summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs3119
1 files changed, 3119 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs b/compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs
new file mode 100644
index 000000000..219413121
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs
@@ -0,0 +1,3119 @@
+use super::{
+ EvaluationResult, Obligation, ObligationCause, ObligationCauseCode, PredicateObligation,
+ SelectionContext,
+};
+
+use crate::autoderef::Autoderef;
+use crate::infer::InferCtxt;
+use crate::traits::normalize_to;
+
+use hir::HirId;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::{
+ error_code, pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder,
+ ErrorGuaranteed, MultiSpan, Style,
+};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{AsyncGeneratorKind, GeneratorKind, Node};
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_middle::hir::map;
+use rustc_middle::ty::{
+ self, suggest_arbitrary_trait_bound, suggest_constraining_type_param, AdtKind, DefIdTree,
+ GeneratorDiagnosticData, GeneratorInteriorTypeCause, Infer, InferTy, IsSuggestable,
+ ProjectionPredicate, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
+ TypeVisitable,
+};
+use rustc_middle::ty::{TypeAndMut, TypeckResults};
+use rustc_session::Limit;
+use rustc_span::def_id::LOCAL_CRATE;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{BytePos, DesugaringKind, ExpnKind, Span, DUMMY_SP};
+use rustc_target::spec::abi;
+use std::fmt;
+
+use super::InferCtxtPrivExt;
+use crate::infer::InferCtxtExt as _;
+use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
+use rustc_middle::ty::print::with_no_trimmed_paths;
+
+#[derive(Debug)]
+pub enum GeneratorInteriorOrUpvar {
+ // span of interior type
+ Interior(Span),
+ // span of upvar
+ Upvar(Span),
+}
+
+// This type provides a uniform interface to retrieve data on generators, whether it originated from
+// the local crate being compiled or from a foreign crate.
+#[derive(Debug)]
+pub enum GeneratorData<'tcx, 'a> {
+ Local(&'a TypeckResults<'tcx>),
+ Foreign(&'tcx GeneratorDiagnosticData<'tcx>),
+}
+
+impl<'tcx, 'a> GeneratorData<'tcx, 'a> {
+ // Try to get information about variables captured by the generator that matches a type we are
+ // looking for with `ty_matches` function. We uses it to find upvar which causes a failure to
+ // meet an obligation
+ fn try_get_upvar_span<F>(
+ &self,
+ infer_context: &InferCtxt<'a, 'tcx>,
+ generator_did: DefId,
+ ty_matches: F,
+ ) -> Option<GeneratorInteriorOrUpvar>
+ where
+ F: Fn(ty::Binder<'tcx, Ty<'tcx>>) -> bool,
+ {
+ match self {
+ GeneratorData::Local(typeck_results) => {
+ infer_context.tcx.upvars_mentioned(generator_did).and_then(|upvars| {
+ upvars.iter().find_map(|(upvar_id, upvar)| {
+ let upvar_ty = typeck_results.node_type(*upvar_id);
+ let upvar_ty = infer_context.resolve_vars_if_possible(upvar_ty);
+ if ty_matches(ty::Binder::dummy(upvar_ty)) {
+ Some(GeneratorInteriorOrUpvar::Upvar(upvar.span))
+ } else {
+ None
+ }
+ })
+ })
+ }
+ GeneratorData::Foreign(_) => None,
+ }
+ }
+
+ // Try to get the span of a type being awaited on that matches the type we are looking with the
+ // `ty_matches` function. We uses it to find awaited type which causes a failure to meet an
+ // obligation
+ fn get_from_await_ty<F>(
+ &self,
+ visitor: AwaitsVisitor,
+ hir: map::Map<'tcx>,
+ ty_matches: F,
+ ) -> Option<Span>
+ where
+ F: Fn(ty::Binder<'tcx, Ty<'tcx>>) -> bool,
+ {
+ match self {
+ GeneratorData::Local(typeck_results) => visitor
+ .awaits
+ .into_iter()
+ .map(|id| hir.expect_expr(id))
+ .find(|await_expr| {
+ ty_matches(ty::Binder::dummy(typeck_results.expr_ty_adjusted(&await_expr)))
+ })
+ .map(|expr| expr.span),
+ GeneratorData::Foreign(generator_diagnostic_data) => visitor
+ .awaits
+ .into_iter()
+ .map(|id| hir.expect_expr(id))
+ .find(|await_expr| {
+ ty_matches(ty::Binder::dummy(
+ generator_diagnostic_data
+ .adjustments
+ .get(&await_expr.hir_id.local_id)
+ .map_or::<&[ty::adjustment::Adjustment<'tcx>], _>(&[], |a| &a[..])
+ .last()
+ .map_or_else::<Ty<'tcx>, _, _>(
+ || {
+ generator_diagnostic_data
+ .nodes_types
+ .get(&await_expr.hir_id.local_id)
+ .cloned()
+ .unwrap_or_else(|| {
+ bug!(
+ "node_type: no type for node `{}`",
+ ty::tls::with(|tcx| tcx
+ .hir()
+ .node_to_string(await_expr.hir_id))
+ )
+ })
+ },
+ |adj| adj.target,
+ ),
+ ))
+ })
+ .map(|expr| expr.span),
+ }
+ }
+
+ /// Get the type, expression, span and optional scope span of all types
+ /// that are live across the yield of this generator
+ fn get_generator_interior_types(
+ &self,
+ ) -> ty::Binder<'tcx, &[GeneratorInteriorTypeCause<'tcx>]> {
+ match self {
+ GeneratorData::Local(typeck_result) => {
+ typeck_result.generator_interior_types.as_deref()
+ }
+ GeneratorData::Foreign(generator_diagnostic_data) => {
+ generator_diagnostic_data.generator_interior_types.as_deref()
+ }
+ }
+ }
+
+ // Used to get the source of the data, note we don't have as much information for generators
+ // originated from foreign crates
+ fn is_foreign(&self) -> bool {
+ match self {
+ GeneratorData::Local(_) => false,
+ GeneratorData::Foreign(_) => true,
+ }
+ }
+}
+
+// This trait is public to expose the diagnostics methods to clippy.
+pub trait InferCtxtExt<'tcx> {
+ fn suggest_restricting_param_bound(
+ &self,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ proj_pred: Option<ty::PolyProjectionPredicate<'tcx>>,
+ body_id: hir::HirId,
+ );
+
+ fn suggest_dereferences(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool;
+
+ fn get_closure_name(&self, def_id: DefId, err: &mut Diagnostic, msg: &str) -> Option<Symbol>;
+
+ fn suggest_fn_call(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool;
+
+ fn suggest_add_reference_to_arg(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ has_custom_message: bool,
+ ) -> bool;
+
+ fn suggest_borrowing_for_object_cast(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ self_ty: Ty<'tcx>,
+ object_ty: Ty<'tcx>,
+ );
+
+ fn suggest_remove_reference(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool;
+
+ fn suggest_remove_await(&self, obligation: &PredicateObligation<'tcx>, err: &mut Diagnostic);
+
+ fn suggest_change_mut(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ );
+
+ fn suggest_semicolon_removal(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ span: Span,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool;
+
+ fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span>;
+
+ fn suggest_impl_trait(
+ &self,
+ err: &mut Diagnostic,
+ span: Span,
+ obligation: &PredicateObligation<'tcx>,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool;
+
+ fn point_at_returns_when_relevant(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ );
+
+ fn report_closure_arg_mismatch(
+ &self,
+ span: Span,
+ found_span: Option<Span>,
+ found: ty::PolyTraitRef<'tcx>,
+ expected: ty::PolyTraitRef<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
+
+ fn suggest_fully_qualified_path(
+ &self,
+ err: &mut Diagnostic,
+ item_def_id: DefId,
+ span: Span,
+ trait_ref: DefId,
+ );
+
+ fn maybe_note_obligation_cause_for_async_await(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ ) -> bool;
+
+ fn note_obligation_cause_for_async_await(
+ &self,
+ err: &mut Diagnostic,
+ interior_or_upvar_span: GeneratorInteriorOrUpvar,
+ interior_extra_info: Option<(Option<Span>, Span, Option<hir::HirId>, Option<Span>)>,
+ is_async: bool,
+ outer_generator: Option<DefId>,
+ trait_pred: ty::TraitPredicate<'tcx>,
+ target_ty: Ty<'tcx>,
+ typeck_results: Option<&ty::TypeckResults<'tcx>>,
+ obligation: &PredicateObligation<'tcx>,
+ next_code: Option<&ObligationCauseCode<'tcx>>,
+ );
+
+ fn note_obligation_cause_code<T>(
+ &self,
+ err: &mut Diagnostic,
+ predicate: &T,
+ param_env: ty::ParamEnv<'tcx>,
+ cause_code: &ObligationCauseCode<'tcx>,
+ obligated_types: &mut Vec<Ty<'tcx>>,
+ seen_requirements: &mut FxHashSet<DefId>,
+ ) where
+ T: fmt::Display;
+
+ fn suggest_new_overflow_limit(&self, err: &mut Diagnostic);
+
+ /// Suggest to await before try: future? => future.await?
+ fn suggest_await_before_try(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ span: Span,
+ );
+
+ fn suggest_floating_point_literal(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_ref: &ty::PolyTraitRef<'tcx>,
+ );
+
+ fn suggest_derive(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ );
+
+ fn suggest_dereferencing_index(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ );
+}
+
+fn predicate_constraint(generics: &hir::Generics<'_>, pred: String) -> (Span, String) {
+ (
+ generics.tail_span_for_predicate_suggestion(),
+ format!("{} {}", generics.add_where_or_trailing_comma(), pred),
+ )
+}
+
+/// Type parameter needs more bounds. The trivial case is `T` `where T: Bound`, but
+/// it can also be an `impl Trait` param that needs to be decomposed to a type
+/// param for cleaner code.
+fn suggest_restriction<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ hir_id: HirId,
+ hir_generics: &hir::Generics<'tcx>,
+ msg: &str,
+ err: &mut Diagnostic,
+ fn_sig: Option<&hir::FnSig<'_>>,
+ projection: Option<&ty::ProjectionTy<'_>>,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ // When we are dealing with a trait, `super_traits` will be `Some`:
+ // Given `trait T: A + B + C {}`
+ // - ^^^^^^^^^ GenericBounds
+ // |
+ // &Ident
+ super_traits: Option<(&Ident, &hir::GenericBounds<'_>)>,
+) {
+ if hir_generics.where_clause_span.from_expansion()
+ || hir_generics.where_clause_span.desugaring_kind().is_some()
+ {
+ return;
+ }
+ let Some(item_id) = hir_id.as_owner() else { return; };
+ let generics = tcx.generics_of(item_id);
+ // Given `fn foo(t: impl Trait)` where `Trait` requires assoc type `A`...
+ if let Some((param, bound_str, fn_sig)) =
+ fn_sig.zip(projection).and_then(|(sig, p)| match p.self_ty().kind() {
+ // Shenanigans to get the `Trait` from the `impl Trait`.
+ ty::Param(param) => {
+ let param_def = generics.type_param(param, tcx);
+ if param_def.kind.is_synthetic() {
+ let bound_str =
+ param_def.name.as_str().strip_prefix("impl ")?.trim_start().to_string();
+ return Some((param_def, bound_str, sig));
+ }
+ None
+ }
+ _ => None,
+ })
+ {
+ let type_param_name = hir_generics.params.next_type_param_name(Some(&bound_str));
+ let trait_pred = trait_pred.fold_with(&mut ReplaceImplTraitFolder {
+ tcx,
+ param,
+ replace_ty: ty::ParamTy::new(generics.count() as u32, Symbol::intern(&type_param_name))
+ .to_ty(tcx),
+ });
+ if !trait_pred.is_suggestable(tcx, false) {
+ return;
+ }
+ // We know we have an `impl Trait` that doesn't satisfy a required projection.
+
+ // Find all of the occurrences of `impl Trait` for `Trait` in the function arguments'
+ // types. There should be at least one, but there might be *more* than one. In that
+ // case we could just ignore it and try to identify which one needs the restriction,
+ // but instead we choose to suggest replacing all instances of `impl Trait` with `T`
+ // where `T: Trait`.
+ let mut ty_spans = vec![];
+ for input in fn_sig.decl.inputs {
+ ReplaceImplTraitVisitor { ty_spans: &mut ty_spans, param_did: param.def_id }
+ .visit_ty(input);
+ }
+ // The type param `T: Trait` we will suggest to introduce.
+ let type_param = format!("{}: {}", type_param_name, bound_str);
+
+ let mut sugg = vec![
+ if let Some(span) = hir_generics.span_for_param_suggestion() {
+ (span, format!(", {}", type_param))
+ } else {
+ (hir_generics.span, format!("<{}>", type_param))
+ },
+ // `fn foo(t: impl Trait)`
+ // ^ suggest `where <T as Trait>::A: Bound`
+ predicate_constraint(hir_generics, trait_pred.to_predicate(tcx).to_string()),
+ ];
+ sugg.extend(ty_spans.into_iter().map(|s| (s, type_param_name.to_string())));
+
+ // Suggest `fn foo<T: Trait>(t: T) where <T as Trait>::A: Bound`.
+ // FIXME: once `#![feature(associated_type_bounds)]` is stabilized, we should suggest
+ // `fn foo(t: impl Trait<A: Bound>)` instead.
+ err.multipart_suggestion(
+ "introduce a type parameter with a trait bound instead of using `impl Trait`",
+ sugg,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ if !trait_pred.is_suggestable(tcx, false) {
+ return;
+ }
+ // Trivial case: `T` needs an extra bound: `T: Bound`.
