summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/auto_trait.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/auto_trait.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/auto_trait.rs903
1 files changed, 903 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/auto_trait.rs b/compiler/rustc_trait_selection/src/traits/auto_trait.rs
new file mode 100644
index 000000000..294c81d0b
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/auto_trait.rs
@@ -0,0 +1,903 @@
+//! Support code for rustdoc and external tools.
+//! You really don't want to be using this unless you need to.
+
+use super::*;
+
+use crate::infer::region_constraints::{Constraint, RegionConstraintData};
+use crate::infer::InferCtxt;
+use crate::traits::project::ProjectAndUnifyResult;
+use rustc_middle::mir::interpret::ErrorHandled;
+use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{Region, RegionVid, Term};
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+
+use std::collections::hash_map::Entry;
+use std::collections::VecDeque;
+use std::iter;
+
+// FIXME(twk): this is obviously not nice to duplicate like that
+#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
+pub enum RegionTarget<'tcx> {
+ Region(Region<'tcx>),
+ RegionVid(RegionVid),
+}
+
+#[derive(Default, Debug, Clone)]
+pub struct RegionDeps<'tcx> {
+ larger: FxHashSet<RegionTarget<'tcx>>,
+ smaller: FxHashSet<RegionTarget<'tcx>>,
+}
+
+pub enum AutoTraitResult<A> {
+ ExplicitImpl,
+ PositiveImpl(A),
+ NegativeImpl,
+}
+
+#[allow(dead_code)]
+impl<A> AutoTraitResult<A> {
+ fn is_auto(&self) -> bool {
+ matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
+ }
+}
+
+pub struct AutoTraitInfo<'cx> {
+ pub full_user_env: ty::ParamEnv<'cx>,
+ pub region_data: RegionConstraintData<'cx>,
+ pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
+}
+
+pub struct AutoTraitFinder<'tcx> {
+ tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> AutoTraitFinder<'tcx> {
+ pub fn new(tcx: TyCtxt<'tcx>) -> Self {
+ AutoTraitFinder { tcx }
+ }
+
+ /// Makes a best effort to determine whether and under which conditions an auto trait is
+ /// implemented for a type. For example, if you have
+ ///
+ /// ```
+ /// struct Foo<T> { data: Box<T> }
+ /// ```
+ ///
+ /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
+ /// The analysis attempts to account for custom impls as well as other complex cases. This
+ /// result is intended for use by rustdoc and other such consumers.
+ ///
+ /// (Note that due to the coinductive nature of Send, the full and correct result is actually
+ /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
+ /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
+ /// But this is often not the best way to present to the user.)
+ ///
+ /// Warning: The API should be considered highly unstable, and it may be refactored or removed
+ /// in the future.
+ pub fn find_auto_trait_generics<A>(
+ &self,
+ ty: Ty<'tcx>,
+ orig_env: ty::ParamEnv<'tcx>,
+ trait_did: DefId,
+ mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
+ ) -> AutoTraitResult<A> {
+ let tcx = self.tcx;
+
+ let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
+
+ let trait_pred = ty::Binder::dummy(trait_ref);
+
+ let bail_out = tcx.infer_ctxt().enter(|infcx| {
+ let mut selcx = SelectionContext::new(&infcx);
+ let result = selcx.select(&Obligation::new(
+ ObligationCause::dummy(),
+ orig_env,
+ trait_pred.to_poly_trait_predicate(),
+ ));
+
+ match result {
+ Ok(Some(ImplSource::UserDefined(_))) => {
+ debug!(
+ "find_auto_trait_generics({:?}): \
+ manual impl found, bailing out",
+ trait_ref
+ );
+ return true;
+ }
+ _ => {}
+ }
+
+ let result = selcx.select(&Obligation::new(
+ ObligationCause::dummy(),
+ orig_env,
+ trait_pred.to_poly_trait_predicate_negative_polarity(),
+ ));
+
+ match result {
+ Ok(Some(ImplSource::UserDefined(_))) => {
+ debug!(
+ "find_auto_trait_generics({:?}): \
+ manual impl found, bailing out",
+ trait_ref
+ );
+ true
+ }
+ _ => false,
+ }
+ });
+
+ // If an explicit impl exists, it always takes priority over an auto impl
+ if bail_out {
+ return AutoTraitResult::ExplicitImpl;
+ }
+
+ tcx.infer_ctxt().enter(|infcx| {
+ let mut fresh_preds = FxHashSet::default();
+
+ // Due to the way projections are handled by SelectionContext, we need to run
+ // evaluate_predicates twice: once on the original param env, and once on the result of
+ // the first evaluate_predicates call.
