summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/project.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/project.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/project.rs2150
1 files changed, 2150 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/project.rs b/compiler/rustc_trait_selection/src/traits/project.rs
new file mode 100644
index 000000000..c4e80e1ba
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/project.rs
@@ -0,0 +1,2150 @@
+//! Code for projecting associated types out of trait references.
+
+use super::specialization_graph;
+use super::translate_substs;
+use super::util;
+use super::MismatchedProjectionTypes;
+use super::Obligation;
+use super::ObligationCause;
+use super::PredicateObligation;
+use super::Selection;
+use super::SelectionContext;
+use super::SelectionError;
+use super::{
+ ImplSourceClosureData, ImplSourceDiscriminantKindData, ImplSourceFnPointerData,
+ ImplSourceGeneratorData, ImplSourcePointeeData, ImplSourceUserDefinedData,
+};
+use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
+
+use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
+use crate::traits::error_reporting::InferCtxtExt as _;
+use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
+use crate::traits::select::ProjectionMatchesProjection;
+use rustc_data_structures::sso::SsoHashSet;
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_infer::infer::resolve::OpportunisticRegionResolver;
+use rustc_middle::traits::select::OverflowError;
+use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
+use rustc_middle::ty::subst::Subst;
+use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable};
+use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
+use rustc_span::symbol::sym;
+
+use std::collections::BTreeMap;
+
+pub use rustc_middle::traits::Reveal;
+
+pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
+
+pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
+
+pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
+
+pub(super) struct InProgress;
+
+/// When attempting to resolve `<T as TraitRef>::Name` ...
+#[derive(Debug)]
+pub enum ProjectionError<'tcx> {
+ /// ...we found multiple sources of information and couldn't resolve the ambiguity.
+ TooManyCandidates,
+
+ /// ...an error occurred matching `T : TraitRef`
+ TraitSelectionError(SelectionError<'tcx>),
+}
+
+#[derive(PartialEq, Eq, Debug)]
+enum ProjectionCandidate<'tcx> {
+ /// From a where-clause in the env or object type
+ ParamEnv(ty::PolyProjectionPredicate<'tcx>),
+
+ /// From the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
+ TraitDef(ty::PolyProjectionPredicate<'tcx>),
+
+ /// Bounds specified on an object type
+ Object(ty::PolyProjectionPredicate<'tcx>),
+
+ /// From an "impl" (or a "pseudo-impl" returned by select)
+ Select(Selection<'tcx>),
+}
+
+enum ProjectionCandidateSet<'tcx> {
+ None,
+ Single(ProjectionCandidate<'tcx>),
+ Ambiguous,
+ Error(SelectionError<'tcx>),
+}
+
+impl<'tcx> ProjectionCandidateSet<'tcx> {
+ fn mark_ambiguous(&mut self) {
+ *self = ProjectionCandidateSet::Ambiguous;
+ }
+
+ fn mark_error(&mut self, err: SelectionError<'tcx>) {
+ *self = ProjectionCandidateSet::Error(err);
+ }
+
+ // Returns true if the push was successful, or false if the candidate
+ // was discarded -- this could be because of ambiguity, or because
+ // a higher-priority candidate is already there.
+ fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
+ use self::ProjectionCandidate::*;
+ use self::ProjectionCandidateSet::*;
+
+ // This wacky variable is just used to try and
+ // make code readable and avoid confusing paths.
+ // It is assigned a "value" of `()` only on those
+ // paths in which we wish to convert `*self` to
+ // ambiguous (and return false, because the candidate
+ // was not used). On other paths, it is not assigned,
+ // and hence if those paths *could* reach the code that
+ // comes after the match, this fn would not compile.
+ let convert_to_ambiguous;
+
+ match self {
+ None => {
+ *self = Single(candidate);
+ return true;
+ }
+
+ Single(current) => {
+ // Duplicates can happen inside ParamEnv. In the case, we
+ // perform a lazy deduplication.
+ if current == &candidate {
+ return false;
+ }
+
+ // Prefer where-clauses. As in select, if there are multiple
+ // candidates, we prefer where-clause candidates over impls. This
+ // may seem a bit surprising, since impls are the source of
+ // "truth" in some sense, but in fact some of the impls that SEEM
+ // applicable are not, because of nested obligations. Where
+ // clauses are the safer choice. See the comment on
+ // `select::SelectionCandidate` and #21974 for more details.
+ match (current, candidate) {
+ (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
+ (ParamEnv(..), _) => return false,
+ (_, ParamEnv(..)) => unreachable!(),
+ (_, _) => convert_to_ambiguous = (),
+ }
+ }
+
+ Ambiguous | Error(..) => {
+ return false;
+ }
+ }
+
+ // We only ever get here when we moved from a single candidate
+ // to ambiguous.
+ let () = convert_to_ambiguous;
+ *self = Ambiguous;
+ false
+ }
+}
+
+/// States returned from `poly_project_and_unify_type`. Takes the place
+/// of the old return type, which was:
+/// ```ignore (not-rust)
+/// Result<
+/// Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
+/// MismatchedProjectionTypes<'tcx>,
+/// >
+/// ```
+pub(super) enum ProjectAndUnifyResult<'tcx> {
+ /// The projection bound holds subject to the given obligations. If the
+ /// projection cannot be normalized because the required trait bound does
+ /// not hold, this is returned, with `obligations` being a predicate that
+ /// cannot be proven.
+ Holds(Vec<PredicateObligation<'tcx>>),
+ /// The projection cannot be normalized due to ambiguity. Resolving some
+ /// inference variables in the projection may fix this.
+ FailedNormalization,
+ /// The project cannot be normalized because `poly_project_and_unify_type`
+ /// is called recursively while normalizing the same projection.
+ Recursive,
+ // the projection can be normalized, but is not equal to the expected type.
+ // Returns the type error that arose from the mismatch.
+ MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
+}
+
+/// Evaluates constraints of the form:
+/// ```ignore (not-rust)
+/// for<...> <T as Trait>::U == V
+/// ```
+/// If successful, this may result in additional obligations. Also returns
+/// the projection cache key used to track these additional obligations.
+#[instrument(level = "debug", skip(selcx))]
+pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &PolyProjectionObligation<'tcx>,
+) -> ProjectAndUnifyResult<'tcx> {
+ let infcx = selcx.infcx();
+ let r = infcx.commit_if_ok(|_snapshot| {
+ let old_universe = infcx.universe();
+ let placeholder_predicate =
+ infcx.replace_bound_vars_with_placeholders(obligation.predicate);
+ let new_universe = infcx.universe();
+
+ let placeholder_obligation = obligation.with(placeholder_predicate);
+ match project_and_unify_type(selcx, &placeholder_obligation) {
+ ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
+ ProjectAndUnifyResult::Holds(obligations)
+ if old_universe != new_universe
+ && selcx.tcx().features().generic_associated_types_extended =>
+ {
+ // If the `generic_associated_types_extended` feature is active, then we ignore any
+ // obligations references lifetimes from any universe greater than or equal to the
+ // universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
+ // which isn't quite what we want. Ideally, we want either an implied
+ // `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
+ // substitute concrete regions. There is design work to be done here; until then,
+ // however, this allows experimenting potential GAT features without running into
+ // well-formedness issues.
+ let new_obligations = obligations
+ .into_iter()
+ .filter(|obligation| {
+ let mut visitor = MaxUniverse::new();
+ obligation.predicate.visit_with(&mut visitor);
+ visitor.max_universe() < new_universe
+ })
+ .collect();
+ Ok(ProjectAndUnifyResult::Holds(new_obligations))
+ }
+ other => Ok(other),
+ }
+ });
+
+ match r {
+ Ok(inner) => inner,
+ Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
+ }
+}
+
+/// Evaluates constraints of the form:
+/// ```ignore (not-rust)
+/// <T as Trait>::U == V
+/// ```
+/// If successful, this may result in additional obligations.
+///
+/// See [poly_project_and_unify_type] for an explanation of the return value.
+#[tracing::instrument(level = "debug", skip(selcx))]
+fn project_and_unify_type<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionObligation<'tcx>,
+) -> ProjectAndUnifyResult<'tcx> {
+ let mut obligations = vec![];
+
+ let infcx = selcx.infcx();
+ let normalized = match opt_normalize_projection_type(
+ selcx,
+ obligation.param_env,
+ obligation.predicate.projection_ty,
+ obligation.cause.clone(),
+ obligation.recursion_depth,
+ &mut obligations,
+ ) {
+ Ok(Some(n)) => n,
+ Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
+ Err(InProgress) => return ProjectAndUnifyResult::Recursive,
+ };
+ debug!(?normalized, ?obligations, "project_and_unify_type result");
+ let actual = obligation.predicate.term;
+ // For an example where this is neccessary see src/test/ui/impl-trait/nested-return-type2.rs
+ // This allows users to omit re-mentioning all bounds on an associated type and just use an
+ // `impl Trait` for the assoc type to add more bounds.
