summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/mod.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/mod.rs863
1 files changed, 863 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/mod.rs b/compiler/rustc_trait_selection/src/traits/mod.rs
new file mode 100644
index 000000000..9c6bb0731
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/mod.rs
@@ -0,0 +1,863 @@
+//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
+//!
+//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
+
+pub mod auto_trait;
+mod chalk_fulfill;
+pub mod codegen;
+mod coherence;
+pub mod const_evaluatable;
+mod engine;
+pub mod error_reporting;
+mod fulfill;
+pub mod misc;
+mod object_safety;
+mod on_unimplemented;
+mod project;
+pub mod query;
+pub(crate) mod relationships;
+mod select;
+mod specialize;
+mod structural_match;
+mod util;
+pub mod wf;
+
+use crate::infer::outlives::env::OutlivesEnvironment;
+use crate::infer::{InferCtxt, TyCtxtInferExt};
+use crate::traits::error_reporting::InferCtxtExt as _;
+use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_middle::ty::fold::TypeFoldable;
+use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry};
+use rustc_span::{sym, Span};
+use smallvec::SmallVec;
+
+use std::fmt::Debug;
+use std::ops::ControlFlow;
+
+pub use self::FulfillmentErrorCode::*;
+pub use self::ImplSource::*;
+pub use self::ObligationCauseCode::*;
+pub use self::SelectionError::*;
+
+pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
+pub use self::coherence::{OrphanCheckErr, OverlapResult};
+pub use self::engine::{ObligationCtxt, TraitEngineExt};
+pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
+pub use self::object_safety::astconv_object_safety_violations;
+pub use self::object_safety::is_vtable_safe_method;
+pub use self::object_safety::MethodViolationCode;
+pub use self::object_safety::ObjectSafetyViolation;
+pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
+pub use self::project::{normalize, normalize_projection_type, normalize_to};
+pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
+pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
+pub use self::specialize::specialization_graph::FutureCompatOverlapError;
+pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
+pub use self::specialize::{specialization_graph, translate_substs, OverlapError};
+pub use self::structural_match::{
+ search_for_adt_const_param_violation, search_for_structural_match_violation,
+};
+pub use self::util::{
+ elaborate_obligations, elaborate_predicates, elaborate_predicates_with_span,
+ elaborate_trait_ref, elaborate_trait_refs,
+};
+pub use self::util::{expand_trait_aliases, TraitAliasExpander};
+pub use self::util::{
+ get_vtable_index_of_object_method, impl_item_is_final, predicate_for_trait_def, upcast_choices,
+};
+pub use self::util::{
+ supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_type,
+ SupertraitDefIds, Supertraits,
+};
+
+pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext;
+
+pub use rustc_infer::traits::*;
+
+/// Whether to skip the leak check, as part of a future compatibility warning step.
+///
+/// The "default" for skip-leak-check corresponds to the current
+/// behavior (do not skip the leak check) -- not the behavior we are
+/// transitioning into.
+#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
+pub enum SkipLeakCheck {
+ Yes,
+ #[default]
+ No,
+}
+
+impl SkipLeakCheck {
+ fn is_yes(self) -> bool {
+ self == SkipLeakCheck::Yes
+ }
+}
+
+/// The mode that trait queries run in.
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub enum TraitQueryMode {
+ /// Standard/un-canonicalized queries get accurate
+ /// spans etc. passed in and hence can do reasonable
+ /// error reporting on their own.
+ Standard,
+ /// Canonicalized queries get dummy spans and hence
+ /// must generally propagate errors to
+ /// pre-canonicalization callsites.
+ Canonical,
+}
+
+/// Creates predicate obligations from the generic bounds.
+pub fn predicates_for_generics<'tcx>(
+ cause: ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ generic_bounds: ty::InstantiatedPredicates<'tcx>,
+) -> impl Iterator<Item = PredicateObligation<'tcx>> {
+ util::predicates_for_generics(cause, 0, param_env, generic_bounds)
+}
+
+/// Determines whether the type `ty` is known to meet `bound` and
+/// returns true if so. Returns false if `ty` either does not meet
+/// `bound` or is not known to meet bound (note that this is
+/// conservative towards *no impl*, which is the opposite of the
+/// `evaluate` methods).
+pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
+ infcx: &InferCtxt<'a, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ty: Ty<'tcx>,
+ def_id: DefId,
+ span: Span,
+) -> bool {
+ debug!(
+ "type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
+ ty,
+ infcx.tcx.def_path_str(def_id)
+ );
+
+ let trait_ref =
+ ty::Binder::dummy(ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) });
+ let obligation = Obligation {
+ param_env,
+ cause: ObligationCause::misc(span, hir::CRATE_HIR_ID),
+ recursion_depth: 0,
+ predicate: trait_ref.without_const().to_predicate(infcx.tcx),
+ };
+
+ let result = infcx.predicate_must_hold_modulo_regions(&obligation);
+ debug!(
+ "type_known_to_meet_ty={:?} bound={} => {:?}",
+ ty,
+ infcx.tcx.def_path_str(def_id),
+ result
+ );
+
+ if result && ty.has_infer_types_or_consts() {
+ // Because of inference "guessing", selection can sometimes claim
+ // to succeed while the success requires a guess. To ensure
+ // this function's result remains infallible, we must confirm
+ // that guess. While imperfect, I believe this is sound.
+
+ // The handling of regions in this area of the code is terrible,
+ // see issue #29149. We should be able to improve on this with
+ // NLL.
+ let mut fulfill_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
+
+ // We can use a dummy node-id here because we won't pay any mind
+ // to region obligations that arise (there shouldn't really be any
+ // anyhow).
+ let cause = ObligationCause::misc(span, hir::CRATE_HIR_ID);
+
+ fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
+
+ // Note: we only assume something is `Copy` if we can
+ // *definitively* show that it implements `Copy`. Otherwise,
+ // assume it is move; linear is always ok.
+ match fulfill_cx.select_all_or_error(infcx).as_slice() {
+ [] => {
+ debug!(
+ "type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
+ ty,
+ infcx.tcx.def_path_str(def_id)
+ );
+ true
+ }
+ errors => {
+ debug!(
+ ?ty,
+ bound = %infcx.tcx.def_path_str(def_id),
+ ?errors,
+ "type_known_to_meet_bound_modulo_regions"
+ );
+ false
+ }
+ }
+ } else {
+ result
+ }
+}
+
+#[instrument(level = "debug", skip(tcx, elaborated_env))]
+fn do_normalize_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ cause: ObligationCause<'tcx>,
+ elaborated_env: ty::ParamEnv<'tcx>,
+ predicates: Vec<ty::Predicate<'tcx>>,
+) -> Result<Vec<ty::Predicate<'tcx>>, ErrorGuaranteed> {
+ let span = cause.span;
+ // FIXME. We should really... do something with these region
+ // obligations. But this call just continues the older
+ // behavior (i.e., doesn't cause any new bugs), and it would
+ // take some further refactoring to actually solve them. In
+ // particular, we would have to handle implied bounds
+ // properly, and that code is currently largely confined to
+ // regionck (though I made some efforts to extract it
+ // out). -nmatsakis
+ //
+ // @arielby: In any case, these obligations are checked
+ // by wfcheck anyway, so I'm not sure we have to check
+ // them here too, and we will remove this function when
+ // we move over to lazy normalization *anyway*.
+ tcx.infer_ctxt().ignoring_regions().enter(|infcx| {
+ let fulfill_cx = FulfillmentContext::new();
+ let predicates =
+ match fully_normalize(&infcx, fulfill_cx, cause, elaborated_env, predicates) {
+ Ok(predicates) => predicates,
+ Err(errors) => {
+ let reported = infcx.report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+ };
+
+ debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
+
+ // We can use the `elaborated_env` here; the region code only
+ // cares about declarations like `'a: 'b`.
