summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_target/src/abi/call/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_target/src/abi/call/mod.rs')
-rw-r--r--compiler/rustc_target/src/abi/call/mod.rs734
1 files changed, 734 insertions, 0 deletions
diff --git a/compiler/rustc_target/src/abi/call/mod.rs b/compiler/rustc_target/src/abi/call/mod.rs
new file mode 100644
index 000000000..577126a95
--- /dev/null
+++ b/compiler/rustc_target/src/abi/call/mod.rs
@@ -0,0 +1,734 @@
+use crate::abi::{self, Abi, Align, FieldsShape, Size};
+use crate::abi::{HasDataLayout, TyAbiInterface, TyAndLayout};
+use crate::spec::{self, HasTargetSpec};
+use rustc_span::Symbol;
+use std::fmt;
+
+mod aarch64;
+mod amdgpu;
+mod arm;
+mod avr;
+mod bpf;
+mod hexagon;
+mod m68k;
+mod mips;
+mod mips64;
+mod msp430;
+mod nvptx;
+mod nvptx64;
+mod powerpc;
+mod powerpc64;
+mod riscv;
+mod s390x;
+mod sparc;
+mod sparc64;
+mod wasm;
+mod x86;
+mod x86_64;
+mod x86_win64;
+
+#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub enum PassMode {
+ /// Ignore the argument.
+ ///
+ /// The argument is either uninhabited or a ZST.
+ Ignore,
+ /// Pass the argument directly.
+ ///
+ /// The argument has a layout abi of `Scalar`, `Vector` or in rare cases `Aggregate`.
+ Direct(ArgAttributes),
+ /// Pass a pair's elements directly in two arguments.
+ ///
+ /// The argument has a layout abi of `ScalarPair`.
+ Pair(ArgAttributes, ArgAttributes),
+ /// Pass the argument after casting it, to either
+ /// a single uniform or a pair of registers.
+ Cast(CastTarget),
+ /// Pass the argument indirectly via a hidden pointer.
+ /// The `extra_attrs` value, if any, is for the extra data (vtable or length)
+ /// which indicates that it refers to an unsized rvalue.
+ /// `on_stack` defines that the the value should be passed at a fixed
+ /// stack offset in accordance to the ABI rather than passed using a
+ /// pointer. This corresponds to the `byval` LLVM argument attribute.
+ Indirect { attrs: ArgAttributes, extra_attrs: Option<ArgAttributes>, on_stack: bool },
+}
+
+// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
+// of this module
+pub use attr_impl::ArgAttribute;
+
+#[allow(non_upper_case_globals)]
+#[allow(unused)]
+mod attr_impl {
+ // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
+ bitflags::bitflags! {
+ #[derive(Default, HashStable_Generic)]
+ pub struct ArgAttribute: u16 {
+ const NoAlias = 1 << 1;
+ const NoCapture = 1 << 2;
+ const NonNull = 1 << 3;
+ const ReadOnly = 1 << 4;
+ const InReg = 1 << 5;
+ // Due to past miscompiles in LLVM, we use a separate attribute for
+ // &mut arguments, so that the codegen backend can decide whether
+ // or not to actually emit the attribute. It can also be controlled
+ // with the `-Zmutable-noalias` debugging option.
+ const NoAliasMutRef = 1 << 6;
+ const NoUndef = 1 << 7;
+ }
+ }
+}
+
+/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
+/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
+/// not necessary to extend the argument, this enum is ignored.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub enum ArgExtension {
+ None,
+ Zext,
+ Sext,
+}
+
+/// A compact representation of LLVM attributes (at least those relevant for this module)
+/// that can be manipulated without interacting with LLVM's Attribute machinery.
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct ArgAttributes {
+ pub regular: ArgAttribute,
+ pub arg_ext: ArgExtension,
+ /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
+ /// (corresponding to LLVM's dereferenceable and dereferenceable_or_null attributes).