+ //
+ // The problem is this: most of rustc, including SelectionContext and traits::project,
+ // are designed to work with a concrete usage of a type (e.g., Vec<u8>
+ // fn<T>() { Vec<T> }. This information will generally never change - given
+ // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
+ // If we're unable to prove that 'T' implements a particular trait, we're done -
+ // there's nothing left to do but error out.
+ //
+ // However, synthesizing an auto trait impl works differently. Here, we start out with
+ // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
+ // with - and progressively discover the conditions we need to fulfill for it to
+ // implement a certain auto trait. This ends up breaking two assumptions made by trait
+ // selection and projection:
+ //
+ // * We can always cache the result of a particular trait selection for the lifetime of
+ // an InfCtxt
+ // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
+ // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
+ //
+ // We fix the first assumption by manually clearing out all of the InferCtxt's caches
+ // in between calls to SelectionContext.select. This allows us to keep all of the
+ // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
+ // them between calls.
+ //
+ // We fix the second assumption by reprocessing the result of our first call to
+ // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
+ // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
+ // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
+ // SelectionContext to return it back to us.
+
+ let Some((new_env, user_env)) = self.evaluate_predicates(
+ &infcx,
+ trait_did,
+ ty,
+ orig_env,
+ orig_env,
+ &mut fresh_preds,
+ false,
+ ) else {
+ return AutoTraitResult::NegativeImpl;
+ };
+
+ let (full_env, full_user_env) = self
+ .evaluate_predicates(
+ &infcx,
+ trait_did,
+ ty,
+ new_env,
+ user_env,
+ &mut fresh_preds,
+ true,
+ )
+ .unwrap_or_else(|| {
+ panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
+ });
+
+ debug!(
+ "find_auto_trait_generics({:?}): fulfilling \
+ with {:?}",
+ trait_ref, full_env
+ );
+ infcx.clear_caches();
+
+ // At this point, we already have all of the bounds we need. FulfillmentContext is used
+ // to store all of the necessary region/lifetime bounds in the InferContext, as well as
+ // an additional sanity check.
+ let mut fulfill = <dyn TraitEngine<'tcx>>::new(tcx);
+ fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
+ let errors = fulfill.select_all_or_error(&infcx);
+
+ if !errors.is_empty() {
+ panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
+ }
+
+ infcx.process_registered_region_obligations(&Default::default(), full_env);
+
+ let region_data = infcx
+ .inner
+ .borrow_mut()
+ .unwrap_region_constraints()
+ .region_constraint_data()
+ .clone();
+
+ let vid_to_region = self.map_vid_to_region(&region_data);
+
+ let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
+
+ AutoTraitResult::PositiveImpl(auto_trait_callback(info))
+ })
+ }
+}
+
+impl<'tcx> AutoTraitFinder<'tcx> {
+ /// The core logic responsible for computing the bounds for our synthesized impl.
+ ///
+ /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
+ /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
+ /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
+ /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
+ /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
+ ///
+ /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
+ /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
+ /// user code. According, it considers all possible ways that a `Predicate` could be met, which
+ /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
+ /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
+ /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
+ /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
+ /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
+ /// like this:
+ /// ```ignore (illustrative)
+ /// impl<T> Send for Foo<T> where T: IntoIterator
+ /// ```
+ /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
+ /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
+ ///
+ /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
+ /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
+ /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
+ /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
+ /// needs to hold.
