKind<'ast>, Span)>,
+
+ /// A list of labels as of yet unused. Labels will be removed from this map when
+ /// they are used (in a `break` or `continue` statement)
+ unused_labels: FxHashMap<NodeId, Span>,
+
+ /// Only used for better errors on `fn(): fn()`.
+ current_type_ascription: Vec<Span>,
+
+ /// Only used for better errors on `let x = { foo: bar };`.
+ /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
+ /// needed for cases where this parses as a correct type ascription.
+ current_block_could_be_bare_struct_literal: Option<Span>,
+
+ /// Only used for better errors on `let <pat>: <expr, not type>;`.
+ current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
+
+ /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
+ in_if_condition: Option<&'ast Expr>,
+
+ /// If we are currently in a trait object definition. Used to point at the bounds when
+ /// encountering a struct or enum.
+ current_trait_object: Option<&'ast [ast::GenericBound]>,
+
+ /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
+ current_where_predicate: Option<&'ast WherePredicate>,
+
+ current_type_path: Option<&'ast Ty>,
+
+ /// The current impl items (used to suggest).
+ current_impl_items: Option<&'ast [P<AssocItem>]>,
+
+ /// When processing impl trait
+ currently_processing_impl_trait: Option<(TraitRef, Ty)>,
+
+ /// Accumulate the errors due to missed lifetime elision,
+ /// and report them all at once for each function.
+ current_elision_failures: Vec<MissingLifetime>,
+}
+
+struct LateResolutionVisitor<'a, 'b, 'ast> {
+ r: &'b mut Resolver<'a>,
+
+ /// The module that represents the current item scope.
+ parent_scope: ParentScope<'a>,
+
+ /// The current set of local scopes for types and values.
+ /// FIXME #4948: Reuse ribs to avoid allocation.
+ ribs: PerNS<Vec<Rib<'a>>>,
+
+ /// The current set of local scopes, for labels.
+ label_ribs: Vec<Rib<'a, NodeId>>,
+
+ /// The current set of local scopes for lifetimes.
+ lifetime_ribs: Vec<LifetimeRib>,
+
+ /// We are looking for lifetimes in an elision context.
+ /// The set contains all the resolutions that we encountered so far.
+ /// They will be used to determine the correct lifetime for the fn return type.
+ /// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
+ /// lifetimes.
+ lifetime_elision_candidates: Option<FxIndexMap<LifetimeRes, LifetimeElisionCandidate>>,
+
+ /// The trait that the current context can refer to.
+ current_trait_ref: Option<(Module<'a>, TraitRef)>,
+
+ /// Fields used to add information to diagnostic errors.
+ diagnostic_metadata: Box<DiagnosticMetadata<'ast>>,
+
+ /// State used to know whether to ignore resolution errors for function bodies.
+ ///
+ /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
+ /// In most cases this will be `None`, in which case errors will always be reported.
+ /// If it is `true`, then it will be updated when entering a nested function or trait body.
+ in_func_body: bool,
+
+ /// Count the number of places a lifetime is used.
+ lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
+}
+
+/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
+impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
+ fn visit_attribute(&mut self, _: &'ast Attribute) {
+ // We do not want to resolve expressions that appear in attributes,
+ // as they do not correspond to actual code.
+ }
+ fn visit_item(&mut self, item: &'ast Item) {
+ let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
+ // Always report errors in items we just entered.
+ let old_ignore = replace(&mut self.in_func_body, false);
+ self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
+ self.in_func_body = old_ignore;
+ self.diagnostic_metadata.current_item = prev;
+ }
+ fn visit_arm(&mut self, arm: &'ast Arm) {
+ self.resolve_arm(arm);
+ }
+ fn visit_block(&mut self, block: &'ast Block) {
+ self.resolve_block(block);
+ }
+ fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
+ // We deal with repeat expressions explicitly in `resolve_expr`.
+ self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
+ this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
+ this.resolve_anon_const(constant, IsRepeatExpr::No);
+ })
+ })
+ }
+ fn visit_expr(&mut self, expr: &'ast Expr) {
+ self.resolve_expr(expr, None);
+ }
+ fn visit_local(&mut self, local: &'ast Local) {
+ let local_spans = match local.pat.kind {
+ // We check for this to avoid tuple struct fields.
+ PatKind::Wild => None,
+ _ => Some((
+ local.pat.span,
+ local.ty.as_ref().map(|ty| ty.span),
+ local.kind.init().map(|init| init.span),
+ )),
+ };
+ let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
+ self.resolve_local(local);
+ self.diagnostic_metadata.current_let_binding = original;
+ }
+ fn visit_ty(&mut self, ty: &'ast Ty) {
+ let prev = self.diagnostic_metadata.current_trait_object;
+ let prev_ty = self.diagnostic_metadata.current_type_path;
+ match ty.kind {
+ TyKind::Rptr(None, _) => {
+ // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
+ // NodeId `ty.id`.
+ // This span will be used in case of elision failure.
+ let span = self.r.session.source_map().next_point(ty.span.shrink_to_lo());
+ self.resolve_elided_lifetime(ty.id, span);
+ visit::walk_ty(self, ty);
+ }
+ TyKind::Path(ref qself, ref path) => {
+ self.diagnostic_metadata.current_type_path = Some(ty);
+ self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
+
+ // Check whether we should interpret this as a bare trait object.
+ if qself.is_none()
+ && let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
+ && partial_res.unresolved_segments() == 0
+ && let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = partial_res.base_res()
+ {
+ // This path is actually a bare trait object. In case of a bare `Fn`-trait
+ // object with anonymous lifetimes, we need this rib to correctly place the
+ // synthetic lifetimes.
+ let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
+ self.with_generic_param_rib(
+ &[],
+ NormalRibKind,
+ LifetimeRibKind::Generics {
+ binder: ty.id,
+ kind: LifetimeBinderKind::PolyTrait,
+ span,
+ },
+ |this| this.visit_path(&path, ty.id),
+ );
+ } else {
+ visit::walk_ty(self, ty)
+ }
+ }
+ TyKind::ImplicitSelf => {
+ let self_ty = Ident::with_dummy_span(kw::SelfUpper);
+ let res = self
+ .resolve_ident_in_lexical_scope(
+ self_ty,
+ TypeNS,
+ Some(Finalize::new(ty.id, ty.span)),
+ None,
+ )
+ .map_or(Res::Err, |d| d.res());
+ self.r.record_partial_res(ty.id, PartialRes::new(res));
+ visit::walk_ty(self, ty)
+ }
+ TyKind::ImplTrait(..) => {
+ let candidates = self.lifetime_elision_candidates.take();
+ visit::walk_ty(self, ty);
+ self.lifetime_elision_candidates = candidates;
+ }
+ TyKind::TraitObject(ref bounds, ..) => {
+ self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
+ visit::walk_ty(self, ty)
+ }
+ TyKind::BareFn(ref bare_fn) => {
+ let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
+ self.with_generic_param_rib(
+ &bare_fn.generic_params,
+ NormalRibKind,
+ LifetimeRibKind::Generics {
+ binder: ty.id,
+ kind: LifetimeBinderKind::BareFnType,
+ span,
+ },
+ |this| {
+ this.visit_generic_params(&bare_fn.generic_params, false);
+ this.with_lifetime_rib(
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder: ty.id,
+ report_in_path: false,
+ },
+ |this| {
+ this.resolve_fn_signature(
+ ty.id,
+ false,
+ // We don't need to deal with patterns in parameters, because
+ // they are not possible for foreign or bodiless functions.
+ bare_fn
+ .decl
+ .inputs
+ .iter()
+ .map(|Param { ty, .. }| (None, &**ty)),
+ &bare_fn.decl.output,
+ )
+ },
+ );
+ },
+ )
+ }
+ _ => visit::walk_ty(self, ty),
+ }
+ self.diagnostic_metadata.current_trait_object = prev;
+ self.diagnostic_metadata.current_type_path = prev_ty;
+ }
+ fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, _: &'ast TraitBoundModifier) {
+ let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
+ self.with_generic_param_rib(
+ &tref.bound_generic_params,
+ NormalRibKind,
+ LifetimeRibKind::Generics {
+ binder: tref.trait_ref.ref_id,
+ kind: LifetimeBinderKind::PolyTrait,
+ span,
+ },
+ |this| {
+ this.visit_generic_params(&tref.bound_generic_params, false);
+ this.smart_resolve_path(
+ tref.trait_ref.ref_id,
+ None,
+ &tref.trait_ref.path,
+ PathSource::Trait(AliasPossibility::Maybe),
+ );
+ this.visit_trait_ref(&tref.trait_ref);
+ },
+ );
+ }
+ fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
+ match foreign_item.kind {
+ ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
+ self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
+ this.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: foreign_item.id,
+ kind: LifetimeBinderKind::Item,
+ span: generics.span,
+ },
+ |this| visit::walk_foreign_item(this, foreign_item),
+ )
+ });
+ }
+ ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
+ self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
+ this.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: foreign_item.id,
+ kind: LifetimeBinderKind::Function,
+ span: generics.span,
+ },
+ |this| visit::walk_foreign_item(this, foreign_item),
+ )
+ });
+ }
+ ForeignItemKind::Static(..) => {
+ self.with_item_rib(|this| {
+ visit::walk_foreign_item(this, foreign_item);
+ });
+ }
+ ForeignItemKind::MacCall(..) => {
+ panic!("unexpanded macro in resolve!")
+ }
+ }
+ }
+ fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
+ let rib_kind = match fn_kind {
+ // Bail if the function is foreign, and thus cannot validly have
+ // a body, or if there's no body for some other reason.
+ FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
+ | FnKind::Fn(_, _, sig, _, generics, None) => {
+ self.visit_fn_header(&sig.header);
+ self.visit_generics(generics);
+ self.with_lifetime_rib(
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder: fn_id,
+ report_in_path: false,
+ },
+ |this| {
+ this.resolve_fn_signature(
+ fn_id,
+ sig.decl.has_self(),
+ sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
+ &sig.decl.output,
+ )
+ },
+ );
+ return;
+ }
+ FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind,
+ FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
+ FnKind::Closure(..) => ClosureOrAsyncRibKind,
+ };
+ let previous_value = self.diagnostic_metadata.current_function;
+ if matches!(fn_kind, FnKind::Fn(..)) {
+ self.diagnostic_metadata.current_function = Some((fn_kind, sp));
+ }
+ debug!("(resolving function) entering function");
+
+ // Create a value rib for the function.
+ self.with_rib(ValueNS, rib_kind, |this| {
+ // Create a label rib for the function.
+ this.with_label_rib(FnItemRibKind, |this| {
+ match fn_kind {
+ FnKind::Fn(_, _, sig, _, generics, body) => {
+ this.visit_generics(generics);
+
+ let declaration = &sig.decl;
+ let async_node_id = sig.header.asyncness.opt_return_id();
+
+ this.with_lifetime_rib(
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder: fn_id,
+ report_in_path: async_node_id.is_some(),
+ },
+ |this| {
+ this.resolve_fn_signature(
+ fn_id,
+ declaration.has_self(),
+ declaration
+ .inputs
+ .iter()
+ .map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
+ &declaration.output,
+ )
+ },
+ );
+
+ // Construct the list of in-scope lifetime parameters for async lowering.
+ // We include all lifetime parameters, either named or "Fresh".
+ // The order of those parameters does not matter, as long as it is
+ // deterministic.
+ if let Some(async_node_id) = async_node_id {
+ let mut extra_lifetime_params = this
+ .r
+ .extra_lifetime_params_map
+ .get(&fn_id)
+ .cloned()
+ .unwrap_or_default();
+ for rib in this.lifetime_ribs.iter().rev() {
+ extra_lifetime_params.extend(
+ rib.bindings
+ .iter()
+ .map(|(&ident, &(node_id, res))| (ident, node_id, res)),
+ );
+ match rib.kind {
+ LifetimeRibKind::Item => break,
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder, ..
+ } => {
+ if let Some(earlier_fresh) =
+ this.r.extra_lifetime_params_map.get(&binder)
+ {
+ extra_lifetime_params.extend(earlier_fresh);
+ }
+ }
+ _ => {}
+ }
+ }
+ this.r
+ .extra_lifetime_params_map
+ .insert(async_node_id, extra_lifetime_params);
+ }
+
+ if let Some(body) = body {
+ // Ignore errors in function bodies if this is rustdoc
+ // Be sure not to set this until the function signature has been resolved.
+ let previous_state = replace(&mut this.in_func_body, true);
+ // Resolve the function body, potentially inside the body of an async closure
+ this.with_lifetime_rib(
+ LifetimeRibKind::Elided(LifetimeRes::Infer),
+ |this| this.visit_block(body),
+ );
+
+ debug!("(resolving function) leaving function");
+ this.in_func_body = previous_state;
+ }
+ }
+ FnKind::Closure(binder, declaration, body) => {
+ this.visit_closure_binder(binder);
+
+ this.with_lifetime_rib(
+ match binder {
+ // We do not have any explicit generic lifetime parameter.
+ ClosureBinder::NotPresent => {
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder: fn_id,
+ report_in_path: false,
+ }
+ }
+ ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
+ },
+ // Add each argument to the rib.