+ pub pointee_size: Size,
+ pub pointee_align: Option<Align>,
+}
+
+impl ArgAttributes {
+ pub fn new() -> Self {
+ ArgAttributes {
+ regular: ArgAttribute::default(),
+ arg_ext: ArgExtension::None,
+ pointee_size: Size::ZERO,
+ pointee_align: None,
+ }
+ }
+
+ pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
+ assert!(
+ self.arg_ext == ArgExtension::None || self.arg_ext == ext,
+ "cannot set {:?} when {:?} is already set",
+ ext,
+ self.arg_ext
+ );
+ self.arg_ext = ext;
+ self
+ }
+
+ pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
+ self.regular |= attr;
+ self
+ }
+
+ pub fn contains(&self, attr: ArgAttribute) -> bool {
+ self.regular.contains(attr)
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub enum RegKind {
+ Integer,
+ Float,
+ Vector,
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct Reg {
+ pub kind: RegKind,
+ pub size: Size,
+}
+
+macro_rules! reg_ctor {
+ ($name:ident, $kind:ident, $bits:expr) => {
+ pub fn $name() -> Reg {
+ Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
+ }
+ };
+}
+
+impl Reg {
+ reg_ctor!(i8, Integer, 8);
+ reg_ctor!(i16, Integer, 16);
+ reg_ctor!(i32, Integer, 32);
+ reg_ctor!(i64, Integer, 64);
+ reg_ctor!(i128, Integer, 128);
+
+ reg_ctor!(f32, Float, 32);
+ reg_ctor!(f64, Float, 64);
+}
+
+impl Reg {
+ pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
+ let dl = cx.data_layout();
+ match self.kind {
+ RegKind::Integer => match self.size.bits() {
+ 1 => dl.i1_align.abi,
+ 2..=8 => dl.i8_align.abi,
+ 9..=16 => dl.i16_align.abi,
+ 17..=32 => dl.i32_align.abi,
+ 33..=64 => dl.i64_align.abi,
+ 65..=128 => dl.i128_align.abi,
+ _ => panic!("unsupported integer: {:?}", self),
+ },
+ RegKind::Float => match self.size.bits() {
+ 32 => dl.f32_align.abi,
+ 64 => dl.f64_align.abi,
+ _ => panic!("unsupported float: {:?}", self),
+ },
+ RegKind::Vector => dl.vector_align(self.size).abi,
+ }
+ }
+}
+
+/// An argument passed entirely registers with the
+/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
+#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct Uniform {
+ pub unit: Reg,
+
+ /// The total size of the argument, which can be:
+ /// * equal to `unit.size` (one scalar/vector),
+ /// * a multiple of `unit.size` (an array of scalar/vectors),
+ /// * if `unit.kind` is `Integer`, the last element
+ /// can be shorter, i.e., `{ i64, i64, i32 }` for
+ /// 64-bit integers with a total size of 20 bytes.
+ pub total: Size,
+}
+
+impl From<Reg> for Uniform {
+ fn from(unit: Reg) -> Uniform {
+ Uniform { unit, total: unit.size }
+ }
+}
+
+impl Uniform {
+ pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
+ self.unit.align(cx)
+ }
+}
+
+#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct CastTarget {
+ pub prefix: [Option<Reg>; 8],
+ pub rest: Uniform,
+ pub attrs: ArgAttributes,
+}
+
+impl From<Reg> for CastTarget {
+ fn from(unit: Reg) -> CastTarget {
+ CastTarget::from(Uniform::from(unit))
+ }
+}
+
+impl From<Uniform> for CastTarget {
+ fn from(uniform: Uniform) -> CastTarget {
+ CastTarget {
+ prefix: [None; 8],
+ rest: uniform,
+ attrs: ArgAttributes {
+ regular: ArgAttribute::default(),
+ arg_ext: ArgExtension::None,
+ pointee_size: Size::ZERO,
+ pointee_align: None,
+ },
+ }
+ }
+}
+
+impl CastTarget {
+ pub fn pair(a: Reg, b: Reg) -> CastTarget {
+ CastTarget {
+ prefix: [Some(a), None, None, None, None, None, None, None],
+ rest: Uniform::from(b),
+ attrs: ArgAttributes {
+ regular: ArgAttribute::default(),
+ arg_ext: ArgExtension::None,
+ pointee_size: Size::ZERO,
+ pointee_align: None,
+ },
+ }
+ }
+
+ pub fn size<C: HasDataLayout>(&self, _cx: &C) -> Size {
+ let mut size = self.rest.total;
+ for i in 0..self.prefix.iter().count() {
+ match self.prefix[i] {
+ Some(v) => size += Size { raw: v.size.bytes() },
+ None => {}
+ }
+ }
+ return size;
+ }
+
+ pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
+ self.prefix
+ .iter()
+ .filter_map(|x| x.map(|reg| reg.align(cx)))
+ .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
+ acc.max(align)
+ })
+ }
+}
+
+/// Return value from the `homogeneous_aggregate` test function.