+ let (sp, suggestion) = match (
+ hir_generics
+ .params
+ .iter()
+ .find(|p| !matches!(p.kind, hir::GenericParamKind::Type { synthetic: true, .. })),
+ super_traits,
+ ) {
+ (_, None) => {
+ predicate_constraint(hir_generics, trait_pred.to_predicate(tcx).to_string())
+ }
+ (None, Some((ident, []))) => (
+ ident.span.shrink_to_hi(),
+ format!(": {}", trait_pred.print_modifiers_and_trait_path()),
+ ),
+ (_, Some((_, [.., bounds]))) => (
+ bounds.span().shrink_to_hi(),
+ format!(" + {}", trait_pred.print_modifiers_and_trait_path()),
+ ),
+ (Some(_), Some((_, []))) => (
+ hir_generics.span.shrink_to_hi(),
+ format!(": {}", trait_pred.print_modifiers_and_trait_path()),
+ ),
+ };
+
+ err.span_suggestion_verbose(
+ sp,
+ &format!("consider further restricting {}", msg),
+ suggestion,
+ Applicability::MachineApplicable,
+ );
+ }
+}
+
+impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
+ fn suggest_restricting_param_bound(
+ &self,
+ mut err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ proj_pred: Option<ty::PolyProjectionPredicate<'tcx>>,
+ body_id: hir::HirId,
+ ) {
+ let trait_pred = self.resolve_numeric_literals_with_default(trait_pred);
+
+ let self_ty = trait_pred.skip_binder().self_ty();
+ let (param_ty, projection) = match self_ty.kind() {
+ ty::Param(_) => (true, None),
+ ty::Projection(projection) => (false, Some(projection)),
+ _ => (false, None),
+ };
+
+ // FIXME: Add check for trait bound that is already present, particularly `?Sized` so we
+ // don't suggest `T: Sized + ?Sized`.
+ let mut hir_id = body_id;
+ while let Some(node) = self.tcx.hir().find(hir_id) {
+ match node {
+ hir::Node::Item(hir::Item {
+ ident,
+ kind: hir::ItemKind::Trait(_, _, generics, bounds, _),
+ ..
+ }) if self_ty == self.tcx.types.self_param => {
+ assert!(param_ty);
+ // Restricting `Self` for a single method.
+ suggest_restriction(
+ self.tcx,
+ hir_id,
+ &generics,
+ "`Self`",
+ err,
+ None,
+ projection,
+ trait_pred,
+ Some((ident, bounds)),
+ );
+ return;
+ }
+
+ hir::Node::TraitItem(hir::TraitItem {
+ generics,
+ kind: hir::TraitItemKind::Fn(..),
+ ..
+ }) if self_ty == self.tcx.types.self_param => {
+ assert!(param_ty);
+ // Restricting `Self` for a single method.
+ suggest_restriction(
+ self.tcx, hir_id, &generics, "`Self`", err, None, projection, trait_pred,
+ None,
+ );
+ return;
+ }
+
+ hir::Node::TraitItem(hir::TraitItem {
+ generics,
+ kind: hir::TraitItemKind::Fn(fn_sig, ..),
+ ..
+ })
+ | hir::Node::ImplItem(hir::ImplItem {
+ generics,
+ kind: hir::ImplItemKind::Fn(fn_sig, ..),
+ ..
+ })
+ | hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Fn(fn_sig, generics, _), ..
+ }) if projection.is_some() => {
+ // Missing restriction on associated type of type parameter (unmet projection).
+ suggest_restriction(
+ self.tcx,
+ hir_id,
+ &generics,
+ "the associated type",
+ err,
+ Some(fn_sig),
+ projection,
+ trait_pred,
+ None,
+ );
+ return;
+ }
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { generics, .. }),
+ ..
+ }) if projection.is_some() => {
+ // Missing restriction on associated type of type parameter (unmet projection).
+ suggest_restriction(
+ self.tcx,
+ hir_id,
+ &generics,
+ "the associated type",
+ err,
+ None,
+ projection,
+ trait_pred,
+ None,
+ );
+ return;
+ }
+
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Struct(_, generics)
+ | hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::Union(_, generics)
+ | hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { generics, .. })
+ | hir::ItemKind::Fn(_, generics, _)
+ | hir::ItemKind::TyAlias(_, generics)
+ | hir::ItemKind::TraitAlias(generics, _)
+ | hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }),
+ ..
+ })
+ | hir::Node::TraitItem(hir::TraitItem { generics, .. })
+ | hir::Node::ImplItem(hir::ImplItem { generics, .. })
+ if param_ty =>
+ {
+ // We skip the 0'th subst (self) because we do not want
+ // to consider the predicate as not suggestible if the
+ // self type is an arg position `impl Trait` -- instead,
+ // we handle that by adding ` + Bound` below.
+ // FIXME(compiler-errors): It would be nice to do the same
+ // this that we do in `suggest_restriction` and pull the
+ // `impl Trait` into a new generic if it shows up somewhere
+ // else in the predicate.
+ if !trait_pred.skip_binder().trait_ref.substs[1..]
+ .iter()
+ .all(|g| g.is_suggestable(self.tcx, false))
+ {
+ return;
+ }
+ // Missing generic type parameter bound.
+ let param_name = self_ty.to_string();
+ let mut constraint = with_no_trimmed_paths!(
+ trait_pred.print_modifiers_and_trait_path().to_string()
+ );
+
+ if let Some(proj_pred) = proj_pred {
+ let ProjectionPredicate { projection_ty, term } = proj_pred.skip_binder();
+ let item = self.tcx.associated_item(projection_ty.item_def_id);
+
+ // FIXME: this case overlaps with code in TyCtxt::note_and_explain_type_err.
+ // That should be extracted into a helper function.
+ if constraint.ends_with('>') {
+ constraint = format!(
+ "{}, {}={}>",
+ &constraint[..constraint.len() - 1],
+ item.name,
+ term
+ );
+ } else {
+ constraint.push_str(&format!("<{}={}>", item.name, term));
+ }
+ }
+
+ if suggest_constraining_type_param(
+ self.tcx,
+ generics,
+ &mut err,
+ &param_name,
+ &constraint,
+ Some(trait_pred.def_id()),
+ ) {
+ return;
+ }
+ }
+
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Struct(_, generics)
+ | hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::Union(_, generics)
+ | hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { generics, .. })
+ | hir::ItemKind::Fn(_, generics, _)
+ | hir::ItemKind::TyAlias(_, generics)
+ | hir::ItemKind::TraitAlias(generics, _)
+ | hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }),
+ ..
+ }) if !param_ty => {
+ // Missing generic type parameter bound.
+ if suggest_arbitrary_trait_bound(self.tcx, generics, &mut err, trait_pred) {
+ return;
+ }
+ }
+ hir::Node::Crate(..) => return,
+
+ _ => {}
+ }
+
+ hir_id = self.tcx.hir().local_def_id_to_hir_id(self.tcx.hir().get_parent_item(hir_id));
+ }
+ }
+
+ /// When after several dereferencing, the reference satisfies the trait
+ /// binding. This function provides dereference suggestion for this
+ /// specific situation.
+ fn suggest_dereferences(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool {
+ // It only make sense when suggesting dereferences for arguments
+ let ObligationCauseCode::FunctionArgumentObligation { .. } = obligation.cause.code() else {
+ return false;
+ };
+ let param_env = obligation.param_env;
+ let body_id = obligation.cause.body_id;
+ let span = obligation.cause.span;
+ let mut real_trait_pred = trait_pred;
+ let mut code = obligation.cause.code();
+ while let Some((parent_code, parent_trait_pred)) = code.parent() {
+ code = parent_code;
+ if let Some(parent_trait_pred) = parent_trait_pred {
+ real_trait_pred = parent_trait_pred;
+ }
+
+ // Skipping binder here, remapping below
+ let real_ty = real_trait_pred.self_ty().skip_binder();
+
+ if let ty::Ref(region, base_ty, mutbl) = *real_ty.kind() {
+ let mut autoderef = Autoderef::new(self, param_env, body_id, span, base_ty, span);
+ if let Some(steps) = autoderef.find_map(|(ty, steps)| {
+ // Re-add the `&`
+ let ty = self.tcx.mk_ref(region, TypeAndMut { ty, mutbl });
+
+ // Remapping bound vars here
+ let real_trait_pred_and_ty =
+ real_trait_pred.map_bound(|inner_trait_pred| (inner_trait_pred, ty));
+ let obligation = self
+ .mk_trait_obligation_with_new_self_ty(param_env, real_trait_pred_and_ty);
+ Some(steps).filter(|_| self.predicate_may_hold(&obligation))
+ }) {
+ if steps > 0 {
+ if let Ok(src) = self.tcx.sess.source_map().span_to_snippet(span) {
+ // Don't care about `&mut` because `DerefMut` is used less
+ // often and user will not expect autoderef happens.
+ if src.starts_with('&') && !src.starts_with("&mut ") {
+ let derefs = "*".repeat(steps);
+ err.span_suggestion(
+ span,
+ "consider dereferencing here",
+ format!("&{}{}", derefs, &src[1..]),
+ Applicability::MachineApplicable,
+ );
+ return true;
+ }
+ }
+ }
+ } else if real_trait_pred != trait_pred {
+ // This branch addresses #87437.
+
+ // Remapping bound vars here
+ let real_trait_pred_and_base_ty =
+ real_trait_pred.map_bound(|inner_trait_pred| (inner_trait_pred, base_ty));
+ let obligation = self.mk_trait_obligation_with_new_self_ty(
+ param_env,
+ real_trait_pred_and_base_ty,
+ );
+ if self.predicate_may_hold(&obligation) {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ "consider dereferencing here",
+ "*",
+ Applicability::MachineApplicable,
+ );
+ return true;
+ }
+ }
+ }
+ }
+ false
+ }
+
+ /// Given a closure's `DefId`, return the given name of the closure.
+ ///
+ /// This doesn't account for reassignments, but it's only used for suggestions.
+ fn get_closure_name(&self, def_id: DefId, err: &mut Diagnostic, msg: &str) -> Option<Symbol> {
+ let get_name = |err: &mut Diagnostic, kind: &hir::PatKind<'_>| -> Option<Symbol> {
+ // Get the local name of this closure. This can be inaccurate because
+ // of the possibility of reassignment, but this should be good enough.
+ match &kind {
+ hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, ident, None) => {
+ Some(ident.name)
+ }
+ _ => {
+ err.note(msg);
+ None
+ }
+ }
+ };
+
+ let hir = self.tcx.hir();
+ let hir_id = hir.local_def_id_to_hir_id(def_id.as_local()?);
+ let parent_node = hir.get_parent_node(hir_id);
+ match hir.find(parent_node) {
+ Some(hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Local(local), .. })) => {
+ get_name(err, &local.pat.kind)
+ }
+ // Different to previous arm because one is `&hir::Local` and the other
+ // is `P<hir::Local>`.
+ Some(hir::Node::Local(local)) => get_name(err, &local.pat.kind),
+ _ => None,
+ }
+ }
+
+ /// We tried to apply the bound to an `fn` or closure. Check whether calling it would
+ /// evaluate to a type that *would* satisfy the trait binding. If it would, suggest calling
+ /// it: `bar(foo)` → `bar(foo())`. This case is *very* likely to be hit if `foo` is `async`.
+ fn suggest_fn_call(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool {
+ // Skipping binder here, remapping below
+ let self_ty = trait_pred.self_ty().skip_binder();
+
+ let (def_id, output_ty, callable) = match *self_ty.kind() {
+ ty::Closure(def_id, substs) => (def_id, substs.as_closure().sig().output(), "closure"),
+ ty::FnDef(def_id, _) => (def_id, self_ty.fn_sig(self.tcx).output(), "function"),
+ _ => return false,
+ };
+ let msg = format!("use parentheses to call the {}", callable);
+
+ // "We should really create a single list of bound vars from the combined vars
+ // from the predicate and function, but instead we just liberate the function bound vars"
+ let output_ty = self.tcx.liberate_late_bound_regions(def_id, output_ty);
+
+ // Remapping bound vars here
+ let trait_pred_and_self = trait_pred.map_bound(|trait_pred| (trait_pred, output_ty));
+
+ let new_obligation =
+ self.mk_trait_obligation_with_new_self_ty(obligation.param_env, trait_pred_and_self);
+
+ match self.evaluate_obligation(&new_obligation) {
+ Ok(
+ EvaluationResult::EvaluatedToOk
+ | EvaluationResult::EvaluatedToOkModuloRegions
+ | EvaluationResult::EvaluatedToOkModuloOpaqueTypes
+ | EvaluationResult::EvaluatedToAmbig,
+ ) => {}
+ _ => return false,
+ }
+ let hir = self.tcx.hir();
+ // Get the name of the callable and the arguments to be used in the suggestion.
+ let (snippet, sugg) = match hir.get_if_local(def_id) {
+ Some(hir::Node::Expr(hir::Expr {
+ kind: hir::ExprKind::Closure(hir::Closure { fn_decl, fn_decl_span, .. }),
+ ..
+ })) => {
+ err.span_label(*fn_decl_span, "consider calling this closure");
+ let Some(name) = self.get_closure_name(def_id, err, &msg) else {
+ return false;
+ };
+ let args = fn_decl.inputs.iter().map(|_| "_").collect::<Vec<_>>().join(", ");
+ let sugg = format!("({})", args);
+ (format!("{}{}", name, sugg), sugg)
+ }
+ Some(hir::Node::Item(hir::Item {
+ ident,
+ kind: hir::ItemKind::Fn(.., body_id),
+ ..