+ let InferOk { value: actual, obligations: new } =
+ selcx.infcx().replace_opaque_types_with_inference_vars(
+ actual,
+ obligation.cause.body_id,
+ obligation.cause.span,
+ obligation.param_env,
+ );
+ obligations.extend(new);
+
+ match infcx.at(&obligation.cause, obligation.param_env).eq(normalized, actual) {
+ Ok(InferOk { obligations: inferred_obligations, value: () }) => {
+ obligations.extend(inferred_obligations);
+ ProjectAndUnifyResult::Holds(obligations)
+ }
+ Err(err) => {
+ debug!("equating types encountered error {:?}", err);
+ ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
+ }
+ }
+}
+
+/// Normalizes any associated type projections in `value`, replacing
+/// them with a fully resolved type where possible. The return value
+/// combines the normalized result and any additional obligations that
+/// were incurred as result.
+pub fn normalize<'a, 'b, 'tcx, T>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ value: T,
+) -> Normalized<'tcx, T>
+where
+ T: TypeFoldable<'tcx>,
+{
+ let mut obligations = Vec::new();
+ let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
+ Normalized { value, obligations }
+}
+
+pub fn normalize_to<'a, 'b, 'tcx, T>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ value: T,
+ obligations: &mut Vec<PredicateObligation<'tcx>>,
+) -> T
+where
+ T: TypeFoldable<'tcx>,
+{
+ normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
+}
+
+/// As `normalize`, but with a custom depth.
+pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ value: T,
+) -> Normalized<'tcx, T>
+where
+ T: TypeFoldable<'tcx>,
+{
+ let mut obligations = Vec::new();
+ let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
+ Normalized { value, obligations }
+}
+
+#[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
+pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ value: T,
+ obligations: &mut Vec<PredicateObligation<'tcx>>,
+) -> T
+where
+ T: TypeFoldable<'tcx>,
+{
+ debug!(obligations.len = obligations.len());
+ let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
+ let result = ensure_sufficient_stack(|| normalizer.fold(value));
+ debug!(?result, obligations.len = normalizer.obligations.len());
+ debug!(?normalizer.obligations,);
+ result
+}
+
+#[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
+pub fn try_normalize_with_depth_to<'a, 'b, 'tcx, T>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ value: T,
+ obligations: &mut Vec<PredicateObligation<'tcx>>,
+) -> T
+where
+ T: TypeFoldable<'tcx>,
+{
+ debug!(obligations.len = obligations.len());
+ let mut normalizer = AssocTypeNormalizer::new_without_eager_inference_replacement(
+ selcx,
+ param_env,
+ cause,
+ depth,
+ obligations,
+ );
+ let result = ensure_sufficient_stack(|| normalizer.fold(value));
+ debug!(?result, obligations.len = normalizer.obligations.len());
+ debug!(?normalizer.obligations,);
+ result
+}
+
+pub(crate) fn needs_normalization<'tcx, T: TypeVisitable<'tcx>>(value: &T, reveal: Reveal) -> bool {
+ match reveal {
+ Reveal::UserFacing => value
+ .has_type_flags(ty::TypeFlags::HAS_TY_PROJECTION | ty::TypeFlags::HAS_CT_PROJECTION),
+ Reveal::All => value.has_type_flags(
+ ty::TypeFlags::HAS_TY_PROJECTION
+ | ty::TypeFlags::HAS_TY_OPAQUE
+ | ty::TypeFlags::HAS_CT_PROJECTION,
+ ),
+ }
+}
+
+struct AssocTypeNormalizer<'a, 'b, 'tcx> {
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ obligations: &'a mut Vec<PredicateObligation<'tcx>>,
+ depth: usize,
+ universes: Vec<Option<ty::UniverseIndex>>,
+ /// If true, when a projection is unable to be completed, an inference
+ /// variable will be created and an obligation registered to project to that
+ /// inference variable. Also, constants will be eagerly evaluated.
+ eager_inference_replacement: bool,
+}
+
+impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
+ fn new(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ obligations: &'a mut Vec<PredicateObligation<'tcx>>,
+ ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
+ AssocTypeNormalizer {
+ selcx,
+ param_env,
+ cause,
+ obligations,
+ depth,
+ universes: vec![],
+ eager_inference_replacement: true,
+ }
+ }
+
+ fn new_without_eager_inference_replacement(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ obligations: &'a mut Vec<PredicateObligation<'tcx>>,
+ ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
+ AssocTypeNormalizer {
+ selcx,
+ param_env,
+ cause,
+ obligations,
+ depth,
+ universes: vec![],
+ eager_inference_replacement: false,
+ }
+ }
+
+ fn fold<T: TypeFoldable<'tcx>>(&mut self, value: T) -> T {
+ let value = self.selcx.infcx().resolve_vars_if_possible(value);
+ debug!(?value);
+
+ assert!(
+ !value.has_escaping_bound_vars(),
+ "Normalizing {:?} without wrapping in a `Binder`",
+ value
+ );
+
+ if !needs_normalization(&value, self.param_env.reveal()) {
+ value
+ } else {
+ value.fold_with(self)
+ }
+ }
+}
+
+impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
+ fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
+ self.selcx.tcx()
+ }
+
+ fn fold_binder<T: TypeFoldable<'tcx>>(
+ &mut self,
+ t: ty::Binder<'tcx, T>,
+ ) -> ty::Binder<'tcx, T> {
+ self.universes.push(None);
+ let t = t.super_fold_with(self);
+ self.universes.pop();
+ t
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ if !needs_normalization(&ty, self.param_env.reveal()) {
+ return ty;
+ }
+
+ // We try to be a little clever here as a performance optimization in
+ // cases where there are nested projections under binders.
+ // For example:
+ // ```
+ // for<'a> fn(<T as Foo>::One<'a, Box<dyn Bar<'a, Item=<T as Foo>::Two<'a>>>>)
+ // ```
+ // We normalize the substs on the projection before the projecting, but
+ // if we're naive, we'll
+ // replace bound vars on inner, project inner, replace placeholders on inner,
+ // replace bound vars on outer, project outer, replace placeholders on outer
+ //
+ // However, if we're a bit more clever, we can replace the bound vars
+ // on the entire type before normalizing nested projections, meaning we
+ // replace bound vars on outer, project inner,
+ // project outer, replace placeholders on outer
+ //
+ // This is possible because the inner `'a` will already be a placeholder
+ // when we need to normalize the inner projection
+ //
+ // On the other hand, this does add a bit of complexity, since we only
+ // replace bound vars if the current type is a `Projection` and we need
+ // to make sure we don't forget to fold the substs regardless.
+
+ match *ty.kind() {
+ // This is really important. While we *can* handle this, this has
+ // severe performance implications for large opaque types with
+ // late-bound regions. See `issue-88862` benchmark.
+ ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => {
+ // Only normalize `impl Trait` outside of type inference, usually in codegen.
+ match self.param_env.reveal() {
+ Reveal::UserFacing => ty.super_fold_with(self),
+
+ Reveal::All => {
+ let recursion_limit = self.tcx().recursion_limit();
+ if !recursion_limit.value_within_limit(self.depth) {
+ let obligation = Obligation::with_depth(
+ self.cause.clone(),
+ recursion_limit.0,
+ self.param_env,
+ ty,
+ );
+ self.selcx.infcx().report_overflow_error(&obligation, true);
+ }
+
+ let substs = substs.fold_with(self);
+ let generic_ty = self.tcx().bound_type_of(def_id);
+ let concrete_ty = generic_ty.subst(self.tcx(), substs);
+ self.depth += 1;
+ let folded_ty = self.fold_ty(concrete_ty);
+ self.depth -= 1;
+ folded_ty
+ }
+ }
+ }
+
+ ty::Projection(data) if !data.has_escaping_bound_vars() => {
+ // This branch is *mostly* just an optimization: when we don't
+ // have escaping bound vars, we don't need to replace them with
+ // placeholders (see branch below). *Also*, we know that we can
+ // register an obligation to *later* project, since we know
+ // there won't be bound vars there.