+ let outlives_env = OutlivesEnvironment::new(elaborated_env);
+
+ // FIXME: It's very weird that we ignore region obligations but apparently
+ // still need to use `resolve_regions` as we need the resolved regions in
+ // the normalized predicates.
+ let errors = infcx.resolve_regions(&outlives_env);
+ if !errors.is_empty() {
+ tcx.sess.delay_span_bug(
+ span,
+ format!(
+ "failed region resolution while normalizing {elaborated_env:?}: {errors:?}"
+ ),
+ );
+ }
+
+ match infcx.fully_resolve(predicates) {
+ Ok(predicates) => Ok(predicates),
+ Err(fixup_err) => {
+ // If we encounter a fixup error, it means that some type
+ // variable wound up unconstrained. I actually don't know
+ // if this can happen, and I certainly don't expect it to
+ // happen often, but if it did happen it probably
+ // represents a legitimate failure due to some kind of
+ // unconstrained variable.
+ //
+ // @lcnr: Let's still ICE here for now. I want a test case
+ // for that.
+ span_bug!(
+ span,
+ "inference variables in normalized parameter environment: {}",
+ fixup_err
+ );
+ }
+ }
+ })
+}
+
+// FIXME: this is gonna need to be removed ...
+/// Normalizes the parameter environment, reporting errors if they occur.
+#[instrument(level = "debug", skip(tcx))]
+pub fn normalize_param_env_or_error<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ unnormalized_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+) -> ty::ParamEnv<'tcx> {
+ // I'm not wild about reporting errors here; I'd prefer to
+ // have the errors get reported at a defined place (e.g.,
+ // during typeck). Instead I have all parameter
+ // environments, in effect, going through this function
+ // and hence potentially reporting errors. This ensures of
+ // course that we never forget to normalize (the
+ // alternative seemed like it would involve a lot of
+ // manual invocations of this fn -- and then we'd have to
+ // deal with the errors at each of those sites).
+ //
+ // In any case, in practice, typeck constructs all the
+ // parameter environments once for every fn as it goes,
+ // and errors will get reported then; so outside of type inference we
+ // can be sure that no errors should occur.
+ let mut predicates: Vec<_> =
+ util::elaborate_predicates(tcx, unnormalized_env.caller_bounds().into_iter())
+ .map(|obligation| obligation.predicate)
+ .collect();
+
+ debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
+
+ let elaborated_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ unnormalized_env.reveal(),
+ unnormalized_env.constness(),
+ );
+
+ // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
+ // normalization expects its param-env to be already normalized, which means we have
+ // a circularity.
+ //
+ // The way we handle this is by normalizing the param-env inside an unnormalized version
+ // of the param-env, which means that if the param-env contains unnormalized projections,
+ // we'll have some normalization failures. This is unfortunate.
+ //
+ // Lazy normalization would basically handle this by treating just the
+ // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
+ //
+ // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
+ // types, so to make the situation less bad, we normalize all the predicates *but*
+ // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
+ // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
+ //
+ // This works fairly well because trait matching does not actually care about param-env
+ // TypeOutlives predicates - these are normally used by regionck.
+ let outlives_predicates: Vec<_> = predicates
+ .drain_filter(|predicate| {
+ matches!(predicate.kind().skip_binder(), ty::PredicateKind::TypeOutlives(..))
+ })
+ .collect();
+
+ debug!(
+ "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
+ predicates, outlives_predicates
+ );
+ let Ok(non_outlives_predicates) = do_normalize_predicates(
+ tcx,
+ cause.clone(),
+ elaborated_env,
+ predicates,
+ ) else {
+ // An unnormalized env is better than nothing.
+ debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
+ return elaborated_env;
+ };
+
+ debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
+
+ // Not sure whether it is better to include the unnormalized TypeOutlives predicates
+ // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
+ // predicates here anyway. Keeping them here anyway because it seems safer.