+ |this| this.resolve_params(&declaration.inputs),
+ );
+ this.with_lifetime_rib(
+ match binder {
+ ClosureBinder::NotPresent => {
+ LifetimeRibKind::Elided(LifetimeRes::Infer)
+ }
+ ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
+ },
+ |this| visit::walk_fn_ret_ty(this, &declaration.output),
+ );
+
+ // Ignore errors in function bodies if this is rustdoc
+ // Be sure not to set this until the function signature has been resolved.
+ let previous_state = replace(&mut this.in_func_body, true);
+ // Resolve the function body, potentially inside the body of an async closure
+ this.with_lifetime_rib(
+ LifetimeRibKind::Elided(LifetimeRes::Infer),
+ |this| this.visit_expr(body),
+ );
+
+ debug!("(resolving function) leaving function");
+ this.in_func_body = previous_state;
+ }
+ }
+ })
+ });
+ self.diagnostic_metadata.current_function = previous_value;
+ }
+ fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
+ self.resolve_lifetime(lifetime, use_ctxt)
+ }
+
+ fn visit_generics(&mut self, generics: &'ast Generics) {
+ self.visit_generic_params(
+ &generics.params,
+ self.diagnostic_metadata.current_self_item.is_some(),
+ );
+ for p in &generics.where_clause.predicates {
+ self.visit_where_predicate(p);
+ }
+ }
+
+ fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
+ match b {
+ ClosureBinder::NotPresent => {}
+ ClosureBinder::For { generic_params, .. } => {
+ self.visit_generic_params(
+ &generic_params,
+ self.diagnostic_metadata.current_self_item.is_some(),
+ );
+ }
+ }
+ }
+
+ fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
+ debug!("visit_generic_arg({:?})", arg);
+ let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
+ match arg {
+ GenericArg::Type(ref ty) => {
+ // We parse const arguments as path types as we cannot distinguish them during
+ // parsing. We try to resolve that ambiguity by attempting resolution the type
+ // namespace first, and if that fails we try again in the value namespace. If
+ // resolution in the value namespace succeeds, we have an generic const argument on
+ // our hands.
+ if let TyKind::Path(ref qself, ref path) = ty.kind {
+ // We cannot disambiguate multi-segment paths right now as that requires type
+ // checking.
+ if path.segments.len() == 1 && path.segments[0].args.is_none() {
+ let mut check_ns = |ns| {
+ self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
+ .is_some()
+ };
+ if !check_ns(TypeNS) && check_ns(ValueNS) {
+ // This must be equivalent to `visit_anon_const`, but we cannot call it
+ // directly due to visitor lifetimes so we have to copy-paste some code.
+ //
+ // Note that we might not be inside of an repeat expression here,
+ // but considering that `IsRepeatExpr` is only relevant for
+ // non-trivial constants this is doesn't matter.
+ self.with_constant_rib(
+ IsRepeatExpr::No,
+ HasGenericParams::Yes,
+ None,
+ |this| {
+ this.smart_resolve_path(
+ ty.id,
+ qself.as_ref(),
+ path,
+ PathSource::Expr(None),
+ );
+
+ if let Some(ref qself) = *qself {
+ this.visit_ty(&qself.ty);
+ }
+ this.visit_path(path, ty.id);
+ },
+ );
+
+ self.diagnostic_metadata.currently_processing_generics = prev;
+ return;
+ }
+ }
+ }
+
+ self.visit_ty(ty);
+ }
+ GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
+ GenericArg::Const(ct) => self.visit_anon_const(ct),
+ }
+ self.diagnostic_metadata.currently_processing_generics = prev;
+ }
+
+ fn visit_assoc_constraint(&mut self, constraint: &'ast AssocConstraint) {
+ self.visit_ident(constraint.ident);
+ if let Some(ref gen_args) = constraint.gen_args {
+ // Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
+ self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
+ this.visit_generic_args(gen_args.span(), gen_args)
+ });
+ }
+ match constraint.kind {
+ AssocConstraintKind::Equality { ref term } => match term {
+ Term::Ty(ty) => self.visit_ty(ty),
+ Term::Const(c) => self.visit_anon_const(c),
+ },
+ AssocConstraintKind::Bound { ref bounds } => {
+ walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
+ }
+ }
+ }
+
+ fn visit_path_segment(&mut self, path_span: Span, path_segment: &'ast PathSegment) {
+ if let Some(ref args) = path_segment.args {
+ match &**args {
+ GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, path_span, args),
+ GenericArgs::Parenthesized(p_args) => {
+ // Probe the lifetime ribs to know how to behave.
+ for rib in self.lifetime_ribs.iter().rev() {
+ match rib.kind {
+ // We are inside a `PolyTraitRef`. The lifetimes are
+ // to be intoduced in that (maybe implicit) `for<>` binder.
+ LifetimeRibKind::Generics {
+ binder,
+ kind: LifetimeBinderKind::PolyTrait,
+ ..
+ } => {
+ self.with_lifetime_rib(
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder,
+ report_in_path: false,
+ },
+ |this| {
+ this.resolve_fn_signature(
+ binder,
+ false,
+ p_args.inputs.iter().map(|ty| (None, &**ty)),
+ &p_args.output,
+ )
+ },
+ );
+ break;
+ }
+ // We have nowhere to introduce generics. Code is malformed,
+ // so use regular lifetime resolution to avoid spurious errors.
+ LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
+ visit::walk_generic_args(self, path_span, args);
+ break;
+ }
+ LifetimeRibKind::AnonymousCreateParameter { .. }
+ | LifetimeRibKind::AnonymousReportError
+ | LifetimeRibKind::Elided(_)
+ | LifetimeRibKind::ElisionFailure
+ | LifetimeRibKind::AnonConst
+ | LifetimeRibKind::ConstGeneric => {}
+ }
+ }
+ }
+ }
+ }
+ }
+
+ fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
+ debug!("visit_where_predicate {:?}", p);
+ let previous_value =
+ replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
+ self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
+ if let WherePredicate::BoundPredicate(WhereBoundPredicate {
+ ref bounded_ty,
+ ref bounds,
+ ref bound_generic_params,
+ span: predicate_span,
+ ..
+ }) = p
+ {
+ let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
+ this.with_generic_param_rib(
+ &bound_generic_params,
+ NormalRibKind,
+ LifetimeRibKind::Generics {
+ binder: bounded_ty.id,
+ kind: LifetimeBinderKind::WhereBound,
+ span,
+ },
+ |this| {
+ this.visit_generic_params(&bound_generic_params, false);
+ this.visit_ty(bounded_ty);
+ for bound in bounds {
+ this.visit_param_bound(bound, BoundKind::Bound)
+ }
+ },
+ );
+ } else {
+ visit::walk_where_predicate(this, p);
+ }
+ });
+ self.diagnostic_metadata.current_where_predicate = previous_value;
+ }
+
+ fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
+ for (op, _) in &asm.operands {
+ match op {
+ InlineAsmOperand::In { expr, .. }
+ | InlineAsmOperand::Out { expr: Some(expr), .. }
+ | InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
+ InlineAsmOperand::Out { expr: None, .. } => {}
+ InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
+ self.visit_expr(in_expr);
+ if let Some(out_expr) = out_expr {
+ self.visit_expr(out_expr);
+ }
+ }
+ InlineAsmOperand::Const { anon_const, .. } => {
+ // Although this is `DefKind::AnonConst`, it is allowed to reference outer
+ // generic parameters like an inline const.
+ self.resolve_inline_const(anon_const);
+ }
+ InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
+ }
+ }
+ }
+
+ fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
+ // This is similar to the code for AnonConst.
+ self.with_rib(ValueNS, InlineAsmSymRibKind, |this| {
+ this.with_rib(TypeNS, InlineAsmSymRibKind, |this| {
+ this.with_label_rib(InlineAsmSymRibKind, |this| {
+ this.smart_resolve_path(
+ sym.id,
+ sym.qself.as_ref(),
+ &sym.path,
+ PathSource::Expr(None),
+ );
+ visit::walk_inline_asm_sym(this, sym);
+ });
+ })
+ });
+ }
+}
+
+impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
+ fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
+ // During late resolution we only track the module component of the parent scope,
+ // although it may be useful to track other components as well for diagnostics.
+ let graph_root = resolver.graph_root;
+ let parent_scope = ParentScope::module(graph_root, resolver);
+ let start_rib_kind = ModuleRibKind(graph_root);
+ LateResolutionVisitor {
+ r: resolver,
+ parent_scope,
+ ribs: PerNS {
+ value_ns: vec![Rib::new(start_rib_kind)],
+ type_ns: vec![Rib::new(start_rib_kind)],
+ macro_ns: vec![Rib::new(start_rib_kind)],
+ },
+ label_ribs: Vec::new(),
+ lifetime_ribs: Vec::new(),
+ lifetime_elision_candidates: None,
+ current_trait_ref: None,
+ diagnostic_metadata: Box::new(DiagnosticMetadata::default()),
+ // errors at module scope should always be reported
+ in_func_body: false,
+ lifetime_uses: Default::default(),
+ }
+ }
+
+ fn maybe_resolve_ident_in_lexical_scope(
+ &mut self,
+ ident: Ident,
+ ns: Namespace,
+ ) -> Option<LexicalScopeBinding<'a>> {
+ self.r.resolve_ident_in_lexical_scope(
+ ident,
+ ns,
+ &self.parent_scope,
+ None,
+ &self.ribs[ns],
+ None,
+ )
+ }
+
+ fn resolve_ident_in_lexical_scope(
+ &mut self,
+ ident: Ident,
+ ns: Namespace,
+ finalize: Option<Finalize>,
+ ignore_binding: Option<&'a NameBinding<'a>>,
+ ) -> Option<LexicalScopeBinding<'a>> {
+ self.r.resolve_ident_in_lexical_scope(
+ ident,
+ ns,
+ &self.parent_scope,
+ finalize,
+ &self.ribs[ns],
+ ignore_binding,
+ )
+ }
+
+ fn resolve_path(
+ &mut self,
+ path: &[Segment],
+ opt_ns: Option<Namespace>, // `None` indicates a module path in import
+ finalize: Option<Finalize>,
+ ) -> PathResult<'a> {
+ self.r.resolve_path_with_ribs(
+ path,
+ opt_ns,
+ &self.parent_scope,
+ finalize,
+ Some(&self.ribs),
+ None,
+ )
+ }
+
+ // AST resolution
+ //
+ // We maintain a list of value ribs and type ribs.
+ //
+ // Simultaneously, we keep track of the current position in the module
+ // graph in the `parent_scope.module` pointer. When we go to resolve a name in
+ // the value or type namespaces, we first look through all the ribs and
+ // then query the module graph. When we resolve a name in the module
+ // namespace, we can skip all the ribs (since nested modules are not
+ // allowed within blocks in Rust) and jump straight to the current module
+ // graph node.
+ //
+ // Named implementations are handled separately. When we find a method
+ // call, we consult the module node to find all of the implementations in
+ // scope. This information is lazily cached in the module node. We then
+ // generate a fake "implementation scope" containing all the
+ // implementations thus found, for compatibility with old resolve pass.
+
+ /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
+ fn with_rib<T>(
+ &mut self,
+ ns: Namespace,
+ kind: RibKind<'a>,
+ work: impl FnOnce(&mut Self) -> T,
+ ) -> T {
+ self.ribs[ns].push(Rib::new(kind));
+ let ret = work(self);
+ self.ribs[ns].pop();
+ ret
+ }
+
+ fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
+ if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
+ // Move down in the graph.
+ let orig_module = replace(&mut self.parent_scope.module, module);
+ self.with_rib(ValueNS, ModuleRibKind(module), |this| {
+ this.with_rib(TypeNS, ModuleRibKind(module), |this| {
+ let ret = f(this);
+ this.parent_scope.module = orig_module;
+ ret
+ })
+ })
+ } else {
+ f(self)
+ }
+ }
+
+ fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
+ // For type parameter defaults, we have to ban access
+ // to following type parameters, as the InternalSubsts can only
+ // provide previous type parameters as they're built. We
+ // put all the parameters on the ban list and then remove
+ // them one by one as they are processed and become available.
+ let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
+ let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
+ for param in params.iter() {
+ match param.kind {
+ GenericParamKind::Type { .. } => {
+ forward_ty_ban_rib
+ .bindings
+ .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
+ }
+ GenericParamKind::Const { .. } => {
+ forward_const_ban_rib
+ .bindings
+ .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
+ }
+ GenericParamKind::Lifetime => {}
+ }
+ }
+
+ // rust-lang/rust#61631: The type `Self` is essentially
+ // another type parameter. For ADTs, we consider it
+ // well-defined only after all of the ADT type parameters have
+ // been provided. Therefore, we do not allow use of `Self`
+ // anywhere in ADT type parameter defaults.
+ //
+ // (We however cannot ban `Self` for defaults on *all* generic
+ // lists; e.g. trait generics can usefully refer to `Self`,
+ // such as in the case of `trait Add<Rhs = Self>`.)
+ if add_self_upper {
+ // (`Some` if + only if we are in ADT's generics.)
+ forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
+ }
+
+ self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
+ for param in params {
+ match param.kind {
+ GenericParamKind::Lifetime => {
+ for bound in &param.bounds {
+ this.visit_param_bound(bound, BoundKind::Bound);
+ }
+ }
+ GenericParamKind::Type { ref default } => {
+ for bound in &param.bounds {
+ this.visit_param_bound(bound, BoundKind::Bound);
+ }
+
+ if let Some(ref ty) = default {
+ this.ribs[TypeNS].push(forward_ty_ban_rib);
+ this.ribs[ValueNS].push(forward_const_ban_rib);
+ this.visit_ty(ty);
+ forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
+ forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
+ }
+
+ // Allow all following defaults to refer to this type parameter.
+ forward_ty_ban_rib
+ .bindings
+ .remove(&Ident::with_dummy_span(param.ident.name));
+ }
+ GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
+ // Const parameters can't have param bounds.
+ assert!(param.bounds.is_empty());
+
+ this.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
+ this.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
+ this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
+ this.visit_ty(ty)
+ });
+ this.ribs[TypeNS].pop().unwrap();
+ this.ribs[ValueNS].pop().unwrap();
+
+ if let Some(ref expr) = default {
+ this.ribs[TypeNS].push(forward_ty_ban_rib);
+ this.ribs[ValueNS].push(forward_const_ban_rib);
+ this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
+ this.resolve_anon_const(expr, IsRepeatExpr::No)
+ });
+ forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
+ forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
+ }
+
+ // Allow all following defaults to refer to this const parameter.
+ forward_const_ban_rib
+ .bindings
+ .remove(&Ident::with_dummy_span(param.ident.name));
+ }
+ }
+ }
+ })
+ }
+
+ #[tracing::instrument(level = "debug", skip(self, work))]
+ fn with_lifetime_rib<T>(
+ &mut self,
+ kind: LifetimeRibKind,
+ work: impl FnOnce(&mut Self) -> T,
+ ) -> T {
+ self.lifetime_ribs.push(LifetimeRib::new(kind));
+ let outer_elision_candidates = self.lifetime_elision_candidates.take();
+ let ret = work(self);
+ self.lifetime_elision_candidates = outer_elision_candidates;
+ self.lifetime_ribs.pop();
+ ret
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
+ let ident = lifetime.ident;
+
+ if ident.name == kw::StaticLifetime {
+ self.record_lifetime_res(
+ lifetime.id,
+ LifetimeRes::Static,
+ LifetimeElisionCandidate::Named,
+ );
+ return;
+ }
+
+ if ident.name == kw::UnderscoreLifetime {
+ return self.resolve_anonymous_lifetime(lifetime, false);
+ }
+
+ let mut indices = (0..self.lifetime_ribs.len()).rev();
+ for i in &mut indices {
+ let rib = &self.lifetime_ribs[i];
+ let normalized_ident = ident.normalize_to_macros_2_0();
+ if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
+ self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);
+
+ if let LifetimeRes::Param { param, .. } = res {
+ match self.lifetime_uses.entry(param) {
+ Entry::Vacant(v) => {
+ debug!("First use of {:?} at {:?}", res, ident.span);
+ let use_set = self
+ .lifetime_ribs
+ .iter()
+ .rev()
+ .find_map(|rib| match rib.kind {
+ // Do not suggest eliding a lifetime where an anonymous
+ // lifetime would be illegal.
+ LifetimeRibKind::Item
+ | LifetimeRibKind::AnonymousReportError
+ | LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
+ // An anonymous lifetime is legal here, go ahead.
+ LifetimeRibKind::AnonymousCreateParameter { .. } => {
+ Some(LifetimeUseSet::One { use_span: ident.span, use_ctxt })
+ }
+ // Only report if eliding the lifetime would have the same
+ // semantics.
+ LifetimeRibKind::Elided(r) => Some(if res == r {
+ LifetimeUseSet::One { use_span: ident.span, use_ctxt }
+ } else {
+ LifetimeUseSet::Many
+ }),
+ LifetimeRibKind::Generics { .. }
+ | LifetimeRibKind::ConstGeneric
+ | LifetimeRibKind::AnonConst => None,
+ })
+ .unwrap_or(LifetimeUseSet::Many);
+ debug!(?use_ctxt, ?use_set);
+ v.insert(use_set);
+ }
+ Entry::Occupied(mut o) => {
+ debug!("Many uses of {:?} at {:?}", res, ident.span);
+ *o.get_mut() = LifetimeUseSet::Many;
+ }
+ }
+ }
+ return;
+ }
+
+ match rib.kind {
+ LifetimeRibKind::Item => break,
+ LifetimeRibKind::ConstGeneric => {
+ self.emit_non_static_lt_in_const_generic_error(lifetime);
+ self.record_lifetime_res(
+ lifetime.id,
+ LifetimeRes::Error,
+ LifetimeElisionCandidate::Ignore,
+ );
+ return;
+ }
+ LifetimeRibKind::AnonConst => {
+ self.maybe_emit_forbidden_non_static_lifetime_error(lifetime);
+ self.record_lifetime_res(
+ lifetime.id,
+ LifetimeRes::Error,
+ LifetimeElisionCandidate::Ignore,
+ );
+ return;
+ }
+ _ => {}
+ }
+ }
+
+ let mut outer_res = None;
+ for i in indices {
+ let rib = &self.lifetime_ribs[i];
+ let normalized_ident = ident.normalize_to_macros_2_0();
+ if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
+ outer_res = Some(outer);
+ break;
+ }
+ }
+
+ self.emit_undeclared_lifetime_error(lifetime, outer_res);
+ self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) {
+ debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
+
+ let missing_lifetime = MissingLifetime {
+ id: lifetime.id,
+ span: lifetime.ident.span,
+ kind: if elided {
+ MissingLifetimeKind::Ampersand
+ } else {
+ MissingLifetimeKind::Underscore
+ },
+ count: 1,
+ };
+ let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
+ for i in (0..self.lifetime_ribs.len()).rev() {
+ let rib = &mut self.lifetime_ribs[i];
+ debug!(?rib.kind);
+ match rib.kind {
+ LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
+ let res = self.create_fresh_lifetime(lifetime.id, lifetime.ident, binder);
+ self.record_lifetime_res(lifetime.id, res, elision_candidate);
+ return;
+ }
+ LifetimeRibKind::AnonymousReportError => {
+ let (msg, note) = if elided {
+ (
+ "`&` without an explicit lifetime name cannot be used here",
+ "explicit lifetime name needed here",
+ )
+ } else {
+ ("`'_` cannot be used here", "`'_` is a reserved lifetime name")
+ };
+ rustc_errors::struct_span_err!(
+ self.r.session,
+ lifetime.ident.span,
+ E0637,
+ "{}",
+ msg,
+ )
+ .span_label(lifetime.ident.span, note)
+ .emit();
+
+ self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
+ return;
+ }
+ LifetimeRibKind::Elided(res) => {
+ self.record_lifetime_res(lifetime.id, res, elision_candidate);
+ return;
+ }
+ LifetimeRibKind::ElisionFailure => {
+ self.diagnostic_metadata.current_elision_failures.push(missing_lifetime);
+ self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
+ return;
+ }
+ LifetimeRibKind::Item => break,
+ LifetimeRibKind::Generics { .. }
+ | LifetimeRibKind::ConstGeneric
+ | LifetimeRibKind::AnonConst => {}
+ }
+ }
+ self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
+ self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
+ let id = self.r.next_node_id();
+ let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
+
+ self.record_lifetime_res(
+ anchor_id,
+ LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
+ LifetimeElisionCandidate::Ignore,
+ );
+ self.resolve_anonymous_lifetime(&lt, true);
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn create_fresh_lifetime(&mut self, id: NodeId, ident: Ident, binder: NodeId) -> LifetimeRes {
+ debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
+ debug!(?ident.span);
+
+ // Leave the responsibility to create the `LocalDefId` to lowering.
+ let param = self.r.next_node_id();
+ let res = LifetimeRes::Fresh { param, binder };
+
+ // Record the created lifetime parameter so lowering can pick it up and add it to HIR.
+ self.r
+ .extra_lifetime_params_map
+ .entry(binder)
+ .or_insert_with(Vec::new)
+ .push((ident, param, res));
+ res
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn resolve_elided_lifetimes_in_path(
+ &mut self,
+ path_id: NodeId,
+ partial_res: PartialRes,
+ path: &[Segment],
+ source: PathSource<'_>,
+ path_span: Span,
+ ) {
+ let proj_start = path.len() - partial_res.unresolved_segments();
+ for (i, segment) in path.iter().enumerate() {
+ if segment.has_lifetime_args {
+ continue;
+ }
+ let Some(segment_id) = segment.id else {
+ continue;
+ };
+
+ // Figure out if this is a type/trait segment,
+ // which may need lifetime elision performed.
+ let type_def_id = match partial_res.base_res() {
+ Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => self.r.parent(def_id),
+ Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => self.r.parent(def_id),
+ Res::Def(DefKind::Struct, def_id)
+ | Res::Def(DefKind::Union, def_id)
+ | Res::Def(DefKind::Enum, def_id)
+ | Res::Def(DefKind::TyAlias, def_id)
+ | Res::Def(DefKind::Trait, def_id)
+ if i + 1 == proj_start =>
+ {
+ def_id
+ }
+ _ => continue,
+ };
+
+ let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
+ if expected_lifetimes == 0 {
+ continue;
+ }
+
+ let node_ids = self.r.next_node_ids(expected_lifetimes);
+ self.record_lifetime_res(
+ segment_id,
+ LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
+ LifetimeElisionCandidate::Ignore,
+ );
+
+ let inferred = match source {
+ PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => false,
+ PathSource::Expr(..)
+ | PathSource::Pat
+ | PathSource::Struct
+ | PathSource::TupleStruct(..) => true,
+ };
+ if inferred {
+ // Do not create a parameter for patterns and expressions: type checking can infer
+ // the appropriate lifetime for us.
+ for id in node_ids {
+ self.record_lifetime_res(
+ id,
+ LifetimeRes::Infer,
+ LifetimeElisionCandidate::Named,
+ );
+ }
+ continue;
+ }
+
+ let elided_lifetime_span = if segment.has_generic_args {
+ // If there are brackets, but not generic arguments, then use the opening bracket
+ segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
+ } else {
+ // If there are no brackets, use the identifier span.
+ // HACK: we use find_ancestor_inside to properly suggest elided spans in paths
+ // originating from macros, since the segment's span might be from a macro arg.
+ segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
+ };
+ let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);
+
+ let missing_lifetime = MissingLifetime {
+ id: node_ids.start,
+ span: elided_lifetime_span,
+ kind: if segment.has_generic_args {
+ MissingLifetimeKind::Comma
+ } else {
+ MissingLifetimeKind::Brackets
+ },
+ count: expected_lifetimes,
+ };
+ let mut should_lint = true;
+ for rib in self.lifetime_ribs.iter().rev() {
+ match rib.kind {
+ // In create-parameter mode we error here because we don't want to support
+ // deprecated impl elision in new features like impl elision and `async fn`,
+ // both of which work using the `CreateParameter` mode:
+ //
+ // impl Foo for std::cell::Ref<u32> // note lack of '_
+ // async fn foo(_: std::cell::Ref<u32>) { ... }
+ LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. } => {
+ let sess = self.r.session;
+ let mut err = rustc_errors::struct_span_err!(
+ sess,
+ path_span,
+ E0726,
+ "implicit elided lifetime not allowed here"
+ );
+ rustc_errors::add_elided_lifetime_in_path_suggestion(
+ sess.source_map(),
+ &mut err,
+ expected_lifetimes,
+ path_span,
+ !segment.has_generic_args,
+ elided_lifetime_span,
+ );
+ err.note("assuming a `'static` lifetime...");
+ err.emit();
+ should_lint = false;
+
+ for id in node_ids {
+ self.record_lifetime_res(
+ id,
+ LifetimeRes::Error,
+ LifetimeElisionCandidate::Named,
+ );
+ }
+ break;
+ }
+ // Do not create a parameter for patterns and expressions.
+ LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
+ // Group all suggestions into the first record.
+ let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
+ for id in node_ids {
+ let res = self.create_fresh_lifetime(id, ident, binder);
+ self.record_lifetime_res(
+ id,
+ res,
+ replace(&mut candidate, LifetimeElisionCandidate::Named),
+ );
+ }
+ break;
+ }
+ LifetimeRibKind::Elided(res) => {
+ let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
+ for id in node_ids {
+ self.record_lifetime_res(
+ id,
+ res,
+ replace(&mut candidate, LifetimeElisionCandidate::Ignore),
+ );
+ }
+ break;
+ }
+ LifetimeRibKind::ElisionFailure => {
+ self.diagnostic_metadata.current_elision_failures.push(missing_lifetime);
+ for id in node_ids {
+ self.record_lifetime_res(
+ id,
+ LifetimeRes::Error,
+ LifetimeElisionCandidate::Ignore,
+ );
+ }
+ break;
+ }
+ // `LifetimeRes::Error`, which would usually be used in the case of
+ // `ReportError`, is unsuitable here, as we don't emit an error yet. Instead,
+ // we simply resolve to an implicit lifetime, which will be checked later, at
+ // which point a suitable error will be emitted.
+ LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
+ for id in node_ids {
+ self.record_lifetime_res(
+ id,
+ LifetimeRes::Error,
+ LifetimeElisionCandidate::Ignore,
+ );
+ }
+ self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
+ break;
+ }
+ LifetimeRibKind::Generics { .. }
+ | LifetimeRibKind::ConstGeneric
+ | LifetimeRibKind::AnonConst => {}
+ }
+ }
+
+ if should_lint {
+ self.r.lint_buffer.buffer_lint_with_diagnostic(
+ lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
+ segment_id,
+ elided_lifetime_span,
+ "hidden lifetime parameters in types are deprecated",
+ lint::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
+ expected_lifetimes,
+ path_span,
+ !segment.has_generic_args,
+ elided_lifetime_span,
+ ),
+ );
+ }
+ }
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn record_lifetime_res(
+ &mut self,
+ id: NodeId,
+ res: LifetimeRes,
+ candidate: LifetimeElisionCandidate,
+ ) {
+ if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
+ panic!(
+ "lifetime {:?} resolved multiple times ({:?} before, {:?} now)",
+ id, prev_res, res
+ )
+ }
+ match res {
+ LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static => {
+ if let Some(ref mut candidates) = self.lifetime_elision_candidates {
+ candidates.insert(res, candidate);
+ }
+ }
+ LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
+ }
+ }
+
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
+ if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
+ panic!(
+ "lifetime parameter {:?} resolved multiple times ({:?} before, {:?} now)",
+ id, prev_res, res
+ )
+ }
+ }
+
+ /// Perform resolution of a function signature, accounting for lifetime elision.
+ #[tracing::instrument(level = "debug", skip(self, inputs))]
+ fn resolve_fn_signature(
+ &mut self,
+ fn_id: NodeId,
+ has_self: bool,
+ inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
+ output_ty: &'ast FnRetTy,
+ ) {
+ // Add each argument to the rib.
+ let elision_lifetime = self.resolve_fn_params(has_self, inputs);
+ debug!(?elision_lifetime);
+
+ let outer_failures = take(&mut self.diagnostic_metadata.current_elision_failures);
+ let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
+ LifetimeRibKind::Elided(*res)
+ } else {
+ LifetimeRibKind::ElisionFailure
+ };
+ self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, &output_ty));
+ let elision_failures =
+ replace(&mut self.diagnostic_metadata.current_elision_failures, outer_failures);
+ if !elision_failures.is_empty() {
+ let Err(failure_info) = elision_lifetime else { bug!() };
+ self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
+ }
+ }
+
+ /// Resolve inside function parameters and parameter types.
+ /// Returns the lifetime for elision in fn return type,
+ /// or diagnostic information in case of elision failure.
+ fn resolve_fn_params(
+ &mut self,
+ has_self: bool,
+ inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
+ ) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
+ let outer_candidates =
+ replace(&mut self.lifetime_elision_candidates, Some(Default::default()));
+
+ let mut elision_lifetime = None;
+ let mut lifetime_count = 0;
+ let mut parameter_info = Vec::new();
+
+ let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
+ for (index, (pat, ty)) in inputs.enumerate() {
+ debug!(?pat, ?ty);
+ if let Some(pat) = pat {
+ self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
+ }
+ self.visit_ty(ty);
+
+ if let Some(ref candidates) = self.lifetime_elision_candidates {
+ let new_count = candidates.len();
+ let local_count = new_count - lifetime_count;
+ if local_count != 0 {
+ parameter_info.push(ElisionFnParameter {
+ index,
+ ident: if let Some(pat) = pat && let PatKind::Ident(_, ident, _) = pat.kind {
+ Some(ident)
+ } else {
+ None
+ },
+ lifetime_count: local_count,
+ span: ty.span,
+ });
+ }
+ lifetime_count = new_count;
+ }
+
+ // Handle `self` specially.
+ if index == 0 && has_self {
+ let self_lifetime = self.find_lifetime_for_self(ty);
+ if let Set1::One(lifetime) = self_lifetime {
+ elision_lifetime = Some(lifetime);
+ self.lifetime_elision_candidates = None;
+ } else {
+ self.lifetime_elision_candidates = Some(Default::default());
+ lifetime_count = 0;
+ }
+ }
+ debug!("(resolving function / closure) recorded parameter");
+ }
+
+ let all_candidates = replace(&mut self.lifetime_elision_candidates, outer_candidates);
+ debug!(?all_candidates);
+
+ if let Some(res) = elision_lifetime {
+ return Ok(res);
+ }
+
+ // We do not have a `self` candidate, look at the full list.
+ let all_candidates = all_candidates.unwrap();
+ if all_candidates.len() == 1 {
+ Ok(*all_candidates.first().unwrap().0)
+ } else {
+ let all_candidates = all_candidates
+ .into_iter()
+ .filter_map(|(_, candidate)| match candidate {
+ LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => None,
+ LifetimeElisionCandidate::Missing(missing) => Some(missing),
+ })
+ .collect();
+ Err((all_candidates, parameter_info))
+ }
+ }
+
+ /// List all the lifetimes that appear in the provided type.
+ fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
+ struct SelfVisitor<'r, 'a> {
+ r: &'r Resolver<'a>,
+ impl_self: Option<Res>,
+ lifetime: Set1<LifetimeRes>,
+ }
+
+ impl SelfVisitor<'_, '_> {
+ // Look for `self: &'a Self` - also desugared from `&'a self`,
+ // and if that matches, use it for elision and return early.
+ fn is_self_ty(&self, ty: &Ty) -> bool {
+ match ty.kind {
+ TyKind::ImplicitSelf => true,
+ TyKind::Path(None, _) => {
+ let path_res = self.r.partial_res_map[&ty.id].base_res();
+ if let Res::SelfTy { .. } = path_res {
+ return true;
+ }
+ Some(path_res) == self.impl_self
+ }
+ _ => false,
+ }
+ }
+ }
+
+ impl<'a> Visitor<'a> for SelfVisitor<'_, '_> {
+ fn visit_ty(&mut self, ty: &'a Ty) {
+ trace!("SelfVisitor considering ty={:?}", ty);
+ if let TyKind::Rptr(lt, ref mt) = ty.kind && self.is_self_ty(&mt.ty) {
+ let lt_id = if let Some(lt) = lt {
+ lt.id
+ } else {
+ let res = self.r.lifetimes_res_map[&ty.id];
+ let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
+ start
+ };
+ let lt_res = self.r.lifetimes_res_map[&lt_id];
+ trace!("SelfVisitor inserting res={:?}", lt_res);
+ self.lifetime.insert(lt_res);
+ }
+ visit::walk_ty(self, ty)
+ }
+ }
+
+ let impl_self = self
+ .diagnostic_metadata
+ .current_self_type
+ .as_ref()
+ .and_then(|ty| {
+ if let TyKind::Path(None, _) = ty.kind {
+ self.r.partial_res_map.get(&ty.id)
+ } else {
+ None
+ }
+ })
+ .map(|res| res.base_res())
+ .filter(|res| {
+ // Permit the types that unambiguously always
+ // result in the same type constructor being used
+ // (it can't differ between `Self` and `self`).
+ matches!(
+ res,
+ Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
+ )
+ });
+ let mut visitor = SelfVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
+ visitor.visit_ty(ty);
+ trace!("SelfVisitor found={:?}", visitor.lifetime);
+ visitor.lifetime
+ }
+
+ /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
+ /// label and reports an error if the label is not found or is unreachable.
+ fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'a>> {
+ let mut suggestion = None;
+
+ for i in (0..self.label_ribs.len()).rev() {
+ let rib = &self.label_ribs[i];
+
+ if let MacroDefinition(def) = rib.kind {
+ // If an invocation of this macro created `ident`, give up on `ident`
+ // and switch to `ident`'s source from the macro definition.
+ if def == self.r.macro_def(label.span.ctxt()) {
+ label.span.remove_mark();
+ }
+ }
+
+ let ident = label.normalize_to_macro_rules();
+ if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
+ let definition_span = ident.span;
+ return if self.is_label_valid_from_rib(i) {
+ Ok((*id, definition_span))
+ } else {
+ Err(ResolutionError::UnreachableLabel {
+ name: label.name,
+ definition_span,
+ suggestion,
+ })
+ };
+ }
+
+ // Diagnostics: Check if this rib contains a label with a similar name, keep track of
+ // the first such label that is encountered.
+ suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
+ }
+
+ Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
+ }
+
+ /// Determine whether or not a label from the `rib_index`th label rib is reachable.
+ fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
+ let ribs = &self.label_ribs[rib_index + 1..];
+
+ for rib in ribs {
+ if rib.kind.is_label_barrier() {
+ return false;
+ }
+ }
+
+ true
+ }
+
+ fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
+ debug!("resolve_adt");
+ self.with_current_self_item(item, |this| {
+ this.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ kind: LifetimeBinderKind::Item,
+ span: generics.span,
+ },
+ |this| {
+ let item_def_id = this.r.local_def_id(item.id).to_def_id();
+ this.with_self_rib(
+ Res::SelfTy { trait_: None, alias_to: Some((item_def_id, false)) },
+ |this| {
+ visit::walk_item(this, item);
+ },
+ );
+ },
+ );
+ });
+ }
+
+ fn future_proof_import(&mut self, use_tree: &UseTree) {
+ let segments = &use_tree.prefix.segments;
+ if !segments.is_empty() {
+ let ident = segments[0].ident;
+ if ident.is_path_segment_keyword() || ident.span.rust_2015() {
+ return;
+ }
+
+ let nss = match use_tree.kind {
+ UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
+ _ => &[TypeNS],
+ };
+ let report_error = |this: &Self, ns| {
+ let what = if ns == TypeNS { "type parameters" } else { "local variables" };
+ if this.should_report_errs() {
+ this.r
+ .session
+ .span_err(ident.span, &format!("imports cannot refer to {}", what));
+ }
+ };
+
+ for &ns in nss {
+ match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
+ Some(LexicalScopeBinding::Res(..)) => {
+ report_error(self, ns);
+ }
+ Some(LexicalScopeBinding::Item(binding)) => {
+ if let Some(LexicalScopeBinding::Res(..)) =
+ self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
+ {
+ report_error(self, ns);
+ }
+ }
+ None => {}
+ }
+ }
+ } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
+ for (use_tree, _) in use_trees {
+ self.future_proof_import(use_tree);
+ }
+ }
+ }
+
+ fn resolve_item(&mut self, item: &'ast Item) {
+ let name = item.ident.name;
+ debug!("(resolving item) resolving {} ({:?})", name, item.kind);
+
+ match item.kind {
+ ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
+ self.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ kind: LifetimeBinderKind::Item,
+ span: generics.span,
+ },
+ |this| visit::walk_item(this, item),
+ );
+ }
+
+ ItemKind::Fn(box Fn { ref generics, .. }) => {
+ self.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ kind: LifetimeBinderKind::Function,
+ span: generics.span,
+ },
+ |this| visit::walk_item(this, item),
+ );
+ }
+
+ ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics) => {
+ self.resolve_adt(item, generics);
+ }
+
+ ItemKind::Impl(box Impl {
+ ref generics,
+ ref of_trait,
+ ref self_ty,
+ items: ref impl_items,
+ ..
+ }) => {
+ self.diagnostic_metadata.current_impl_items = Some(impl_items);
+ self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
+ self.diagnostic_metadata.current_impl_items = None;
+ }
+
+ ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
+ // Create a new rib for the trait-wide type parameters.
+ self.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ kind: LifetimeBinderKind::Item,
+ span: generics.span,
+ },
+ |this| {
+ let local_def_id = this.r.local_def_id(item.id).to_def_id();
+ this.with_self_rib(
+ Res::SelfTy { trait_: Some(local_def_id), alias_to: None },
+ |this| {
+ this.visit_generics(generics);
+ walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
+ this.resolve_trait_items(items);
+ },
+ );
+ },
+ );
+ }
+
+ ItemKind::TraitAlias(ref generics, ref bounds) => {
+ // Create a new rib for the trait-wide type parameters.
+ self.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ kind: LifetimeBinderKind::Item,
+ span: generics.span,
+ },
+ |this| {
+ let local_def_id = this.r.local_def_id(item.id).to_def_id();
+ this.with_self_rib(
+ Res::SelfTy { trait_: Some(local_def_id), alias_to: None },
+ |this| {
+ this.visit_generics(generics);
+ walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
+ },
+ );
+ },
+ );
+ }
+
+ ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
+ self.with_scope(item.id, |this| {
+ visit::walk_item(this, item);
+ });
+ }
+
+ ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
+ self.with_item_rib(|this| {
+ this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
+ this.visit_ty(ty);
+ });
+ this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
+ if let Some(expr) = expr {
+ let constant_item_kind = match item.kind {
+ ItemKind::Const(..) => ConstantItemKind::Const,
+ ItemKind::Static(..) => ConstantItemKind::Static,
+ _ => unreachable!(),
+ };
+ // We already forbid generic params because of the above item rib,
+ // so it doesn't matter whether this is a trivial constant.