+ let data = data.fold_with(self);
+ let normalized_ty = if self.eager_inference_replacement {
+ normalize_projection_type(
+ self.selcx,
+ self.param_env,
+ data,
+ self.cause.clone(),
+ self.depth,
+ &mut self.obligations,
+ )
+ } else {
+ opt_normalize_projection_type(
+ self.selcx,
+ self.param_env,
+ data,
+ self.cause.clone(),
+ self.depth,
+ &mut self.obligations,
+ )
+ .ok()
+ .flatten()
+ .unwrap_or_else(|| ty::Term::Ty(ty.super_fold_with(self)))
+ };
+ debug!(
+ ?self.depth,
+ ?ty,
+ ?normalized_ty,
+ obligations.len = ?self.obligations.len(),
+ "AssocTypeNormalizer: normalized type"
+ );
+ normalized_ty.ty().unwrap()
+ }
+
+ ty::Projection(data) => {
+ // If there are escaping bound vars, we temporarily replace the
+ // bound vars with placeholders. Note though, that in the case
+ // that we still can't project for whatever reason (e.g. self
+ // type isn't known enough), we *can't* register an obligation
+ // and return an inference variable (since then that obligation
+ // would have bound vars and that's a can of worms). Instead,
+ // we just give up and fall back to pretending like we never tried!
+ //
+ // Note: this isn't necessarily the final approach here; we may
+ // want to figure out how to register obligations with escaping vars
+ // or handle this some other way.
+
+ let infcx = self.selcx.infcx();
+ let (data, mapped_regions, mapped_types, mapped_consts) =
+ BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
+ let data = data.fold_with(self);
+ let normalized_ty = opt_normalize_projection_type(
+ self.selcx,
+ self.param_env,
+ data,
+ self.cause.clone(),
+ self.depth,
+ &mut self.obligations,
+ )
+ .ok()
+ .flatten()
+ .map(|term| term.ty().unwrap())
+ .map(|normalized_ty| {
+ PlaceholderReplacer::replace_placeholders(
+ infcx,
+ mapped_regions,
+ mapped_types,
+ mapped_consts,
+ &self.universes,
+ normalized_ty,
+ )
+ })
+ .unwrap_or_else(|| ty.super_fold_with(self));
+
+ debug!(
+ ?self.depth,
+ ?ty,
+ ?normalized_ty,
+ obligations.len = ?self.obligations.len(),
+ "AssocTypeNormalizer: normalized type"
+ );
+ normalized_ty
+ }
+
+ _ => ty.super_fold_with(self),
+ }
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn fold_const(&mut self, constant: ty::Const<'tcx>) -> ty::Const<'tcx> {
+ if self.selcx.tcx().lazy_normalization() || !self.eager_inference_replacement {
+ constant
+ } else {
+ let constant = constant.super_fold_with(self);
+ debug!(?constant);
+ debug!("self.param_env: {:?}", self.param_env);
+ constant.eval(self.selcx.tcx(), self.param_env)
+ }
+ }
+}
+
+pub struct BoundVarReplacer<'me, 'tcx> {
+ infcx: &'me InferCtxt<'me, 'tcx>,
+ // These three maps track the bound variable that were replaced by placeholders. It might be
+ // nice to remove these since we already have the `kind` in the placeholder; we really just need
+ // the `var` (but we *could* bring that into scope if we were to track them as we pass them).
+ mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
+ mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
+ mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
+ // The current depth relative to *this* folding, *not* the entire normalization. In other words,
+ // the depth of binders we've passed here.
+ current_index: ty::DebruijnIndex,
+ // The `UniverseIndex` of the binding levels above us. These are optional, since we are lazy:
+ // we don't actually create a universe until we see a bound var we have to replace.
+ universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
+}
+
+impl<'me, 'tcx> BoundVarReplacer<'me, 'tcx> {
+ /// Returns `Some` if we *were* able to replace bound vars. If there are any bound vars that
+ /// use a binding level above `universe_indices.len()`, we fail.
+ pub fn replace_bound_vars<T: TypeFoldable<'tcx>>(
+ infcx: &'me InferCtxt<'me, 'tcx>,
+ universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
+ value: T,
+ ) -> (
+ T,
+ BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
+ BTreeMap<ty::PlaceholderType, ty::BoundTy>,
+ BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
+ ) {
+ let mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion> = BTreeMap::new();
+ let mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy> = BTreeMap::new();
+ let mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar> = BTreeMap::new();
+
+ let mut replacer = BoundVarReplacer {
+ infcx,
+ mapped_regions,
+ mapped_types,
+ mapped_consts,
+ current_index: ty::INNERMOST,
+ universe_indices,
+ };
+
+ let value = value.fold_with(&mut replacer);
+
+ (value, replacer.mapped_regions, replacer.mapped_types, replacer.mapped_consts)
+ }
+
+ fn universe_for(&mut self, debruijn: ty::DebruijnIndex) -> ty::UniverseIndex {
+ let infcx = self.infcx;
+ let index =
+ self.universe_indices.len() + self.current_index.as_usize() - debruijn.as_usize() - 1;
+ let universe = self.universe_indices[index].unwrap_or_else(|| {
+ for i in self.universe_indices.iter_mut().take(index + 1) {
+ *i = i.or_else(|| Some(infcx.create_next_universe()))
+ }
+ self.universe_indices[index].unwrap()
+ });
+ universe
+ }
+}
+
+impl<'tcx> TypeFolder<'tcx> for BoundVarReplacer<'_, 'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+
+ fn fold_binder<T: TypeFoldable<'tcx>>(
+ &mut self,
+ t: ty::Binder<'tcx, T>,
+ ) -> ty::Binder<'tcx, T> {
+ self.current_index.shift_in(1);
+ let t = t.super_fold_with(self);
+ self.current_index.shift_out(1);
+ t
+ }
+
+ fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ match *r {
+ ty::ReLateBound(debruijn, _)
+ if debruijn.as_usize() + 1
+ > self.current_index.as_usize() + self.universe_indices.len() =>
+ {
+ bug!("Bound vars outside of `self.universe_indices`");
+ }
+ ty::ReLateBound(debruijn, br) if debruijn >= self.current_index => {
+ let universe = self.universe_for(debruijn);
+ let p = ty::PlaceholderRegion { universe, name: br.kind };
+ self.mapped_regions.insert(p, br);
+ self.infcx.tcx.mk_region(ty::RePlaceholder(p))
+ }
+ _ => r,
+ }
+ }
+
+ fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+ match *t.kind() {
+ ty::Bound(debruijn, _)
+ if debruijn.as_usize() + 1
+ > self.current_index.as_usize() + self.universe_indices.len() =>
+ {
+ bug!("Bound vars outside of `self.universe_indices`");
+ }
+ ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => {
+ let universe = self.universe_for(debruijn);
+ let p = ty::PlaceholderType { universe, name: bound_ty.var };
+ self.mapped_types.insert(p, bound_ty);
+ self.infcx.tcx.mk_ty(ty::Placeholder(p))
+ }
+ _ if t.has_vars_bound_at_or_above(self.current_index) => t.super_fold_with(self),
+ _ => t,
+ }
+ }
+
+ fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
+ match ct.kind() {
+ ty::ConstKind::Bound(debruijn, _)
+ if debruijn.as_usize() + 1
+ > self.current_index.as_usize() + self.universe_indices.len() =>
+ {
+ bug!("Bound vars outside of `self.universe_indices`");
+ }
+ ty::ConstKind::Bound(debruijn, bound_const) if debruijn >= self.current_index => {
+ let universe = self.universe_for(debruijn);
+ let p = ty::PlaceholderConst { universe, name: bound_const };
+ self.mapped_consts.insert(p, bound_const);
+ self.infcx
+ .tcx
+ .mk_const(ty::ConstS { kind: ty::ConstKind::Placeholder(p), ty: ct.ty() })
+ }
+ _ => ct.super_fold_with(self),
+ }
+ }
+
+ fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
+ if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p }
+ }
+}
+
+// The inverse of `BoundVarReplacer`: replaces placeholders with the bound vars from which they came.
