summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/coherence.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/coherence.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/coherence.rs747
1 files changed, 747 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/coherence.rs b/compiler/rustc_trait_selection/src/traits/coherence.rs
new file mode 100644
index 000000000..1c8cdf4ca
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/coherence.rs
@@ -0,0 +1,747 @@
+//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
+//! how this works.
+//!
+//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
+//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
+
+use crate::infer::outlives::env::OutlivesEnvironment;
+use crate::infer::{CombinedSnapshot, InferOk};
+use crate::traits::select::IntercrateAmbiguityCause;
+use crate::traits::util::impl_subject_and_oblig;
+use crate::traits::SkipLeakCheck;
+use crate::traits::{
+ self, FulfillmentContext, Normalized, Obligation, ObligationCause, PredicateObligation,
+ PredicateObligations, SelectionContext, TraitEngineExt,
+};
+use rustc_data_structures::fx::FxIndexSet;
+use rustc_errors::Diagnostic;
+use rustc_hir::def_id::{DefId, LOCAL_CRATE};
+use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
+use rustc_infer::traits::{util, TraitEngine};
+use rustc_middle::traits::specialization_graph::OverlapMode;
+use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
+use rustc_middle::ty::subst::Subst;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor};
+use rustc_span::symbol::sym;
+use rustc_span::DUMMY_SP;
+use std::fmt::Debug;
+use std::iter;
+use std::ops::ControlFlow;
+
+/// Whether we do the orphan check relative to this crate or
+/// to some remote crate.
+#[derive(Copy, Clone, Debug)]
+enum InCrate {
+ Local,
+ Remote,
+}
+
+#[derive(Debug, Copy, Clone)]
+pub enum Conflict {
+ Upstream,
+ Downstream,
+}
+
+pub struct OverlapResult<'tcx> {
+ pub impl_header: ty::ImplHeader<'tcx>,
+ pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
+
+ /// `true` if the overlap might've been permitted before the shift
+ /// to universes.
+ pub involves_placeholder: bool,
+}
+
+pub fn add_placeholder_note(err: &mut Diagnostic) {
+ err.note(
+ "this behavior recently changed as a result of a bug fix; \
+ see rust-lang/rust#56105 for details",
+ );
+}
+
+/// If there are types that satisfy both impls, invokes `on_overlap`
+/// with a suitably-freshened `ImplHeader` with those types
+/// substituted. Otherwise, invokes `no_overlap`.
+#[instrument(skip(tcx, skip_leak_check, on_overlap, no_overlap), level = "debug")]
+pub fn overlapping_impls<F1, F2, R>(
+ tcx: TyCtxt<'_>,
+ impl1_def_id: DefId,
+ impl2_def_id: DefId,
+ skip_leak_check: SkipLeakCheck,
+ overlap_mode: OverlapMode,
+ on_overlap: F1,
+ no_overlap: F2,
+) -> R
+where
+ F1: FnOnce(OverlapResult<'_>) -> R,
+ F2: FnOnce() -> R,
+{
+ // Before doing expensive operations like entering an inference context, do
+ // a quick check via fast_reject to tell if the impl headers could possibly
+ // unify.
+ let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer };
+ let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
+ let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
+ let may_overlap = match (impl1_ref, impl2_ref) {
+ (Some(a), Some(b)) => iter::zip(a.substs, b.substs)
+ .all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)),
+ (None, None) => {
+ let self_ty1 = tcx.type_of(impl1_def_id);
+ let self_ty2 = tcx.type_of(impl2_def_id);
+ drcx.types_may_unify(self_ty1, self_ty2)
+ }
+ _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
+ };
+
+ if !may_overlap {
+ // Some types involved are definitely different, so the impls couldn't possibly overlap.
+ debug!("overlapping_impls: fast_reject early-exit");
+ return no_overlap();
+ }
+
+ let overlaps = tcx.infer_ctxt().enter(|infcx| {
+ let selcx = &mut SelectionContext::intercrate(&infcx);
+ overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some()
+ });
+
+ if !overlaps {
+ return no_overlap();
+ }
+
+ // In the case where we detect an error, run the check again, but
+ // this time tracking intercrate ambiguity causes for better
+ // diagnostics. (These take time and can lead to false errors.)