+ })) => {
+ err.span_label(ident.span, "consider calling this function");
+ let body = hir.body(*body_id);
+ let args = body
+ .params
+ .iter()
+ .map(|arg| match &arg.pat.kind {
+ hir::PatKind::Binding(_, _, ident, None)
+ // FIXME: provide a better suggestion when encountering `SelfLower`, it
+ // should suggest a method call.
+ if ident.name != kw::SelfLower => ident.to_string(),
+ _ => "_".to_string(),
+ })
+ .collect::<Vec<_>>()
+ .join(", ");
+ let sugg = format!("({})", args);
+ (format!("{}{}", ident, sugg), sugg)
+ }
+ _ => return false,
+ };
+ if matches!(obligation.cause.code(), ObligationCauseCode::FunctionArgumentObligation { .. })
+ {
+ // When the obligation error has been ensured to have been caused by
+ // an argument, the `obligation.cause.span` points at the expression
+ // of the argument, so we can provide a suggestion. Otherwise, we give
+ // a more general note.
+ err.span_suggestion_verbose(
+ obligation.cause.span.shrink_to_hi(),
+ &msg,
+ sugg,
+ Applicability::HasPlaceholders,
+ );
+ } else {
+ err.help(&format!("{}: `{}`", msg, snippet));
+ }
+ true
+ }
+
+ fn suggest_add_reference_to_arg(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ poly_trait_pred: ty::PolyTraitPredicate<'tcx>,
+ has_custom_message: bool,
+ ) -> bool {
+ let span = obligation.cause.span;
+
+ let code = if let ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } =
+ obligation.cause.code()
+ {
+ &parent_code
+ } else if let ExpnKind::Desugaring(DesugaringKind::ForLoop) =
+ span.ctxt().outer_expn_data().kind
+ {
+ obligation.cause.code()
+ } else {
+ return false;
+ };
+
+ // List of traits for which it would be nonsensical to suggest borrowing.
+ // For instance, immutable references are always Copy, so suggesting to
+ // borrow would always succeed, but it's probably not what the user wanted.
+ let mut never_suggest_borrow: Vec<_> =
+ [LangItem::Copy, LangItem::Clone, LangItem::Unpin, LangItem::Sized]
+ .iter()
+ .filter_map(|lang_item| self.tcx.lang_items().require(*lang_item).ok())
+ .collect();
+
+ if let Some(def_id) = self.tcx.get_diagnostic_item(sym::Send) {
+ never_suggest_borrow.push(def_id);
+ }
+
+ let param_env = obligation.param_env;
+
+ // Try to apply the original trait binding obligation by borrowing.
+ let mut try_borrowing =
+ |old_pred: ty::PolyTraitPredicate<'tcx>, blacklist: &[DefId]| -> bool {
+ if blacklist.contains(&old_pred.def_id()) {
+ return false;
+ }
+ // We map bounds to `&T` and `&mut T`
+ let trait_pred_and_imm_ref = old_pred.map_bound(|trait_pred| {
+ (
+ trait_pred,
+ self.tcx.mk_imm_ref(self.tcx.lifetimes.re_static, trait_pred.self_ty()),
+ )
+ });
+ let trait_pred_and_mut_ref = old_pred.map_bound(|trait_pred| {
+ (
+ trait_pred,
+ self.tcx.mk_mut_ref(self.tcx.lifetimes.re_static, trait_pred.self_ty()),
+ )
+ });
+
+ let mk_result = |trait_pred_and_new_ty| {
+ let obligation =
+ self.mk_trait_obligation_with_new_self_ty(param_env, trait_pred_and_new_ty);
+ self.predicate_must_hold_modulo_regions(&obligation)
+ };
+ let imm_result = mk_result(trait_pred_and_imm_ref);
+ let mut_result = mk_result(trait_pred_and_mut_ref);
+
+ if imm_result || mut_result {
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ // We have a very specific type of error, where just borrowing this argument
+ // might solve the problem. In cases like this, the important part is the
+ // original type obligation, not the last one that failed, which is arbitrary.
+ // Because of this, we modify the error to refer to the original obligation and
+ // return early in the caller.
+
+ let msg = format!("the trait bound `{}` is not satisfied", old_pred);
+ if has_custom_message {
+ err.note(&msg);
+ } else {
+ err.message =
+ vec![(rustc_errors::DiagnosticMessage::Str(msg), Style::NoStyle)];
+ }
+ if snippet.starts_with('&') {
+ // This is already a literal borrow and the obligation is failing
+ // somewhere else in the obligation chain. Do not suggest non-sense.
+ return false;
+ }
+ err.span_label(
+ span,
+ &format!(
+ "expected an implementor of trait `{}`",
+ old_pred.print_modifiers_and_trait_path(),
+ ),
+ );
+
+ // This if is to prevent a special edge-case
+ if matches!(
+ span.ctxt().outer_expn_data().kind,
+ ExpnKind::Root | ExpnKind::Desugaring(DesugaringKind::ForLoop)
+ ) {
+ // We don't want a borrowing suggestion on the fields in structs,
+ // ```
+ // struct Foo {
+ // the_foos: Vec<Foo>
+ // }
+ // ```
+
+ if imm_result && mut_result {
+ err.span_suggestions(
+ span.shrink_to_lo(),
+ "consider borrowing here",
+ ["&".to_string(), "&mut ".to_string()].into_iter(),
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ &format!(
+ "consider{} borrowing here",
+ if mut_result { " mutably" } else { "" }
+ ),
+ format!("&{}", if mut_result { "mut " } else { "" }),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ return true;
+ }
+ }
+ return false;
+ };
+
+ if let ObligationCauseCode::ImplDerivedObligation(cause) = &*code {
+ try_borrowing(cause.derived.parent_trait_pred, &[])
+ } else if let ObligationCauseCode::BindingObligation(_, _)
+ | ObligationCauseCode::ItemObligation(_) = code
+ {
+ try_borrowing(poly_trait_pred, &never_suggest_borrow)
+ } else {
+ false
+ }
+ }
+
+ // Suggest borrowing the type
+ fn suggest_borrowing_for_object_cast(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ self_ty: Ty<'tcx>,
+ object_ty: Ty<'tcx>,
+ ) {
+ let ty::Dynamic(predicates, _) = object_ty.kind() else { return; };
+ let self_ref_ty = self.tcx.mk_imm_ref(self.tcx.lifetimes.re_erased, self_ty);
+
+ for predicate in predicates.iter() {
+ if !self.predicate_must_hold_modulo_regions(
+ &obligation.with(predicate.with_self_ty(self.tcx, self_ref_ty)),
+ ) {
+ return;
+ }
+ }
+
+ err.span_suggestion(
+ obligation.cause.span.shrink_to_lo(),
+ &format!(
+ "consider borrowing the value, since `&{self_ty}` can be coerced into `{object_ty}`"
+ ),
+ "&",
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ /// Whenever references are used by mistake, like `for (i, e) in &vec.iter().enumerate()`,
+ /// suggest removing these references until we reach a type that implements the trait.
+ fn suggest_remove_reference(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool {
+ let span = obligation.cause.span;
+
+ let mut suggested = false;
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ let refs_number =
+ snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
+ if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
+ // Do not suggest removal of borrow from type arguments.
+ return false;
+ }
+
+ // Skipping binder here, remapping below
+ let mut suggested_ty = trait_pred.self_ty().skip_binder();
+
+ for refs_remaining in 0..refs_number {
+ let ty::Ref(_, inner_ty, _) = suggested_ty.kind() else {
+ break;
+ };
+ suggested_ty = *inner_ty;
+
+ // Remapping bound vars here
+ let trait_pred_and_suggested_ty =
+ trait_pred.map_bound(|trait_pred| (trait_pred, suggested_ty));
+
+ let new_obligation = self.mk_trait_obligation_with_new_self_ty(
+ obligation.param_env,
+ trait_pred_and_suggested_ty,
+ );
+
+ if self.predicate_may_hold(&new_obligation) {
+ let sp = self
+ .tcx
+ .sess
+ .source_map()
+ .span_take_while(span, |c| c.is_whitespace() || *c == '&');
+
+ let remove_refs = refs_remaining + 1;
+
+ let msg = if remove_refs == 1 {
+ "consider removing the leading `&`-reference".to_string()
+ } else {
+ format!("consider removing {} leading `&`-references", remove_refs)
+ };
+
+ err.span_suggestion_short(sp, &msg, "", Applicability::MachineApplicable);
+ suggested = true;
+ break;
+ }
+ }
+ }
+ suggested
+ }
+
+ fn suggest_remove_await(&self, obligation: &PredicateObligation<'tcx>, err: &mut Diagnostic) {
+ let span = obligation.cause.span;
+
+ if let ObligationCauseCode::AwaitableExpr(hir_id) = obligation.cause.code().peel_derives() {
+ let hir = self.tcx.hir();
+ if let Some(node) = hir_id.and_then(|hir_id| hir.find(hir_id)) {
+ if let hir::Node::Expr(expr) = node {
+ // FIXME: use `obligation.predicate.kind()...trait_ref.self_ty()` to see if we have `()`
+ // and if not maybe suggest doing something else? If we kept the expression around we
+ // could also check if it is an fn call (very likely) and suggest changing *that*, if
+ // it is from the local crate.
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi().with_hi(span.hi()),
+ "remove the `.await`",
+ "",
+ Applicability::MachineApplicable,
+ );
+ // FIXME: account for associated `async fn`s.
+ if let hir::Expr { span, kind: hir::ExprKind::Call(base, _), .. } = expr {
+ if let ty::PredicateKind::Trait(pred) =
+ obligation.predicate.kind().skip_binder()
+ {
+ err.span_label(
+ *span,
+ &format!("this call returns `{}`", pred.self_ty()),
+ );
+ }
+ if let Some(typeck_results) =
+ self.in_progress_typeck_results.map(|t| t.borrow())
+ && let ty = typeck_results.expr_ty_adjusted(base)
+ && let ty::FnDef(def_id, _substs) = ty.kind()
+ && let Some(hir::Node::Item(hir::Item { ident, span, vis_span, .. })) =
+ hir.get_if_local(*def_id)
+ {
+ let msg = format!(
+ "alternatively, consider making `fn {}` asynchronous",
+ ident
+ );
+ if vis_span.is_empty() {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ &msg,
+ "async ",
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_suggestion_verbose(
+ vis_span.shrink_to_hi(),
+ &msg,
+ " async",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /// Check if the trait bound is implemented for a different mutability and note it in the
+ /// final error.
+ fn suggest_change_mut(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) {
+ let points_at_arg = matches!(
+ obligation.cause.code(),
+ ObligationCauseCode::FunctionArgumentObligation { .. },
+ );
+
+ let span = obligation.cause.span;
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ let refs_number =
+ snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
+ if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
+ // Do not suggest removal of borrow from type arguments.
+ return;
+ }
+ let trait_pred = self.resolve_vars_if_possible(trait_pred);
+ if trait_pred.has_infer_types_or_consts() {
+ // Do not ICE while trying to find if a reborrow would succeed on a trait with
+ // unresolved bindings.
+ return;
+ }
+
+ // Skipping binder here, remapping below
+ if let ty::Ref(region, t_type, mutability) = *trait_pred.skip_binder().self_ty().kind()
+ {
+ let suggested_ty = match mutability {
+ hir::Mutability::Mut => self.tcx.mk_imm_ref(region, t_type),
+ hir::Mutability::Not => self.tcx.mk_mut_ref(region, t_type),
+ };
+
+ // Remapping bound vars here
+ let trait_pred_and_suggested_ty =
+ trait_pred.map_bound(|trait_pred| (trait_pred, suggested_ty));
+
+ let new_obligation = self.mk_trait_obligation_with_new_self_ty(
+ obligation.param_env,
+ trait_pred_and_suggested_ty,
+ );
+ let suggested_ty_would_satisfy_obligation = self
+ .evaluate_obligation_no_overflow(&new_obligation)
+ .must_apply_modulo_regions();
+ if suggested_ty_would_satisfy_obligation {
+ let sp = self
+ .tcx
+ .sess
+ .source_map()
+ .span_take_while(span, |c| c.is_whitespace() || *c == '&');
+ if points_at_arg && mutability == hir::Mutability::Not && refs_number > 0 {
+ err.span_suggestion_verbose(
+ sp,
+ "consider changing this borrow's mutability",
+ "&mut ",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.note(&format!(
+ "`{}` is implemented for `{:?}`, but not for `{:?}`",
+ trait_pred.print_modifiers_and_trait_path(),
+ suggested_ty,
+ trait_pred.skip_binder().self_ty(),
+ ));
+ }
+ }
+ }
+ }
+ }
+
+ fn suggest_semicolon_removal(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ span: Span,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool {
+ let hir = self.tcx.hir();
+ let parent_node = hir.get_parent_node(obligation.cause.body_id);
+ let node = hir.find(parent_node);
+ if let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(sig, _, body_id), .. })) = node
+ && let hir::ExprKind::Block(blk, _) = &hir.body(*body_id).value.kind
+ && sig.decl.output.span().overlaps(span)
+ && blk.expr.is_none()
+ && trait_pred.self_ty().skip_binder().is_unit()
+ && let Some(stmt) = blk.stmts.last()
+ && let hir::StmtKind::Semi(expr) = stmt.kind
+ // Only suggest this if the expression behind the semicolon implements the predicate
+ && let Some(typeck_results) = self.in_progress_typeck_results
+ && let Some(ty) = typeck_results.borrow().expr_ty_opt(expr)
+ && self.predicate_may_hold(&self.mk_trait_obligation_with_new_self_ty(
+ obligation.param_env, trait_pred.map_bound(|trait_pred| (trait_pred, ty))
+ ))
+ {
+ err.span_label(
+ expr.span,
+ &format!(
+ "this expression has type `{}`, which implements `{}`",
+ ty,
+ trait_pred.print_modifiers_and_trait_path()
+ )
+ );
+ err.span_suggestion(
+ self.tcx.sess.source_map().end_point(stmt.span),
+ "remove this semicolon",
+ "",
+ Applicability::MachineApplicable
+ );
+ return true;
+ }
+ false
+ }
+
+ fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span> {
+ let hir = self.tcx.hir();
+ let parent_node = hir.get_parent_node(obligation.cause.body_id);
+ let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(sig, ..), .. })) = hir.find(parent_node) else {
+ return None;
+ };
+
+ if let hir::FnRetTy::Return(ret_ty) = sig.decl.output { Some(ret_ty.span) } else { None }
+ }
+
+ /// If all conditions are met to identify a returned `dyn Trait`, suggest using `impl Trait` if
+ /// applicable and signal that the error has been expanded appropriately and needs to be
+ /// emitted.