+pub struct PlaceholderReplacer<'me, 'tcx> {
+ infcx: &'me InferCtxt<'me, 'tcx>,
+ mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
+ mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
+ mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
+ universe_indices: &'me [Option<ty::UniverseIndex>],
+ current_index: ty::DebruijnIndex,
+}
+
+impl<'me, 'tcx> PlaceholderReplacer<'me, 'tcx> {
+ pub fn replace_placeholders<T: TypeFoldable<'tcx>>(
+ infcx: &'me InferCtxt<'me, 'tcx>,
+ mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
+ mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
+ mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
+ universe_indices: &'me [Option<ty::UniverseIndex>],
+ value: T,
+ ) -> T {
+ let mut replacer = PlaceholderReplacer {
+ infcx,
+ mapped_regions,
+ mapped_types,
+ mapped_consts,
+ universe_indices,
+ current_index: ty::INNERMOST,
+ };
+ value.fold_with(&mut replacer)
+ }
+}
+
+impl<'tcx> TypeFolder<'tcx> for PlaceholderReplacer<'_, 'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.infcx.tcx
+ }
+
+ fn fold_binder<T: TypeFoldable<'tcx>>(
+ &mut self,
+ t: ty::Binder<'tcx, T>,
+ ) -> ty::Binder<'tcx, T> {
+ if !t.has_placeholders() && !t.has_infer_regions() {
+ return t;
+ }
+ self.current_index.shift_in(1);
+ let t = t.super_fold_with(self);
+ self.current_index.shift_out(1);
+ t
+ }
+
+ fn fold_region(&mut self, r0: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ let r1 = match *r0 {
+ ty::ReVar(_) => self
+ .infcx
+ .inner
+ .borrow_mut()
+ .unwrap_region_constraints()
+ .opportunistic_resolve_region(self.infcx.tcx, r0),
+ _ => r0,
+ };
+
+ let r2 = match *r1 {
+ ty::RePlaceholder(p) => {
+ let replace_var = self.mapped_regions.get(&p);
+ match replace_var {
+ Some(replace_var) => {
+ let index = self
+ .universe_indices
+ .iter()
+ .position(|u| matches!(u, Some(pu) if *pu == p.universe))
+ .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
+ let db = ty::DebruijnIndex::from_usize(
+ self.universe_indices.len() - index + self.current_index.as_usize() - 1,
+ );
+ self.tcx().mk_region(ty::ReLateBound(db, *replace_var))
+ }
+ None => r1,
+ }
+ }
+ _ => r1,
+ };
+
+ debug!(?r0, ?r1, ?r2, "fold_region");
+
+ r2
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ match *ty.kind() {
+ ty::Placeholder(p) => {
+ let replace_var = self.mapped_types.get(&p);
+ match replace_var {
+ Some(replace_var) => {
+ let index = self
+ .universe_indices
+ .iter()
+ .position(|u| matches!(u, Some(pu) if *pu == p.universe))
+ .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
+ let db = ty::DebruijnIndex::from_usize(
+ self.universe_indices.len() - index + self.current_index.as_usize() - 1,
+ );
+ self.tcx().mk_ty(ty::Bound(db, *replace_var))
+ }
+ None => ty,
+ }
+ }
+
+ _ if ty.has_placeholders() || ty.has_infer_regions() => ty.super_fold_with(self),
+ _ => ty,
+ }
+ }
+
+ fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
+ if let ty::ConstKind::Placeholder(p) = ct.kind() {
+ let replace_var = self.mapped_consts.get(&p);
+ match replace_var {
+ Some(replace_var) => {
+ let index = self
+ .universe_indices
+ .iter()
+ .position(|u| matches!(u, Some(pu) if *pu == p.universe))
+ .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
+ let db = ty::DebruijnIndex::from_usize(
+ self.universe_indices.len() - index + self.current_index.as_usize() - 1,
+ );
+ self.tcx().mk_const(ty::ConstS {
+ kind: ty::ConstKind::Bound(db, *replace_var),
+ ty: ct.ty(),
+ })
+ }
+ None => ct,
+ }
+ } else {
+ ct.super_fold_with(self)
+ }
+ }
+}
+
+/// The guts of `normalize`: normalize a specific projection like `<T
+/// as Trait>::Item`. The result is always a type (and possibly
+/// additional obligations). If ambiguity arises, which implies that
+/// there are unresolved type variables in the projection, we will
+/// substitute a fresh type variable `$X` and generate a new
+/// obligation `<T as Trait>::Item == $X` for later.
+pub fn normalize_projection_type<'a, 'b, 'tcx>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ projection_ty: ty::ProjectionTy<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ obligations: &mut Vec<PredicateObligation<'tcx>>,
+) -> Term<'tcx> {
+ opt_normalize_projection_type(
+ selcx,
+ param_env,
+ projection_ty,
+ cause.clone(),
+ depth,
+ obligations,
+ )
+ .ok()
+ .flatten()
+ .unwrap_or_else(move || {
+ // if we bottom out in ambiguity, create a type variable
+ // and a deferred predicate to resolve this when more type
+ // information is available.
+
+ selcx
+ .infcx()
+ .infer_projection(param_env, projection_ty, cause, depth + 1, obligations)
+ .into()
+ })
+}
+
+/// The guts of `normalize`: normalize a specific projection like `<T
+/// as Trait>::Item`. The result is always a type (and possibly
+/// additional obligations). Returns `None` in the case of ambiguity,
+/// which indicates that there are unbound type variables.
+///
+/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
+/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
+/// often immediately appended to another obligations vector. So now this
+/// function takes an obligations vector and appends to it directly, which is
+/// slightly uglier but avoids the need for an extra short-lived allocation.
+#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
+fn opt_normalize_projection_type<'a, 'b, 'tcx>(
+ selcx: &'a mut SelectionContext<'b, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ projection_ty: ty::ProjectionTy<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+ obligations: &mut Vec<PredicateObligation<'tcx>>,
+) -> Result<Option<Term<'tcx>>, InProgress> {
+ let infcx = selcx.infcx();
+ // Don't use the projection cache in intercrate mode -
+ // the `infcx` may be re-used between intercrate in non-intercrate
+ // mode, which could lead to using incorrect cache results.
+ let use_cache = !selcx.is_intercrate();
+
+ let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
+ let cache_key = ProjectionCacheKey::new(projection_ty);
+
+ // FIXME(#20304) For now, I am caching here, which is good, but it
+ // means we don't capture the type variables that are created in
+ // the case of ambiguity. Which means we may create a large stream
+ // of such variables. OTOH, if we move the caching up a level, we
+ // would not benefit from caching when proving `T: Trait<U=Foo>`
+ // bounds. It might be the case that we want two distinct caches,
+ // or else another kind of cache entry.
+
+ let cache_result = if use_cache {
+ infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
+ } else {
+ Ok(())
+ };
+ match cache_result {
+ Ok(()) => debug!("no cache"),
+ Err(ProjectionCacheEntry::Ambiguous) => {
+ // If we found ambiguity the last time, that means we will continue
+ // to do so until some type in the key changes (and we know it
+ // hasn't, because we just fully resolved it).
+ debug!("found cache entry: ambiguous");
+ return Ok(None);
+ }
+ Err(ProjectionCacheEntry::InProgress) => {
+ // Under lazy normalization, this can arise when
+ // bootstrapping. That is, imagine an environment with a
+ // where-clause like `A::B == u32`. Now, if we are asked
+ // to normalize `A::B`, we will want to check the
+ // where-clauses in scope. So we will try to unify `A::B`
+ // with `A::B`, which can trigger a recursive
+ // normalization.
+
+ debug!("found cache entry: in-progress");
+
+ // Cache that normalizing this projection resulted in a cycle. This
+ // should ensure that, unless this happens within a snapshot that's
+ // rolled back, fulfillment or evaluation will notice the cycle.
+
+ if use_cache {
+ infcx.inner.borrow_mut().projection_cache().recur(cache_key);
+ }
+ return Err(InProgress);
+ }
+ Err(ProjectionCacheEntry::Recur) => {
+ debug!("recur cache");
+ return Err(InProgress);
+ }
+ Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
+ // This is the hottest path in this function.
+ //
+ // If we find the value in the cache, then return it along
+ // with the obligations that went along with it. Note
+ // that, when using a fulfillment context, these
+ // obligations could in principle be ignored: they have
+ // already been registered when the cache entry was
+ // created (and hence the new ones will quickly be
+ // discarded as duplicated). But when doing trait
+ // evaluation this is not the case, and dropping the trait
+ // evaluations can causes ICEs (e.g., #43132).