+ tcx.infer_ctxt().enter(|infcx| {
+ let selcx = &mut SelectionContext::intercrate(&infcx);
+ selcx.enable_tracking_intercrate_ambiguity_causes();
+ on_overlap(
+ overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap(),
+ )
+ })
+}
+
+fn with_fresh_ty_vars<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ impl_def_id: DefId,
+) -> ty::ImplHeader<'tcx> {
+ let tcx = selcx.tcx();
+ let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
+
+ let header = ty::ImplHeader {
+ impl_def_id,
+ self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs),
+ trait_ref: tcx.bound_impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)),
+ predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
+ };
+
+ let Normalized { value: mut header, obligations } =
+ traits::normalize(selcx, param_env, ObligationCause::dummy(), header);
+
+ header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
+ header
+}
+
+/// Can both impl `a` and impl `b` be satisfied by a common type (including
+/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
+fn overlap<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ skip_leak_check: SkipLeakCheck,
+ impl1_def_id: DefId,
+ impl2_def_id: DefId,
+ overlap_mode: OverlapMode,
+) -> Option<OverlapResult<'tcx>> {
+ debug!(
+ "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})",
+ impl1_def_id, impl2_def_id, overlap_mode
+ );
+
+ selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
+ overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot)
+ })
+}
+
+fn overlap_within_probe<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ impl1_def_id: DefId,
+ impl2_def_id: DefId,
+ overlap_mode: OverlapMode,
+ snapshot: &CombinedSnapshot<'_, 'tcx>,
+) -> Option<OverlapResult<'tcx>> {
+ let infcx = selcx.infcx();
+
+ if overlap_mode.use_negative_impl() {
+ if negative_impl(selcx, impl1_def_id, impl2_def_id)
+ || negative_impl(selcx, impl2_def_id, impl1_def_id)
+ {
+ return None;
+ }
+ }
+
+ // For the purposes of this check, we don't bring any placeholder
+ // types into scope; instead, we replace the generic types with
+ // fresh type variables, and hence we do our evaluations in an
+ // empty environment.
+ let param_env = ty::ParamEnv::empty();
+
+ let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
+ let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
+
+ let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?;
+ debug!("overlap: unification check succeeded");
+
+ if overlap_mode.use_implicit_negative() {
+ if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) {
+ return None;
+ }
+ }
+
+ // We disable the leak when when creating the `snapshot` by using
+ // `infcx.probe_maybe_disable_leak_check`.
+ if infcx.leak_check(true, snapshot).is_err() {
+ debug!("overlap: leak check failed");
+ return None;
+ }
+
+ let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
+ debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
+
+ let involves_placeholder =
+ matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
+
+ let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header);
+ Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
+}
+
+fn equate_impl_headers<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ impl1_header: &ty::ImplHeader<'tcx>,
+ impl2_header: &ty::ImplHeader<'tcx>,
+) -> Option<PredicateObligations<'tcx>> {
+ // Do `a` and `b` unify? If not, no overlap.
+ debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header);
+ selcx
+ .infcx()
+ .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
+ .eq_impl_headers(impl1_header, impl2_header)
+ .map(|infer_ok| infer_ok.obligations)
+ .ok()
+}
+
+/// Given impl1 and impl2 check if both impls can be satisfied by a common type (including
+/// where-clauses) If so, return false, otherwise return true, they are disjoint.
+fn implicit_negative<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ impl1_header: &ty::ImplHeader<'tcx>,
+ impl2_header: ty::ImplHeader<'tcx>,
+ obligations: PredicateObligations<'tcx>,
+) -> bool {
+ // There's no overlap if obligations are unsatisfiable or if the obligation negated is
+ // satisfied.