+ fn suggest_impl_trait(
+ &self,
+ err: &mut Diagnostic,
+ span: Span,
+ obligation: &PredicateObligation<'tcx>,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) -> bool {
+ match obligation.cause.code().peel_derives() {
+ // Only suggest `impl Trait` if the return type is unsized because it is `dyn Trait`.
+ ObligationCauseCode::SizedReturnType => {}
+ _ => return false,
+ }
+
+ let hir = self.tcx.hir();
+ let fn_hir_id = hir.get_parent_node(obligation.cause.body_id);
+ let node = hir.find(fn_hir_id);
+ let Some(hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Fn(sig, _, body_id),
+ ..
+ })) = node
+ else {
+ return false;
+ };
+ let body = hir.body(*body_id);
+ let trait_pred = self.resolve_vars_if_possible(trait_pred);
+ let ty = trait_pred.skip_binder().self_ty();
+ let is_object_safe = match ty.kind() {
+ ty::Dynamic(predicates, _) => {
+ // If the `dyn Trait` is not object safe, do not suggest `Box<dyn Trait>`.
+ predicates
+ .principal_def_id()
+ .map_or(true, |def_id| self.tcx.object_safety_violations(def_id).is_empty())
+ }
+ // We only want to suggest `impl Trait` to `dyn Trait`s.
+ // For example, `fn foo() -> str` needs to be filtered out.
+ _ => return false,
+ };
+
+ let hir::FnRetTy::Return(ret_ty) = sig.decl.output else {
+ return false;
+ };
+
+ // Use `TypeVisitor` instead of the output type directly to find the span of `ty` for
+ // cases like `fn foo() -> (dyn Trait, i32) {}`.
+ // Recursively look for `TraitObject` types and if there's only one, use that span to
+ // suggest `impl Trait`.
+
+ // Visit to make sure there's a single `return` type to suggest `impl Trait`,
+ // otherwise suggest using `Box<dyn Trait>` or an enum.
+ let mut visitor = ReturnsVisitor::default();
+ visitor.visit_body(&body);
+
+ let typeck_results = self.in_progress_typeck_results.map(|t| t.borrow()).unwrap();
+ let Some(liberated_sig) = typeck_results.liberated_fn_sigs().get(fn_hir_id).copied() else { return false; };
+
+ let ret_types = visitor
+ .returns
+ .iter()
+ .filter_map(|expr| Some((expr.span, typeck_results.node_type_opt(expr.hir_id)?)))
+ .map(|(expr_span, ty)| (expr_span, self.resolve_vars_if_possible(ty)));
+ let (last_ty, all_returns_have_same_type, only_never_return) = ret_types.clone().fold(
+ (None, true, true),
+ |(last_ty, mut same, only_never_return): (std::option::Option<Ty<'_>>, bool, bool),
+ (_, ty)| {
+ let ty = self.resolve_vars_if_possible(ty);
+ same &=
+ !matches!(ty.kind(), ty::Error(_))
+ && last_ty.map_or(true, |last_ty| {
+ // FIXME: ideally we would use `can_coerce` here instead, but `typeck` comes
+ // *after* in the dependency graph.
+ match (ty.kind(), last_ty.kind()) {
+ (Infer(InferTy::IntVar(_)), Infer(InferTy::IntVar(_)))
+ | (Infer(InferTy::FloatVar(_)), Infer(InferTy::FloatVar(_)))
+ | (Infer(InferTy::FreshIntTy(_)), Infer(InferTy::FreshIntTy(_)))
+ | (
+ Infer(InferTy::FreshFloatTy(_)),
+ Infer(InferTy::FreshFloatTy(_)),
+ ) => true,
+ _ => ty == last_ty,
+ }
+ });
+ (Some(ty), same, only_never_return && matches!(ty.kind(), ty::Never))
+ },
+ );
+ let mut spans_and_needs_box = vec![];
+
+ match liberated_sig.output().kind() {
+ ty::Dynamic(predicates, _) => {
+ let cause = ObligationCause::misc(ret_ty.span, fn_hir_id);
+ let param_env = ty::ParamEnv::empty();
+
+ if !only_never_return {
+ for (expr_span, return_ty) in ret_types {
+ let self_ty_satisfies_dyn_predicates = |self_ty| {
+ predicates.iter().all(|predicate| {
+ let pred = predicate.with_self_ty(self.tcx, self_ty);
+ let obl = Obligation::new(cause.clone(), param_env, pred);
+ self.predicate_may_hold(&obl)
+ })
+ };
+
+ if let ty::Adt(def, substs) = return_ty.kind()
+ && def.is_box()
+ && self_ty_satisfies_dyn_predicates(substs.type_at(0))
+ {
+ spans_and_needs_box.push((expr_span, false));
+ } else if self_ty_satisfies_dyn_predicates(return_ty) {
+ spans_and_needs_box.push((expr_span, true));
+ } else {
+ return false;
+ }
+ }
+ }
+ }
+ _ => return false,
+ };
+
+ let sm = self.tcx.sess.source_map();
+ if !ret_ty.span.overlaps(span) {
+ return false;
+ }
+ let snippet = if let hir::TyKind::TraitObject(..) = ret_ty.kind {
+ if let Ok(snippet) = sm.span_to_snippet(ret_ty.span) {
+ snippet
+ } else {
+ return false;
+ }
+ } else {
+ // Substitute the type, so we can print a fixup given `type Alias = dyn Trait`
+ let name = liberated_sig.output().to_string();
+ let name =
+ name.strip_prefix('(').and_then(|name| name.strip_suffix(')')).unwrap_or(&name);
+ if !name.starts_with("dyn ") {
+ return false;
+ }
+ name.to_owned()
+ };
+
+ err.code(error_code!(E0746));
+ err.set_primary_message("return type cannot have an unboxed trait object");
+ err.children.clear();
+ let impl_trait_msg = "for information on `impl Trait`, see \
+ <https://doc.rust-lang.org/book/ch10-02-traits.html\
+ #returning-types-that-implement-traits>";
+ let trait_obj_msg = "for information on trait objects, see \
+ <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
+ #using-trait-objects-that-allow-for-values-of-different-types>";
+
+ let has_dyn = snippet.split_whitespace().next().map_or(false, |s| s == "dyn");
+ let trait_obj = if has_dyn { &snippet[4..] } else { &snippet };
+ if only_never_return {
+ // No return paths, probably using `panic!()` or similar.
+ // Suggest `-> T`, `-> impl Trait`, and if `Trait` is object safe, `-> Box<dyn Trait>`.
+ suggest_trait_object_return_type_alternatives(
+ err,
+ ret_ty.span,
+ trait_obj,
+ is_object_safe,
+ );
+ } else if let (Some(last_ty), true) = (last_ty, all_returns_have_same_type) {
+ // Suggest `-> impl Trait`.
+ err.span_suggestion(
+ ret_ty.span,
+ &format!(
+ "use `impl {1}` as the return type, as all return paths are of type `{}`, \
+ which implements `{1}`",
+ last_ty, trait_obj,
+ ),
+ format!("impl {}", trait_obj),
+ Applicability::MachineApplicable,
+ );
+ err.note(impl_trait_msg);
+ } else {
+ if is_object_safe {
+ // Suggest `-> Box<dyn Trait>` and `Box::new(returned_value)`.
+ err.multipart_suggestion(
+ "return a boxed trait object instead",
+ vec![
+ (ret_ty.span.shrink_to_lo(), "Box<".to_string()),
+ (span.shrink_to_hi(), ">".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ for (span, needs_box) in spans_and_needs_box {
+ if needs_box {
+ err.multipart_suggestion(
+ "... and box this value",
+ vec![
+ (span.shrink_to_lo(), "Box::new(".to_string()),
+ (span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ } else {
+ // This is currently not possible to trigger because E0038 takes precedence, but
+ // leave it in for completeness in case anything changes in an earlier stage.
+ err.note(&format!(
+ "if trait `{}` were object-safe, you could return a trait object",
+ trait_obj,
+ ));
+ }
+ err.note(trait_obj_msg);
+ err.note(&format!(
+ "if all the returned values were of the same type you could use `impl {}` as the \
+ return type",
+ trait_obj,
+ ));
+ err.note(impl_trait_msg);
+ err.note("you can create a new `enum` with a variant for each returned type");
+ }
+ true
+ }
+
+ fn point_at_returns_when_relevant(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ ) {
+ match obligation.cause.code().peel_derives() {
+ ObligationCauseCode::SizedReturnType => {}
+ _ => return,
+ }
+
+ let hir = self.tcx.hir();
+ let parent_node = hir.get_parent_node(obligation.cause.body_id);
+ let node = hir.find(parent_node);
+ if let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })) =
+ node
+ {
+ let body = hir.body(*body_id);
+ // Point at all the `return`s in the function as they have failed trait bounds.
+ let mut visitor = ReturnsVisitor::default();
+ visitor.visit_body(&body);
+ let typeck_results = self.in_progress_typeck_results.map(|t| t.borrow()).unwrap();
+ for expr in &visitor.returns {
+ if let Some(returned_ty) = typeck_results.node_type_opt(expr.hir_id) {
+ let ty = self.resolve_vars_if_possible(returned_ty);
+ err.span_label(expr.span, &format!("this returned value is of type `{}`", ty));
+ }
+ }
+ }
+ }
+
+ fn report_closure_arg_mismatch(
+ &self,
+ span: Span,
+ found_span: Option<Span>,
+ found: ty::PolyTraitRef<'tcx>,
+ expected: ty::PolyTraitRef<'tcx>,
+ ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ pub(crate) fn build_fn_sig_ty<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx> {
+ let inputs = trait_ref.skip_binder().substs.type_at(1);
+ let sig = match inputs.kind() {
+ ty::Tuple(inputs)
+ if tcx.fn_trait_kind_from_lang_item(trait_ref.def_id()).is_some() =>
+ {
+ tcx.mk_fn_sig(
+ inputs.iter(),
+ tcx.mk_ty_infer(ty::TyVar(ty::TyVid::from_u32(0))),
+ false,
+ hir::Unsafety::Normal,
+ abi::Abi::Rust,
+ )
+ }
+ _ => tcx.mk_fn_sig(
+ std::iter::once(inputs),
+ tcx.mk_ty_infer(ty::TyVar(ty::TyVid::from_u32(0))),
+ false,
+ hir::Unsafety::Normal,
+ abi::Abi::Rust,
+ ),
+ };
+
+ tcx.mk_fn_ptr(trait_ref.rebind(sig))
+ }
+
+ let argument_kind = match expected.skip_binder().self_ty().kind() {
+ ty::Closure(..) => "closure",
+ ty::Generator(..) => "generator",
+ _ => "function",
+ };
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0631,
+ "type mismatch in {argument_kind} arguments",
+ );
+
+ err.span_label(span, "expected due to this");
+
+ let found_span = found_span.unwrap_or(span);
+ err.span_label(found_span, "found signature defined here");
+
+ let expected = build_fn_sig_ty(self.tcx, expected);
+ let found = build_fn_sig_ty(self.tcx, found);
+
+ let (expected_str, found_str) =
+ self.tcx.infer_ctxt().enter(|infcx| infcx.cmp(expected, found));
+
+ let signature_kind = format!("{argument_kind} signature");
+ err.note_expected_found(&signature_kind, expected_str, &signature_kind, found_str);
+
+ err
+ }
+
+ fn suggest_fully_qualified_path(
+ &self,
+ err: &mut Diagnostic,
+ item_def_id: DefId,
+ span: Span,
+ trait_ref: DefId,
+ ) {
+ if let Some(assoc_item) = self.tcx.opt_associated_item(item_def_id) {
+ if let ty::AssocKind::Const | ty::AssocKind::Type = assoc_item.kind {
+ err.note(&format!(
+ "{}s cannot be accessed directly on a `trait`, they can only be \
+ accessed through a specific `impl`",
+ assoc_item.kind.as_def_kind().descr(item_def_id)
+ ));
+ err.span_suggestion(
+ span,
+ "use the fully qualified path to an implementation",
+ format!("<Type as {}>::{}", self.tcx.def_path_str(trait_ref), assoc_item.name),
+ Applicability::HasPlaceholders,
+ );
+ }
+ }
+ }
+
+ /// Adds an async-await specific note to the diagnostic when the future does not implement
+ /// an auto trait because of a captured type.