+ let outlives_env: Vec<_> =
+ non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
+ let outlives_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&outlives_env),
+ unnormalized_env.reveal(),
+ unnormalized_env.constness(),
+ );
+ let Ok(outlives_predicates) = do_normalize_predicates(
+ tcx,
+ cause,
+ outlives_env,
+ outlives_predicates,
+ ) else {
+ // An unnormalized env is better than nothing.
+ debug!("normalize_param_env_or_error: errored resolving outlives predicates");
+ return elaborated_env;
+ };
+ debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
+
+ let mut predicates = non_outlives_predicates;
+ predicates.extend(outlives_predicates);
+ debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
+ ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ unnormalized_env.reveal(),
+ unnormalized_env.constness(),
+ )
+}
+
+pub fn fully_normalize<'a, 'tcx, T>(
+ infcx: &InferCtxt<'a, 'tcx>,
+ mut fulfill_cx: FulfillmentContext<'tcx>,
+ cause: ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ value: T,
+) -> Result<T, Vec<FulfillmentError<'tcx>>>
+where
+ T: TypeFoldable<'tcx>,
+{
+ debug!("fully_normalize_with_fulfillcx(value={:?})", value);
+ let selcx = &mut SelectionContext::new(infcx);
+ let Normalized { value: normalized_value, obligations } =
+ project::normalize(selcx, param_env, cause, value);
+ debug!(
+ "fully_normalize: normalized_value={:?} obligations={:?}",
+ normalized_value, obligations
+ );
+ for obligation in obligations {
+ fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
+ }
+
+ debug!("fully_normalize: select_all_or_error start");
+ let errors = fulfill_cx.select_all_or_error(infcx);
+ if !errors.is_empty() {
+ return Err(errors);
+ }
+ debug!("fully_normalize: select_all_or_error complete");
+ let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
+ debug!("fully_normalize: resolved_value={:?}", resolved_value);
+ Ok(resolved_value)
+}
+
+/// Normalizes the predicates and checks whether they hold in an empty environment. If this
+/// returns true, then either normalize encountered an error or one of the predicates did not
+/// hold. Used when creating vtables to check for unsatisfiable methods.
+pub fn impossible_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ predicates: Vec<ty::Predicate<'tcx>>,
+) -> bool {
+ debug!("impossible_predicates(predicates={:?})", predicates);
+
+ let result = tcx.infer_ctxt().enter(|infcx| {
+ // HACK: Set tainted by errors to gracefully exit in case of overflow.
+ infcx.set_tainted_by_errors();
+
+ let param_env = ty::ParamEnv::reveal_all();
+ let mut selcx = SelectionContext::new(&infcx);
+ let mut fulfill_cx = FulfillmentContext::new();
+ let cause = ObligationCause::dummy();
+ let Normalized { value: predicates, obligations } =
+ normalize(&mut selcx, param_env, cause.clone(), predicates);
+ for obligation in obligations {
+ fulfill_cx.register_predicate_obligation(&infcx, obligation);
+ }
+ for predicate in predicates {
+ let obligation = Obligation::new(cause.clone(), param_env, predicate);
+ fulfill_cx.register_predicate_obligation(&infcx, obligation);
+ }
+
+ let errors = fulfill_cx.select_all_or_error(&infcx);
+
+ // Clean up after ourselves
+ let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+
+ !errors.is_empty()
+ });
+ debug!("impossible_predicates = {:?}", result);
+ result
+}
+
+fn subst_and_check_impossible_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ key: (DefId, SubstsRef<'tcx>),
+) -> bool {
+ debug!("subst_and_check_impossible_predicates(key={:?})", key);
+
+ let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
+
+ // Specifically check trait fulfillment to avoid an error when trying to resolve
+ // associated items.
+ if let Some(trait_def_id) = tcx.trait_of_item(key.0) {
+ let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1);
+ predicates.push(ty::Binder::dummy(trait_ref).to_poly_trait_predicate().to_predicate(tcx));
+ }
+
+ predicates.retain(|predicate| !predicate.needs_subst());
+ let result = impossible_predicates(tcx, predicates);
+
+ debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
+ result
+}
+
+#[derive(Clone, Debug)]
+enum VtblSegment<'tcx> {
+ MetadataDSA,
+ TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
+}
+
+/// Prepare the segments for a vtable
+fn prepare_vtable_segments<'tcx, T>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+ mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
+) -> Option<T> {
+ // The following constraints holds for the final arrangement.