+ //
+ // For example, given these two impl headers:
+ //
+ // `impl<'a> From<&'a str> for Box<dyn Error>`
+ // `impl<E> From<E> for Box<dyn Error> where E: Error`
+ //
+ // So we have:
+ //
+ // `Box<dyn Error>: From<&'?a str>`
+ // `Box<dyn Error>: From<?E>`
+ //
+ // After equating the two headers:
+ //
+ // `Box<dyn Error> = Box<dyn Error>`
+ // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`.
+ //
+ // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't
+ // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because
+ // at some point an impl for `&'?a str: Error` could be added.
+ debug!(
+ "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})",
+ impl1_header, impl2_header, obligations
+ );
+ let infcx = selcx.infcx();
+ let opt_failing_obligation = impl1_header
+ .predicates
+ .iter()
+ .copied()
+ .chain(impl2_header.predicates)
+ .map(|p| infcx.resolve_vars_if_possible(p))
+ .map(|p| Obligation {
+ cause: ObligationCause::dummy(),
+ param_env,
+ recursion_depth: 0,
+ predicate: p,
+ })
+ .chain(obligations)
+ .find(|o| !selcx.predicate_may_hold_fatal(o));
+
+ if let Some(failing_obligation) = opt_failing_obligation {
+ debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
+ true
+ } else {
+ false
+ }
+}
+
+/// Given impl1 and impl2 check if both impls are never satisfied by a common type (including
+/// where-clauses) If so, return true, they are disjoint and false otherwise.
+fn negative_impl<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ impl1_def_id: DefId,
+ impl2_def_id: DefId,
+) -> bool {
+ debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
+ let tcx = selcx.infcx().tcx;
+
+ // Create an infcx, taking the predicates of impl1 as assumptions:
+ tcx.infer_ctxt().enter(|infcx| {
+ // create a parameter environment corresponding to a (placeholder) instantiation of impl1
+ let impl_env = tcx.param_env(impl1_def_id);
+ let subject1 = match traits::fully_normalize(
+ &infcx,
+ FulfillmentContext::new(),
+ ObligationCause::dummy(),
+ impl_env,
+ tcx.impl_subject(impl1_def_id),
+ ) {
+ Ok(s) => s,
+ Err(err) => bug!("failed to fully normalize {:?}: {:?}", impl1_def_id, err),
+ };
+
+ // Attempt to prove that impl2 applies, given all of the above.
+ let selcx = &mut SelectionContext::new(&infcx);
+ let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
+ let (subject2, obligations) =
+ impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs);
+
+ !equate(&infcx, impl_env, subject1, subject2, obligations)
+ })
+}
+
+fn equate<'cx, 'tcx>(
+ infcx: &InferCtxt<'cx, 'tcx>,
+ impl_env: ty::ParamEnv<'tcx>,
+ subject1: ImplSubject<'tcx>,
+ subject2: ImplSubject<'tcx>,
+ obligations: impl Iterator<Item = PredicateObligation<'tcx>>,
+) -> bool {
+ // do the impls unify? If not, not disjoint.
+ let Ok(InferOk { obligations: more_obligations, .. }) =
+ infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2)
+ else {
+ debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2);
+ return true;
+ };
+
+ let selcx = &mut SelectionContext::new(&infcx);
+ let opt_failing_obligation = obligations
+ .into_iter()
+ .chain(more_obligations)
+ .find(|o| negative_impl_exists(selcx, impl_env, o));
+
+ if let Some(failing_obligation) = opt_failing_obligation {
+ debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
+ false
+ } else {
+ true
+ }
+}
+
+/// Try to prove that a negative impl exist for the given obligation and its super predicates.