+ this.with_constant_rib(
+ IsRepeatExpr::No,
+ HasGenericParams::Yes,
+ Some((item.ident, constant_item_kind)),
+ |this| this.visit_expr(expr),
+ );
+ }
+ });
+ });
+ }
+
+ ItemKind::Use(ref use_tree) => {
+ self.future_proof_import(use_tree);
+ }
+
+ ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
+ // do nothing, these are just around to be encoded
+ }
+
+ ItemKind::GlobalAsm(_) => {
+ visit::walk_item(self, item);
+ }
+
+ ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
+ }
+ }
+
+ fn with_generic_param_rib<'c, F>(
+ &'c mut self,
+ params: &'c [GenericParam],
+ kind: RibKind<'a>,
+ lifetime_kind: LifetimeRibKind,
+ f: F,
+ ) where
+ F: FnOnce(&mut Self),
+ {
+ debug!("with_generic_param_rib");
+ let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. }
+ = lifetime_kind else { panic!() };
+
+ let mut function_type_rib = Rib::new(kind);
+ let mut function_value_rib = Rib::new(kind);
+ let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
+ let mut seen_bindings = FxHashMap::default();
+ // Store all seen lifetimes names from outer scopes.
+ let mut seen_lifetimes = FxHashSet::default();
+
+ // We also can't shadow bindings from the parent item
+ if let AssocItemRibKind = kind {
+ let mut add_bindings_for_ns = |ns| {
+ let parent_rib = self.ribs[ns]
+ .iter()
+ .rfind(|r| matches!(r.kind, ItemRibKind(_)))
+ .expect("associated item outside of an item");
+ seen_bindings
+ .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
+ };
+ add_bindings_for_ns(ValueNS);
+ add_bindings_for_ns(TypeNS);
+ }
+
+ // Forbid shadowing lifetime bindings
+ for rib in self.lifetime_ribs.iter().rev() {
+ seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
+ if let LifetimeRibKind::Item = rib.kind {
+ break;
+ }
+ }
+
+ for param in params {
+ let ident = param.ident.normalize_to_macros_2_0();
+ debug!("with_generic_param_rib: {}", param.id);
+
+ if let GenericParamKind::Lifetime = param.kind
+ && let Some(&original) = seen_lifetimes.get(&ident)
+ {
+ diagnostics::signal_lifetime_shadowing(self.r.session, original, param.ident);
+ // Record lifetime res, so lowering knows there is something fishy.
+ self.record_lifetime_param(param.id, LifetimeRes::Error);
+ continue;
+ }
+
+ match seen_bindings.entry(ident) {
+ Entry::Occupied(entry) => {
+ let span = *entry.get();
+ let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
+ self.report_error(param.ident.span, err);
+ if let GenericParamKind::Lifetime = param.kind {
+ // Record lifetime res, so lowering knows there is something fishy.
+ self.record_lifetime_param(param.id, LifetimeRes::Error);
+ continue;
+ }
+ }
+ Entry::Vacant(entry) => {
+ entry.insert(param.ident.span);
+ }
+ }
+
+ if param.ident.name == kw::UnderscoreLifetime {
+ rustc_errors::struct_span_err!(
+ self.r.session,
+ param.ident.span,
+ E0637,
+ "`'_` cannot be used here"
+ )
+ .span_label(param.ident.span, "`'_` is a reserved lifetime name")
+ .emit();
+ // Record lifetime res, so lowering knows there is something fishy.
+ self.record_lifetime_param(param.id, LifetimeRes::Error);
+ continue;
+ }
+
+ if param.ident.name == kw::StaticLifetime {
+ rustc_errors::struct_span_err!(
+ self.r.session,
+ param.ident.span,
+ E0262,
+ "invalid lifetime parameter name: `{}`",
+ param.ident,
+ )
+ .span_label(param.ident.span, "'static is a reserved lifetime name")
+ .emit();
+ // Record lifetime res, so lowering knows there is something fishy.
+ self.record_lifetime_param(param.id, LifetimeRes::Error);
+ continue;
+ }
+
+ let def_id = self.r.local_def_id(param.id);
+
+ // Plain insert (no renaming).
+ let (rib, def_kind) = match param.kind {
+ GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
+ GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
+ GenericParamKind::Lifetime => {
+ let res = LifetimeRes::Param { param: def_id, binder };
+ self.record_lifetime_param(param.id, res);
+ function_lifetime_rib.bindings.insert(ident, (param.id, res));
+ continue;
+ }
+ };
+
+ let res = match kind {
+ ItemRibKind(..) | AssocItemRibKind => Res::Def(def_kind, def_id.to_def_id()),
+ NormalRibKind => Res::Err,
+ _ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
+ };
+ self.r.record_partial_res(param.id, PartialRes::new(res));
+ rib.bindings.insert(ident, res);
+ }
+
+ self.lifetime_ribs.push(function_lifetime_rib);
+ self.ribs[ValueNS].push(function_value_rib);
+ self.ribs[TypeNS].push(function_type_rib);
+
+ f(self);
+
+ self.ribs[TypeNS].pop();
+ self.ribs[ValueNS].pop();
+ let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();
+
+ // Do not account for the parameters we just bound for function lifetime elision.
+ if let Some(ref mut candidates) = self.lifetime_elision_candidates {
+ for (_, res) in function_lifetime_rib.bindings.values() {
+ candidates.remove(res);
+ }
+ }
+
+ if let LifetimeBinderKind::BareFnType
+ | LifetimeBinderKind::WhereBound
+ | LifetimeBinderKind::Function
+ | LifetimeBinderKind::ImplBlock = generics_kind
+ {
+ self.maybe_report_lifetime_uses(generics_span, params)
+ }
+ }
+
+ fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
+ self.label_ribs.push(Rib::new(kind));
+ f(self);
+ self.label_ribs.pop();
+ }
+
+ fn with_item_rib(&mut self, f: impl FnOnce(&mut Self)) {
+ let kind = ItemRibKind(HasGenericParams::No);
+ self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
+ this.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
+ })
+ }
+
+ // HACK(min_const_generics,const_evaluatable_unchecked): We
+ // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
+ // with a future compat lint for now. We do this by adding an
+ // additional special case for repeat expressions.
+ //
+ // Note that we intentionally still forbid `[0; N + 1]` during
+ // name resolution so that we don't extend the future
+ // compat lint to new cases.
+ #[instrument(level = "debug", skip(self, f))]
+ fn with_constant_rib(
+ &mut self,
+ is_repeat: IsRepeatExpr,
+ may_use_generics: HasGenericParams,
+ item: Option<(Ident, ConstantItemKind)>,
+ f: impl FnOnce(&mut Self),
+ ) {
+ self.with_rib(ValueNS, ConstantItemRibKind(may_use_generics, item), |this| {
+ this.with_rib(
+ TypeNS,
+ ConstantItemRibKind(
+ may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
+ item,
+ ),
+ |this| {
+ this.with_label_rib(ConstantItemRibKind(may_use_generics, item), f);
+ },
+ )
+ });
+ }
+
+ fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
+ // Handle nested impls (inside fn bodies)
+ let previous_value =
+ replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
+ let result = f(self);
+ self.diagnostic_metadata.current_self_type = previous_value;
+ result
+ }
+
+ fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
+ let previous_value =
+ replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
+ let result = f(self);
+ self.diagnostic_metadata.current_self_item = previous_value;
+ result
+ }
+
+ /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
+ fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
+ let trait_assoc_items =
+ replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
+
+ let walk_assoc_item =
+ |this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
+ this.with_generic_param_rib(
+ &generics.params,
+ AssocItemRibKind,
+ LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
+ |this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
+ );
+ };
+
+ for item in trait_items {
+ match &item.kind {
+ AssocItemKind::Const(_, ty, default) => {
+ self.visit_ty(ty);
+ // Only impose the restrictions of `ConstRibKind` for an
+ // actual constant expression in a provided default.
+ if let Some(expr) = default {
+ // We allow arbitrary const expressions inside of associated consts,
+ // even if they are potentially not const evaluatable.
+ //
+ // Type parameters can already be used and as associated consts are
+ // not used as part of the type system, this is far less surprising.
+ self.with_lifetime_rib(
+ LifetimeRibKind::Elided(LifetimeRes::Infer),
+ |this| {
+ this.with_constant_rib(
+ IsRepeatExpr::No,
+ HasGenericParams::Yes,
+ None,
+ |this| this.visit_expr(expr),
+ )
+ },
+ );
+ }
+ }
+ AssocItemKind::Fn(box Fn { generics, .. }) => {
+ walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
+ }
+ AssocItemKind::TyAlias(box TyAlias { generics, .. }) => self
+ .with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
+ walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
+ }),
+ AssocItemKind::MacCall(_) => {
+ panic!("unexpanded macro in resolve!")
+ }
+ };
+ }
+
+ self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
+ }
+
+ /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
+ fn with_optional_trait_ref<T>(
+ &mut self,
+ opt_trait_ref: Option<&TraitRef>,
+ self_type: &'ast Ty,
+ f: impl FnOnce(&mut Self, Option<DefId>) -> T,
+ ) -> T {
+ let mut new_val = None;
+ let mut new_id = None;
+ if let Some(trait_ref) = opt_trait_ref {
+ let path: Vec<_> = Segment::from_path(&trait_ref.path);
+ self.diagnostic_metadata.currently_processing_impl_trait =
+ Some((trait_ref.clone(), self_type.clone()));
+ let res = self.smart_resolve_path_fragment(
+ None,
+ &path,
+ PathSource::Trait(AliasPossibility::No),
+ Finalize::new(trait_ref.ref_id, trait_ref.path.span),
+ );
+ self.diagnostic_metadata.currently_processing_impl_trait = None;
+ if let Some(def_id) = res.base_res().opt_def_id() {
+ new_id = Some(def_id);
+ new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
+ }
+ }
+ let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
+ let result = f(self, new_id);
+ self.current_trait_ref = original_trait_ref;
+ result
+ }
+
+ fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
+ let mut self_type_rib = Rib::new(NormalRibKind);
+
+ // Plain insert (no renaming, since types are not currently hygienic)
+ self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
+ self.ribs[ns].push(self_type_rib);
+ f(self);
+ self.ribs[ns].pop();
+ }
+
+ fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
+ self.with_self_rib_ns(TypeNS, self_res, f)
+ }
+
+ fn resolve_implementation(
+ &mut self,
+ generics: &'ast Generics,
+ opt_trait_reference: &'ast Option<TraitRef>,
+ self_type: &'ast Ty,
+ item_id: NodeId,
+ impl_items: &'ast [P<AssocItem>],
+ ) {
+ debug!("resolve_implementation");
+ // If applicable, create a rib for the type parameters.
+ self.with_generic_param_rib(
+ &generics.params,
+ ItemRibKind(HasGenericParams::Yes),
+ LifetimeRibKind::Generics {
+ span: generics.span,
+ binder: item_id,
+ kind: LifetimeBinderKind::ImplBlock,
+ },
+ |this| {
+ // Dummy self type for better errors if `Self` is used in the trait path.
+ this.with_self_rib(Res::SelfTy { trait_: None, alias_to: None }, |this| {
+ this.with_lifetime_rib(
+ LifetimeRibKind::AnonymousCreateParameter {
+ binder: item_id,
+ report_in_path: true
+ },
+ |this| {
+ // Resolve the trait reference, if necessary.
+ this.with_optional_trait_ref(
+ opt_trait_reference.as_ref(),
+ self_type,
+ |this, trait_id| {
+ let item_def_id = this.r.local_def_id(item_id);
+
+ // Register the trait definitions from here.
+ if let Some(trait_id) = trait_id {
+ this.r
+ .trait_impls
+ .entry(trait_id)
+ .or_default()
+ .push(item_def_id);
+ }
+
+ let item_def_id = item_def_id.to_def_id();
+ let res = Res::SelfTy {
+ trait_: trait_id,
+ alias_to: Some((item_def_id, false)),
+ };
+ this.with_self_rib(res, |this| {
+ if let Some(trait_ref) = opt_trait_reference.as_ref() {
+ // Resolve type arguments in the trait path.
+ visit::walk_trait_ref(this, trait_ref);
+ }
+ // Resolve the self type.
+ this.visit_ty(self_type);
+ // Resolve the generic parameters.
+ this.visit_generics(generics);
+
+ // Resolve the items within the impl.
+ this.with_current_self_type(self_type, |this| {
+ this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
+ debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
+ for item in impl_items {
+ this.resolve_impl_item(&**item);
+ }
+ });
+ });
+ });
+ },
+ )
+ },
+ );
+ });
+ },
+ );
+ }
+
+ fn resolve_impl_item(&mut self, item: &'ast AssocItem) {
+ use crate::ResolutionError::*;
+ match &item.kind {
+ AssocItemKind::Const(_, ty, default) => {
+ debug!("resolve_implementation AssocItemKind::Const");
+ // If this is a trait impl, ensure the const
+ // exists in trait
+ self.check_trait_item(
+ item.id,
+ item.ident,
+ &item.kind,
+ ValueNS,
+ item.span,
+ |i, s, c| ConstNotMemberOfTrait(i, s, c),
+ );
+
+ self.visit_ty(ty);
+ if let Some(expr) = default {
+ // We allow arbitrary const expressions inside of associated consts,
+ // even if they are potentially not const evaluatable.
+ //
+ // Type parameters can already be used and as associated consts are
+ // not used as part of the type system, this is far less surprising.