+#[derive(Copy, Clone, Debug)]
+pub enum HomogeneousAggregate {
+ /// Yes, all the "leaf fields" of this struct are passed in the
+ /// same way (specified in the `Reg` value).
+ Homogeneous(Reg),
+
+ /// There are no leaf fields at all.
+ NoData,
+}
+
+/// Error from the `homogeneous_aggregate` test function, indicating
+/// there are distinct leaf fields passed in different ways,
+/// or this is uninhabited.
+#[derive(Copy, Clone, Debug)]
+pub struct Heterogeneous;
+
+impl HomogeneousAggregate {
+ /// If this is a homogeneous aggregate, returns the homogeneous
+ /// unit, else `None`.
+ pub fn unit(self) -> Option<Reg> {
+ match self {
+ HomogeneousAggregate::Homogeneous(reg) => Some(reg),
+ HomogeneousAggregate::NoData => None,
+ }
+ }
+
+ /// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
+ /// the same `struct`. Only succeeds if only one of them has any data,
+ /// or both units are identical.
+ fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
+ match (self, other) {
+ (x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
+
+ (HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
+ if a != b {
+ return Err(Heterogeneous);
+ }
+ Ok(self)
+ }
+ }
+ }
+}
+
+impl<'a, Ty> TyAndLayout<'a, Ty> {
+ fn is_aggregate(&self) -> bool {
+ match self.abi {
+ Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
+ Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
+ }
+ }
+
+ /// Returns `Homogeneous` if this layout is an aggregate containing fields of
+ /// only a single type (e.g., `(u32, u32)`). Such aggregates are often
+ /// special-cased in ABIs.
+ ///
+ /// Note: We generally ignore fields of zero-sized type when computing
+ /// this value (see #56877).
+ ///
+ /// This is public so that it can be used in unit tests, but
+ /// should generally only be relevant to the ABI details of
+ /// specific targets.
+ pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
+ where
+ Ty: TyAbiInterface<'a, C> + Copy,
+ {
+ match self.abi {
+ Abi::Uninhabited => Err(Heterogeneous),
+
+ // The primitive for this algorithm.
+ Abi::Scalar(scalar) => {
+ let kind = match scalar.primitive() {
+ abi::Int(..) | abi::Pointer => RegKind::Integer,
+ abi::F32 | abi::F64 => RegKind::Float,
+ };
+ Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
+ }
+
+ Abi::Vector { .. } => {
+ assert!(!self.is_zst());
+ Ok(HomogeneousAggregate::Homogeneous(Reg {
+ kind: RegKind::Vector,
+ size: self.size,
+ }))
+ }
+
+ Abi::ScalarPair(..) | Abi::Aggregate { .. } => {
+ // Helper for computing `homogeneous_aggregate`, allowing a custom
+ // starting offset (used below for handling variants).
+ let from_fields_at =
+ |layout: Self,
+ start: Size|
+ -> Result<(HomogeneousAggregate, Size), Heterogeneous> {
+ let is_union = match layout.fields {
+ FieldsShape::Primitive => {
+ unreachable!("aggregates can't have `FieldsShape::Primitive`")
+ }
+ FieldsShape::Array { count, .. } => {
+ assert_eq!(start, Size::ZERO);
+
+ let result = if count > 0 {
+ layout.field(cx, 0).homogeneous_aggregate(cx)?