+ ///
+ /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
+ /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
+ /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
+ /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
+ /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
+ /// else `SelectionContext` will choke on the missing predicates. However, this should never
+ /// show up in the final synthesized generics: we don't want our generated docs page to contain
+ /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
+ /// separate `user_env`, which only holds the predicates that will actually be displayed to the
+ /// user.
+ fn evaluate_predicates(
+ &self,
+ infcx: &InferCtxt<'_, 'tcx>,
+ trait_did: DefId,
+ ty: Ty<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ user_env: ty::ParamEnv<'tcx>,
+ fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
+ only_projections: bool,
+ ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
+ let tcx = infcx.tcx;
+
+ // Don't try to process any nested obligations involving predicates
+ // that are already in the `ParamEnv` (modulo regions): we already
+ // know that they must hold.
+ for predicate in param_env.caller_bounds() {
+ fresh_preds.insert(self.clean_pred(infcx, predicate));
+ }
+
+ let mut select = SelectionContext::new(&infcx);
+
+ let mut already_visited = FxHashSet::default();
+ let mut predicates = VecDeque::new();
+ predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
+ trait_ref: ty::TraitRef {
+ def_id: trait_did,
+ substs: infcx.tcx.mk_substs_trait(ty, &[]),
+ },
+ constness: ty::BoundConstness::NotConst,
+ // Auto traits are positive
+ polarity: ty::ImplPolarity::Positive,
+ }));
+
+ let computed_preds = param_env.caller_bounds().iter();
+ let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
+
+ let mut new_env = param_env;
+ let dummy_cause = ObligationCause::dummy();
+
+ while let Some(pred) = predicates.pop_front() {
+ infcx.clear_caches();
+
+ if !already_visited.insert(pred) {
+ continue;
+ }
+
+ // Call `infcx.resolve_vars_if_possible` to see if we can
+ // get rid of any inference variables.
+ let obligation =
+ infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
+ let result = select.select(&obligation);
+
+ match result {
+ Ok(Some(ref impl_source)) => {
+ // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
+ // we immediately bail out, since it's impossible for us to continue.
+
+ if let ImplSource::UserDefined(ImplSourceUserDefinedData {
+ impl_def_id, ..
+ }) = impl_source
+ {
+ // Blame 'tidy' for the weird bracket placement.
+ if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
+ debug!(
+ "evaluate_nested_obligations: found explicit negative impl\
+ {:?}, bailing out",
+ impl_def_id
+ );
+ return None;
+ }
+ }
+
+ let obligations = impl_source.clone().nested_obligations().into_iter();
+
+ if !self.evaluate_nested_obligations(
+ ty,
+ obligations,
+ &mut user_computed_preds,
+ fresh_preds,
+ &mut predicates,
+ &mut select,
+ only_projections,
+ ) {
+ return None;
+ }
+ }
+ Ok(None) => {}
+ Err(SelectionError::Unimplemented) => {
+ if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
+ already_visited.remove(&pred);
+ self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
+ predicates.push_back(pred);
+ } else {
+ debug!(
+ "evaluate_nested_obligations: `Unimplemented` found, bailing: \
+ {:?} {:?} {:?}",
+ ty,
+ pred,
+ pred.skip_binder().trait_ref.substs
+ );
+ return None;
+ }
+ }
+ _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
+ };
+
+ let normalized_preds = elaborate_predicates(
+ tcx,
+ computed_preds.clone().chain(user_computed_preds.iter().cloned()),
+ )
+ .map(|o| o.predicate);
+ new_env = ty::ParamEnv::new(
+ tcx.mk_predicates(normalized_preds),
+ param_env.reveal(),
+ param_env.constness(),
+ );
+ }
+
+ let final_user_env = ty::ParamEnv::new(
+ tcx.mk_predicates(user_computed_preds.into_iter()),
+ user_env.reveal(),
+ user_env.constness(),
+ );
+ debug!(
+ "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
+ '{:?}'",
+ ty, trait_did, new_env, final_user_env
+ );
+
+ Some((new_env, final_user_env))
+ }
+
+ /// This method is designed to work around the following issue:
+ /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
+ /// progressively building a `ParamEnv` based on the results we get.