+ ///
+ /// ```text
+ /// note: future does not implement `Qux` as this value is used across an await
+ /// --> $DIR/issue-64130-3-other.rs:17:5
+ /// |
+ /// LL | let x = Foo;
+ /// | - has type `Foo`
+ /// LL | baz().await;
+ /// | ^^^^^^^^^^^ await occurs here, with `x` maybe used later
+ /// LL | }
+ /// | - `x` is later dropped here
+ /// ```
+ ///
+ /// When the diagnostic does not implement `Send` or `Sync` specifically, then the diagnostic
+ /// is "replaced" with a different message and a more specific error.
+ ///
+ /// ```text
+ /// error: future cannot be sent between threads safely
+ /// --> $DIR/issue-64130-2-send.rs:21:5
+ /// |
+ /// LL | fn is_send<T: Send>(t: T) { }
+ /// | ---- required by this bound in `is_send`
+ /// ...
+ /// LL | is_send(bar());
+ /// | ^^^^^^^ future returned by `bar` is not send
+ /// |
+ /// = help: within `impl std::future::Future`, the trait `std::marker::Send` is not
+ /// implemented for `Foo`
+ /// note: future is not send as this value is used across an await
+ /// --> $DIR/issue-64130-2-send.rs:15:5
+ /// |
+ /// LL | let x = Foo;
+ /// | - has type `Foo`
+ /// LL | baz().await;
+ /// | ^^^^^^^^^^^ await occurs here, with `x` maybe used later
+ /// LL | }
+ /// | - `x` is later dropped here
+ /// ```
+ ///
+ /// Returns `true` if an async-await specific note was added to the diagnostic.
+ #[instrument(level = "debug", skip_all, fields(?obligation.predicate, ?obligation.cause.span))]
+ fn maybe_note_obligation_cause_for_async_await(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ ) -> bool {
+ let hir = self.tcx.hir();
+
+ // Attempt to detect an async-await error by looking at the obligation causes, looking
+ // for a generator to be present.
+ //
+ // When a future does not implement a trait because of a captured type in one of the
+ // generators somewhere in the call stack, then the result is a chain of obligations.
+ //
+ // Given an `async fn` A that calls an `async fn` B which captures a non-send type and that
+ // future is passed as an argument to a function C which requires a `Send` type, then the
+ // chain looks something like this:
+ //
+ // - `BuiltinDerivedObligation` with a generator witness (B)
+ // - `BuiltinDerivedObligation` with a generator (B)
+ // - `BuiltinDerivedObligation` with `std::future::GenFuture` (B)
+ // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
+ // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
+ // - `BuiltinDerivedObligation` with a generator witness (A)
+ // - `BuiltinDerivedObligation` with a generator (A)
+ // - `BuiltinDerivedObligation` with `std::future::GenFuture` (A)
+ // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
+ // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
+ // - `BindingObligation` with `impl_send (Send requirement)
+ //
+ // The first obligation in the chain is the most useful and has the generator that captured
+ // the type. The last generator (`outer_generator` below) has information about where the
+ // bound was introduced. At least one generator should be present for this diagnostic to be
+ // modified.
+ let (mut trait_ref, mut target_ty) = match obligation.predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(p) => (Some(p), Some(p.self_ty())),
+ _ => (None, None),
+ };
+ let mut generator = None;
+ let mut outer_generator = None;
+ let mut next_code = Some(obligation.cause.code());
+
+ let mut seen_upvar_tys_infer_tuple = false;
+
+ while let Some(code) = next_code {
+ debug!(?code);
+ match code {
+ ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
+ next_code = Some(parent_code);
+ }
+ ObligationCauseCode::ImplDerivedObligation(cause) => {
+ let ty = cause.derived.parent_trait_pred.skip_binder().self_ty();
+ debug!(
+ parent_trait_ref = ?cause.derived.parent_trait_pred,
+ self_ty.kind = ?ty.kind(),
+ "ImplDerived",
+ );
+
+ match *ty.kind() {
+ ty::Generator(did, ..) => {
+ generator = generator.or(Some(did));
+ outer_generator = Some(did);
+ }
+ ty::GeneratorWitness(..) => {}
+ ty::Tuple(_) if !seen_upvar_tys_infer_tuple => {
+ // By introducing a tuple of upvar types into the chain of obligations
+ // of a generator, the first non-generator item is now the tuple itself,
+ // we shall ignore this.
+
+ seen_upvar_tys_infer_tuple = true;
+ }
+ _ if generator.is_none() => {
+ trait_ref = Some(cause.derived.parent_trait_pred.skip_binder());
+ target_ty = Some(ty);
+ }
+ _ => {}
+ }
+
+ next_code = Some(&cause.derived.parent_code);
+ }
+ ObligationCauseCode::DerivedObligation(derived_obligation)
+ | ObligationCauseCode::BuiltinDerivedObligation(derived_obligation) => {
+ let ty = derived_obligation.parent_trait_pred.skip_binder().self_ty();
+ debug!(
+ parent_trait_ref = ?derived_obligation.parent_trait_pred,
+ self_ty.kind = ?ty.kind(),
+ );
+
+ match *ty.kind() {
+ ty::Generator(did, ..) => {
+ generator = generator.or(Some(did));
+ outer_generator = Some(did);
+ }
+ ty::GeneratorWitness(..) => {}
+ ty::Tuple(_) if !seen_upvar_tys_infer_tuple => {
+ // By introducing a tuple of upvar types into the chain of obligations
+ // of a generator, the first non-generator item is now the tuple itself,
+ // we shall ignore this.
+
+ seen_upvar_tys_infer_tuple = true;
+ }
+ _ if generator.is_none() => {
+ trait_ref = Some(derived_obligation.parent_trait_pred.skip_binder());
+ target_ty = Some(ty);
+ }
+ _ => {}
+ }
+
+ next_code = Some(&derived_obligation.parent_code);
+ }
+ _ => break,
+ }
+ }
+
+ // Only continue if a generator was found.
+ debug!(?generator, ?trait_ref, ?target_ty);
+ let (Some(generator_did), Some(trait_ref), Some(target_ty)) = (generator, trait_ref, target_ty) else {
+ return false;
+ };
+
+ let span = self.tcx.def_span(generator_did);
+
+ let in_progress_typeck_results = self.in_progress_typeck_results.map(|t| t.borrow());
+ let generator_did_root = self.tcx.typeck_root_def_id(generator_did);
+ debug!(
+ ?generator_did,
+ ?generator_did_root,
+ in_progress_typeck_results.hir_owner = ?in_progress_typeck_results.as_ref().map(|t| t.hir_owner),
+ ?span,
+ );
+
+ let generator_body = generator_did
+ .as_local()
+ .and_then(|def_id| hir.maybe_body_owned_by(def_id))
+ .map(|body_id| hir.body(body_id));
+ let is_async = match generator_did.as_local() {
+ Some(_) => generator_body
+ .and_then(|body| body.generator_kind())
+ .map(|generator_kind| matches!(generator_kind, hir::GeneratorKind::Async(..)))
+ .unwrap_or(false),
+ None => self
+ .tcx
+ .generator_kind(generator_did)
+ .map(|generator_kind| matches!(generator_kind, hir::GeneratorKind::Async(..)))
+ .unwrap_or(false),
+ };
+ let mut visitor = AwaitsVisitor::default();
+ if let Some(body) = generator_body {
+ visitor.visit_body(body);
+ }
+ debug!(awaits = ?visitor.awaits);
+
+ // Look for a type inside the generator interior that matches the target type to get
+ // a span.
+ let target_ty_erased = self.tcx.erase_regions(target_ty);
+ let ty_matches = |ty| -> bool {
+ // Careful: the regions for types that appear in the
+ // generator interior are not generally known, so we
+ // want to erase them when comparing (and anyway,
+ // `Send` and other bounds are generally unaffected by
+ // the choice of region). When erasing regions, we
+ // also have to erase late-bound regions. This is
+ // because the types that appear in the generator
+ // interior generally contain "bound regions" to
+ // represent regions that are part of the suspended
+ // generator frame. Bound regions are preserved by
+ // `erase_regions` and so we must also call
+ // `erase_late_bound_regions`.
+ let ty_erased = self.tcx.erase_late_bound_regions(ty);
+ let ty_erased = self.tcx.erase_regions(ty_erased);
+ let eq = ty_erased == target_ty_erased;
+ debug!(?ty_erased, ?target_ty_erased, ?eq);
+ eq
+ };
+
+ let mut interior_or_upvar_span = None;
+ let mut interior_extra_info = None;
+
+ // Get the typeck results from the infcx if the generator is the function we are currently
+ // type-checking; otherwise, get them by performing a query. This is needed to avoid
+ // cycles. If we can't use resolved types because the generator comes from another crate,
+ // we still provide a targeted error but without all the relevant spans.
+ let generator_data: Option<GeneratorData<'tcx, '_>> = match &in_progress_typeck_results {
+ Some(t) if t.hir_owner.to_def_id() == generator_did_root => {
+ Some(GeneratorData::Local(&t))
+ }
+ _ if generator_did.is_local() => {
+ Some(GeneratorData::Local(self.tcx.typeck(generator_did.expect_local())))
+ }
+ _ => self
+ .tcx
+ .generator_diagnostic_data(generator_did)
+ .as_ref()
+ .map(|generator_diag_data| GeneratorData::Foreign(generator_diag_data)),
+ };
+
+ if let Some(generator_data) = generator_data.as_ref() {
+ interior_or_upvar_span =
+ generator_data.try_get_upvar_span(&self, generator_did, ty_matches);
+
+ // The generator interior types share the same binders
+ if let Some(cause) =
+ generator_data.get_generator_interior_types().skip_binder().iter().find(
+ |ty::GeneratorInteriorTypeCause { ty, .. }| {
+ ty_matches(generator_data.get_generator_interior_types().rebind(*ty))
+ },
+ )
+ {
+ let from_awaited_ty = generator_data.get_from_await_ty(visitor, hir, ty_matches);
+ let ty::GeneratorInteriorTypeCause { span, scope_span, yield_span, expr, .. } =
+ cause;
+
+ interior_or_upvar_span = Some(GeneratorInteriorOrUpvar::Interior(*span));
+ interior_extra_info = Some((*scope_span, *yield_span, *expr, from_awaited_ty));
+ }
+
+ if interior_or_upvar_span.is_none() && generator_data.is_foreign() {
+ interior_or_upvar_span = Some(GeneratorInteriorOrUpvar::Interior(span));
+ }
+ }
+
+ if let Some(interior_or_upvar_span) = interior_or_upvar_span {
+ let typeck_results = generator_data.and_then(|generator_data| match generator_data {
+ GeneratorData::Local(typeck_results) => Some(typeck_results),
+ GeneratorData::Foreign(_) => None,
+ });
+ self.note_obligation_cause_for_async_await(
+ err,
+ interior_or_upvar_span,
+ interior_extra_info,
+ is_async,
+ outer_generator,
+ trait_ref,
+ target_ty,
+ typeck_results,
+ obligation,
+ next_code,
+ );
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Unconditionally adds the diagnostic note described in
+ /// `maybe_note_obligation_cause_for_async_await`'s documentation comment.
+ #[instrument(level = "debug", skip_all)]
+ fn note_obligation_cause_for_async_await(
+ &self,
+ err: &mut Diagnostic,
+ interior_or_upvar_span: GeneratorInteriorOrUpvar,
+ interior_extra_info: Option<(Option<Span>, Span, Option<hir::HirId>, Option<Span>)>,
+ is_async: bool,
+ outer_generator: Option<DefId>,
+ trait_pred: ty::TraitPredicate<'tcx>,
+ target_ty: Ty<'tcx>,
+ typeck_results: Option<&ty::TypeckResults<'tcx>>,
+ obligation: &PredicateObligation<'tcx>,
+ next_code: Option<&ObligationCauseCode<'tcx>>,
+ ) {
+ let source_map = self.tcx.sess.source_map();
+
+ let (await_or_yield, an_await_or_yield) =
+ if is_async { ("await", "an await") } else { ("yield", "a yield") };
+ let future_or_generator = if is_async { "future" } else { "generator" };
+
+ // Special case the primary error message when send or sync is the trait that was
+ // not implemented.
+ let hir = self.tcx.hir();
+ let trait_explanation = if let Some(name @ (sym::Send | sym::Sync)) =
+ self.tcx.get_diagnostic_name(trait_pred.def_id())
+ {
+ let (trait_name, trait_verb) =
+ if name == sym::Send { ("`Send`", "sent") } else { ("`Sync`", "shared") };
+
+ err.clear_code();
+ err.set_primary_message(format!(
+ "{} cannot be {} between threads safely",
+ future_or_generator, trait_verb
+ ));
+
+ let original_span = err.span.primary_span().unwrap();
+ let mut span = MultiSpan::from_span(original_span);
+
+ let message = outer_generator
+ .and_then(|generator_did| {
+ Some(match self.tcx.generator_kind(generator_did).unwrap() {
+ GeneratorKind::Gen => format!("generator is not {}", trait_name),
+ GeneratorKind::Async(AsyncGeneratorKind::Fn) => self
+ .tcx
+ .parent(generator_did)
+ .as_local()
+ .map(|parent_did| hir.local_def_id_to_hir_id(parent_did))
+ .and_then(|parent_hir_id| hir.opt_name(parent_hir_id))
+ .map(|name| {
+ format!("future returned by `{}` is not {}", name, trait_name)
+ })?,
+ GeneratorKind::Async(AsyncGeneratorKind::Block) => {
+ format!("future created by async block is not {}", trait_name)
+ }
+ GeneratorKind::Async(AsyncGeneratorKind::Closure) => {
+ format!("future created by async closure is not {}", trait_name)
+ }
+ })
+ })
+ .unwrap_or_else(|| format!("{} is not {}", future_or_generator, trait_name));
+
+ span.push_span_label(original_span, message);
+ err.set_span(span);
+
+ format!("is not {}", trait_name)
+ } else {
+ format!("does not implement `{}`", trait_pred.print_modifiers_and_trait_path())
+ };
+
+ let mut explain_yield = |interior_span: Span,
+ yield_span: Span,
+ scope_span: Option<Span>| {
+ let mut span = MultiSpan::from_span(yield_span);
+ if let Ok(snippet) = source_map.span_to_snippet(interior_span) {
+ // #70935: If snippet contains newlines, display "the value" instead
+ // so that we do not emit complex diagnostics.