+ } else {
+ HomogeneousAggregate::NoData
+ };
+ return Ok((result, layout.size));
+ }
+ FieldsShape::Union(_) => true,
+ FieldsShape::Arbitrary { .. } => false,
+ };
+
+ let mut result = HomogeneousAggregate::NoData;
+ let mut total = start;
+
+ for i in 0..layout.fields.count() {
+ if !is_union && total != layout.fields.offset(i) {
+ return Err(Heterogeneous);
+ }
+
+ let field = layout.field(cx, i);
+
+ result = result.merge(field.homogeneous_aggregate(cx)?)?;
+
+ // Keep track of the offset (without padding).
+ let size = field.size;
+ if is_union {
+ total = total.max(size);
+ } else {
+ total += size;
+ }
+ }
+
+ Ok((result, total))
+ };
+
+ let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
+
+ match &self.variants {
+ abi::Variants::Single { .. } => {}
+ abi::Variants::Multiple { variants, .. } => {
+ // Treat enum variants like union members.
+ // HACK(eddyb) pretend the `enum` field (discriminant)
+ // is at the start of every variant (otherwise the gap
+ // at the start of all variants would disqualify them).
+ //
+ // NB: for all tagged `enum`s (which include all non-C-like
+ // `enum`s with defined FFI representation), this will
+ // match the homogeneous computation on the equivalent
+ // `struct { tag; union { variant1; ... } }` and/or
+ // `union { struct { tag; variant1; } ... }`
+ // (the offsets of variant fields should be identical
+ // between the two for either to be a homogeneous aggregate).
+ let variant_start = total;
+ for variant_idx in variants.indices() {
+ let (variant_result, variant_total) =
+ from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
+
+ result = result.merge(variant_result)?;
+ total = total.max(variant_total);
+ }
+ }
+ }
+
+ // There needs to be no padding.
+ if total != self.size {
+ Err(Heterogeneous)
+ } else {
+ match result {
+ HomogeneousAggregate::Homogeneous(_) => {
+ assert_ne!(total, Size::ZERO);
+ }
+ HomogeneousAggregate::NoData => {
+ assert_eq!(total, Size::ZERO);
+ }
+ }
+ Ok(result)
+ }
+ }
+ }
+ }
+}
+
+/// Information about how to pass an argument to,
+/// or return a value from, a function, under some ABI.
+#[derive(PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct ArgAbi<'a, Ty> {
+ pub layout: TyAndLayout<'a, Ty>,
+
+ /// Dummy argument, which is emitted before the real argument.
+ pub pad: Option<Reg>,
+
+ pub mode: PassMode,
+}
+
+impl<'a, Ty> ArgAbi<'a, Ty> {
+ pub fn new(
+ cx: &impl HasDataLayout,
+ layout: TyAndLayout<'a, Ty>,
+ scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, abi::Scalar, Size) -> ArgAttributes,
+ ) -> Self {
+ let mode = match layout.abi {
+ Abi::Uninhabited => PassMode::Ignore,
+ Abi::Scalar(scalar) => PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO)),
+ Abi::ScalarPair(a, b) => PassMode::Pair(
+ scalar_attrs(&layout, a, Size::ZERO),
+ scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
+ ),
+ Abi::Vector { .. } => PassMode::Direct(ArgAttributes::new()),
+ Abi::Aggregate { .. } => PassMode::Direct(ArgAttributes::new()),
+ };
+ ArgAbi { layout, pad: None, mode }
+ }
+
+ fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
+ let mut attrs = ArgAttributes::new();
+
+ // For non-immediate arguments the callee gets its own copy of
+ // the value on the stack, so there are no aliases. It's also
+ // program-invisible so can't possibly capture
+ attrs
+ .set(ArgAttribute::NoAlias)
+ .set(ArgAttribute::NoCapture)
+ .set(ArgAttribute::NonNull)
+ .set(ArgAttribute::NoUndef);
+ attrs.pointee_size = layout.size;
+ // FIXME(eddyb) We should be doing this, but at least on
+ // i686-pc-windows-msvc, it results in wrong stack offsets.
