summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/const_evaluatable.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/const_evaluatable.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/const_evaluatable.rs308
1 files changed, 308 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/const_evaluatable.rs b/compiler/rustc_trait_selection/src/traits/const_evaluatable.rs
new file mode 100644
index 000000000..254bc4ab6
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/const_evaluatable.rs
@@ -0,0 +1,308 @@
+//! Checking that constant values used in types can be successfully evaluated.
+//!
+//! For concrete constants, this is fairly simple as we can just try and evaluate it.
+//!
+//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
+//! this is not as easy.
+//!
+//! In this case we try to build an abstract representation of this constant using
+//! `thir_abstract_const` which can then be checked for structural equality with other
+//! generic constants mentioned in the `caller_bounds` of the current environment.
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::def::DefKind;
+use rustc_infer::infer::InferCtxt;
+use rustc_middle::mir::interpret::ErrorHandled;
+use rustc_middle::ty::abstract_const::{
+ walk_abstract_const, AbstractConst, FailureKind, Node, NotConstEvaluatable,
+};
+use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
+use rustc_session::lint;
+use rustc_span::Span;
+
+use std::iter;
+use std::ops::ControlFlow;
+
+pub struct ConstUnifyCtxt<'tcx> {
+ pub tcx: TyCtxt<'tcx>,
+ pub param_env: ty::ParamEnv<'tcx>,
+}
+
+impl<'tcx> ConstUnifyCtxt<'tcx> {
+ // Substitutes generics repeatedly to allow AbstractConsts to unify where a
+ // ConstKind::Unevaluated could be turned into an AbstractConst that would unify e.g.
+ // Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
+ #[inline]
+ #[instrument(skip(self), level = "debug")]
+ fn try_replace_substs_in_root(
+ &self,
+ mut abstr_const: AbstractConst<'tcx>,
+ ) -> Option<AbstractConst<'tcx>> {
+ while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
+ match AbstractConst::from_const(self.tcx, ct) {
+ Ok(Some(act)) => abstr_const = act,
+ Ok(None) => break,
+ Err(_) => return None,
+ }
+ }
+
+ Some(abstr_const)
+ }
+
+ /// Tries to unify two abstract constants using structural equality.
+ #[instrument(skip(self), level = "debug")]
+ pub fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
+ let a = if let Some(a) = self.try_replace_substs_in_root(a) {
+ a
+ } else {
+ return true;
+ };
+
+ let b = if let Some(b) = self.try_replace_substs_in_root(b) {
+ b
+ } else {
+ return true;
+ };
+
+ let a_root = a.root(self.tcx);
+ let b_root = b.root(self.tcx);
+ debug!(?a_root, ?b_root);
+
+ match (a_root, b_root) {
+ (Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
+ let a_ct = a_ct.eval(self.tcx, self.param_env);
+ debug!("a_ct evaluated: {:?}", a_ct);
+ let b_ct = b_ct.eval(self.tcx, self.param_env);
+ debug!("b_ct evaluated: {:?}", b_ct);
+
+ if a_ct.ty() != b_ct.ty() {
+ return false;
+ }
+
+ match (a_ct.kind(), b_ct.kind()) {
+ // We can just unify errors with everything to reduce the amount of
+ // emitted errors here.
+ (ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
+ (ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
+ a_param == b_param
+ }
+ (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
+ // If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
+ // we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
+ // means that we only allow inference variables if they are equal.
+ (ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
+ // We expand generic anonymous constants at the start of this function, so this
+ // branch should only be taking when dealing with associated constants, at
+ // which point directly comparing them seems like the desired behavior.
+ //
+ // FIXME(generic_const_exprs): This isn't actually the case.
+ // We also take this branch for concrete anonymous constants and
+ // expand generic anonymous constants with concrete substs.
+ (ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
+ a_uv == b_uv
+ }
+ // FIXME(generic_const_exprs): We may want to either actually try
+ // to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
+ // this, for now we just return false here.
+ _ => false,
+ }
+ }
+ (Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
+ self.try_unify(a.subtree(al), b.subtree(bl))
+ && self.try_unify(a.subtree(ar), b.subtree(br))
+ }
+ (Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
+ self.try_unify(a.subtree(av), b.subtree(bv))
+ }
+ (Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
+ if a_args.len() == b_args.len() =>
+ {
+ self.try_unify(a.subtree(a_f), b.subtree(b_f))
+ && iter::zip(a_args, b_args)
+ .all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
+ }
+ (Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
+ if (a_ty == b_ty) && (a_kind == b_kind) =>
+ {
+ self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
+ }
+ // use this over `_ => false` to make adding variants to `Node` less error prone
+ (Node::Cast(..), _)
+ | (Node::FunctionCall(..), _)
+ | (Node::UnaryOp(..), _)
+ | (Node::Binop(..), _)
+ | (Node::Leaf(..), _) => false,
+ }
+ }
+}
+
+#[instrument(skip(tcx), level = "debug")]
+pub fn try_unify_abstract_consts<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ (a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>),
+ param_env: ty::ParamEnv<'tcx>,
+) -> bool {
+ (|| {
+ if let Some(a) = AbstractConst::new(tcx, a)? {
+ if let Some(b) = AbstractConst::new(tcx, b)? {
+ let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
+ return Ok(const_unify_ctxt.try_unify(a, b));
+ }
+ }
+
+ Ok(false)
+ })()
+ .unwrap_or_else(|_: ErrorGuaranteed| true)
+ // FIXME(generic_const_exprs): We should instead have this
+ // method return the resulting `ty::Const` and return `ConstKind::Error`
+ // on `ErrorGuaranteed`.