+#[instrument(level = "debug", skip(selcx))]
+fn negative_impl_exists<'cx, 'tcx>(
+ selcx: &SelectionContext<'cx, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ o: &PredicateObligation<'tcx>,
+) -> bool {
+ let infcx = &selcx.infcx().fork();
+
+ if resolve_negative_obligation(infcx, param_env, o) {
+ return true;
+ }
+
+ // Try to prove a negative obligation exists for super predicates
+ for o in util::elaborate_predicates(infcx.tcx, iter::once(o.predicate)) {
+ if resolve_negative_obligation(infcx, param_env, &o) {
+ return true;
+ }
+ }
+
+ false
+}
+
+#[instrument(level = "debug", skip(infcx))]
+fn resolve_negative_obligation<'cx, 'tcx>(
+ infcx: &InferCtxt<'cx, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ o: &PredicateObligation<'tcx>,
+) -> bool {
+ let tcx = infcx.tcx;
+
+ let Some(o) = o.flip_polarity(tcx) else {
+ return false;
+ };
+
+ let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
+ fulfillment_cx.register_predicate_obligation(infcx, o);
+
+ let errors = fulfillment_cx.select_all_or_error(infcx);
+
+ if !errors.is_empty() {
+ return false;
+ }
+
+ // FIXME -- also add "assumed to be well formed" types into the `outlives_env`
+ let outlives_env = OutlivesEnvironment::new(param_env);
+ infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env);
+
+ infcx.resolve_regions(&outlives_env).is_empty()
+}
+
+pub fn trait_ref_is_knowable<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+) -> Option<Conflict> {
+ debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
+ if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
+ // A downstream or cousin crate is allowed to implement some
+ // substitution of this trait-ref.
+ return Some(Conflict::Downstream);
+ }
+
+ if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
+ // This is a local or fundamental trait, so future-compatibility
+ // is no concern. We know that downstream/cousin crates are not
+ // allowed to implement a substitution of this trait ref, which
+ // means impls could only come from dependencies of this crate,
+ // which we already know about.
+ return None;
+ }
+
+ // This is a remote non-fundamental trait, so if another crate
+ // can be the "final owner" of a substitution of this trait-ref,
+ // they are allowed to implement it future-compatibly.
+ //
+ // However, if we are a final owner, then nobody else can be,
+ // and if we are an intermediate owner, then we don't care
+ // about future-compatibility, which means that we're OK if
+ // we are an owner.
+ if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
+ debug!("trait_ref_is_knowable: orphan check passed");
+ None
+ } else {
+ debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
+ Some(Conflict::Upstream)
+ }
+}
+
+pub fn trait_ref_is_local_or_fundamental<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+) -> bool {
+ trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
+}
+
+pub enum OrphanCheckErr<'tcx> {
+ NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
+ UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
+}
+
+/// Checks the coherence orphan rules. `impl_def_id` should be the
+/// `DefId` of a trait impl. To pass, either the trait must be local, or else
+/// two conditions must be satisfied:
+///
+/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
+/// 2. Some local type must appear in `Self`.
+pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
+ debug!("orphan_check({:?})", impl_def_id);
+
+ // We only except this routine to be invoked on implementations
+ // of a trait, not inherent implementations.
+ let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
+ debug!("orphan_check: trait_ref={:?}", trait_ref);
+
+ // If the *trait* is local to the crate, ok.
+ if trait_ref.def_id.is_local() {
+ debug!("trait {:?} is local to current crate", trait_ref.def_id);
+ return Ok(());
+ }
+
+ orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
+}
+
+/// Checks whether a trait-ref is potentially implementable by a crate.
+///
+/// The current rule is that a trait-ref orphan checks in a crate C:
+///
+/// 1. Order the parameters in the trait-ref in subst order - Self first,
+/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
+/// 2. Of these type parameters, there is at least one type parameter
+/// in which, walking the type as a tree, you can reach a type local
+/// to C where all types in-between are fundamental types. Call the
+/// first such parameter the "local key parameter".
+/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
+/// going through `Box`, which is fundamental.
+/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
+/// the same reason.
+/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
+/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
+/// the local type and the type parameter.
+/// 3. Before this local type, no generic type parameter of the impl must
+/// be reachable through fundamental types.
+/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
+/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
+/// reachable through the fundamental type `Box`.
+/// 4. Every type in the local key parameter not known in C, going
+/// through the parameter's type tree, must appear only as a subtree of
+/// a type local to C, with only fundamental types between the type
+/// local to C and the local key parameter.