+ let snippet = &format!("`{}`", snippet);
+ let snippet = if snippet.contains('\n') { "the value" } else { snippet };
+ // note: future is not `Send` as this value is used across an await
+ // --> $DIR/issue-70935-complex-spans.rs:13:9
+ // |
+ // LL | baz(|| async {
+ // | ______________-
+ // | |
+ // | |
+ // LL | | foo(tx.clone());
+ // LL | | }).await;
+ // | | - ^^^^^^ await occurs here, with value maybe used later
+ // | |__________|
+ // | has type `closure` which is not `Send`
+ // note: value is later dropped here
+ // LL | | }).await;
+ // | | ^
+ //
+ span.push_span_label(
+ yield_span,
+ format!("{} occurs here, with {} maybe used later", await_or_yield, snippet),
+ );
+ span.push_span_label(
+ interior_span,
+ format!("has type `{}` which {}", target_ty, trait_explanation),
+ );
+ // If available, use the scope span to annotate the drop location.
+ let mut scope_note = None;
+ if let Some(scope_span) = scope_span {
+ let scope_span = source_map.end_point(scope_span);
+
+ let msg = format!("{} is later dropped here", snippet);
+ if source_map.is_multiline(yield_span.between(scope_span)) {
+ span.push_span_label(scope_span, msg);
+ } else {
+ scope_note = Some((scope_span, msg));
+ }
+ }
+ err.span_note(
+ span,
+ &format!(
+ "{} {} as this value is used across {}",
+ future_or_generator, trait_explanation, an_await_or_yield
+ ),
+ );
+ if let Some((span, msg)) = scope_note {
+ err.span_note(span, &msg);
+ }
+ }
+ };
+ match interior_or_upvar_span {
+ GeneratorInteriorOrUpvar::Interior(interior_span) => {
+ if let Some((scope_span, yield_span, expr, from_awaited_ty)) = interior_extra_info {
+ if let Some(await_span) = from_awaited_ty {
+ // The type causing this obligation is one being awaited at await_span.
+ let mut span = MultiSpan::from_span(await_span);
+ span.push_span_label(
+ await_span,
+ format!(
+ "await occurs here on type `{}`, which {}",
+ target_ty, trait_explanation
+ ),
+ );
+ err.span_note(
+ span,
+ &format!(
+ "future {not_trait} as it awaits another future which {not_trait}",
+ not_trait = trait_explanation
+ ),
+ );
+ } else {
+ // Look at the last interior type to get a span for the `.await`.
+ debug!(
+ generator_interior_types = ?format_args!(
+ "{:#?}", typeck_results.as_ref().map(|t| &t.generator_interior_types)
+ ),
+ );
+ explain_yield(interior_span, yield_span, scope_span);
+ }
+
+ if let Some(expr_id) = expr {
+ let expr = hir.expect_expr(expr_id);
+ debug!("target_ty evaluated from {:?}", expr);
+
+ let parent = hir.get_parent_node(expr_id);
+ if let Some(hir::Node::Expr(e)) = hir.find(parent) {
+ let parent_span = hir.span(parent);
+ let parent_did = parent.owner.to_def_id();
+ // ```rust
+ // impl T {
+ // fn foo(&self) -> i32 {}
+ // }
+ // T.foo();
+ // ^^^^^^^ a temporary `&T` created inside this method call due to `&self`
+ // ```
+ //
+ let is_region_borrow = if let Some(typeck_results) = typeck_results {
+ typeck_results
+ .expr_adjustments(expr)
+ .iter()
+ .any(|adj| adj.is_region_borrow())
+ } else {
+ false
+ };
+
+ // ```rust
+ // struct Foo(*const u8);
+ // bar(Foo(std::ptr::null())).await;
+ // ^^^^^^^^^^^^^^^^^^^^^ raw-ptr `*T` created inside this struct ctor.
+ // ```
+ debug!(parent_def_kind = ?self.tcx.def_kind(parent_did));
+ let is_raw_borrow_inside_fn_like_call =
+ match self.tcx.def_kind(parent_did) {
+ DefKind::Fn | DefKind::Ctor(..) => target_ty.is_unsafe_ptr(),
+ _ => false,
+ };
+ if let Some(typeck_results) = typeck_results {
+ if (typeck_results.is_method_call(e) && is_region_borrow)
+ || is_raw_borrow_inside_fn_like_call
+ {
+ err.span_help(
+ parent_span,
+ "consider moving this into a `let` \
+ binding to create a shorter lived borrow",
+ );
+ }
+ }
+ }
+ }
+ }
+ }
+ GeneratorInteriorOrUpvar::Upvar(upvar_span) => {
+ // `Some(ref_ty)` if `target_ty` is `&T` and `T` fails to impl `Sync`
+ let refers_to_non_sync = match target_ty.kind() {
+ ty::Ref(_, ref_ty, _) => match self.evaluate_obligation(&obligation) {
+ Ok(eval) if !eval.may_apply() => Some(ref_ty),
+ _ => None,
+ },
+ _ => None,
+ };
+
+ let (span_label, span_note) = match refers_to_non_sync {
+ // if `target_ty` is `&T` and `T` fails to impl `Sync`,
+ // include suggestions to make `T: Sync` so that `&T: Send`
+ Some(ref_ty) => (
+ format!(
+ "has type `{}` which {}, because `{}` is not `Sync`",
+ target_ty, trait_explanation, ref_ty
+ ),
+ format!(
+ "captured value {} because `&` references cannot be sent unless their referent is `Sync`",
+ trait_explanation
+ ),
+ ),
+ None => (
+ format!("has type `{}` which {}", target_ty, trait_explanation),
+ format!("captured value {}", trait_explanation),
+ ),
+ };
+
+ let mut span = MultiSpan::from_span(upvar_span);
+ span.push_span_label(upvar_span, span_label);
+ err.span_note(span, &span_note);
+ }
+ }
+
+ // Add a note for the item obligation that remains - normally a note pointing to the
+ // bound that introduced the obligation (e.g. `T: Send`).
+ debug!(?next_code);
+ self.note_obligation_cause_code(
+ err,
+ &obligation.predicate,
+ obligation.param_env,
+ next_code.unwrap(),
+ &mut Vec::new(),
+ &mut Default::default(),
+ );
+ }
+
+ fn note_obligation_cause_code<T>(
+ &self,
+ err: &mut Diagnostic,
+ predicate: &T,
+ param_env: ty::ParamEnv<'tcx>,
+ cause_code: &ObligationCauseCode<'tcx>,
+ obligated_types: &mut Vec<Ty<'tcx>>,
+ seen_requirements: &mut FxHashSet<DefId>,
+ ) where
+ T: fmt::Display,
+ {
+ let tcx = self.tcx;
+ match *cause_code {
+ ObligationCauseCode::ExprAssignable
+ | ObligationCauseCode::MatchExpressionArm { .. }
+ | ObligationCauseCode::Pattern { .. }
+ | ObligationCauseCode::IfExpression { .. }
+ | ObligationCauseCode::IfExpressionWithNoElse
+ | ObligationCauseCode::MainFunctionType
+ | ObligationCauseCode::StartFunctionType
+ | ObligationCauseCode::IntrinsicType
+ | ObligationCauseCode::MethodReceiver
+ | ObligationCauseCode::ReturnNoExpression
+ | ObligationCauseCode::UnifyReceiver(..)
+ | ObligationCauseCode::OpaqueType
+ | ObligationCauseCode::MiscObligation
+ | ObligationCauseCode::WellFormed(..)
+ | ObligationCauseCode::MatchImpl(..)
+ | ObligationCauseCode::ReturnType
+ | ObligationCauseCode::ReturnValue(_)
+ | ObligationCauseCode::BlockTailExpression(_)
+ | ObligationCauseCode::AwaitableExpr(_)
+ | ObligationCauseCode::ForLoopIterator
+ | ObligationCauseCode::QuestionMark
+ | ObligationCauseCode::CheckAssociatedTypeBounds { .. }
+ | ObligationCauseCode::LetElse
+ | ObligationCauseCode::BinOp { .. } => {}
+ ObligationCauseCode::SliceOrArrayElem => {
+ err.note("slice and array elements must have `Sized` type");
+ }
+ ObligationCauseCode::TupleElem => {
+ err.note("only the last element of a tuple may have a dynamically sized type");
+ }
+ ObligationCauseCode::ProjectionWf(data) => {
+ err.note(&format!("required so that the projection `{}` is well-formed", data,));
+ }
+ ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
+ err.note(&format!(
+ "required so that reference `{}` does not outlive its referent",
+ ref_ty,
+ ));
+ }
+ ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
+ err.note(&format!(
+ "required so that the lifetime bound of `{}` for `{}` is satisfied",
+ region, object_ty,
+ ));
+ }
+ ObligationCauseCode::ItemObligation(_item_def_id) => {
+ // We hold the `DefId` of the item introducing the obligation, but displaying it
+ // doesn't add user usable information. It always point at an associated item.
+ }
+ ObligationCauseCode::BindingObligation(item_def_id, span) => {
+ let item_name = tcx.def_path_str(item_def_id);
+ let mut multispan = MultiSpan::from(span);
+ if let Some(ident) = tcx.opt_item_ident(item_def_id) {
+ let sm = tcx.sess.source_map();
+ let same_line =
+ match (sm.lookup_line(ident.span.hi()), sm.lookup_line(span.lo())) {
+ (Ok(l), Ok(r)) => l.line == r.line,
+ _ => true,
+ };
+ if !ident.span.overlaps(span) && !same_line {
+ multispan.push_span_label(ident.span, "required by a bound in this");
+ }
+ }
+ let descr = format!("required by a bound in `{}`", item_name);
+ if span != DUMMY_SP {
+ let msg = format!("required by this bound in `{}`", item_name);
+ multispan.push_span_label(span, msg);
+ err.span_note(multispan, &descr);
+ } else {
+ err.span_note(tcx.def_span(item_def_id), &descr);
+ }
+ }
+ ObligationCauseCode::ObjectCastObligation(concrete_ty, object_ty) => {
+ err.note(&format!(
+ "required for the cast from `{}` to the object type `{}`",
+ self.ty_to_string(concrete_ty),
+ self.ty_to_string(object_ty)
+ ));
+ }
+ ObligationCauseCode::Coercion { source: _, target } => {
+ err.note(&format!("required by cast to type `{}`", self.ty_to_string(target)));
+ }
+ ObligationCauseCode::RepeatElementCopy { is_const_fn } => {
+ err.note(
+ "the `Copy` trait is required because this value will be copied for each element of the array",
+ );
+
+ if is_const_fn {
+ err.help(
+ "consider creating a new `const` item and initializing it with the result \
+ of the function call to be used in the repeat position, like \
+ `const VAL: Type = const_fn();` and `let x = [VAL; 42];`",
+ );
+ }
+
+ if self.tcx.sess.is_nightly_build() && is_const_fn {
+ err.help(
+ "create an inline `const` block, see RFC #2920 \
+ <https://github.com/rust-lang/rfcs/pull/2920> for more information",
+ );
+ }
+ }
+ ObligationCauseCode::VariableType(hir_id) => {
+ let parent_node = self.tcx.hir().get_parent_node(hir_id);
+ match self.tcx.hir().find(parent_node) {
+ Some(Node::Local(hir::Local {
+ init: Some(hir::Expr { kind: hir::ExprKind::Index(_, _), span, .. }),
+ ..
+ })) => {
+ // When encountering an assignment of an unsized trait, like
+ // `let x = ""[..];`, provide a suggestion to borrow the initializer in
+ // order to use have a slice instead.