+ debug!(?ty, "found normalized ty");
+ obligations.extend(ty.obligations);
+ return Ok(Some(ty.value));
+ }
+ Err(ProjectionCacheEntry::Error) => {
+ debug!("opt_normalize_projection_type: found error");
+ let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
+ obligations.extend(result.obligations);
+ return Ok(Some(result.value.into()));
+ }
+ }
+
+ let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
+
+ match project(selcx, &obligation) {
+ Ok(Projected::Progress(Progress {
+ term: projected_term,
+ obligations: mut projected_obligations,
+ })) => {
+ // if projection succeeded, then what we get out of this
+ // is also non-normalized (consider: it was derived from
+ // an impl, where-clause etc) and hence we must
+ // re-normalize it
+
+ let projected_term = selcx.infcx().resolve_vars_if_possible(projected_term);
+
+ let mut result = if projected_term.has_projections() {
+ let mut normalizer = AssocTypeNormalizer::new(
+ selcx,
+ param_env,
+ cause,
+ depth + 1,
+ &mut projected_obligations,
+ );
+ let normalized_ty = normalizer.fold(projected_term);
+
+ Normalized { value: normalized_ty, obligations: projected_obligations }
+ } else {
+ Normalized { value: projected_term, obligations: projected_obligations }
+ };
+
+ let mut deduped: SsoHashSet<_> = Default::default();
+ result.obligations.drain_filter(|projected_obligation| {
+ if !deduped.insert(projected_obligation.clone()) {
+ return true;
+ }
+ false
+ });
+
+ if use_cache {
+ infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
+ }
+ obligations.extend(result.obligations);
+ Ok(Some(result.value))
+ }
+ Ok(Projected::NoProgress(projected_ty)) => {
+ let result = Normalized { value: projected_ty, obligations: vec![] };
+ if use_cache {
+ infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
+ }
+ // No need to extend `obligations`.
+ Ok(Some(result.value))
+ }
+ Err(ProjectionError::TooManyCandidates) => {
+ debug!("opt_normalize_projection_type: too many candidates");
+ if use_cache {
+ infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
+ }
+ Ok(None)
+ }
+ Err(ProjectionError::TraitSelectionError(_)) => {
+ debug!("opt_normalize_projection_type: ERROR");
+ // if we got an error processing the `T as Trait` part,
+ // just return `ty::err` but add the obligation `T :
+ // Trait`, which when processed will cause the error to be
+ // reported later
+
+ if use_cache {
+ infcx.inner.borrow_mut().projection_cache().error(cache_key);
+ }
+ let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
+ obligations.extend(result.obligations);
+ Ok(Some(result.value.into()))
+ }
+ }
+}
+
+/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
+/// hold. In various error cases, we cannot generate a valid
+/// normalized projection. Therefore, we create an inference variable
+/// return an associated obligation that, when fulfilled, will lead to
+/// an error.
+///
+/// Note that we used to return `Error` here, but that was quite
+/// dubious -- the premise was that an error would *eventually* be
+/// reported, when the obligation was processed. But in general once
+/// you see an `Error` you are supposed to be able to assume that an
+/// error *has been* reported, so that you can take whatever heuristic
+/// paths you want to take. To make things worse, it was possible for
+/// cycles to arise, where you basically had a setup like `<MyType<$0>
+/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
+/// Trait>::Foo> to `[type error]` would lead to an obligation of
+/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
+/// an error for this obligation, but we legitimately should not,
+/// because it contains `[type error]`. Yuck! (See issue #29857 for
+/// one case where this arose.)
+fn normalize_to_error<'a, 'tcx>(
+ selcx: &mut SelectionContext<'a, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ projection_ty: ty::ProjectionTy<'tcx>,
+ cause: ObligationCause<'tcx>,
+ depth: usize,
+) -> NormalizedTy<'tcx> {
+ let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
+ let trait_obligation = Obligation {
+ cause,
+ recursion_depth: depth,
+ param_env,
+ predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
+ };
+ let tcx = selcx.infcx().tcx;
+ let def_id = projection_ty.item_def_id;
+ let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::NormalizeProjectionType,
+ span: tcx.def_span(def_id),
+ });
+ Normalized { value: new_value, obligations: vec![trait_obligation] }
+}
+
+enum Projected<'tcx> {
+ Progress(Progress<'tcx>),
+ NoProgress(ty::Term<'tcx>),
+}
+
+struct Progress<'tcx> {
+ term: ty::Term<'tcx>,
+ obligations: Vec<PredicateObligation<'tcx>>,
+}
+
+impl<'tcx> Progress<'tcx> {
+ fn error(tcx: TyCtxt<'tcx>) -> Self {
+ Progress { term: tcx.ty_error().into(), obligations: vec![] }
+ }
+
+ fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
+ self.obligations.append(&mut obligations);
+ self
+ }
+}
+
+/// Computes the result of a projection type (if we can).
+///
+/// IMPORTANT:
+/// - `obligation` must be fully normalized
+#[tracing::instrument(level = "info", skip(selcx))]
+fn project<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
+ if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
+ // This should really be an immediate error, but some existing code
+ // relies on being able to recover from this.
+ return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
+ OverflowError::Canonical,
+ )));
+ }
+
+ if obligation.predicate.references_error() {
+ return Ok(Projected::Progress(Progress::error(selcx.tcx())));
+ }
+
+ let mut candidates = ProjectionCandidateSet::None;
+
+ // Make sure that the following procedures are kept in order. ParamEnv
+ // needs to be first because it has highest priority, and Select checks
+ // the return value of push_candidate which assumes it's ran at last.
+ assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
+
+ assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
+
+ assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
+
+ if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
+ // Avoid normalization cycle from selection (see
+ // `assemble_candidates_from_object_ty`).
+ // FIXME(lazy_normalization): Lazy normalization should save us from
+ // having to special case this.
+ } else {
+ assemble_candidates_from_impls(selcx, obligation, &mut candidates);
+ };
+
+ match candidates {
+ ProjectionCandidateSet::Single(candidate) => {
+ Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
+ }
+ ProjectionCandidateSet::None => Ok(Projected::NoProgress(
+ // FIXME(associated_const_generics): this may need to change in the future?
+ // need to investigate whether or not this is fine.
+ selcx
+ .tcx()
+ .mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs)
+ .into(),
+ )),
+ // Error occurred while trying to processing impls.
+ ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
+ // Inherent ambiguity that prevents us from even enumerating the
+ // candidates.
+ ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
+ }
+}
+
+/// The first thing we have to do is scan through the parameter
+/// environment to see whether there are any projection predicates
+/// there that can answer this question.
+fn assemble_candidates_from_param_env<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate_set: &mut ProjectionCandidateSet<'tcx>,
+) {
+ assemble_candidates_from_predicates(
+ selcx,
+ obligation,
+ candidate_set,
+ ProjectionCandidate::ParamEnv,
+ obligation.param_env.caller_bounds().iter(),
+ false,
+ );
+}
+
+/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
+/// that the definition of `Foo` has some clues:
+///
+/// ```ignore (illustrative)
+/// trait Foo {
+/// type FooT : Bar<BarT=i32>
+/// }
+/// ```
+///
+/// Here, for example, we could conclude that the result is `i32`.
+fn assemble_candidates_from_trait_def<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate_set: &mut ProjectionCandidateSet<'tcx>,
+) {
+ debug!("assemble_candidates_from_trait_def(..)");
+
+ let tcx = selcx.tcx();
+ // Check whether the self-type is itself a projection.
+ // If so, extract what we know from the trait and try to come up with a good answer.
+ let bounds = match *obligation.predicate.self_ty().kind() {
+ ty::Projection(ref data) => tcx.bound_item_bounds(data.item_def_id).subst(tcx, data.substs),
+ ty::Opaque(def_id, substs) => tcx.bound_item_bounds(def_id).subst(tcx, substs),
+ ty::Infer(ty::TyVar(_)) => {
+ // If the self-type is an inference variable, then it MAY wind up
+ // being a projected type, so induce an ambiguity.
+ candidate_set.mark_ambiguous();
+ return;
+ }
+ _ => return,
+ };
+
+ assemble_candidates_from_predicates(
+ selcx,
+ obligation,
+ candidate_set,
+ ProjectionCandidate::TraitDef,
+ bounds.iter(),
+ true,
+ );
+}
+
+/// In the case of a trait object like
+/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
+/// predicate in the trait object.
+///
+/// We don't go through the select candidate for these bounds to avoid cycles:
+/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
+/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
+/// this then has to be normalized without having to prove
+/// `dyn Iterator<Item = ()>: Iterator` again.