+ // attrs.pointee_align = Some(layout.align.abi);
+
+ let extra_attrs = layout.is_unsized().then_some(ArgAttributes::new());
+
+ PassMode::Indirect { attrs, extra_attrs, on_stack: false }
+ }
+
+ pub fn make_indirect(&mut self) {
+ match self.mode {
+ PassMode::Direct(_) | PassMode::Pair(_, _) => {}
+ PassMode::Indirect { attrs: _, extra_attrs: None, on_stack: false } => return,
+ _ => panic!("Tried to make {:?} indirect", self.mode),
+ }
+
+ self.mode = Self::indirect_pass_mode(&self.layout);
+ }
+
+ pub fn make_indirect_byval(&mut self) {
+ self.make_indirect();
+ match self.mode {
+ PassMode::Indirect { attrs: _, extra_attrs: _, ref mut on_stack } => {
+ *on_stack = true;
+ }
+ _ => unreachable!(),
+ }
+ }
+
+ pub fn extend_integer_width_to(&mut self, bits: u64) {
+ // Only integers have signedness
+ if let Abi::Scalar(scalar) = self.layout.abi {
+ if let abi::Int(i, signed) = scalar.primitive() {
+ if i.size().bits() < bits {
+ if let PassMode::Direct(ref mut attrs) = self.mode {
+ if signed {
+ attrs.ext(ArgExtension::Sext)
+ } else {
+ attrs.ext(ArgExtension::Zext)
+ };
+ }
+ }
+ }
+ }
+ }
+
+ pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
+ self.mode = PassMode::Cast(target.into());
+ }
+
+ pub fn pad_with(&mut self, reg: Reg) {
+ self.pad = Some(reg);
+ }
+
+ pub fn is_indirect(&self) -> bool {
+ matches!(self.mode, PassMode::Indirect { .. })
+ }
+
+ pub fn is_sized_indirect(&self) -> bool {
+ matches!(self.mode, PassMode::Indirect { attrs: _, extra_attrs: None, on_stack: _ })
+ }
+
+ pub fn is_unsized_indirect(&self) -> bool {
+ matches!(self.mode, PassMode::Indirect { attrs: _, extra_attrs: Some(_), on_stack: _ })
+ }
+
+ pub fn is_ignore(&self) -> bool {
+ matches!(self.mode, PassMode::Ignore)
+ }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub enum Conv {
+ // General language calling conventions, for which every target
+ // should have its own backend (e.g. LLVM) support.
+ C,
+ Rust,
+
+ /// For things unlikely to be called, where smaller caller codegen is
+ /// preferred over raw speed.
+ /// Stronger than just `#[cold]` because `fn` pointers might be incompatible.
+ RustCold,
+
+ // Target-specific calling conventions.
+ ArmAapcs,
+ CCmseNonSecureCall,
+
+ Msp430Intr,
+
+ PtxKernel,
+
+ X86Fastcall,
+ X86Intr,
+ X86Stdcall,
+ X86ThisCall,
+ X86VectorCall,
+
+ X86_64SysV,
+ X86_64Win64,
+
+ AmdGpuKernel,
+ AvrInterrupt,
+ AvrNonBlockingInterrupt,
+}
+
+/// Metadata describing how the arguments to a native function
+/// should be passed in order to respect the native ABI.
+///
+/// I will do my best to describe this structure, but these
+/// comments are reverse-engineered and may be inaccurate. -NDM
+#[derive(PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct FnAbi<'a, Ty> {
+ /// The LLVM types of each argument.
+ pub args: Vec<ArgAbi<'a, Ty>>,
+
+ /// LLVM return type.
+ pub ret: ArgAbi<'a, Ty>,
+
+ pub c_variadic: bool,
+
+ /// The count of non-variadic arguments.
+ ///
+ /// Should only be different from args.len() when c_variadic is true.