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ "consider borrowing here",
+ "&",
+ Applicability::MachineApplicable,
+ );
+ err.note("all local variables must have a statically known size");
+ }
+ Some(Node::Param(param)) => {
+ err.span_suggestion_verbose(
+ param.ty_span.shrink_to_lo(),
+ "function arguments must have a statically known size, borrowed types \
+ always have a known size",
+ "&",
+ Applicability::MachineApplicable,
+ );
+ }
+ _ => {
+ err.note("all local variables must have a statically known size");
+ }
+ }
+ if !self.tcx.features().unsized_locals {
+ err.help("unsized locals are gated as an unstable feature");
+ }
+ }
+ ObligationCauseCode::SizedArgumentType(sp) => {
+ if let Some(span) = sp {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ "function arguments must have a statically known size, borrowed types \
+ always have a known size",
+ "&",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.note("all function arguments must have a statically known size");
+ }
+ if tcx.sess.opts.unstable_features.is_nightly_build()
+ && !self.tcx.features().unsized_fn_params
+ {
+ err.help("unsized fn params are gated as an unstable feature");
+ }
+ }
+ ObligationCauseCode::SizedReturnType => {
+ err.note("the return type of a function must have a statically known size");
+ }
+ ObligationCauseCode::SizedYieldType => {
+ err.note("the yield type of a generator must have a statically known size");
+ }
+ ObligationCauseCode::SizedBoxType => {
+ err.note("the type of a box expression must have a statically known size");
+ }
+ ObligationCauseCode::AssignmentLhsSized => {
+ err.note("the left-hand-side of an assignment must have a statically known size");
+ }
+ ObligationCauseCode::TupleInitializerSized => {
+ err.note("tuples must have a statically known size to be initialized");
+ }
+ ObligationCauseCode::StructInitializerSized => {
+ err.note("structs must have a statically known size to be initialized");
+ }
+ ObligationCauseCode::FieldSized { adt_kind: ref item, last, span } => {
+ match *item {
+ AdtKind::Struct => {
+ if last {
+ err.note(
+ "the last field of a packed struct may only have a \
+ dynamically sized type if it does not need drop to be run",
+ );
+ } else {
+ err.note(
+ "only the last field of a struct may have a dynamically sized type",
+ );
+ }
+ }
+ AdtKind::Union => {
+ err.note("no field of a union may have a dynamically sized type");
+ }
+ AdtKind::Enum => {
+ err.note("no field of an enum variant may have a dynamically sized type");
+ }
+ }
+ err.help("change the field's type to have a statically known size");
+ err.span_suggestion(
+ span.shrink_to_lo(),
+ "borrowed types always have a statically known size",
+ "&",
+ Applicability::MachineApplicable,
+ );
+ err.multipart_suggestion(
+ "the `Box` type always has a statically known size and allocates its contents \
+ in the heap",
+ vec![
+ (span.shrink_to_lo(), "Box<".to_string()),
+ (span.shrink_to_hi(), ">".to_string()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ }
+ ObligationCauseCode::ConstSized => {
+ err.note("constant expressions must have a statically known size");
+ }
+ ObligationCauseCode::InlineAsmSized => {
+ err.note("all inline asm arguments must have a statically known size");
+ }
+ ObligationCauseCode::ConstPatternStructural => {
+ err.note("constants used for pattern-matching must derive `PartialEq` and `Eq`");
+ }
+ ObligationCauseCode::SharedStatic => {
+ err.note("shared static variables must have a type that implements `Sync`");
+ }
+ ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
+ let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
+ let ty = parent_trait_ref.skip_binder().self_ty();
+ if parent_trait_ref.references_error() {
+ // NOTE(eddyb) this was `.cancel()`, but `err`
+ // is borrowed, so we can't fully defuse it.
+ err.downgrade_to_delayed_bug();
+ return;
+ }
+
+ // If the obligation for a tuple is set directly by a Generator or Closure,
+ // then the tuple must be the one containing capture types.
+ let is_upvar_tys_infer_tuple = if !matches!(ty.kind(), ty::Tuple(..)) {
+ false
+ } else {
+ if let ObligationCauseCode::BuiltinDerivedObligation(data) = &*data.parent_code
+ {
+ let parent_trait_ref =
+ self.resolve_vars_if_possible(data.parent_trait_pred);
+ let nested_ty = parent_trait_ref.skip_binder().self_ty();
+ matches!(nested_ty.kind(), ty::Generator(..))
+ || matches!(nested_ty.kind(), ty::Closure(..))
+ } else {
+ false
+ }
+ };
+
+ let from_generator = tcx.lang_items().from_generator_fn().unwrap();
+
+ // Don't print the tuple of capture types
+ 'print: {
+ if !is_upvar_tys_infer_tuple {
+ let msg = format!("required because it appears within the type `{}`", ty);
+ match ty.kind() {
+ ty::Adt(def, _) => {
+ // `gen_future` is used in all async functions; it doesn't add any additional info.
+ if self.tcx.is_diagnostic_item(sym::gen_future, def.did()) {
+ break 'print;
+ }
+ match self.tcx.opt_item_ident(def.did()) {
+ Some(ident) => err.span_note(ident.span, &msg),
+ None => err.note(&msg),
+ }
+ }
+ ty::Opaque(def_id, _) => {
+ // Avoid printing the future from `core::future::from_generator`, it's not helpful
+ if tcx.parent(*def_id) == from_generator {
+ break 'print;
+ }
+
+ // If the previous type is `from_generator`, this is the future generated by the body of an async function.
+ // Avoid printing it twice (it was already printed in the `ty::Generator` arm below).
+ let is_future = tcx.ty_is_opaque_future(ty);
+ debug!(
+ ?obligated_types,
+ ?is_future,
+ "note_obligation_cause_code: check for async fn"
+ );
+ if is_future
+ && obligated_types.last().map_or(false, |ty| match ty.kind() {
+ ty::Opaque(last_def_id, _) => {
+ tcx.parent(*last_def_id) == from_generator
+ }
+ _ => false,
+ })
+ {
+ break 'print;
+ }
+ err.span_note(self.tcx.def_span(def_id), &msg)
+ }
+ ty::GeneratorWitness(bound_tys) => {
+ use std::fmt::Write;
+
+ // FIXME: this is kind of an unusual format for rustc, can we make it more clear?
+ // Maybe we should just remove this note altogether?
+ // FIXME: only print types which don't meet the trait requirement
+ let mut msg =
+ "required because it captures the following types: ".to_owned();
+ for ty in bound_tys.skip_binder() {
+ write!(msg, "`{}`, ", ty).unwrap();
+ }
+ err.note(msg.trim_end_matches(", "))
+ }
+ ty::Generator(def_id, _, _) => {
+ let sp = self.tcx.def_span(def_id);
+
+ // Special-case this to say "async block" instead of `[static generator]`.
+ let kind = tcx.generator_kind(def_id).unwrap();
+ err.span_note(
+ sp,
+ &format!("required because it's used within this {}", kind),
+ )
+ }
+ ty::Closure(def_id, _) => err.span_note(
+ self.tcx.def_span(def_id),
+ &format!("required because it's used within this closure"),
+ ),
+ _ => err.note(&msg),
+ };
+ }
+ }
+
+ obligated_types.push(ty);
+
+ let parent_predicate = parent_trait_ref.to_predicate(tcx);
+ if !self.is_recursive_obligation(obligated_types, &data.parent_code) {
+ // #74711: avoid a stack overflow
+ ensure_sufficient_stack(|| {
+ self.note_obligation_cause_code(
+ err,
+ &parent_predicate,
+ param_env,
+ &data.parent_code,
+ obligated_types,
+ seen_requirements,
+ )
+ });
+ } else {
+ ensure_sufficient_stack(|| {
+ self.note_obligation_cause_code(
+ err,
+ &parent_predicate,
+ param_env,
+ cause_code.peel_derives(),
+ obligated_types,
+ seen_requirements,
+ )
+ });
+ }
+ }
+ ObligationCauseCode::ImplDerivedObligation(ref data) => {
+ let mut parent_trait_pred =
+ self.resolve_vars_if_possible(data.derived.parent_trait_pred);
+ parent_trait_pred.remap_constness_diag(param_env);
+ let parent_def_id = parent_trait_pred.def_id();
+ let msg = format!(
+ "required because of the requirements on the impl of `{}` for `{}`",
+ parent_trait_pred.print_modifiers_and_trait_path(),
+ parent_trait_pred.skip_binder().self_ty()
+ );
+ let mut is_auto_trait = false;
+ match self.tcx.hir().get_if_local(data.impl_def_id) {
+ Some(Node::Item(hir::Item {
+ kind: hir::ItemKind::Trait(is_auto, ..),
+ ident,
+ ..
+ })) => {
+ // FIXME: we should do something else so that it works even on crate foreign
+ // auto traits.
+ is_auto_trait = matches!(is_auto, hir::IsAuto::Yes);
+ err.span_note(ident.span, &msg)
+ }
+ Some(Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, .. }),
+ ..
+ })) => {
+ let mut spans = Vec::with_capacity(2);
+ if let Some(trait_ref) = of_trait {
+ spans.push(trait_ref.path.span);
+ }
+ spans.push(self_ty.span);
+ err.span_note(spans, &msg)
+ }
+ _ => err.note(&msg),
+ };
+
+ let mut parent_predicate = parent_trait_pred.to_predicate(tcx);
+ let mut data = &data.derived;
+ let mut count = 0;
+ seen_requirements.insert(parent_def_id);
+ if is_auto_trait {
+ // We don't want to point at the ADT saying "required because it appears within
+ // the type `X`", like we would otherwise do in test `supertrait-auto-trait.rs`.
+ while let ObligationCauseCode::BuiltinDerivedObligation(derived) =
+ &*data.parent_code
+ {
+ let child_trait_ref =
+ self.resolve_vars_if_possible(derived.parent_trait_pred);
+ let child_def_id = child_trait_ref.def_id();
+ if seen_requirements.insert(child_def_id) {
+ break;
+ }
+ data = derived;
+ parent_predicate = child_trait_ref.to_predicate(tcx);
+ parent_trait_pred = child_trait_ref;
+ }
+ }
+ while let ObligationCauseCode::ImplDerivedObligation(child) = &*data.parent_code {
+ // Skip redundant recursive obligation notes. See `ui/issue-20413.rs`.
+ let child_trait_pred =
+ self.resolve_vars_if_possible(child.derived.parent_trait_pred);
+ let child_def_id = child_trait_pred.def_id();
+ if seen_requirements.insert(child_def_id) {
+ break;
+ }
+ count += 1;
+ data = &child.derived;
+ parent_predicate = child_trait_pred.to_predicate(tcx);
+ parent_trait_pred = child_trait_pred;
+ }
+ if count > 0 {
+ err.note(&format!(
+ "{} redundant requirement{} hidden",
+ count,
+ pluralize!(count)
+ ));
+ err.note(&format!(
+ "required because of the requirements on the impl of `{}` for `{}`",
+ parent_trait_pred.print_modifiers_and_trait_path(),
+ parent_trait_pred.skip_binder().self_ty()
+ ));
+ }
+ // #74711: avoid a stack overflow
+ ensure_sufficient_stack(|| {
+ self.note_obligation_cause_code(
+ err,
+ &parent_predicate,
+ param_env,
+ &data.parent_code,
+ obligated_types,
+ seen_requirements,
+ )
+ });
+ }
+ ObligationCauseCode::DerivedObligation(ref data) => {
+ let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
+ let parent_predicate = parent_trait_ref.to_predicate(tcx);
+ // #74711: avoid a stack overflow
+ ensure_sufficient_stack(|| {
+ self.note_obligation_cause_code(
+ err,
+ &parent_predicate,
+ param_env,
+ &data.parent_code,
+ obligated_types,
+ seen_requirements,
+ )
+ });
+ }
+ ObligationCauseCode::FunctionArgumentObligation {
+ arg_hir_id,
+ call_hir_id,
+ ref parent_code,
+ } => {
+ let hir = self.tcx.hir();
+ if let Some(Node::Expr(expr @ hir::Expr { kind: hir::ExprKind::Block(..), .. })) =
+ hir.find(arg_hir_id)
+ {
+ let in_progress_typeck_results =
+ self.in_progress_typeck_results.map(|t| t.borrow());
+ let parent_id = hir.get_parent_item(arg_hir_id);
+ let typeck_results: &TypeckResults<'tcx> = match &in_progress_typeck_results {
+ Some(t) if t.hir_owner == parent_id => t,
+ _ => self.tcx.typeck(parent_id),
+ };
+ let ty = typeck_results.expr_ty_adjusted(expr);
+ let span = expr.peel_blocks().span;
+ if Some(span) != err.span.primary_span() {
+ err.span_label(
+ span,
+ &if ty.references_error() {
+ String::new()
+ } else {
+ format!("this tail expression is of type `{:?}`", ty)
+ },
+ );
+ }
+ }
+ if let Some(Node::Expr(hir::Expr {
+ kind:
+ hir::ExprKind::Call(hir::Expr { span, .. }, _)
+ | hir::ExprKind::MethodCall(
+ hir::PathSegment { ident: Ident { span, .. }, .. },
+ ..,
+ ),
+ ..