+fn assemble_candidates_from_object_ty<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate_set: &mut ProjectionCandidateSet<'tcx>,
+) {
+ debug!("assemble_candidates_from_object_ty(..)");
+
+ let tcx = selcx.tcx();
+
+ let self_ty = obligation.predicate.self_ty();
+ let object_ty = selcx.infcx().shallow_resolve(self_ty);
+ let data = match object_ty.kind() {
+ ty::Dynamic(data, ..) => data,
+ ty::Infer(ty::TyVar(_)) => {
+ // If the self-type is an inference variable, then it MAY wind up
+ // being an object type, so induce an ambiguity.
+ candidate_set.mark_ambiguous();
+ return;
+ }
+ _ => return,
+ };
+ let env_predicates = data
+ .projection_bounds()
+ .filter(|bound| bound.item_def_id() == obligation.predicate.item_def_id)
+ .map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
+
+ assemble_candidates_from_predicates(
+ selcx,
+ obligation,
+ candidate_set,
+ ProjectionCandidate::Object,
+ env_predicates,
+ false,
+ );
+}
+
+#[tracing::instrument(
+ level = "debug",
+ skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
+)]
+fn assemble_candidates_from_predicates<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate_set: &mut ProjectionCandidateSet<'tcx>,
+ ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
+ env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
+ potentially_unnormalized_candidates: bool,
+) {
+ let infcx = selcx.infcx();
+ for predicate in env_predicates {
+ let bound_predicate = predicate.kind();
+ if let ty::PredicateKind::Projection(data) = predicate.kind().skip_binder() {
+ let data = bound_predicate.rebind(data);
+ if data.projection_def_id() != obligation.predicate.item_def_id {
+ continue;
+ }
+
+ let is_match = infcx.probe(|_| {
+ selcx.match_projection_projections(
+ obligation,
+ data,
+ potentially_unnormalized_candidates,
+ )
+ });
+
+ match is_match {
+ ProjectionMatchesProjection::Yes => {
+ candidate_set.push_candidate(ctor(data));
+
+ if potentially_unnormalized_candidates
+ && !obligation.predicate.has_infer_types_or_consts()
+ {
+ // HACK: Pick the first trait def candidate for a fully
+ // inferred predicate. This is to allow duplicates that
+ // differ only in normalization.
+ return;
+ }
+ }
+ ProjectionMatchesProjection::Ambiguous => {
+ candidate_set.mark_ambiguous();
+ }
+ ProjectionMatchesProjection::No => {}
+ }
+ }
+ }
+}
+
+#[tracing::instrument(level = "debug", skip(selcx, obligation, candidate_set))]
+fn assemble_candidates_from_impls<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate_set: &mut ProjectionCandidateSet<'tcx>,
+) {
+ // If we are resolving `<T as TraitRef<...>>::Item == Type`,
+ // start out by selecting the predicate `T as TraitRef<...>`:
+ let poly_trait_ref = ty::Binder::dummy(obligation.predicate.trait_ref(selcx.tcx()));
+ let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
+ let _ = selcx.infcx().commit_if_ok(|_| {
+ let impl_source = match selcx.select(&trait_obligation) {
+ Ok(Some(impl_source)) => impl_source,
+ Ok(None) => {
+ candidate_set.mark_ambiguous();
+ return Err(());
+ }
+ Err(e) => {
+ debug!(error = ?e, "selection error");
+ candidate_set.mark_error(e);
+ return Err(());
+ }
+ };
+
+ let eligible = match &impl_source {
+ super::ImplSource::Closure(_)
+ | super::ImplSource::Generator(_)
+ | super::ImplSource::FnPointer(_)
+ | super::ImplSource::TraitAlias(_) => true,
+ super::ImplSource::UserDefined(impl_data) => {
+ // We have to be careful when projecting out of an
+ // impl because of specialization. If we are not in
+ // codegen (i.e., projection mode is not "any"), and the
+ // impl's type is declared as default, then we disable
+ // projection (even if the trait ref is fully
+ // monomorphic). In the case where trait ref is not
+ // fully monomorphic (i.e., includes type parameters),
+ // this is because those type parameters may
+ // ultimately be bound to types from other crates that
+ // may have specialized impls we can't see. In the
+ // case where the trait ref IS fully monomorphic, this
+ // is a policy decision that we made in the RFC in
+ // order to preserve flexibility for the crate that
+ // defined the specializable impl to specialize later
+ // for existing types.
+ //
+ // In either case, we handle this by not adding a
+ // candidate for an impl if it contains a `default`
+ // type.
+ //
+ // NOTE: This should be kept in sync with the similar code in
+ // `rustc_ty_utils::instance::resolve_associated_item()`.
+ let node_item =
+ assoc_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
+ .map_err(|ErrorGuaranteed { .. }| ())?;
+
+ if node_item.is_final() {
+ // Non-specializable items are always projectable.
+ true
+ } else {
+ // Only reveal a specializable default if we're past type-checking
+ // and the obligation is monomorphic, otherwise passes such as
+ // transmute checking and polymorphic MIR optimizations could
+ // get a result which isn't correct for all monomorphizations.
+ if obligation.param_env.reveal() == Reveal::All {
+ // NOTE(eddyb) inference variables can resolve to parameters, so
+ // assume `poly_trait_ref` isn't monomorphic, if it contains any.
+ let poly_trait_ref = selcx.infcx().resolve_vars_if_possible(poly_trait_ref);
+ !poly_trait_ref.still_further_specializable()
+ } else {
+ debug!(
+ assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
+ ?obligation.predicate,
+ "assemble_candidates_from_impls: not eligible due to default",
+ );
+ false
+ }
+ }
+ }
+ super::ImplSource::DiscriminantKind(..) => {
+ // While `DiscriminantKind` is automatically implemented for every type,
+ // the concrete discriminant may not be known yet.
+ //
+ // Any type with multiple potential discriminant types is therefore not eligible.
+ let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
+
+ match self_ty.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Adt(..)
+ | ty::Foreign(_)
+ | ty::Str
+ | ty::Array(..)
+ | ty::Slice(_)
+ | ty::RawPtr(..)
+ | ty::Ref(..)
+ | ty::FnDef(..)
+ | ty::FnPtr(..)
+ | ty::Dynamic(..)
+ | ty::Closure(..)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(..)
+ | ty::Never
+ | ty::Tuple(..)
+ // Integers and floats always have `u8` as their discriminant.
+ | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
+
+ ty::Projection(..)
+ | ty::Opaque(..)
+ | ty::Param(..)
+ | ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Infer(..)
+ | ty::Error(_) => false,
+ }
+ }
+ super::ImplSource::Pointee(..) => {
+ // While `Pointee` is automatically implemented for every type,
+ // the concrete metadata type may not be known yet.
+ //
+ // Any type with multiple potential metadata types is therefore not eligible.
+ let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
+
+ let tail = selcx.tcx().struct_tail_with_normalize(
+ self_ty,
+ |ty| {
+ // We throw away any obligations we get from this, since we normalize
+ // and confirm these obligations once again during confirmation
+ normalize_with_depth(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ ty,
+ )
+ .value
+ },
+ || {},
+ );
+
+ match tail.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Str
+ | ty::Array(..)
+ | ty::Slice(_)
+ | ty::RawPtr(..)
+ | ty::Ref(..)
+ | ty::FnDef(..)
+ | ty::FnPtr(..)
+ | ty::Dynamic(..)
+ | ty::Closure(..)
+ | ty::Generator(..)
+ | ty::GeneratorWitness(..)
+ | ty::Never
+ // Extern types have unit metadata, according to RFC 2850
+ | ty::Foreign(_)
+ // If returned by `struct_tail_without_normalization` this is a unit struct
+ // without any fields, or not a struct, and therefore is Sized.
+ | ty::Adt(..)
+ // If returned by `struct_tail_without_normalization` this is the empty tuple.
+ | ty::Tuple(..)
+ // Integers and floats are always Sized, and so have unit type metadata.
+ | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
+
+ // type parameters, opaques, and unnormalized projections have pointer
+ // metadata if they're known (e.g. by the param_env) to be sized
+ ty::Param(_) | ty::Projection(..) | ty::Opaque(..)
+ if selcx.infcx().predicate_must_hold_modulo_regions(
+ &obligation.with(
+ ty::Binder::dummy(ty::TraitRef::new(
+ selcx.tcx().require_lang_item(LangItem::Sized, None),
+ selcx.tcx().mk_substs_trait(self_ty, &[]),
+ ))
+ .without_const()
+ .to_predicate(selcx.tcx()),
+ ),
+ ) =>
+ {
+ true
+ }
+
+ // FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
+ ty::Param(_)
+ | ty::Projection(..)