+ /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
+ /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
+ ///
+ /// This can lead to a corner case when dealing with region parameters.
+ /// During our selection loop in `evaluate_predicates`, we might end up with
+ /// two trait predicates that differ only in their region parameters:
+ /// one containing a HRTB lifetime parameter, and one containing a 'normal'
+ /// lifetime parameter. For example:
+ /// ```ignore (illustrative)
+ /// T as MyTrait<'a>
+ /// T as MyTrait<'static>
+ /// ```
+ /// If we put both of these predicates in our computed `ParamEnv`, we'll
+ /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
+ ///
+ /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
+ /// Our end goal is to generate a user-visible description of the conditions
+ /// under which a type implements an auto trait. A trait predicate involving
+ /// a HRTB means that the type needs to work with any choice of lifetime,
+ /// not just one specific lifetime (e.g., `'static`).
+ fn add_user_pred(
+ &self,
+ user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
+ new_pred: ty::Predicate<'tcx>,
+ ) {
+ let mut should_add_new = true;
+ user_computed_preds.retain(|&old_pred| {
+ if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
+ (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
+ {
+ if new_trait.def_id() == old_trait.def_id() {
+ let new_substs = new_trait.trait_ref.substs;
+ let old_substs = old_trait.trait_ref.substs;
+
+ if !new_substs.types().eq(old_substs.types()) {
+ // We can't compare lifetimes if the types are different,
+ // so skip checking `old_pred`.
+ return true;
+ }
+
+ for (new_region, old_region) in
+ iter::zip(new_substs.regions(), old_substs.regions())
+ {
+ match (*new_region, *old_region) {
+ // If both predicates have an `ReLateBound` (a HRTB) in the
+ // same spot, we do nothing.
+ (ty::ReLateBound(_, _), ty::ReLateBound(_, _)) => {}
+
+ (ty::ReLateBound(_, _), _) | (_, ty::ReVar(_)) => {
+ // One of these is true:
+ // The new predicate has a HRTB in a spot where the old
+ // predicate does not (if they both had a HRTB, the previous
+ // match arm would have executed). A HRBT is a 'stricter'
+ // bound than anything else, so we want to keep the newer
+ // predicate (with the HRBT) in place of the old predicate.
+ //
+ // OR
+ //
+ // The old predicate has a region variable where the new
+ // predicate has some other kind of region. An region
+ // variable isn't something we can actually display to a user,
+ // so we choose their new predicate (which doesn't have a region
+ // variable).
+ //
+ // In both cases, we want to remove the old predicate,
+ // from `user_computed_preds`, and replace it with the new
+ // one. Having both the old and the new
+ // predicate in a `ParamEnv` would confuse `SelectionContext`.
+ //
+ // We're currently in the predicate passed to 'retain',
+ // so we return `false` to remove the old predicate from
+ // `user_computed_preds`.
+ return false;
+ }
+ (_, ty::ReLateBound(_, _)) | (ty::ReVar(_), _) => {
+ // This is the opposite situation as the previous arm.
+ // One of these is true:
+ //
+ // The old predicate has a HRTB lifetime in a place where the
+ // new predicate does not.
+ //
+ // OR
+ //
+ // The new predicate has a region variable where the old
+ // predicate has some other type of region.
+ //
+ // We want to leave the old
+ // predicate in `user_computed_preds`, and skip adding
+ // new_pred to `user_computed_params`.