+ })) = hir.find(call_hir_id)
+ {
+ if Some(*span) != err.span.primary_span() {
+ err.span_label(*span, "required by a bound introduced by this call");
+ }
+ }
+ ensure_sufficient_stack(|| {
+ self.note_obligation_cause_code(
+ err,
+ predicate,
+ param_env,
+ &parent_code,
+ obligated_types,
+ seen_requirements,
+ )
+ });
+ }
+ ObligationCauseCode::CompareImplItemObligation { trait_item_def_id, kind, .. } => {
+ let item_name = self.tcx.item_name(trait_item_def_id);
+ let msg = format!(
+ "the requirement `{}` appears on the `impl`'s {kind} `{}` but not on the \
+ corresponding trait's {kind}",
+ predicate, item_name,
+ );
+ let sp = self
+ .tcx
+ .opt_item_ident(trait_item_def_id)
+ .map(|i| i.span)
+ .unwrap_or_else(|| self.tcx.def_span(trait_item_def_id));
+ let mut assoc_span: MultiSpan = sp.into();
+ assoc_span.push_span_label(
+ sp,
+ format!("this trait's {kind} doesn't have the requirement `{}`", predicate),
+ );
+ if let Some(ident) = self
+ .tcx
+ .opt_associated_item(trait_item_def_id)
+ .and_then(|i| self.tcx.opt_item_ident(i.container_id(self.tcx)))
+ {
+ assoc_span.push_span_label(ident.span, "in this trait");
+ }
+ err.span_note(assoc_span, &msg);
+ }
+ ObligationCauseCode::TrivialBound => {
+ err.help("see issue #48214");
+ if tcx.sess.opts.unstable_features.is_nightly_build() {
+ err.help("add `#![feature(trivial_bounds)]` to the crate attributes to enable");
+ }
+ }
+ ObligationCauseCode::OpaqueReturnType(expr_info) => {
+ if let Some((expr_ty, expr_span)) = expr_info {
+ let expr_ty = self.resolve_vars_if_possible(expr_ty);
+ err.span_label(
+ expr_span,
+ format!("return type was inferred to be `{expr_ty}` here"),
+ );
+ }
+ }
+ }
+ }
+
+ fn suggest_new_overflow_limit(&self, err: &mut Diagnostic) {
+ let suggested_limit = match self.tcx.recursion_limit() {
+ Limit(0) => Limit(2),
+ limit => limit * 2,
+ };
+ err.help(&format!(
+ "consider increasing the recursion limit by adding a \
+ `#![recursion_limit = \"{}\"]` attribute to your crate (`{}`)",
+ suggested_limit,
+ self.tcx.crate_name(LOCAL_CRATE),
+ ));
+ }
+
+ #[instrument(
+ level = "debug", skip(self, err), fields(trait_pred.self_ty = ?trait_pred.self_ty())
+ )]
+ fn suggest_await_before_try(
+ &self,
+ err: &mut Diagnostic,
+ obligation: &PredicateObligation<'tcx>,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ span: Span,
+ ) {
+ let body_hir_id = obligation.cause.body_id;
+ let item_id = self.tcx.hir().get_parent_node(body_hir_id);
+
+ if let Some(body_id) =
+ self.tcx.hir().maybe_body_owned_by(self.tcx.hir().local_def_id(item_id))
+ {
+ let body = self.tcx.hir().body(body_id);
+ if let Some(hir::GeneratorKind::Async(_)) = body.generator_kind {
+ let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
+
+ let self_ty = self.resolve_vars_if_possible(trait_pred.self_ty());
+ let impls_future = self.type_implements_trait(
+ future_trait,
+ self.tcx.erase_late_bound_regions(self_ty),
+ ty::List::empty(),
+ obligation.param_env,
+ );
+ if !impls_future.must_apply_modulo_regions() {
+ return;
+ }
+
+ let item_def_id = self.tcx.associated_item_def_ids(future_trait)[0];
+ // `<T as Future>::Output`
+ let projection_ty = trait_pred.map_bound(|trait_pred| {
+ self.tcx.mk_projection(
+ item_def_id,
+ // Future::Output has no substs
+ self.tcx.mk_substs_trait(trait_pred.self_ty(), &[]),
+ )
+ });
+ let projection_ty = normalize_to(
+ &mut SelectionContext::new(self),
+ obligation.param_env,
+ obligation.cause.clone(),
+ projection_ty,
+ &mut vec![],
+ );
+
+ debug!(
+ normalized_projection_type = ?self.resolve_vars_if_possible(projection_ty)
+ );
+ let try_obligation = self.mk_trait_obligation_with_new_self_ty(
+ obligation.param_env,
+ trait_pred.map_bound(|trait_pred| (trait_pred, projection_ty.skip_binder())),
+ );
+ debug!(try_trait_obligation = ?try_obligation);
+ if self.predicate_may_hold(&try_obligation)
+ && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span)
+ && snippet.ends_with('?')
+ {
+ err.span_suggestion_verbose(
+ span.with_hi(span.hi() - BytePos(1)).shrink_to_hi(),
+ "consider `await`ing on the `Future`",
+ ".await",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ }
+
+ fn suggest_floating_point_literal(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_ref: &ty::PolyTraitRef<'tcx>,
+ ) {
+ let rhs_span = match obligation.cause.code() {
+ ObligationCauseCode::BinOp { rhs_span: Some(span), is_lit, .. } if *is_lit => span,
+ _ => return,
+ };
+ match (
+ trait_ref.skip_binder().self_ty().kind(),
+ trait_ref.skip_binder().substs.type_at(1).kind(),
+ ) {
+ (ty::Float(_), ty::Infer(InferTy::IntVar(_))) => {
+ err.span_suggestion_verbose(
+ rhs_span.shrink_to_hi(),
+ "consider using a floating-point literal by writing it with `.0`",
+ ".0",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ }
+ }
+
+ fn suggest_derive(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) {
+ let Some(diagnostic_name) = self.tcx.get_diagnostic_name(trait_pred.def_id()) else {
+ return;
+ };
+ let (adt, substs) = match trait_pred.skip_binder().self_ty().kind() {
+ ty::Adt(adt, substs) if adt.did().is_local() => (adt, substs),
+ _ => return,
+ };
+ let can_derive = {
+ let is_derivable_trait = match diagnostic_name {
+ sym::Default => !adt.is_enum(),
+ sym::PartialEq | sym::PartialOrd => {
+ let rhs_ty = trait_pred.skip_binder().trait_ref.substs.type_at(1);
+ trait_pred.skip_binder().self_ty() == rhs_ty
+ }
+ sym::Eq | sym::Ord | sym::Clone | sym::Copy | sym::Hash | sym::Debug => true,
+ _ => false,
+ };
+ is_derivable_trait &&
+ // Ensure all fields impl the trait.
+ adt.all_fields().all(|field| {
+ let field_ty = field.ty(self.tcx, substs);
+ let trait_substs = match diagnostic_name {
+ sym::PartialEq | sym::PartialOrd => {
+ self.tcx.mk_substs_trait(field_ty, &[field_ty.into()])
+ }
+ _ => self.tcx.mk_substs_trait(field_ty, &[]),
+ };
+ let trait_pred = trait_pred.map_bound_ref(|tr| ty::TraitPredicate {
+ trait_ref: ty::TraitRef {
+ substs: trait_substs,
+ ..trait_pred.skip_binder().trait_ref
+ },
+ ..*tr
+ });
+ let field_obl = Obligation::new(
+ obligation.cause.clone(),
+ obligation.param_env,
+ trait_pred.to_predicate(self.tcx),
+ );
+ self.predicate_must_hold_modulo_regions(&field_obl)
+ })
+ };
+ if can_derive {
+ err.span_suggestion_verbose(
+ self.tcx.def_span(adt.did()).shrink_to_lo(),
+ &format!(
+ "consider annotating `{}` with `#[derive({})]`",
+ trait_pred.skip_binder().self_ty(),
+ diagnostic_name,
+ ),
+ format!("#[derive({})]\n", diagnostic_name),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ fn suggest_dereferencing_index(
+ &self,
+ obligation: &PredicateObligation<'tcx>,
+ err: &mut Diagnostic,
+ trait_pred: ty::PolyTraitPredicate<'tcx>,
+ ) {
+ if let ObligationCauseCode::ImplDerivedObligation(_) = obligation.cause.code()
+ && self.tcx.is_diagnostic_item(sym::SliceIndex, trait_pred.skip_binder().trait_ref.def_id)
+ && let ty::Slice(_) = trait_pred.skip_binder().trait_ref.substs.type_at(1).kind()
+ && let ty::Ref(_, inner_ty, _) = trait_pred.skip_binder().self_ty().kind()
+ && let ty::Uint(ty::UintTy::Usize) = inner_ty.kind()
+ {
+ err.span_suggestion_verbose(
+ obligation.cause.span.shrink_to_lo(),
+ "dereference this index",
+ '*',
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+}
+
+/// Collect all the returned expressions within the input expression.
+/// Used to point at the return spans when we want to suggest some change to them.
+#[derive(Default)]
+pub struct ReturnsVisitor<'v> {
+ pub returns: Vec<&'v hir::Expr<'v>>,
+ in_block_tail: bool,
+}
+
+impl<'v> Visitor<'v> for ReturnsVisitor<'v> {
+ fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
+ // Visit every expression to detect `return` paths, either through the function's tail
+ // expression or `return` statements. We walk all nodes to find `return` statements, but
+ // we only care about tail expressions when `in_block_tail` is `true`, which means that
+ // they're in the return path of the function body.
+ match ex.kind {
+ hir::ExprKind::Ret(Some(ex)) => {
+ self.returns.push(ex);
+ }
+ hir::ExprKind::Block(block, _) if self.in_block_tail => {
+ self.in_block_tail = false;
+ for stmt in block.stmts {
+ hir::intravisit::walk_stmt(self, stmt);
+ }
+ self.in_block_tail = true;
+ if let Some(expr) = block.expr {
+ self.visit_expr(expr);
+ }
+ }
+ hir::ExprKind::If(_, then, else_opt) if self.in_block_tail => {
+ self.visit_expr(then);
+ if let Some(el) = else_opt {
+ self.visit_expr(el);
+ }
+ }
+ hir::ExprKind::Match(_, arms, _) if self.in_block_tail => {
+ for arm in arms {
+ self.visit_expr(arm.body);
+ }
+ }
+ // We need to walk to find `return`s in the entire body.
+ _ if !self.in_block_tail => hir::intravisit::walk_expr(self, ex),
+ _ => self.returns.push(ex),
+ }
+ }
+
+ fn visit_body(&mut self, body: &'v hir::Body<'v>) {
+ assert!(!self.in_block_tail);
+ if body.generator_kind().is_none() {
+ if let hir::ExprKind::Block(block, None) = body.value.kind {
+ if block.expr.is_some() {
+ self.in_block_tail = true;
+ }
+ }
+ }
+ hir::intravisit::walk_body(self, body);
+ }
+}
+
+/// Collect all the awaited expressions within the input expression.
+#[derive(Default)]
+struct AwaitsVisitor {
+ awaits: Vec<hir::HirId>,
+}
+
+impl<'v> Visitor<'v> for AwaitsVisitor {
+ fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
+ if let hir::ExprKind::Yield(_, hir::YieldSource::Await { expr: Some(id) }) = ex.kind {
+ self.awaits.push(id)
+ }
+ hir::intravisit::walk_expr(self, ex)
+ }
+}
+
+pub trait NextTypeParamName {
+ fn next_type_param_name(&self, name: Option<&str>) -> String;
+}
+
+impl NextTypeParamName for &[hir::GenericParam<'_>] {
+ fn next_type_param_name(&self, name: Option<&str>) -> String {
+ // This is the list of possible parameter names that we might suggest.
+ let name = name.and_then(|n| n.chars().next()).map(|c| c.to_string().to_uppercase());
+ let name = name.as_deref();
+ let possible_names = [name.unwrap_or("T"), "T", "U", "V", "X", "Y", "Z", "A", "B", "C"];
+ let used_names = self
+ .iter()
+ .filter_map(|p| match p.name {
+ hir::ParamName::Plain(ident) => Some(ident.name),
+ _ => None,
+ })
+ .collect::<Vec<_>>();
+
+ possible_names
+ .iter()
+ .find(|n| !used_names.contains(&Symbol::intern(n)))
+ .unwrap_or(&"ParamName")
+ .to_string()
+ }
+}
+
+fn suggest_trait_object_return_type_alternatives(
+ err: &mut Diagnostic,
+ ret_ty: Span,
+ trait_obj: &str,
+ is_object_safe: bool,
+) {
+ err.span_suggestion(
+ ret_ty,
+ "use some type `T` that is `T: Sized` as the return type if all return paths have the \
+ same type",
+ "T",
+ Applicability::MaybeIncorrect,
+ );
+ err.span_suggestion(
+ ret_ty,
+ &format!(
+ "use `impl {}` as the return type if all return paths have the same type but you \
+ want to expose only the trait in the signature",
+ trait_obj,
+ ),
+ format!("impl {}", trait_obj),
+ Applicability::MaybeIncorrect,
+ );
+ if is_object_safe {
+ err.multipart_suggestion(
+ &format!(
+ "use a boxed trait object if all return paths implement trait `{}`",
+ trait_obj,
+ ),
+ vec![
+ (ret_ty.shrink_to_lo(), "Box<".to_string()),
+ (ret_ty.shrink_to_hi(), ">".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+}
+
+/// Collect the spans that we see the generic param `param_did`
+struct ReplaceImplTraitVisitor<'a> {
+ ty_spans: &'a mut Vec<Span>,
+ param_did: DefId,
+}
+
+impl<'a, 'hir> hir::intravisit::Visitor<'hir> for ReplaceImplTraitVisitor<'a> {
+ fn visit_ty(&mut self, t: &'hir hir::Ty<'hir>) {
+ if let hir::TyKind::Path(hir::QPath::Resolved(
+ None,
+ hir::Path { res: hir::def::Res::Def(_, segment_did), .. },
+ )) = t.kind
+ {
+ if self.param_did == *segment_did {
+ // `fn foo(t: impl Trait)`
+ // ^^^^^^^^^^ get this to suggest `T` instead
+
+ // There might be more than one `impl Trait`.
+ self.ty_spans.push(t.span);
+ return;
+ }
+ }
+
+ hir::intravisit::walk_ty(self, t);
+ }
+}
+
+// Replace `param` with `replace_ty`
+struct ReplaceImplTraitFolder<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ param: &'tcx ty::GenericParamDef,
+ replace_ty: Ty<'tcx>,
+}
+
+impl<'tcx> TypeFolder<'tcx> for ReplaceImplTraitFolder<'tcx> {
+ fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+ if let ty::Param(ty::ParamTy { index, .. }) = t.kind() {
+ if self.param.index == *index {
+ return self.replace_ty;
+ }
+ }
+ t.super_fold_with(self)
+ }
+
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+}