summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_target/src/spec/wasm32_wasi.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_target/src/spec/wasm32_wasi.rs')
-rw-r--r--compiler/rustc_target/src/spec/wasm32_wasi.rs112
1 files changed, 112 insertions, 0 deletions
diff --git a/compiler/rustc_target/src/spec/wasm32_wasi.rs b/compiler/rustc_target/src/spec/wasm32_wasi.rs
new file mode 100644
index 000000000..280457d68
--- /dev/null
+++ b/compiler/rustc_target/src/spec/wasm32_wasi.rs
@@ -0,0 +1,112 @@
+//! The `wasm32-wasi` target is a new and still (as of April 2019) an
+//! experimental target. The definition in this file is likely to be tweaked
+//! over time and shouldn't be relied on too much.
+//!
+//! The `wasi` target is a proposal to define a standardized set of syscalls
+//! that WebAssembly files can interoperate with. This set of syscalls is
+//! intended to empower WebAssembly binaries with native capabilities such as
+//! filesystem access, network access, etc.
+//!
+//! You can see more about the proposal at <https://wasi.dev>.
+//!
+//! The Rust target definition here is interesting in a few ways. We want to
+//! serve two use cases here with this target:
+//!
+//! * First, we want Rust usage of the target to be as hassle-free as possible,
+//! ideally avoiding the need to configure and install a local wasm32-wasi
+//! toolchain.
+//!
+//! * Second, one of the primary use cases of LLVM's new wasm backend and the
+//! wasm support in LLD is that any compiled language can interoperate with
+//! any other. To that the `wasm32-wasi` target is the first with a viable C
+//! standard library and sysroot common definition, so we want Rust and C/C++
+//! code to interoperate when compiled to `wasm32-unknown-unknown`.
+//!
+//! You'll note, however, that the two goals above are somewhat at odds with one
+//! another. To attempt to solve both use cases in one go we define a target
+//! that (ab)uses the `crt-static` target feature to indicate which one you're
+//! in.
+//!
+//! ## No interop with C required
+//!
+//! By default the `crt-static` target feature is enabled, and when enabled
+//! this means that the bundled version of `libc.a` found in `liblibc.rlib`
+//! is used. This isn't intended really for interoperation with a C because it
+//! may be the case that Rust's bundled C library is incompatible with a
+//! foreign-compiled C library. In this use case, though, we use `rust-lld` and
+//! some copied crt startup object files to ensure that you can download the
+//! wasi target for Rust and you're off to the races, no further configuration
+//! necessary.
+//!
+//! All in all, by default, no external dependencies are required. You can
+//! compile `wasm32-wasi` binaries straight out of the box. You can't, however,
+//! reliably interoperate with C code in this mode (yet).
+//!
+//! ## Interop with C required
+//!
+//! For the second goal we repurpose the `target-feature` flag, meaning that
+//! you'll need to do a few things to have C/Rust code interoperate.
+//!
+//! 1. All Rust code needs to be compiled with `-C target-feature=-crt-static`,
+//! indicating that the bundled C standard library in the Rust sysroot will
+//! not be used.
+//!
+//! 2. If you're using rustc to build a linked artifact then you'll need to
+//! specify `-C linker` to a `clang` binary that supports
+//! `wasm32-wasi` and is configured with the `wasm32-wasi` sysroot. This
+//! will cause Rust code to be linked against the libc.a that the specified
+//! `clang` provides.
+//!
+//! 3. If you're building a staticlib and integrating Rust code elsewhere, then
+//! compiling with `-C target-feature=-crt-static` is all you need to do.
+//!
+//! You can configure the linker via Cargo using the
+//! `CARGO_TARGET_WASM32_WASI_LINKER` env var. Be sure to also set
+//! `CC_wasm32-wasi` if any crates in the dependency graph are using the `cc`
+//! crate.
+//!
+//! ## Remember, this is all in flux
+//!
+//! The wasi target is **very** new in its specification. It's likely going to
+//! be a long effort to get it standardized and stable. We'll be following it as
+//! best we can with this target. Don't start relying on too much here unless
+//! you know what you're getting in to!
+
+use super::wasm_base;
+use super::{crt_objects, LinkerFlavor, LldFlavor, Target};
+
+pub fn target() -> Target {
+ let mut options = wasm_base::options();
+
+ options.os = "wasi".into();
+ options.linker_flavor = LinkerFlavor::Lld(LldFlavor::Wasm);
+ options.add_pre_link_args(LinkerFlavor::Gcc, &["--target=wasm32-wasi"]);
+
+ options.pre_link_objects_fallback = crt_objects::pre_wasi_fallback();
+ options.post_link_objects_fallback = crt_objects::post_wasi_fallback();
+
+ // Right now this is a bit of a workaround but we're currently saying that
+ // the target by default has a static crt which we're taking as a signal
+ // for "use the bundled crt". If that's turned off then the system's crt
+ // will be used, but this means that default usage of this target doesn't
+ // need an external compiler but it's still interoperable with an external
+ // compiler if configured correctly.
+ options.crt_static_default = true;
+ options.crt_static_respected = true;
+
+ // Allow `+crt-static` to create a "cdylib" output which is just a wasm file
+ // without a main function.
+ options.crt_static_allows_dylibs = true;
+
+ // WASI's `sys::args::init` function ignores its arguments; instead,
+ // `args::args()` makes the WASI API calls itself.
+ options.main_needs_argc_argv = false;
+
+ Target {
+ llvm_target: "wasm32-wasi".into(),
+ pointer_width: 32,
+ data_layout: "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-n32:64-S128-ni:1:10:20".into(),
+ arch: "wasm32".into(),
+ options,
+ }
+}