+ should_add_new = false
+ }
+ _ => {}
+ }
+ }
+ }
+ }
+ true
+ });
+
+ if should_add_new {
+ user_computed_preds.insert(new_pred);
+ }
+ }
+
+ /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
+ /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
+ fn map_vid_to_region<'cx>(
+ &self,
+ regions: &RegionConstraintData<'cx>,
+ ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
+ let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
+ let mut finished_map = FxHashMap::default();
+
+ for constraint in regions.constraints.keys() {
+ match constraint {
+ &Constraint::VarSubVar(r1, r2) => {
+ {
+ let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
+ deps1.larger.insert(RegionTarget::RegionVid(r2));
+ }
+
+ let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
+ deps2.smaller.insert(RegionTarget::RegionVid(r1));
+ }
+ &Constraint::RegSubVar(region, vid) => {
+ {
+ let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
+ deps1.larger.insert(RegionTarget::RegionVid(vid));
+ }
+
+ let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
+ deps2.smaller.insert(RegionTarget::Region(region));
+ }
+ &Constraint::VarSubReg(vid, region) => {
+ finished_map.insert(vid, region);
+ }
+ &Constraint::RegSubReg(r1, r2) => {
+ {
+ let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
+ deps1.larger.insert(RegionTarget::Region(r2));
+ }
+
+ let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
+ deps2.smaller.insert(RegionTarget::Region(r1));
+ }
+ }
+ }
+
+ while !vid_map.is_empty() {
+ let target = *vid_map.keys().next().expect("Keys somehow empty");
+ let deps = vid_map.remove(&target).expect("Entry somehow missing");
+
+ for smaller in deps.smaller.iter() {
+ for larger in deps.larger.iter() {
+ match (smaller, larger) {
+ (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
+ if let Entry::Occupied(v) = vid_map.entry(*smaller) {
+ let smaller_deps = v.into_mut();
+ smaller_deps.larger.insert(*larger);
+ smaller_deps.larger.remove(&target);
+ }
+
+ if let Entry::Occupied(v) = vid_map.entry(*larger) {
+ let larger_deps = v.into_mut();
+ larger_deps.smaller.insert(*smaller);
+ larger_deps.smaller.remove(&target);
+ }
+ }
+ (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
+ finished_map.insert(v1, r1);
+ }
+ (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
+ // Do nothing; we don't care about regions that are smaller than vids.
+ }
+ (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
+ if let Entry::Occupied(v) = vid_map.entry(*smaller) {
+ let smaller_deps = v.into_mut();
+ smaller_deps.larger.insert(*larger);
+ smaller_deps.larger.remove(&target);
+ }
+
+ if let Entry::Occupied(v) = vid_map.entry(*larger) {
+ let larger_deps = v.into_mut();
+ larger_deps.smaller.insert(*smaller);
+ larger_deps.smaller.remove(&target);
+ }
+ }
+ }
+ }
+ }
+ }
+ finished_map
+ }
+
+ fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
+ self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
+ }
+
+ pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
+ match ty.kind() {
+ ty::Param(_) => true,
+ ty::Projection(p) => self.is_of_param(p.self_ty()),
+ _ => false,
+ }
+ }
+
+ fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
+ if let Term::Ty(ty) = p.term().skip_binder() {
+ matches!(ty.kind(), ty::Projection(proj) if proj == &p.skip_binder().projection_ty)
+ } else {
+ false
+ }
+ }
+
+ fn evaluate_nested_obligations(
+ &self,
+ ty: Ty<'_>,
+ nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
+ computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
+ fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
+ predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
+ select: &mut SelectionContext<'_, 'tcx>,
+ only_projections: bool,
+ ) -> bool {
+ let dummy_cause = ObligationCause::dummy();
+
+ for obligation in nested {
+ let is_new_pred =
+ fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
+
+ // Resolve any inference variables that we can, to help selection succeed
+ let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
+
+ // We only add a predicate as a user-displayable bound if
+ // it involves a generic parameter, and doesn't contain
+ // any inference variables.
+ //
+ // Displaying a bound involving a concrete type (instead of a generic
+ // parameter) would be pointless, since it's always true
+ // (e.g. u8: Copy)
+ // Displaying an inference variable is impossible, since they're
+ // an internal compiler detail without a defined visual representation
+ //
+ // We check this by calling is_of_param on the relevant types
+ // from the various possible predicates
+
+ let bound_predicate = predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(p) => {
+ // Add this to `predicates` so that we end up calling `select`
+ // with it. If this predicate ends up being unimplemented,
+ // then `evaluate_predicates` will handle adding it the `ParamEnv`
+ // if possible.