+ // 1. The whole virtual table of the first direct super trait is included as the
+ // the prefix. If this trait doesn't have any super traits, then this step
+ // consists of the dsa metadata.
+ // 2. Then comes the proper pointer metadata(vptr) and all own methods for all
+ // other super traits except those already included as part of the first
+ // direct super trait virtual table.
+ // 3. finally, the own methods of this trait.
+
+ // This has the advantage that trait upcasting to the first direct super trait on each level
+ // is zero cost, and to another trait includes only replacing the pointer with one level indirection,
+ // while not using too much extra memory.
+
+ // For a single inheritance relationship like this,
+ // D --> C --> B --> A
+ // The resulting vtable will consists of these segments:
+ // DSA, A, B, C, D
+
+ // For a multiple inheritance relationship like this,
+ // D --> C --> A
+ // \-> B
+ // The resulting vtable will consists of these segments:
+ // DSA, A, B, B-vptr, C, D
+
+ // For a diamond inheritance relationship like this,
+ // D --> B --> A
+ // \-> C -/
+ // The resulting vtable will consists of these segments:
+ // DSA, A, B, C, C-vptr, D
+
+ // For a more complex inheritance relationship like this:
+ // O --> G --> C --> A
+ // \ \ \-> B
+ // | |-> F --> D
+ // | \-> E
+ // |-> N --> J --> H
+ // \ \-> I
+ // |-> M --> K
+ // \-> L
+ // The resulting vtable will consists of these segments:
+ // DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
+ // H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
+ // N, N-vptr, O
+
+ // emit dsa segment first.
+ if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
+ return Some(v);
+ }
+
+ let mut emit_vptr_on_new_entry = false;
+ let mut visited = util::PredicateSet::new(tcx);
+ let predicate = trait_ref.without_const().to_predicate(tcx);
+ let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
+ smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
+ visited.insert(predicate);
+
+ // the main traversal loop:
+ // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
+ // that each node is emitted after all its descendents have been emitted.
+ // so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
+ // this is done on the fly.
+ // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
+ // stops after it finds a node that has a next-sibling node.
+ // This next-sibling node will used as the starting point of next slice.
+
+ // Example:
+ // For a diamond inheritance relationship like this,
+ // D#1 --> B#0 --> A#0
+ // \-> C#1 -/
+
+ // Starting point 0 stack [D]
+ // Loop run #0: Stack after diving in is [D B A], A is "childless"
+ // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
+ // Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
+ // Loop run #0: Stack after exiting out is [D C], C is the next starting point.
+ // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
+ // Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
+ // Loop run #1: Stack after exiting out is []. Now the function exits.
+
+ loop {
+ // dive deeper into the stack, recording the path
+ 'diving_in: loop {
+ if let Some((inner_most_trait_ref, _, _)) = stack.last() {
+ let inner_most_trait_ref = *inner_most_trait_ref;
+ let mut direct_super_traits_iter = tcx
+ .super_predicates_of(inner_most_trait_ref.def_id())
+ .predicates
+ .into_iter()
+ .filter_map(move |(pred, _)| {
+ pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_pred()
+ });
+
+ 'diving_in_skip_visited_traits: loop {
+ if let Some(next_super_trait) = direct_super_traits_iter.next() {
+ if visited.insert(next_super_trait.to_predicate(tcx)) {
+ // We're throwing away potential constness of super traits here.
+ // FIXME: handle ~const super traits
+ let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref);
+ stack.push((
+ next_super_trait,
+ emit_vptr_on_new_entry,
+ Some(direct_super_traits_iter),
+ ));
+ break 'diving_in_skip_visited_traits;
+ } else {
+ continue 'diving_in_skip_visited_traits;
+ }
+ } else {
+ break 'diving_in;
+ }
+ }
+ }
+ }
+
+ // Other than the left-most path, vptr should be emitted for each trait.