+ | ty::Opaque(..)
+ | ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Infer(..)
+ | ty::Error(_) => {
+ if tail.has_infer_types() {
+ candidate_set.mark_ambiguous();
+ }
+ false
+ }
+ }
+ }
+ super::ImplSource::Param(..) => {
+ // This case tell us nothing about the value of an
+ // associated type. Consider:
+ //
+ // ```
+ // trait SomeTrait { type Foo; }
+ // fn foo<T:SomeTrait>(...) { }
+ // ```
+ //
+ // If the user writes `<T as SomeTrait>::Foo`, then the `T
+ // : SomeTrait` binding does not help us decide what the
+ // type `Foo` is (at least, not more specifically than
+ // what we already knew).
+ //
+ // But wait, you say! What about an example like this:
+ //
+ // ```
+ // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
+ // ```
+ //
+ // Doesn't the `T : SomeTrait<Foo=usize>` predicate help
+ // resolve `T::Foo`? And of course it does, but in fact
+ // that single predicate is desugared into two predicates
+ // in the compiler: a trait predicate (`T : SomeTrait`) and a
+ // projection. And the projection where clause is handled
+ // in `assemble_candidates_from_param_env`.
+ false
+ }
+ super::ImplSource::Object(_) => {
+ // Handled by the `Object` projection candidate. See
+ // `assemble_candidates_from_object_ty` for an explanation of
+ // why we special case object types.
+ false
+ }
+ super::ImplSource::AutoImpl(..)
+ | super::ImplSource::Builtin(..)
+ | super::ImplSource::TraitUpcasting(_)
+ | super::ImplSource::ConstDestruct(_) => {
+ // These traits have no associated types.
+ selcx.tcx().sess.delay_span_bug(
+ obligation.cause.span,
+ &format!("Cannot project an associated type from `{:?}`", impl_source),
+ );
+ return Err(());
+ }
+ };
+
+ if eligible {
+ if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
+ Ok(())
+ } else {
+ Err(())
+ }
+ } else {
+ Err(())
+ }
+ });
+}
+
+fn confirm_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ candidate: ProjectionCandidate<'tcx>,
+) -> Progress<'tcx> {
+ debug!(?obligation, ?candidate, "confirm_candidate");
+ let mut progress = match candidate {
+ ProjectionCandidate::ParamEnv(poly_projection)
+ | ProjectionCandidate::Object(poly_projection) => {
+ confirm_param_env_candidate(selcx, obligation, poly_projection, false)
+ }
+
+ ProjectionCandidate::TraitDef(poly_projection) => {
+ confirm_param_env_candidate(selcx, obligation, poly_projection, true)
+ }
+
+ ProjectionCandidate::Select(impl_source) => {
+ confirm_select_candidate(selcx, obligation, impl_source)
+ }
+ };
+
+ // When checking for cycle during evaluation, we compare predicates with
+ // "syntactic" equality. Since normalization generally introduces a type
+ // with new region variables, we need to resolve them to existing variables
+ // when possible for this to work. See `auto-trait-projection-recursion.rs`
+ // for a case where this matters.
+ if progress.term.has_infer_regions() {
+ progress.term =
+ progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx()));
+ }
+ progress
+}
+
+fn confirm_select_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ impl_source: Selection<'tcx>,
+) -> Progress<'tcx> {
+ match impl_source {
+ super::ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
+ super::ImplSource::Generator(data) => confirm_generator_candidate(selcx, obligation, data),
+ super::ImplSource::Closure(data) => confirm_closure_candidate(selcx, obligation, data),
+ super::ImplSource::FnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
+ super::ImplSource::DiscriminantKind(data) => {
+ confirm_discriminant_kind_candidate(selcx, obligation, data)
+ }
+ super::ImplSource::Pointee(data) => confirm_pointee_candidate(selcx, obligation, data),
+ super::ImplSource::Object(_)
+ | super::ImplSource::AutoImpl(..)
+ | super::ImplSource::Param(..)
+ | super::ImplSource::Builtin(..)
+ | super::ImplSource::TraitUpcasting(_)
+ | super::ImplSource::TraitAlias(..)
+ | super::ImplSource::ConstDestruct(_) => {
+ // we don't create Select candidates with this kind of resolution
+ span_bug!(
+ obligation.cause.span,
+ "Cannot project an associated type from `{:?}`",
+ impl_source
+ )
+ }
+ }
+}
+
+fn confirm_generator_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
+) -> Progress<'tcx> {
+ let gen_sig = impl_source.substs.as_generator().poly_sig();
+ let Normalized { value: gen_sig, obligations } = normalize_with_depth(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ gen_sig,
+ );
+
+ debug!(?obligation, ?gen_sig, ?obligations, "confirm_generator_candidate");
+
+ let tcx = selcx.tcx();
+
+ let gen_def_id = tcx.require_lang_item(LangItem::Generator, None);
+
+ let predicate = super::util::generator_trait_ref_and_outputs(
+ tcx,
+ gen_def_id,
+ obligation.predicate.self_ty(),
+ gen_sig,
+ )
+ .map_bound(|(trait_ref, yield_ty, return_ty)| {
+ let name = tcx.associated_item(obligation.predicate.item_def_id).name;
+ let ty = if name == sym::Return {
+ return_ty
+ } else if name == sym::Yield {
+ yield_ty
+ } else {
+ bug!()
+ };
+
+ ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy {
+ substs: trait_ref.substs,
+ item_def_id: obligation.predicate.item_def_id,
+ },
+ term: ty.into(),
+ }
+ });
+
+ confirm_param_env_candidate(selcx, obligation, predicate, false)
+ .with_addl_obligations(impl_source.nested)
+ .with_addl_obligations(obligations)
+}
+
+fn confirm_discriminant_kind_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ _: ImplSourceDiscriminantKindData,
+) -> Progress<'tcx> {
+ let tcx = selcx.tcx();
+
+ let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
+ // We get here from `poly_project_and_unify_type` which replaces bound vars
+ // with placeholders
+ debug_assert!(!self_ty.has_escaping_bound_vars());
+ let substs = tcx.mk_substs([self_ty.into()].iter());
+
+ let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
+
+ let predicate = ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy { substs, item_def_id: discriminant_def_id },
+ term: self_ty.discriminant_ty(tcx).into(),
+ };
+
+ // We get here from `poly_project_and_unify_type` which replaces bound vars
+ // with placeholders, so dummy is okay here.
+ confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
+}
+
+fn confirm_pointee_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ _: ImplSourcePointeeData,
+) -> Progress<'tcx> {
+ let tcx = selcx.tcx();
+ let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
+
+ let mut obligations = vec![];
+ let (metadata_ty, check_is_sized) = self_ty.ptr_metadata_ty(tcx, |ty| {
+ normalize_with_depth_to(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ ty,
+ &mut obligations,
+ )
+ });
+ if check_is_sized {
+ let sized_predicate = ty::Binder::dummy(ty::TraitRef::new(
+ tcx.require_lang_item(LangItem::Sized, None),
+ tcx.mk_substs_trait(self_ty, &[]),
+ ))
+ .without_const()
+ .to_predicate(tcx);
+ obligations.push(Obligation::new(
+ obligation.cause.clone(),
+ obligation.param_env,
+ sized_predicate,
+ ));
+ }
+
+ let substs = tcx.mk_substs([self_ty.into()].iter());
+ let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
+
+ let predicate = ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy { substs, item_def_id: metadata_def_id },
+ term: metadata_ty.into(),
+ };
+
+ confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
+ .with_addl_obligations(obligations)
+}
+
+fn confirm_fn_pointer_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
+) -> Progress<'tcx> {
+ let fn_type = selcx.infcx().shallow_resolve(fn_pointer_impl_source.fn_ty);
+ let sig = fn_type.fn_sig(selcx.tcx());
+ let Normalized { value: sig, obligations } = normalize_with_depth(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ sig,
+ );
+
+ confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
+ .with_addl_obligations(fn_pointer_impl_source.nested)
+ .with_addl_obligations(obligations)
+}
+
+fn confirm_closure_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
+) -> Progress<'tcx> {
+ let closure_sig = impl_source.substs.as_closure().sig();
+ let Normalized { value: closure_sig, obligations } = normalize_with_depth(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ closure_sig,
+ );
+
+ debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
+
+ confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
+ .with_addl_obligations(impl_source.nested)
+ .with_addl_obligations(obligations)
+}
+
+fn confirm_callable_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ fn_sig: ty::PolyFnSig<'tcx>,
+ flag: util::TupleArgumentsFlag,
+) -> Progress<'tcx> {
+ let tcx = selcx.tcx();
+
+ debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
+
+ let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
+ let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
+
+ let predicate = super::util::closure_trait_ref_and_return_type(
+ tcx,
+ fn_once_def_id,
+ obligation.predicate.self_ty(),
+ fn_sig,
+ flag,
+ )
+ .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy {
+ substs: trait_ref.substs,
+ item_def_id: fn_once_output_def_id,
+ },
+ term: ret_type.into(),
+ });
+
+ confirm_param_env_candidate(selcx, obligation, predicate, true)
+}
+
+fn confirm_param_env_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
+ potentially_unnormalized_candidate: bool,
+) -> Progress<'tcx> {
+ let infcx = selcx.infcx();
+ let cause = &obligation.cause;
+ let param_env = obligation.param_env;
+
+ let cache_entry = infcx.replace_bound_vars_with_fresh_vars(
+ cause.span,
+ LateBoundRegionConversionTime::HigherRankedType,
+ poly_cache_entry,
+ );
+
+ let cache_projection = cache_entry.projection_ty;
+ let mut nested_obligations = Vec::new();
+ let obligation_projection = obligation.predicate;
+ let obligation_projection = ensure_sufficient_stack(|| {
+ normalize_with_depth_to(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ obligation_projection,
+ &mut nested_obligations,
+ )
+ });
+ let cache_projection = if potentially_unnormalized_candidate {
+ ensure_sufficient_stack(|| {
+ normalize_with_depth_to(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ cache_projection,
+ &mut nested_obligations,
+ )
+ })
+ } else {
+ cache_projection
+ };
+
+ debug!(?cache_projection, ?obligation_projection);
+
+ match infcx.at(cause, param_env).eq(cache_projection, obligation_projection) {
+ Ok(InferOk { value: _, obligations }) => {
+ nested_obligations.extend(obligations);
+ assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
+ // FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
+ // a term instead.