+ predicates.push_back(bound_predicate.rebind(p));
+ }
+ ty::PredicateKind::Projection(p) => {
+ let p = bound_predicate.rebind(p);
+ debug!(
+ "evaluate_nested_obligations: examining projection predicate {:?}",
+ predicate
+ );
+
+ // As described above, we only want to display
+ // bounds which include a generic parameter but don't include
+ // an inference variable.
+ // Additionally, we check if we've seen this predicate before,
+ // to avoid rendering duplicate bounds to the user.
+ if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
+ && !p.term().skip_binder().has_infer_types()
+ && is_new_pred
+ {
+ debug!(
+ "evaluate_nested_obligations: adding projection predicate \
+ to computed_preds: {:?}",
+ predicate
+ );
+
+ // Under unusual circumstances, we can end up with a self-referential
+ // projection predicate. For example:
+ // <T as MyType>::Value == <T as MyType>::Value
+ // Not only is displaying this to the user pointless,
+ // having it in the ParamEnv will cause an issue if we try to call
+ // poly_project_and_unify_type on the predicate, since this kind of
+ // predicate will normally never end up in a ParamEnv.
+ //
+ // For these reasons, we ignore these weird predicates,
+ // ensuring that we're able to properly synthesize an auto trait impl
+ if self.is_self_referential_projection(p) {
+ debug!(
+ "evaluate_nested_obligations: encountered a projection
+ predicate equating a type with itself! Skipping"
+ );
+ } else {
+ self.add_user_pred(computed_preds, predicate);
+ }
+ }
+
+ // There are three possible cases when we project a predicate:
+ //
+ // 1. We encounter an error. This means that it's impossible for
+ // our current type to implement the auto trait - there's bound
+ // that we could add to our ParamEnv that would 'fix' this kind
+ // of error, as it's not caused by an unimplemented type.
+ //
+ // 2. We successfully project the predicate (Ok(Some(_))), generating
+ // some subobligations. We then process these subobligations
+ // like any other generated sub-obligations.
+ //
+ // 3. We receive an 'ambiguous' result (Ok(None))
+ // If we were actually trying to compile a crate,
+ // we would need to re-process this obligation later.
+ // However, all we care about is finding out what bounds
+ // are needed for our type to implement a particular auto trait.
+ // We've already added this obligation to our computed ParamEnv
+ // above (if it was necessary). Therefore, we don't need
+ // to do any further processing of the obligation.
+ //
+ // Note that we *must* try to project *all* projection predicates
+ // we encounter, even ones without inference variable.
+ // This ensures that we detect any projection errors,
+ // which indicate that our type can *never* implement the given
+ // auto trait. In that case, we will generate an explicit negative
+ // impl (e.g. 'impl !Send for MyType'). However, we don't
+ // try to process any of the generated subobligations -
+ // they contain no new information, since we already know
+ // that our type implements the projected-through trait,
+ // and can lead to weird region issues.
+ //
+ // Normally, we'll generate a negative impl as a result of encountering
+ // a type with an explicit negative impl of an auto trait
+ // (for example, raw pointers have !Send and !Sync impls)
+ // However, through some **interesting** manipulations of the type
+ // system, it's actually possible to write a type that never
+ // implements an auto trait due to a projection error, not a normal
+ // negative impl error. To properly handle this case, we need
+ // to ensure that we catch any potential projection errors,
+ // and turn them into an explicit negative impl for our type.
+ debug!("Projecting and unifying projection predicate {:?}", predicate);
+
+ match project::poly_project_and_unify_type(select, &obligation.with(p)) {
+ ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
+ debug!(
+ "evaluate_nested_obligations: Unable to unify predicate \
+ '{:?}' '{:?}', bailing out",
+ ty, e
+ );
+ return false;
+ }
+ ProjectAndUnifyResult::Recursive => {
+ debug!("evaluate_nested_obligations: recursive projection predicate");
+ return false;
+ }
+ ProjectAndUnifyResult::Holds(v) => {
+ // We only care about sub-obligations
+ // when we started out trying to unify
+ // some inference variables. See the comment above
+ // for more information
+ if p.term().skip_binder().has_infer_types() {
+ if !self.evaluate_nested_obligations(
+ ty,
+ v.into_iter(),
+ computed_preds,
+ fresh_preds,
+ predicates,
+ select,
+ only_projections,
+ ) {
+ return false;
+ }
+ }
+ }
+ ProjectAndUnifyResult::FailedNormalization => {
+ // It's ok not to make progress when have no inference variables -
+ // in that case, we were only performing unification to check if an
+ // error occurred (which would indicate that it's impossible for our
+ // type to implement the auto trait).