+ emit_vptr_on_new_entry = true;
+
+ // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
+ 'exiting_out: loop {
+ if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
+ if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
+ trait_ref: *inner_most_trait_ref,
+ emit_vptr: *emit_vptr,
+ }) {
+ return Some(v);
+ }
+
+ 'exiting_out_skip_visited_traits: loop {
+ if let Some(siblings) = siblings_opt {
+ if let Some(next_inner_most_trait_ref) = siblings.next() {
+ if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
+ // We're throwing away potential constness of super traits here.
+ // FIXME: handle ~const super traits
+ let next_inner_most_trait_ref =
+ next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
+ *inner_most_trait_ref = next_inner_most_trait_ref;
+ *emit_vptr = emit_vptr_on_new_entry;
+ break 'exiting_out;
+ } else {
+ continue 'exiting_out_skip_visited_traits;
+ }
+ }
+ }
+ stack.pop();
+ continue 'exiting_out;
+ }
+ }
+ // all done
+ return None;
+ }
+ }
+}
+
+fn dump_vtable_entries<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sp: Span,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+ entries: &[VtblEntry<'tcx>],
+) {
+ let msg = format!("vtable entries for `{}`: {:#?}", trait_ref, entries);
+ tcx.sess.struct_span_err(sp, &msg).emit();
+}
+
+fn own_existential_vtable_entries<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::PolyExistentialTraitRef<'tcx>,
+) -> &'tcx [DefId] {
+ let trait_methods = tcx
+ .associated_items(trait_ref.def_id())
+ .in_definition_order()
+ .filter(|item| item.kind == ty::AssocKind::Fn);
+ // Now list each method's DefId (for within its trait).
+ let own_entries = trait_methods.filter_map(move |trait_method| {
+ debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
+ let def_id = trait_method.def_id;
+
+ // Some methods cannot be called on an object; skip those.
+ if !is_vtable_safe_method(tcx, trait_ref.def_id(), &trait_method) {
+ debug!("own_existential_vtable_entry: not vtable safe");
+ return None;
+ }
+
+ Some(def_id)
+ });
+
+ tcx.arena.alloc_from_iter(own_entries.into_iter())
+}
+
+/// Given a trait `trait_ref`, iterates the vtable entries
+/// that come from `trait_ref`, including its supertraits.
+fn vtable_entries<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+) -> &'tcx [VtblEntry<'tcx>] {
+ debug!("vtable_entries({:?})", trait_ref);
+
+ let mut entries = vec![];
+
+ let vtable_segment_callback = |segment| -> ControlFlow<()> {
+ match segment {
+ VtblSegment::MetadataDSA => {
+ entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
+ }
+ VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
+ let existential_trait_ref = trait_ref
+ .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
+
+ // Lookup the shape of vtable for the trait.
+ let own_existential_entries =
+ tcx.own_existential_vtable_entries(existential_trait_ref);
+
+ let own_entries = own_existential_entries.iter().copied().map(|def_id| {
+ debug!("vtable_entries: trait_method={:?}", def_id);
+
+ // The method may have some early-bound lifetimes; add regions for those.
+ let substs = trait_ref.map_bound(|trait_ref| {
+ InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
+ GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
+ GenericParamDefKind::Type { .. }
+ | GenericParamDefKind::Const { .. } => {
+ trait_ref.substs[param.index as usize]
+ }
+ })
+ });
+
+ // The trait type may have higher-ranked lifetimes in it;
+ // erase them if they appear, so that we get the type
+ // at some particular call site.
+ let substs = tcx
+ .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
+
+ // It's possible that the method relies on where-clauses that
+ // do not hold for this particular set of type parameters.
+ // Note that this method could then never be called, so we
+ // do not want to try and codegen it, in that case (see #23435).