+ self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
+ this.with_constant_rib(
+ IsRepeatExpr::No,
+ HasGenericParams::Yes,
+ None,
+ |this| this.visit_expr(expr),
+ )
+ });
+ }
+ }
+ AssocItemKind::Fn(box Fn { generics, .. }) => {
+ debug!("resolve_implementation AssocItemKind::Fn");
+ // We also need a new scope for the impl item type parameters.
+ self.with_generic_param_rib(
+ &generics.params,
+ AssocItemRibKind,
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ span: generics.span,
+ kind: LifetimeBinderKind::Function,
+ },
+ |this| {
+ // If this is a trait impl, ensure the method
+ // exists in trait
+ this.check_trait_item(
+ item.id,
+ item.ident,
+ &item.kind,
+ ValueNS,
+ item.span,
+ |i, s, c| MethodNotMemberOfTrait(i, s, c),
+ );
+
+ visit::walk_assoc_item(this, item, AssocCtxt::Impl)
+ },
+ );
+ }
+ AssocItemKind::TyAlias(box TyAlias { generics, .. }) => {
+ debug!("resolve_implementation AssocItemKind::TyAlias");
+ // We also need a new scope for the impl item type parameters.
+ self.with_generic_param_rib(
+ &generics.params,
+ AssocItemRibKind,
+ LifetimeRibKind::Generics {
+ binder: item.id,
+ span: generics.span,
+ kind: LifetimeBinderKind::Item,
+ },
+ |this| {
+ this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
+ // If this is a trait impl, ensure the type
+ // exists in trait
+ this.check_trait_item(
+ item.id,
+ item.ident,
+ &item.kind,
+ TypeNS,
+ item.span,
+ |i, s, c| TypeNotMemberOfTrait(i, s, c),
+ );
+
+ visit::walk_assoc_item(this, item, AssocCtxt::Impl)
+ });
+ },
+ );
+ }
+ AssocItemKind::MacCall(_) => {
+ panic!("unexpanded macro in resolve!")
+ }
+ }
+ }
+
+ fn check_trait_item<F>(
+ &mut self,
+ id: NodeId,
+ mut ident: Ident,
+ kind: &AssocItemKind,
+ ns: Namespace,
+ span: Span,
+ err: F,
+ ) where
+ F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>,
+ {
+ // If there is a TraitRef in scope for an impl, then the method must be in the trait.
+ let Some((module, _)) = &self.current_trait_ref else { return; };
+ ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
+ let key = self.r.new_key(ident, ns);
+ let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
+ debug!(?binding);
+ if binding.is_none() {
+ // We could not find the trait item in the correct namespace.
+ // Check the other namespace to report an error.
+ let ns = match ns {
+ ValueNS => TypeNS,
+ TypeNS => ValueNS,
+ _ => ns,
+ };
+ let key = self.r.new_key(ident, ns);
+ binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
+ debug!(?binding);
+ }
+ let Some(binding) = binding else {
+ // We could not find the method: report an error.
+ let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
+ let path = &self.current_trait_ref.as_ref().unwrap().1.path;
+ let path_names = path_names_to_string(path);
+ self.report_error(span, err(ident, path_names, candidate));
+ return;
+ };
+
+ let res = binding.res();
+ let Res::Def(def_kind, _) = res else { bug!() };
+ match (def_kind, kind) {
+ (DefKind::AssocTy, AssocItemKind::TyAlias(..))
+ | (DefKind::AssocFn, AssocItemKind::Fn(..))
+ | (DefKind::AssocConst, AssocItemKind::Const(..)) => {
+ self.r.record_partial_res(id, PartialRes::new(res));
+ return;
+ }
+ _ => {}
+ }
+
+ // The method kind does not correspond to what appeared in the trait, report.
+ let path = &self.current_trait_ref.as_ref().unwrap().1.path;
+ let (code, kind) = match kind {
+ AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"),
+ AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"),
+ AssocItemKind::TyAlias(..) => (rustc_errors::error_code!(E0325), "type"),
+ AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"),
+ };
+ let trait_path = path_names_to_string(path);
+ self.report_error(
+ span,
+ ResolutionError::TraitImplMismatch {
+ name: ident.name,
+ kind,
+ code,
+ trait_path,
+ trait_item_span: binding.span,
+ },
+ );
+ }
+
+ fn resolve_params(&mut self, params: &'ast [Param]) {
+ let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
+ for Param { pat, ty, .. } in params {
+ self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
+ self.visit_ty(ty);
+ debug!("(resolving function / closure) recorded parameter");
+ }
+ }
+
+ fn resolve_local(&mut self, local: &'ast Local) {
+ debug!("resolving local ({:?})", local);
+ // Resolve the type.
+ walk_list!(self, visit_ty, &local.ty);
+
+ // Resolve the initializer.
+ if let Some((init, els)) = local.kind.init_else_opt() {
+ self.visit_expr(init);
+
+ // Resolve the `else` block
+ if let Some(els) = els {
+ self.visit_block(els);
+ }
+ }
+
+ // Resolve the pattern.
+ self.resolve_pattern_top(&local.pat, PatternSource::Let);
+ }
+
+ /// build a map from pattern identifiers to binding-info's.
+ /// this is done hygienically. This could arise for a macro
+ /// that expands into an or-pattern where one 'x' was from the
+ /// user and one 'x' came from the macro.
+ fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
+ let mut binding_map = FxHashMap::default();
+
+ pat.walk(&mut |pat| {
+ match pat.kind {
+ PatKind::Ident(binding_mode, ident, ref sub_pat)
+ if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
+ {
+ binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
+ }
+ PatKind::Or(ref ps) => {
+ // Check the consistency of this or-pattern and
+ // then add all bindings to the larger map.
+ for bm in self.check_consistent_bindings(ps) {
+ binding_map.extend(bm);
+ }
+ return false;
+ }
+ _ => {}
+ }
+
+ true
+ });
+
+ binding_map
+ }
+
+ fn is_base_res_local(&self, nid: NodeId) -> bool {
+ matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
+ }
+
+ /// Checks that all of the arms in an or-pattern have exactly the
+ /// same set of bindings, with the same binding modes for each.
+ fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
+ let mut missing_vars = FxHashMap::default();
+ let mut inconsistent_vars = FxHashMap::default();
+
+ // 1) Compute the binding maps of all arms.
+ let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
+
+ // 2) Record any missing bindings or binding mode inconsistencies.
+ for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
+ // Check against all arms except for the same pattern which is always self-consistent.
+ let inners = pats
+ .iter()
+ .enumerate()
+ .filter(|(_, pat)| pat.id != pat_outer.id)
+ .flat_map(|(idx, _)| maps[idx].iter())
+ .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
+
+ for (name, info, &binding_inner) in inners {
+ match info {
+ None => {
+ // The inner binding is missing in the outer.
+ let binding_error =
+ missing_vars.entry(name).or_insert_with(|| BindingError {
+ name,
+ origin: BTreeSet::new(),
+ target: BTreeSet::new(),
+ could_be_path: name.as_str().starts_with(char::is_uppercase),
+ });
+ binding_error.origin.insert(binding_inner.span);
+ binding_error.target.insert(pat_outer.span);
+ }
+ Some(binding_outer) => {
+ if binding_outer.binding_mode != binding_inner.binding_mode {
+ // The binding modes in the outer and inner bindings differ.
+ inconsistent_vars
+ .entry(name)
+ .or_insert((binding_inner.span, binding_outer.span));
+ }
+ }
+ }
+ }
+ }
+
+ // 3) Report all missing variables we found.
+ let mut missing_vars = missing_vars.into_iter().collect::<Vec<_>>();
+ missing_vars.sort_by_key(|&(sym, ref _err)| sym);
+
+ for (name, mut v) in missing_vars.into_iter() {
+ if inconsistent_vars.contains_key(&name) {
+ v.could_be_path = false;
+ }
+ self.report_error(
+ *v.origin.iter().next().unwrap(),
+ ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
+ );
+ }
+
+ // 4) Report all inconsistencies in binding modes we found.
+ let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
+ inconsistent_vars.sort();
+ for (name, v) in inconsistent_vars {
+ self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
+ }
+
+ // 5) Finally bubble up all the binding maps.
+ maps
+ }
+
+ /// Check the consistency of the outermost or-patterns.
+ fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
+ pat.walk(&mut |pat| match pat.kind {
+ PatKind::Or(ref ps) => {
+ self.check_consistent_bindings(ps);
+ false
+ }
+ _ => true,
+ })
+ }
+
+ fn resolve_arm(&mut self, arm: &'ast Arm) {
+ self.with_rib(ValueNS, NormalRibKind, |this| {
+ this.resolve_pattern_top(&arm.pat, PatternSource::Match);
+ walk_list!(this, visit_expr, &arm.guard);
+ this.visit_expr(&arm.body);
+ });
+ }
+
+ /// Arising from `source`, resolve a top level pattern.
+ fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
+ let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
+ self.resolve_pattern(pat, pat_src, &mut bindings);
+ }
+
+ fn resolve_pattern(
+ &mut self,
+ pat: &'ast Pat,
+ pat_src: PatternSource,
+ bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
+ ) {
+ // We walk the pattern before declaring the pattern's inner bindings,
+ // so that we avoid resolving a literal expression to a binding defined
+ // by the pattern.
+ visit::walk_pat(self, pat);
+ self.resolve_pattern_inner(pat, pat_src, bindings);
+ // This has to happen *after* we determine which pat_idents are variants:
+ self.check_consistent_bindings_top(pat);
+ }
+
+ /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
+ ///
+ /// ### `bindings`
+ ///
+ /// A stack of sets of bindings accumulated.
+ ///
+ /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
+ /// be interpreted as re-binding an already bound binding. This results in an error.
+ /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
+ /// in reusing this binding rather than creating a fresh one.
+ ///
+ /// When called at the top level, the stack must have a single element
+ /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
+ /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
+ /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
+ /// When each `p_i` has been dealt with, the top set is merged with its parent.
+ /// When a whole or-pattern has been dealt with, the thing happens.
+ ///
+ /// See the implementation and `fresh_binding` for more details.
+ fn resolve_pattern_inner(
+ &mut self,
+ pat: &Pat,
+ pat_src: PatternSource,
+ bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
+ ) {
+ // Visit all direct subpatterns of this pattern.
+ pat.walk(&mut |pat| {
+ debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
+ match pat.kind {
+ PatKind::Ident(bmode, ident, ref sub) => {
+ // First try to resolve the identifier as some existing entity,
+ // then fall back to a fresh binding.
+ let has_sub = sub.is_some();
+ let res = self
+ .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
+ .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
+ self.r.record_partial_res(pat.id, PartialRes::new(res));
+ self.r.record_pat_span(pat.id, pat.span);
+ }
+ PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
+ self.smart_resolve_path(
+ pat.id,
+ qself.as_ref(),
+ path,
+ PathSource::TupleStruct(
+ pat.span,
+ self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
+ ),
+ );
+ }
+ PatKind::Path(ref qself, ref path) => {
+ self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
+ }
+ PatKind::Struct(ref qself, ref path, ..) => {
+ self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
+ }
+ PatKind::Or(ref ps) => {
+ // Add a new set of bindings to the stack. `Or` here records that when a
+ // binding already exists in this set, it should not result in an error because
+ // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
+ bindings.push((PatBoundCtx::Or, Default::default()));
+ for p in ps {
+ // Now we need to switch back to a product context so that each
+ // part of the or-pattern internally rejects already bound names.
+ // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
+ bindings.push((PatBoundCtx::Product, Default::default()));
+ self.resolve_pattern_inner(p, pat_src, bindings);
+ // Move up the non-overlapping bindings to the or-pattern.
+ // Existing bindings just get "merged".
+ let collected = bindings.pop().unwrap().1;
+ bindings.last_mut().unwrap().1.extend(collected);
+ }
+ // This or-pattern itself can itself be part of a product,
+ // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
+ // Both cases bind `a` again in a product pattern and must be rejected.
+ let collected = bindings.pop().unwrap().1;
+ bindings.last_mut().unwrap().1.extend(collected);
+
+ // Prevent visiting `ps` as we've already done so above.
+ return false;
+ }
+ _ => {}
+ }
+ true
+ });
+ }
+
+ fn fresh_binding(
+ &mut self,
+ ident: Ident,
+ pat_id: NodeId,
+ pat_src: PatternSource,
+ bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
+ ) -> Res {
+ // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
+ // (We must not add it if it's in the bindings map because that breaks the assumptions
+ // later passes make about or-patterns.)
+ let ident = ident.normalize_to_macro_rules();
+
+ let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
+ // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
+ let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
+ // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
+ // This is *required* for consistency which is checked later.
+ let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
+
+ if already_bound_and {
+ // Overlap in a product pattern somewhere; report an error.
+ use ResolutionError::*;
+ let error = match pat_src {
+ // `fn f(a: u8, a: u8)`:
+ PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
+ // `Variant(a, a)`:
+ _ => IdentifierBoundMoreThanOnceInSamePattern,
+ };
+ self.report_error(ident.span, error(ident.name));
+ }
+
+ // Record as bound if it's valid:
+ let ident_valid = ident.name != kw::Empty;
+ if ident_valid {
+ bindings.last_mut().unwrap().1.insert(ident);
+ }
+
+ if already_bound_or {
+ // `Variant1(a) | Variant2(a)`, ok
+ // Reuse definition from the first `a`.