+ // However, we should always make progress (either by generating
+ // subobligations or getting an error) when we started off with
+ // inference variables
+ if p.term().skip_binder().has_infer_types() {
+ panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
+ }
+ }
+ }
+ }
+ ty::PredicateKind::RegionOutlives(binder) => {
+ let binder = bound_predicate.rebind(binder);
+ select.infcx().region_outlives_predicate(&dummy_cause, binder)
+ }
+ ty::PredicateKind::TypeOutlives(binder) => {
+ let binder = bound_predicate.rebind(binder);
+ match (
+ binder.no_bound_vars(),
+ binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
+ ) {
+ (None, Some(t_a)) => {
+ select.infcx().register_region_obligation_with_cause(
+ t_a,
+ select.infcx().tcx.lifetimes.re_static,
+ &dummy_cause,
+ );
+ }
+ (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
+ select.infcx().register_region_obligation_with_cause(
+ t_a,
+ r_b,
+ &dummy_cause,
+ );
+ }
+ _ => {}
+ };
+ }
+ ty::PredicateKind::ConstEquate(c1, c2) => {
+ let evaluate = |c: ty::Const<'tcx>| {
+ if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
+ match select.infcx().const_eval_resolve(
+ obligation.param_env,
+ unevaluated,
+ Some(obligation.cause.span),
+ ) {
+ Ok(Some(valtree)) => {
+ Ok(ty::Const::from_value(select.tcx(), valtree, c.ty()))
+ }
+ Ok(None) => {
+ let tcx = self.tcx;
+ let def_id = unevaluated.def.did;
+ let reported = tcx.sess.struct_span_err(tcx.def_span(def_id), &format!("unable to construct a constant value for the unevaluated constant {:?}", unevaluated)).emit();
+
+ Err(ErrorHandled::Reported(reported))
+ }
+ Err(err) => Err(err),
+ }
+ } else {
+ Ok(c)
+ }
+ };
+
+ match (evaluate(c1), evaluate(c2)) {
+ (Ok(c1), Ok(c2)) => {
+ match select
+ .infcx()
+ .at(&obligation.cause, obligation.param_env)
+ .eq(c1, c2)
+ {
+ Ok(_) => (),
+ Err(_) => return false,
+ }
+ }
+ _ => return false,
+ }
+ }
+ // There's not really much we can do with these predicates -
+ // we start out with a `ParamEnv` with no inference variables,
+ // and these don't correspond to adding any new bounds to
+ // the `ParamEnv`.
+ ty::PredicateKind::WellFormed(..)
+ | ty::PredicateKind::ObjectSafe(..)
+ | ty::PredicateKind::ClosureKind(..)
+ | ty::PredicateKind::Subtype(..)
+ | ty::PredicateKind::ConstEvaluatable(..)
+ | ty::PredicateKind::Coerce(..)
+ | ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
+ };
+ }
+ true
+ }
+
+ pub fn clean_pred(
+ &self,
+ infcx: &InferCtxt<'_, 'tcx>,
+ p: ty::Predicate<'tcx>,
+ ) -> ty::Predicate<'tcx> {
+ infcx.freshen(p)
+ }
+}
+
+// Replaces all ReVars in a type with ty::Region's, using the provided map
+pub struct RegionReplacer<'a, 'tcx> {
+ vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
+ tcx: TyCtxt<'tcx>,
+}
+
+impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ (match *r {
+ ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
+ _ => None,
+ })
+ .unwrap_or_else(|| r.super_fold_with(self))
+ }
+}