+ let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
+ if impossible_predicates(tcx, predicates.predicates) {
+ debug!("vtable_entries: predicates do not hold");
+ return VtblEntry::Vacant;
+ }
+
+ let instance = ty::Instance::resolve_for_vtable(
+ tcx,
+ ty::ParamEnv::reveal_all(),
+ def_id,
+ substs,
+ )
+ .expect("resolution failed during building vtable representation");
+ VtblEntry::Method(instance)
+ });
+
+ entries.extend(own_entries);
+
+ if emit_vptr {
+ entries.push(VtblEntry::TraitVPtr(trait_ref));
+ }
+ }
+ }
+
+ ControlFlow::Continue(())
+ };
+
+ let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
+
+ if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
+ let sp = tcx.def_span(trait_ref.def_id());
+ dump_vtable_entries(tcx, sp, trait_ref, &entries);
+ }
+
+ tcx.arena.alloc_from_iter(entries.into_iter())
+}
+
+/// Find slot base for trait methods within vtable entries of another trait
+fn vtable_trait_first_method_offset<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ key: (
+ ty::PolyTraitRef<'tcx>, // trait_to_be_found
+ ty::PolyTraitRef<'tcx>, // trait_owning_vtable
+ ),
+) -> usize {
+ let (trait_to_be_found, trait_owning_vtable) = key;
+
+ // #90177
+ let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
+
+ let vtable_segment_callback = {
+ let mut vtable_base = 0;
+
+ move |segment| {
+ match segment {
+ VtblSegment::MetadataDSA => {
+ vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len();
+ }
+ VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
+ if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
+ return ControlFlow::Break(vtable_base);
+ }
+ vtable_base += util::count_own_vtable_entries(tcx, trait_ref);
+ if emit_vptr {
+ vtable_base += 1;
+ }
+ }
+ }
+ ControlFlow::Continue(())
+ }
+ };
+
+ if let Some(vtable_base) =
+ prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
+ {
+ vtable_base
+ } else {
+ bug!("Failed to find info for expected trait in vtable");
+ }
+}
+
+/// Find slot offset for trait vptr within vtable entries of another trait
+pub fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ key: (
+ Ty<'tcx>, // trait object type whose trait owning vtable
+ Ty<'tcx>, // trait object for supertrait
+ ),
+) -> Option<usize> {
+ let (source, target) = key;
+ assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer());
+ assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer());
+
+ // this has been typecked-before, so diagnostics is not really needed.
+ let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
+
+ let trait_ref = ty::TraitRef {
+ def_id: unsize_trait_did,
+ substs: tcx.mk_substs_trait(source, &[target.into()]),
+ };
+ let obligation = Obligation::new(
+ ObligationCause::dummy(),
+ ty::ParamEnv::reveal_all(),
+ ty::Binder::dummy(ty::TraitPredicate {
+ trait_ref,
+ constness: ty::BoundConstness::NotConst,
+ polarity: ty::ImplPolarity::Positive,
+ }),
+ );
+
+ let implsrc = tcx.infer_ctxt().enter(|infcx| {
+ let mut selcx = SelectionContext::new(&infcx);
+ selcx.select(&obligation).unwrap()
+ });
+
+ let Some(ImplSource::TraitUpcasting(implsrc_traitcasting)) = implsrc else {
+ bug!();
+ };
+
+ implsrc_traitcasting.vtable_vptr_slot
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ object_safety::provide(providers);
+ structural_match::provide(providers);
+ *providers = ty::query::Providers {
+ specialization_graph_of: specialize::specialization_graph_provider,
+ specializes: specialize::specializes,
+ codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
+ own_existential_vtable_entries,
+ vtable_entries,
+ vtable_trait_upcasting_coercion_new_vptr_slot,
+ subst_and_check_impossible_predicates,
+ try_unify_abstract_consts: |tcx, param_env_and| {
+ let (param_env, (a, b)) = param_env_and.into_parts();
+ const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env)
+ },
+ ..*providers
+ };
+}