+/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
+/// is bad, because the only local type with `T` as a subtree is
+/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
+/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
+/// the second occurrence of `T` is not a subtree of *any* local type.
+/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
+/// `LocalType<Vec<T>>`, which is local and has no types between it and
+/// the type parameter.
+///
+/// The orphan rules actually serve several different purposes:
+///
+/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
+/// every type local to one crate is unknown in the other) can't implement
+/// the same trait-ref. This follows because it can be seen that no such
+/// type can orphan-check in 2 such crates.
+///
+/// To check that a local impl follows the orphan rules, we check it in
+/// InCrate::Local mode, using type parameters for the "generic" types.
+///
+/// 2. They ground negative reasoning for coherence. If a user wants to
+/// write both a conditional blanket impl and a specific impl, we need to
+/// make sure they do not overlap. For example, if we write
+/// ```ignore (illustrative)
+/// impl<T> IntoIterator for Vec<T>
+/// impl<T: Iterator> IntoIterator for T
+/// ```
+/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
+/// We can observe that this holds in the current crate, but we need to make
+/// sure this will also hold in all unknown crates (both "independent" crates,
+/// which we need for link-safety, and also child crates, because we don't want
+/// child crates to get error for impl conflicts in a *dependency*).
+///
+/// For that, we only allow negative reasoning if, for every assignment to the
+/// inference variables, every unknown crate would get an orphan error if they
+/// try to implement this trait-ref. To check for this, we use InCrate::Remote
+/// mode. That is sound because we already know all the impls from known crates.
+///
+/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
+/// add "non-blanket" impls without breaking negative reasoning in dependent
+/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
+///
+/// For that, we only a allow crate to perform negative reasoning on
+/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
+///
+/// Because we never perform negative reasoning generically (coherence does
+/// not involve type parameters), this can be interpreted as doing the full
+/// orphan check (using InCrate::Local mode), substituting non-local known
+/// types for all inference variables.
+///
+/// This allows for crates to future-compatibly add impls as long as they
+/// can't apply to types with a key parameter in a child crate - applying
+/// the rules, this basically means that every type parameter in the impl
+/// must appear behind a non-fundamental type (because this is not a
+/// type-system requirement, crate owners might also go for "semantic
+/// future-compatibility" involving things such as sealed traits, but
+/// the above requirement is sufficient, and is necessary in "open world"
+/// cases).
+///
+/// Note that this function is never called for types that have both type
+/// parameters and inference variables.
+fn orphan_check_trait_ref<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::TraitRef<'tcx>,
+ in_crate: InCrate,
+) -> Result<(), OrphanCheckErr<'tcx>> {
+ debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
+
+ if trait_ref.needs_infer() && trait_ref.needs_subst() {
+ bug!(
+ "can't orphan check a trait ref with both params and inference variables {:?}",
+ trait_ref
+ );
+ }
+
+ let mut checker = OrphanChecker::new(tcx, in_crate);
+ match trait_ref.visit_with(&mut checker) {
+ ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
+ ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
+ // Does there exist some local type after the `ParamTy`.
+ checker.search_first_local_ty = true;
+ if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
+ trait_ref.visit_with(&mut checker).break_value()
+ {
+ Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
+ } else {
+ Err(OrphanCheckErr::UncoveredTy(ty, None))
+ }
+ }
+ ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
+ }
+}
+
+struct OrphanChecker<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ in_crate: InCrate,
+ in_self_ty: bool,
+ /// Ignore orphan check failures and exclusively search for the first
+ /// local type.