+ self.innermost_rib_bindings(ValueNS)[&ident]
+ } else {
+ let res = Res::Local(pat_id);
+ if ident_valid {
+ // A completely fresh binding add to the set if it's valid.
+ self.innermost_rib_bindings(ValueNS).insert(ident, res);
+ }
+ res
+ }
+ }
+
+ fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
+ &mut self.ribs[ns].last_mut().unwrap().bindings
+ }
+
+ fn try_resolve_as_non_binding(
+ &mut self,
+ pat_src: PatternSource,
+ bm: BindingMode,
+ ident: Ident,
+ has_sub: bool,
+ ) -> Option<Res> {
+ // An immutable (no `mut`) by-value (no `ref`) binding pattern without
+ // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
+ // also be interpreted as a path to e.g. a constant, variant, etc.
+ let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
+
+ let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
+ let (res, binding) = match ls_binding {
+ LexicalScopeBinding::Item(binding)
+ if is_syntactic_ambiguity && binding.is_ambiguity() =>
+ {
+ // For ambiguous bindings we don't know all their definitions and cannot check
+ // whether they can be shadowed by fresh bindings or not, so force an error.
+ // issues/33118#issuecomment-233962221 (see below) still applies here,
+ // but we have to ignore it for backward compatibility.
+ self.r.record_use(ident, binding, false);
+ return None;
+ }
+ LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
+ LexicalScopeBinding::Res(res) => (res, None),
+ };
+
+ match res {
+ Res::SelfCtor(_) // See #70549.
+ | Res::Def(
+ DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
+ _,
+ ) if is_syntactic_ambiguity => {
+ // Disambiguate in favor of a unit struct/variant or constant pattern.
+ if let Some(binding) = binding {
+ self.r.record_use(ident, binding, false);
+ }
+ Some(res)
+ }
+ Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static(_), _) => {
+ // This is unambiguously a fresh binding, either syntactically
+ // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
+ // to something unusable as a pattern (e.g., constructor function),
+ // but we still conservatively report an error, see
+ // issues/33118#issuecomment-233962221 for one reason why.
+ let binding = binding.expect("no binding for a ctor or static");
+ self.report_error(
+ ident.span,
+ ResolutionError::BindingShadowsSomethingUnacceptable {
+ shadowing_binding: pat_src,
+ name: ident.name,
+ participle: if binding.is_import() { "imported" } else { "defined" },
+ article: binding.res().article(),
+ shadowed_binding: binding.res(),
+ shadowed_binding_span: binding.span,
+ },
+ );
+ None
+ }
+ Res::Def(DefKind::ConstParam, def_id) => {
+ // Same as for DefKind::Const above, but here, `binding` is `None`, so we
+ // have to construct the error differently
+ self.report_error(
+ ident.span,
+ ResolutionError::BindingShadowsSomethingUnacceptable {
+ shadowing_binding: pat_src,
+ name: ident.name,
+ participle: "defined",
+ article: res.article(),
+ shadowed_binding: res,
+ shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
+ }
+ );
+ None
+ }
+ Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
+ // These entities are explicitly allowed to be shadowed by fresh bindings.
+ None
+ }
+ Res::SelfCtor(_) => {
+ // We resolve `Self` in pattern position as an ident sometimes during recovery,
+ // so delay a bug instead of ICEing.
+ self.r.session.delay_span_bug(
+ ident.span,
+ "unexpected `SelfCtor` in pattern, expected identifier"
+ );
+ None
+ }
+ _ => span_bug!(
+ ident.span,
+ "unexpected resolution for an identifier in pattern: {:?}",
+ res,
+ ),
+ }
+ }
+
+ // High-level and context dependent path resolution routine.
+ // Resolves the path and records the resolution into definition map.
+ // If resolution fails tries several techniques to find likely
+ // resolution candidates, suggest imports or other help, and report
+ // errors in user friendly way.
+ fn smart_resolve_path(
+ &mut self,
+ id: NodeId,
+ qself: Option<&QSelf>,
+ path: &Path,
+ source: PathSource<'ast>,
+ ) {
+ self.smart_resolve_path_fragment(
+ qself,
+ &Segment::from_path(path),
+ source,
+ Finalize::new(id, path.span),
+ );
+ }
+
+ fn smart_resolve_path_fragment(
+ &mut self,
+ qself: Option<&QSelf>,
+ path: &[Segment],
+ source: PathSource<'ast>,
+ finalize: Finalize,
+ ) -> PartialRes {
+ tracing::debug!(
+ "smart_resolve_path_fragment(qself={:?}, path={:?}, finalize={:?})",
+ qself,
+ path,
+ finalize,
+ );
+ let ns = source.namespace();
+
+ let Finalize { node_id, path_span, .. } = finalize;
+ let report_errors = |this: &mut Self, res: Option<Res>| {
+ if this.should_report_errs() {
+ let (err, candidates) =
+ this.smart_resolve_report_errors(path, path_span, source, res);
+
+ let def_id = this.parent_scope.module.nearest_parent_mod();
+ let instead = res.is_some();
+ let suggestion =
+ if res.is_none() { this.report_missing_type_error(path) } else { None };
+
+ this.r.use_injections.push(UseError {
+ err,
+ candidates,
+ def_id,
+ instead,
+ suggestion,
+ path: path.into(),
+ });
+ }
+
+ PartialRes::new(Res::Err)
+ };
+
+ // For paths originating from calls (like in `HashMap::new()`), tries
+ // to enrich the plain `failed to resolve: ...` message with hints
+ // about possible missing imports.
+ //
+ // Similar thing, for types, happens in `report_errors` above.
+ let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
+ if !source.is_call() {
+ return Some(parent_err);
+ }
+
+ // Before we start looking for candidates, we have to get our hands
+ // on the type user is trying to perform invocation on; basically:
+ // we're transforming `HashMap::new` into just `HashMap`.
+ let path = match path.split_last() {
+ Some((_, path)) if !path.is_empty() => path,
+ _ => return Some(parent_err),
+ };
+
+ let (mut err, candidates) =
+ this.smart_resolve_report_errors(path, path_span, PathSource::Type, None);
+
+ if candidates.is_empty() {
+ err.cancel();
+ return Some(parent_err);
+ }
+
+ // There are two different error messages user might receive at
+ // this point:
+ // - E0412 cannot find type `{}` in this scope
+ // - E0433 failed to resolve: use of undeclared type or module `{}`
+ //
+ // The first one is emitted for paths in type-position, and the
+ // latter one - for paths in expression-position.
+ //
+ // Thus (since we're in expression-position at this point), not to
+ // confuse the user, we want to keep the *message* from E0432 (so
+ // `parent_err`), but we want *hints* from E0412 (so `err`).
+ //
+ // And that's what happens below - we're just mixing both messages
+ // into a single one.
+ let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
+
+ err.message = take(&mut parent_err.message);
+ err.code = take(&mut parent_err.code);
+ err.children = take(&mut parent_err.children);
+
+ parent_err.cancel();
+
+ let def_id = this.parent_scope.module.nearest_parent_mod();
+
+ if this.should_report_errs() {
+ this.r.use_injections.push(UseError {
+ err,
+ candidates,
+ def_id,
+ instead: false,
+ suggestion: None,
+ path: path.into(),
+ });
+ } else {
+ err.cancel();
+ }
+
+ // We don't return `Some(parent_err)` here, because the error will
+ // be already printed as part of the `use` injections
+ None
+ };
+
+ let partial_res = match self.resolve_qpath_anywhere(
+ qself,
+ path,
+ ns,
+ path_span,
+ source.defer_to_typeck(),
+ finalize,
+ ) {
+ Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
+ if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
+ {
+ partial_res
+ } else {
+ report_errors(self, Some(partial_res.base_res()))
+ }
+ }
+
+ Ok(Some(partial_res)) if source.defer_to_typeck() => {
+ // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
+ // or `<T>::A::B`. If `B` should be resolved in value namespace then
+ // it needs to be added to the trait map.
+ if ns == ValueNS {
+ let item_name = path.last().unwrap().ident;
+ let traits = self.traits_in_scope(item_name, ns);
+ self.r.trait_map.insert(node_id, traits);
+ }
+
+ if PrimTy::from_name(path[0].ident.name).is_some() {
+ let mut std_path = Vec::with_capacity(1 + path.len());
+
+ std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
+ std_path.extend(path);
+ if let PathResult::Module(_) | PathResult::NonModule(_) =
+ self.resolve_path(&std_path, Some(ns), None)
+ {
+ // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
+ let item_span =
+ path.iter().last().map_or(path_span, |segment| segment.ident.span);
+
+ self.r.confused_type_with_std_module.insert(item_span, path_span);
+ self.r.confused_type_with_std_module.insert(path_span, path_span);
+ }
+ }
+
+ partial_res
+ }
+
+ Err(err) => {
+ if let Some(err) = report_errors_for_call(self, err) {
+ self.report_error(err.span, err.node);
+ }
+
+ PartialRes::new(Res::Err)
+ }
+
+ _ => report_errors(self, None),
+ };
+
+ if !matches!(source, PathSource::TraitItem(..)) {
+ // Avoid recording definition of `A::B` in `<T as A>::B::C`.
+ self.r.record_partial_res(node_id, partial_res);
+ self.resolve_elided_lifetimes_in_path(node_id, partial_res, path, source, path_span);
+ }
+
+ partial_res
+ }
+
+ fn self_type_is_available(&mut self) -> bool {
+ let binding = self
+ .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
+ if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
+ }
+
+ fn self_value_is_available(&mut self, self_span: Span) -> bool {
+ let ident = Ident::new(kw::SelfLower, self_span);
+ let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
+ if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
+ }
+
+ /// A wrapper around [`Resolver::report_error`].
+ ///
+ /// This doesn't emit errors for function bodies if this is rustdoc.
+ fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) {
+ if self.should_report_errs() {
+ self.r.report_error(span, resolution_error);
+ }
+ }
+
+ #[inline]
+ /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
+ fn should_report_errs(&self) -> bool {
+ !(self.r.session.opts.actually_rustdoc && self.in_func_body)
+ }
+
+ // Resolve in alternative namespaces if resolution in the primary namespace fails.
+ fn resolve_qpath_anywhere(
+ &mut self,
+ qself: Option<&QSelf>,
+ path: &[Segment],
+ primary_ns: Namespace,
+ span: Span,
+ defer_to_typeck: bool,
+ finalize: Finalize,
+ ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
+ let mut fin_res = None;
+
+ for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
+ if i == 0 || ns != primary_ns {
+ match self.resolve_qpath(qself, path, ns, finalize)? {
+ Some(partial_res)
+ if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
+ {
+ return Ok(Some(partial_res));
+ }
+ partial_res => {
+ if fin_res.is_none() {
+ fin_res = partial_res;
+ }
+ }
+ }
+ }
+ }
+
+ assert!(primary_ns != MacroNS);
+
+ if qself.is_none() {
+ let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
+ let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
+ if let Ok((_, res)) =
+ self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
+ {
+ return Ok(Some(PartialRes::new(res)));
+ }
+ }
+
+ Ok(fin_res)
+ }
+
+ /// Handles paths that may refer to associated items.
+ fn resolve_qpath(
+ &mut self,
+ qself: Option<&QSelf>,
+ path: &[Segment],
+ ns: Namespace,
+ finalize: Finalize,
+ ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
+ debug!(
+ "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
+ qself, path, ns, finalize,
+ );
+
+ if let Some(qself) = qself {
+ if qself.position == 0 {
+ // This is a case like `<T>::B`, where there is no
+ // trait to resolve. In that case, we leave the `B`
+ // segment to be resolved by type-check.
+ return Ok(Some(PartialRes::with_unresolved_segments(
+ Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
+ path.len(),
+ )));
+ }
+
+ // Make sure `A::B` in `<T as A::B>::C` is a trait item.
+ //
+ // Currently, `path` names the full item (`A::B::C`, in
+ // our example). so we extract the prefix of that that is
+ // the trait (the slice upto and including
+ // `qself.position`). And then we recursively resolve that,
+ // but with `qself` set to `None`.
+ let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
+ let partial_res = self.smart_resolve_path_fragment(
+ None,
+ &path[..=qself.position],
+ PathSource::TraitItem(ns),
+ Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
+ );
+
+ // The remaining segments (the `C` in our example) will
+ // have to be resolved by type-check, since that requires doing
+ // trait resolution.
+ return Ok(Some(PartialRes::with_unresolved_segments(
+ partial_res.base_res(),
+ partial_res.unresolved_segments() + path.len() - qself.position - 1,
+ )));
+ }
+
+ let result = match self.resolve_path(&path, Some(ns), Some(finalize)) {
+ PathResult::NonModule(path_res) => path_res,
+ PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
+ PartialRes::new(module.res().unwrap())
+ }
+ // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
+ // don't report an error right away, but try to fallback to a primitive type.
+ // So, we are still able to successfully resolve something like
+ //
+ // use std::u8; // bring module u8 in scope
+ // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
+ // u8::max_value() // OK, resolves to associated function <u8>::max_value,
+ // // not to non-existent std::u8::max_value
+ // }
+ //
+ // Such behavior is required for backward compatibility.