+ /// This can be used to know whether an argument is variadic or not.
+ pub fixed_count: usize,
+
+ pub conv: Conv,
+
+ pub can_unwind: bool,
+}
+
+/// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
+#[derive(Copy, Clone, Debug, HashStable_Generic)]
+pub enum AdjustForForeignAbiError {
+ /// Target architecture doesn't support "foreign" (i.e. non-Rust) ABIs.
+ Unsupported { arch: Symbol, abi: spec::abi::Abi },
+}
+
+impl fmt::Display for AdjustForForeignAbiError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self {
+ Self::Unsupported { arch, abi } => {
+ write!(f, "target architecture {:?} does not support `extern {}` ABI", arch, abi)
+ }
+ }
+ }
+}
+
+impl<'a, Ty> FnAbi<'a, Ty> {
+ pub fn adjust_for_foreign_abi<C>(
+ &mut self,
+ cx: &C,
+ abi: spec::abi::Abi,
+ ) -> Result<(), AdjustForForeignAbiError>
+ where
+ Ty: TyAbiInterface<'a, C> + Copy,
+ C: HasDataLayout + HasTargetSpec,
+ {
+ if abi == spec::abi::Abi::X86Interrupt {
+ if let Some(arg) = self.args.first_mut() {
+ arg.make_indirect_byval();
+ }
+ return Ok(());
+ }
+
+ match &cx.target_spec().arch[..] {
+ "x86" => {
+ let flavor = if let spec::abi::Abi::Fastcall { .. }
+ | spec::abi::Abi::Vectorcall { .. } = abi
+ {
+ x86::Flavor::FastcallOrVectorcall
+ } else {
+ x86::Flavor::General
+ };
+ x86::compute_abi_info(cx, self, flavor);
+ }
+ "x86_64" => match abi {
+ spec::abi::Abi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
+ spec::abi::Abi::Win64 { .. } => x86_win64::compute_abi_info(self),
+ _ => {
+ if cx.target_spec().is_like_windows {
+ x86_win64::compute_abi_info(self)
+ } else {
+ x86_64::compute_abi_info(cx, self)
+ }
+ }
+ },
+ "aarch64" => aarch64::compute_abi_info(cx, self),
+ "amdgpu" => amdgpu::compute_abi_info(cx, self),
+ "arm" => arm::compute_abi_info(cx, self),
+ "avr" => avr::compute_abi_info(self),
+ "m68k" => m68k::compute_abi_info(self),
+ "mips" => mips::compute_abi_info(cx, self),
+ "mips64" => mips64::compute_abi_info(cx, self),
+ "powerpc" => powerpc::compute_abi_info(self),
+ "powerpc64" => powerpc64::compute_abi_info(cx, self),
+ "s390x" => s390x::compute_abi_info(cx, self),
+ "msp430" => msp430::compute_abi_info(self),
+ "sparc" => sparc::compute_abi_info(cx, self),
+ "sparc64" => sparc64::compute_abi_info(cx, self),
+ "nvptx" => nvptx::compute_abi_info(self),
+ "nvptx64" => {
+ if cx.target_spec().adjust_abi(abi) == spec::abi::Abi::PtxKernel {
+ nvptx64::compute_ptx_kernel_abi_info(cx, self)
+ } else {
+ nvptx64::compute_abi_info(self)
+ }
+ }
+ "hexagon" => hexagon::compute_abi_info(self),
+ "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
+ "wasm32" | "wasm64" => {
+ if cx.target_spec().adjust_abi(abi) == spec::abi::Abi::Wasm {
+ wasm::compute_wasm_abi_info(self)
+ } else {
+ wasm::compute_c_abi_info(cx, self)
+ }
+ }
+ "asmjs" => wasm::compute_c_abi_info(cx, self),
+ "bpf" => bpf::compute_abi_info(self),
+ arch => {
+ return Err(AdjustForForeignAbiError::Unsupported {
+ arch: Symbol::intern(arch),
+ abi,
+ });
+ }
+ }
+
+ Ok(())
+ }
+}