+}
+
+/// Check if a given constant can be evaluated.
+#[instrument(skip(infcx), level = "debug")]
+pub fn is_const_evaluatable<'cx, 'tcx>(
+ infcx: &InferCtxt<'cx, 'tcx>,
+ uv: ty::Unevaluated<'tcx, ()>,
+ param_env: ty::ParamEnv<'tcx>,
+ span: Span,
+) -> Result<(), NotConstEvaluatable> {
+ let tcx = infcx.tcx;
+
+ if tcx.features().generic_const_exprs {
+ if let Some(ct) = AbstractConst::new(tcx, uv)? {
+ if satisfied_from_param_env(tcx, ct, param_env)? {
+ return Ok(());
+ }
+ match ct.unify_failure_kind(tcx) {
+ FailureKind::MentionsInfer => {
+ return Err(NotConstEvaluatable::MentionsInfer);
+ }
+ FailureKind::MentionsParam => {
+ return Err(NotConstEvaluatable::MentionsParam);
+ }
+ // returned below
+ FailureKind::Concrete => {}
+ }
+ }
+ let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span));
+ match concrete {
+ Err(ErrorHandled::TooGeneric) => {
+ Err(NotConstEvaluatable::Error(infcx.tcx.sess.delay_span_bug(
+ span,
+ format!("Missing value for constant, but no error reported?"),
+ )))
+ }
+ Err(ErrorHandled::Linted) => {
+ let reported = infcx
+ .tcx
+ .sess
+ .delay_span_bug(span, "constant in type had error reported as lint");
+ Err(NotConstEvaluatable::Error(reported))
+ }
+ Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
+ Ok(_) => Ok(()),
+ }
+ } else {
+ // FIXME: We should only try to evaluate a given constant here if it is fully concrete
+ // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
+ //
+ // We previously did not check this, so we only emit a future compat warning if
+ // const evaluation succeeds and the given constant is still polymorphic for now
+ // and hopefully soon change this to an error.
+ //
+ // See #74595 for more details about this.
+ let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span));
+
+ match concrete {
+ // If we're evaluating a foreign constant, under a nightly compiler without generic
+ // const exprs, AND it would've passed if that expression had been evaluated with
+ // generic const exprs, then suggest using generic const exprs.
+ Err(_) if tcx.sess.is_nightly_build()
+ && let Ok(Some(ct)) = AbstractConst::new(tcx, uv)
+ && satisfied_from_param_env(tcx, ct, param_env) == Ok(true) => {
+ tcx.sess
+ .struct_span_fatal(
+ // Slightly better span than just using `span` alone
+ if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def.did) } else { span },
+ "failed to evaluate generic const expression",
+ )
+ .note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
+ .span_suggestion_verbose(
+ rustc_span::DUMMY_SP,
+ "consider enabling this feature",
+ "#![feature(generic_const_exprs)]\n",
+ rustc_errors::Applicability::MaybeIncorrect,
+ )
+ .emit()
+ }
+
+ Err(ErrorHandled::TooGeneric) => Err(if uv.has_infer_types_or_consts() {
+ NotConstEvaluatable::MentionsInfer
+ } else if uv.has_param_types_or_consts() {
+ NotConstEvaluatable::MentionsParam
+ } else {
+ let guar = infcx.tcx.sess.delay_span_bug(span, format!("Missing value for constant, but no error reported?"));
+ NotConstEvaluatable::Error(guar)
+ }),
+ Err(ErrorHandled::Linted) => {
+ let reported =
+ infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
+ Err(NotConstEvaluatable::Error(reported))
+ }
+ Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
+ Ok(_) => {
+ if uv.substs.has_param_types_or_consts() {
+ assert!(matches!(infcx.tcx.def_kind(uv.def.did), DefKind::AnonConst));
+ let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def);
+
+ if mir_body.is_polymorphic {
+ let Some(local_def_id) = uv.def.did.as_local() else { return Ok(()) };
+ tcx.struct_span_lint_hir(
+ lint::builtin::CONST_EVALUATABLE_UNCHECKED,
+ tcx.hir().local_def_id_to_hir_id(local_def_id),
+ span,
+ |err| {
+ err.build("cannot use constants which depend on generic parameters in types").emit();
+ })
+ }
+ }
+
+ Ok(())
+ },
+ }
+ }
+}
+
+#[instrument(skip(tcx), level = "debug")]
+fn satisfied_from_param_env<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ct: AbstractConst<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+) -> Result<bool, NotConstEvaluatable> {
+ for pred in param_env.caller_bounds() {
+ match pred.kind().skip_binder() {
+ ty::PredicateKind::ConstEvaluatable(uv) => {
+ if let Some(b_ct) = AbstractConst::new(tcx, uv)? {
+ let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
+
+ // Try to unify with each subtree in the AbstractConst to allow for
+ // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
+ // predicate for `(N + 1) * 2`
+ let result = walk_abstract_const(tcx, b_ct, |b_ct| {
+ match const_unify_ctxt.try_unify(ct, b_ct) {
+ true => ControlFlow::BREAK,
+ false => ControlFlow::CONTINUE,
+ }
+ });
+
+ if let ControlFlow::Break(()) = result {
+ debug!("is_const_evaluatable: abstract_const ~~> ok");
+ return Ok(true);
+ }
+ }
+ }
+ _ => {} // don't care
+ }
+ }
+
+ Ok(false)
+}