+ search_first_local_ty: bool,
+ non_local_tys: Vec<(Ty<'tcx>, bool)>,
+}
+
+impl<'tcx> OrphanChecker<'tcx> {
+ fn new(tcx: TyCtxt<'tcx>, in_crate: InCrate) -> Self {
+ OrphanChecker {
+ tcx,
+ in_crate,
+ in_self_ty: true,
+ search_first_local_ty: false,
+ non_local_tys: Vec::new(),
+ }
+ }
+
+ fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
+ self.non_local_tys.push((t, self.in_self_ty));
+ ControlFlow::CONTINUE
+ }
+
+ fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
+ if self.search_first_local_ty {
+ ControlFlow::CONTINUE
+ } else {
+ ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
+ }
+ }
+
+ fn def_id_is_local(&mut self, def_id: DefId) -> bool {
+ match self.in_crate {
+ InCrate::Local => def_id.is_local(),
+ InCrate::Remote => false,
+ }
+ }
+}
+
+enum OrphanCheckEarlyExit<'tcx> {
+ ParamTy(Ty<'tcx>),
+ LocalTy(Ty<'tcx>),
+}
+
+impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> {
+ type BreakTy = OrphanCheckEarlyExit<'tcx>;
+ fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
+ ControlFlow::CONTINUE
+ }
+
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ let result = match *ty.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(..)
+ | ty::Uint(..)
+ | ty::Float(..)
+ | ty::Str
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::Array(..)
+ | ty::Slice(..)
+ | ty::RawPtr(..)
+ | ty::Never
+ | ty::Tuple(..)
+ | ty::Projection(..) => self.found_non_local_ty(ty),
+
+ ty::Param(..) => self.found_param_ty(ty),
+
+ ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
+ InCrate::Local => self.found_non_local_ty(ty),
+ // The inference variable might be unified with a local
+ // type in that remote crate.
+ InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
+ },
+
+ // For fundamental types, we just look inside of them.
+ ty::Ref(_, ty, _) => ty.visit_with(self),
+ ty::Adt(def, substs) => {
+ if self.def_id_is_local(def.did()) {
+ ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
+ } else if def.is_fundamental() {
+ substs.visit_with(self)
+ } else {
+ self.found_non_local_ty(ty)
+ }
+ }
+ ty::Foreign(def_id) => {
+ if self.def_id_is_local(def_id) {
+ ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
+ } else {
+ self.found_non_local_ty(ty)
+ }
+ }
+ ty::Dynamic(tt, ..) => {
+ let principal = tt.principal().map(|p| p.def_id());
+ if principal.map_or(false, |p| self.def_id_is_local(p)) {
+ ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
+ } else {
+ self.found_non_local_ty(ty)
+ }
+ }
+ ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
+ ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => {
+ self.tcx.sess.delay_span_bug(
+ DUMMY_SP,
+ format!("ty_is_local invoked on closure or generator: {:?}", ty),
+ );
+ ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
+ }
+ ty::Opaque(..) => {
+ // This merits some explanation.
+ // Normally, opaque types are not involved when performing
+ // coherence checking, since it is illegal to directly
+ // implement a trait on an opaque type. However, we might
+ // end up looking at an opaque type during coherence checking
+ // if an opaque type gets used within another type (e.g. as
+ // the type of a field) when checking for auto trait or `Sized`
+ // impls. This requires us to decide whether or not an opaque
+ // type should be considered 'local' or not.
+ //
+ // We choose to treat all opaque types as non-local, even
+ // those that appear within the same crate. This seems
+ // somewhat surprising at first, but makes sense when
+ // you consider that opaque types are supposed to hide
+ // the underlying type *within the same crate*. When an
+ // opaque type is used from outside the module
+ // where it is declared, it should be impossible to observe
+ // anything about it other than the traits that it implements.
+ //
+ // The alternative would be to look at the underlying type
+ // to determine whether or not the opaque type itself should
+ // be considered local. However, this could make it a breaking change
+ // to switch the underlying ('defining') type from a local type
+ // to a remote type. This would violate the rule that opaque
+ // types should be completely opaque apart from the traits
+ // that they implement, so we don't use this behavior.
+ self.found_non_local_ty(ty)
+ }
+ };
+ // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
+ // the first type we visit is always the self type.
+ self.in_self_ty = false;
+ result
+ }
+
+ // FIXME: Constants should participate in orphan checking.
+ fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ ControlFlow::CONTINUE
+ }
+}