+ Progress { term: cache_entry.term, obligations: nested_obligations }
+ }
+ Err(e) => {
+ let msg = format!(
+ "Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
+ obligation, poly_cache_entry, e,
+ );
+ debug!("confirm_param_env_candidate: {}", msg);
+ let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
+ Progress { term: err.into(), obligations: vec![] }
+ }
+ }
+}
+
+fn confirm_impl_candidate<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
+) -> Progress<'tcx> {
+ let tcx = selcx.tcx();
+
+ let ImplSourceUserDefinedData { impl_def_id, substs, mut nested } = impl_impl_source;
+ let assoc_item_id = obligation.predicate.item_def_id;
+ let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
+
+ let param_env = obligation.param_env;
+ let Ok(assoc_ty) = assoc_def(selcx, impl_def_id, assoc_item_id) else {
+ return Progress { term: tcx.ty_error().into(), obligations: nested };
+ };
+
+ if !assoc_ty.item.defaultness(tcx).has_value() {
+ // This means that the impl is missing a definition for the
+ // associated type. This error will be reported by the type
+ // checker method `check_impl_items_against_trait`, so here we
+ // just return Error.
+ debug!(
+ "confirm_impl_candidate: no associated type {:?} for {:?}",
+ assoc_ty.item.name, obligation.predicate
+ );
+ return Progress { term: tcx.ty_error().into(), obligations: nested };
+ }
+ // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
+ //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
+ //
+ // * `obligation.predicate.substs` is `[Vec<u32>, S]`
+ // * `substs` is `[u32]`
+ // * `substs` ends up as `[u32, S]`
+ let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
+ let substs =
+ translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.defining_node);
+ let ty = tcx.bound_type_of(assoc_ty.item.def_id);
+ let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
+ let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
+ let identity_substs =
+ crate::traits::InternalSubsts::identity_for_item(tcx, assoc_ty.item.def_id);
+ let did = ty::WithOptConstParam::unknown(assoc_ty.item.def_id);
+ let kind = ty::ConstKind::Unevaluated(ty::Unevaluated::new(did, identity_substs));
+ ty.map_bound(|ty| tcx.mk_const(ty::ConstS { ty, kind }).into())
+ } else {
+ ty.map_bound(|ty| ty.into())
+ };
+ if substs.len() != tcx.generics_of(assoc_ty.item.def_id).count() {
+ let err = tcx.ty_error_with_message(
+ obligation.cause.span,
+ "impl item and trait item have different parameter counts",
+ );
+ Progress { term: err.into(), obligations: nested }
+ } else {
+ assoc_ty_own_obligations(selcx, obligation, &mut nested);
+ Progress { term: term.subst(tcx, substs), obligations: nested }
+ }
+}
+
+// Get obligations corresponding to the predicates from the where-clause of the
+// associated type itself.
+// Note: `feature(generic_associated_types)` is required to write such
+// predicates, even for non-generic associated types.
+fn assoc_ty_own_obligations<'cx, 'tcx>(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ obligation: &ProjectionTyObligation<'tcx>,
+ nested: &mut Vec<PredicateObligation<'tcx>>,
+) {
+ let tcx = selcx.tcx();
+ for predicate in tcx
+ .predicates_of(obligation.predicate.item_def_id)
+ .instantiate_own(tcx, obligation.predicate.substs)
+ .predicates
+ {
+ let normalized = normalize_with_depth_to(
+ selcx,
+ obligation.param_env,
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ predicate,
+ nested,
+ );
+ nested.push(Obligation::with_depth(
+ obligation.cause.clone(),
+ obligation.recursion_depth + 1,
+ obligation.param_env,
+ normalized,
+ ));
+ }
+}
+
+/// Locate the definition of an associated type in the specialization hierarchy,
+/// starting from the given impl.
+///
+/// Based on the "projection mode", this lookup may in fact only examine the
+/// topmost impl. See the comments for `Reveal` for more details.
+fn assoc_def(
+ selcx: &SelectionContext<'_, '_>,
+ impl_def_id: DefId,
+ assoc_def_id: DefId,
+) -> Result<specialization_graph::LeafDef, ErrorGuaranteed> {
+ let tcx = selcx.tcx();
+ let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
+ let trait_def = tcx.trait_def(trait_def_id);
+
+ // This function may be called while we are still building the
+ // specialization graph that is queried below (via TraitDef::ancestors()),
+ // so, in order to avoid unnecessary infinite recursion, we manually look
+ // for the associated item at the given impl.
+ // If there is no such item in that impl, this function will fail with a
+ // cycle error if the specialization graph is currently being built.
+ if let Some(&impl_item_id) = tcx.impl_item_implementor_ids(impl_def_id).get(&assoc_def_id) {
+ let item = tcx.associated_item(impl_item_id);
+ let impl_node = specialization_graph::Node::Impl(impl_def_id);
+ return Ok(specialization_graph::LeafDef {
+ item: *item,
+ defining_node: impl_node,
+ finalizing_node: if item.defaultness(tcx).is_default() {
+ None
+ } else {
+ Some(impl_node)
+ },
+ });
+ }
+
+ let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
+ if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_def_id) {
+ Ok(assoc_item)
+ } else {
+ // This is saying that neither the trait nor
+ // the impl contain a definition for this
+ // associated type. Normally this situation
+ // could only arise through a compiler bug --
+ // if the user wrote a bad item name, it
+ // should have failed in astconv.
+ bug!(
+ "No associated type `{}` for {}",
+ tcx.item_name(assoc_def_id),
+ tcx.def_path_str(impl_def_id)
+ )
+ }
+}
+
+pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
+ fn from_poly_projection_predicate(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ predicate: ty::PolyProjectionPredicate<'tcx>,
+ ) -> Option<Self>;
+}
+
+impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
+ fn from_poly_projection_predicate(
+ selcx: &mut SelectionContext<'cx, 'tcx>,
+ predicate: ty::PolyProjectionPredicate<'tcx>,
+ ) -> Option<Self> {
+ let infcx = selcx.infcx();
+ // We don't do cross-snapshot caching of obligations with escaping regions,
+ // so there's no cache key to use
+ predicate.no_bound_vars().map(|predicate| {
+ ProjectionCacheKey::new(
+ // We don't attempt to match up with a specific type-variable state
+ // from a specific call to `opt_normalize_projection_type` - if
+ // there's no precise match, the original cache entry is "stranded"
+ // anyway.
+ infcx.resolve_vars_if_possible(predicate.projection_ty),
+ )
+ })
+ }
+}