+ // The same fallback is used when `a` resolves to nothing.
+ PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
+ if (ns == TypeNS || path.len() > 1)
+ && PrimTy::from_name(path[0].ident.name).is_some() =>
+ {
+ let prim = PrimTy::from_name(path[0].ident.name).unwrap();
+ PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
+ }
+ PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
+ PartialRes::new(module.res().unwrap())
+ }
+ PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
+ return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
+ }
+ PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
+ PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
+ };
+
+ if path.len() > 1
+ && result.base_res() != Res::Err
+ && path[0].ident.name != kw::PathRoot
+ && path[0].ident.name != kw::DollarCrate
+ {
+ let unqualified_result = {
+ match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) {
+ PathResult::NonModule(path_res) => path_res.base_res(),
+ PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
+ module.res().unwrap()
+ }
+ _ => return Ok(Some(result)),
+ }
+ };
+ if result.base_res() == unqualified_result {
+ let lint = lint::builtin::UNUSED_QUALIFICATIONS;
+ self.r.lint_buffer.buffer_lint(
+ lint,
+ finalize.node_id,
+ finalize.path_span,
+ "unnecessary qualification",
+ )
+ }
+ }
+
+ Ok(Some(result))
+ }
+
+ fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
+ if let Some(label) = label {
+ if label.ident.as_str().as_bytes()[1] != b'_' {
+ self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
+ }
+
+ if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
+ diagnostics::signal_label_shadowing(self.r.session, orig_span, label.ident)
+ }
+
+ self.with_label_rib(NormalRibKind, |this| {
+ let ident = label.ident.normalize_to_macro_rules();
+ this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
+ f(this);
+ });
+ } else {
+ f(self);
+ }
+ }
+
+ fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
+ self.with_resolved_label(label, id, |this| this.visit_block(block));
+ }
+
+ fn resolve_block(&mut self, block: &'ast Block) {
+ debug!("(resolving block) entering block");
+ // Move down in the graph, if there's an anonymous module rooted here.
+ let orig_module = self.parent_scope.module;
+ let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
+
+ let mut num_macro_definition_ribs = 0;
+ if let Some(anonymous_module) = anonymous_module {
+ debug!("(resolving block) found anonymous module, moving down");
+ self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
+ self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
+ self.parent_scope.module = anonymous_module;
+ } else {
+ self.ribs[ValueNS].push(Rib::new(NormalRibKind));
+ }
+
+ let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take();
+ if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
+ (block.could_be_bare_literal, &block.stmts[..])
+ && let ExprKind::Type(..) = expr.kind
+ {
+ self.diagnostic_metadata.current_block_could_be_bare_struct_literal =
+ Some(block.span);
+ }
+ // Descend into the block.
+ for stmt in &block.stmts {
+ if let StmtKind::Item(ref item) = stmt.kind
+ && let ItemKind::MacroDef(..) = item.kind {
+ num_macro_definition_ribs += 1;
+ let res = self.r.local_def_id(item.id).to_def_id();
+ self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
+ self.label_ribs.push(Rib::new(MacroDefinition(res)));
+ }
+
+ self.visit_stmt(stmt);
+ }
+ self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev;
+
+ // Move back up.
+ self.parent_scope.module = orig_module;
+ for _ in 0..num_macro_definition_ribs {
+ self.ribs[ValueNS].pop();
+ self.label_ribs.pop();
+ }
+ self.ribs[ValueNS].pop();
+ if anonymous_module.is_some() {
+ self.ribs[TypeNS].pop();
+ }
+ debug!("(resolving block) leaving block");
+ }
+
+ fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
+ debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
+ self.with_constant_rib(
+ is_repeat,
+ if constant.value.is_potential_trivial_const_param() {
+ HasGenericParams::Yes
+ } else {
+ HasGenericParams::No
+ },
+ None,
+ |this| visit::walk_anon_const(this, constant),
+ );
+ }
+
+ fn resolve_inline_const(&mut self, constant: &'ast AnonConst) {
+ debug!("resolve_anon_const {constant:?}");
+ self.with_constant_rib(IsRepeatExpr::No, HasGenericParams::Yes, None, |this| {
+ visit::walk_anon_const(this, constant);
+ });
+ }
+
+ fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
+ // First, record candidate traits for this expression if it could
+ // result in the invocation of a method call.
+
+ self.record_candidate_traits_for_expr_if_necessary(expr);
+
+ // Next, resolve the node.
+ match expr.kind {
+ ExprKind::Path(ref qself, ref path) => {
+ self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
+ visit::walk_expr(self, expr);
+ }
+
+ ExprKind::Struct(ref se) => {
+ self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
+ visit::walk_expr(self, expr);
+ }
+
+ ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
+ match self.resolve_label(label.ident) {
+ Ok((node_id, _)) => {
+ // Since this res is a label, it is never read.
+ self.r.label_res_map.insert(expr.id, node_id);
+ self.diagnostic_metadata.unused_labels.remove(&node_id);
+ }
+ Err(error) => {
+ self.report_error(label.ident.span, error);
+ }
+ }
+
+ // visit `break` argument if any
+ visit::walk_expr(self, expr);
+ }
+
+ ExprKind::Break(None, Some(ref e)) => {
+ // We use this instead of `visit::walk_expr` to keep the parent expr around for
+ // better diagnostics.
+ self.resolve_expr(e, Some(&expr));
+ }
+
+ ExprKind::Let(ref pat, ref scrutinee, _) => {
+ self.visit_expr(scrutinee);
+ self.resolve_pattern_top(pat, PatternSource::Let);
+ }
+
+ ExprKind::If(ref cond, ref then, ref opt_else) => {
+ self.with_rib(ValueNS, NormalRibKind, |this| {
+ let old = this.diagnostic_metadata.in_if_condition.replace(cond);
+ this.visit_expr(cond);
+ this.diagnostic_metadata.in_if_condition = old;
+ this.visit_block(then);
+ });
+ if let Some(expr) = opt_else {
+ self.visit_expr(expr);
+ }
+ }
+
+ ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
+
+ ExprKind::While(ref cond, ref block, label) => {
+ self.with_resolved_label(label, expr.id, |this| {
+ this.with_rib(ValueNS, NormalRibKind, |this| {
+ let old = this.diagnostic_metadata.in_if_condition.replace(cond);
+ this.visit_expr(cond);
+ this.diagnostic_metadata.in_if_condition = old;
+ this.visit_block(block);
+ })
+ });
+ }
+
+ ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
+ self.visit_expr(iter_expr);
+ self.with_rib(ValueNS, NormalRibKind, |this| {
+ this.resolve_pattern_top(pat, PatternSource::For);
+ this.resolve_labeled_block(label, expr.id, block);
+ });
+ }
+
+ ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
+
+ // Equivalent to `visit::walk_expr` + passing some context to children.
+ ExprKind::Field(ref subexpression, _) => {
+ self.resolve_expr(subexpression, Some(expr));
+ }
+ ExprKind::MethodCall(ref segment, ref arguments, _) => {
+ let mut arguments = arguments.iter();
+ self.resolve_expr(arguments.next().unwrap(), Some(expr));
+ for argument in arguments {
+ self.resolve_expr(argument, None);
+ }
+ self.visit_path_segment(expr.span, segment);
+ }
+
+ ExprKind::Call(ref callee, ref arguments) => {
+ self.resolve_expr(callee, Some(expr));
+ let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
+ for (idx, argument) in arguments.iter().enumerate() {
+ // Constant arguments need to be treated as AnonConst since
+ // that is how they will be later lowered to HIR.
+ if const_args.contains(&idx) {
+ self.with_constant_rib(
+ IsRepeatExpr::No,
+ if argument.is_potential_trivial_const_param() {
+ HasGenericParams::Yes
+ } else {
+ HasGenericParams::No
+ },
+ None,
+ |this| {
+ this.resolve_expr(argument, None);
+ },
+ );
+ } else {
+ self.resolve_expr(argument, None);
+ }
+ }
+ }
+ ExprKind::Type(ref type_expr, ref ty) => {
+ // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
+ // type ascription. Here we are trying to retrieve the span of the colon token as
+ // well, but only if it's written without spaces `expr:Ty` and therefore confusable
+ // with `expr::Ty`, only in this case it will match the span from
+ // `type_ascription_path_suggestions`.
+ self.diagnostic_metadata
+ .current_type_ascription
+ .push(type_expr.span.between(ty.span));
+ visit::walk_expr(self, expr);
+ self.diagnostic_metadata.current_type_ascription.pop();
+ }
+ // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
+ // resolve the arguments within the proper scopes so that usages of them inside the
+ // closure are detected as upvars rather than normal closure arg usages.
+ ExprKind::Closure(_, _, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
+ self.with_rib(ValueNS, NormalRibKind, |this| {
+ this.with_label_rib(ClosureOrAsyncRibKind, |this| {
+ // Resolve arguments:
+ this.resolve_params(&fn_decl.inputs);
+ // No need to resolve return type --
+ // the outer closure return type is `FnRetTy::Default`.
+
+ // Now resolve the inner closure
+ {
+ // No need to resolve arguments: the inner closure has none.
+ // Resolve the return type:
+ visit::walk_fn_ret_ty(this, &fn_decl.output);
+ // Resolve the body
+ this.visit_expr(body);
+ }
+ })
+ });
+ }
+ // For closures, ClosureOrAsyncRibKind is added in visit_fn
+ ExprKind::Closure(ClosureBinder::For { ref generic_params, span }, ..) => {
+ self.with_generic_param_rib(
+ &generic_params,
+ NormalRibKind,
+ LifetimeRibKind::Generics {
+ binder: expr.id,
+ kind: LifetimeBinderKind::Closure,
+ span,
+ },
+ |this| visit::walk_expr(this, expr),
+ );
+ }
+ ExprKind::Closure(..) => visit::walk_expr(self, expr),
+ ExprKind::Async(..) => {
+ self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
+ }
+ ExprKind::Repeat(ref elem, ref ct) => {
+ self.visit_expr(elem);
+ self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
+ this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
+ this.resolve_anon_const(ct, IsRepeatExpr::Yes)
+ })
+ });
+ }
+ ExprKind::ConstBlock(ref ct) => {
+ self.resolve_inline_const(ct);
+ }
+ ExprKind::Index(ref elem, ref idx) => {
+ self.resolve_expr(elem, Some(expr));
+ self.visit_expr(idx);
+ }
+ _ => {
+ visit::walk_expr(self, expr);
+ }
+ }
+ }
+
+ fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
+ match expr.kind {
+ ExprKind::Field(_, ident) => {
+ // FIXME(#6890): Even though you can't treat a method like a
+ // field, we need to add any trait methods we find that match
+ // the field name so that we can do some nice error reporting
+ // later on in typeck.
+ let traits = self.traits_in_scope(ident, ValueNS);
+ self.r.trait_map.insert(expr.id, traits);
+ }
+ ExprKind::MethodCall(ref segment, ..) => {
+ debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
+ let traits = self.traits_in_scope(segment.ident, ValueNS);
+ self.r.trait_map.insert(expr.id, traits);
+ }
+ _ => {
+ // Nothing to do.
+ }
+ }
+ }
+
+ fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
+ self.r.traits_in_scope(
+ self.current_trait_ref.as_ref().map(|(module, _)| *module),
+ &self.parent_scope,
+ ident.span.ctxt(),
+ Some((ident.name, ns)),
+ )
+ }
+}
+
+struct LifetimeCountVisitor<'a, 'b> {
+ r: &'b mut Resolver<'a>,
+}
+
+/// Walks the whole crate in DFS order, visiting each item, counting the declared number of
+/// lifetime generic parameters.
+impl<'ast> Visitor<'ast> for LifetimeCountVisitor<'_, '_> {
+ fn visit_item(&mut self, item: &'ast Item) {
+ match &item.kind {
+ ItemKind::TyAlias(box TyAlias { ref generics, .. })
+ | ItemKind::Fn(box Fn { ref generics, .. })
+ | ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics)
+ | ItemKind::Impl(box Impl { ref generics, .. })
+ | ItemKind::Trait(box Trait { ref generics, .. })
+ | ItemKind::TraitAlias(ref generics, _) => {
+ let def_id = self.r.local_def_id(item.id);
+ let count = generics
+ .params
+ .iter()
+ .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
+ .count();
+ self.r.item_generics_num_lifetimes.insert(def_id, count);
+ }
+
+ ItemKind::Mod(..)
+ | ItemKind::ForeignMod(..)
+ | ItemKind::Static(..)
+ | ItemKind::Const(..)
+ | ItemKind::Use(..)
+ | ItemKind::ExternCrate(..)
+ | ItemKind::MacroDef(..)
+ | ItemKind::GlobalAsm(..)
+ | ItemKind::MacCall(..) => {}
+ }
+ visit::walk_item(self, item)
+ }
+}
+
+impl<'a> Resolver<'a> {
+ pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
+ visit::walk_crate(&mut LifetimeCountVisitor { r: self }, krate);
+ let mut late_resolution_visitor = LateResolutionVisitor::new(self);
+ visit::walk_crate(&mut late_resolution_visitor, krate);
+ for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
+ self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
+ }
+ }
+}