summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs1009
1 files changed, 1009 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
new file mode 100644
index 000000000..a60ce0f34
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
@@ -0,0 +1,1009 @@
+//! Candidate assembly.
+//!
+//! The selection process begins by examining all in-scope impls,
+//! caller obligations, and so forth and assembling a list of
+//! candidates. See the [rustc dev guide] for more details.
+//!
+//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
+use hir::LangItem;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_infer::traits::TraitEngine;
+use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
+use rustc_lint_defs::builtin::DEREF_INTO_DYN_SUPERTRAIT;
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::{self, ToPredicate, Ty, TypeVisitable};
+use rustc_target::spec::abi::Abi;
+
+use crate::traits;
+use crate::traits::coherence::Conflict;
+use crate::traits::query::evaluate_obligation::InferCtxtExt;
+use crate::traits::{util, SelectionResult};
+use crate::traits::{Ambiguous, ErrorReporting, Overflow, Unimplemented};
+
+use super::BuiltinImplConditions;
+use super::IntercrateAmbiguityCause;
+use super::OverflowError;
+use super::SelectionCandidate::{self, *};
+use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
+
+impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
+ #[instrument(level = "debug", skip(self))]
+ pub(super) fn candidate_from_obligation<'o>(
+ &mut self,
+ stack: &TraitObligationStack<'o, 'tcx>,
+ ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
+ // Watch out for overflow. This intentionally bypasses (and does
+ // not update) the cache.
+ self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
+
+ // Check the cache. Note that we freshen the trait-ref
+ // separately rather than using `stack.fresh_trait_ref` --
+ // this is because we want the unbound variables to be
+ // replaced with fresh types starting from index 0.
+ let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
+ debug!(?cache_fresh_trait_pred);
+ debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
+
+ if let Some(c) =
+ self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
+ {
+ debug!(candidate = ?c, "CACHE HIT");
+ return c;
+ }
+
+ // If no match, compute result and insert into cache.
+ //
+ // FIXME(nikomatsakis) -- this cache is not taking into
+ // account cycles that may have occurred in forming the
+ // candidate. I don't know of any specific problems that
+ // result but it seems awfully suspicious.
+ let (candidate, dep_node) =
+ self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
+
+ debug!(?candidate, "CACHE MISS");
+ self.insert_candidate_cache(
+ stack.obligation.param_env,
+ cache_fresh_trait_pred,
+ dep_node,
+ candidate.clone(),
+ );
+ candidate
+ }
+
+ fn candidate_from_obligation_no_cache<'o>(
+ &mut self,
+ stack: &TraitObligationStack<'o, 'tcx>,
+ ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
+ if let Some(conflict) = self.is_knowable(stack) {
+ debug!("coherence stage: not knowable");
+ if self.intercrate_ambiguity_causes.is_some() {
+ debug!("evaluate_stack: intercrate_ambiguity_causes is some");
+ // Heuristics: show the diagnostics when there are no candidates in crate.
+ if let Ok(candidate_set) = self.assemble_candidates(stack) {
+ let mut no_candidates_apply = true;
+
+ for c in candidate_set.vec.iter() {
+ if self.evaluate_candidate(stack, &c)?.may_apply() {
+ no_candidates_apply = false;
+ break;
+ }
+ }
+
+ if !candidate_set.ambiguous && no_candidates_apply {
+ let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
+ let self_ty = trait_ref.self_ty();
+ let (trait_desc, self_desc) = with_no_trimmed_paths!({
+ let trait_desc = trait_ref.print_only_trait_path().to_string();
+ let self_desc = if self_ty.has_concrete_skeleton() {
+ Some(self_ty.to_string())
+ } else {
+ None
+ };
+ (trait_desc, self_desc)
+ });
+ let cause = if let Conflict::Upstream = conflict {
+ IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
+ } else {
+ IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
+ };
+ debug!(?cause, "evaluate_stack: pushing cause");
+ self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
+ }
+ }
+ }
+ return Ok(None);
+ }
+
+ let candidate_set = self.assemble_candidates(stack)?;
+
+ if candidate_set.ambiguous {
+ debug!("candidate set contains ambig");
+ return Ok(None);
+ }
+
+ let candidates = candidate_set.vec;
+
+ debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
+
+ // At this point, we know that each of the entries in the
+ // candidate set is *individually* applicable. Now we have to
+ // figure out if they contain mutual incompatibilities. This
+ // frequently arises if we have an unconstrained input type --
+ // for example, we are looking for `$0: Eq` where `$0` is some
+ // unconstrained type variable. In that case, we'll get a
+ // candidate which assumes $0 == int, one that assumes `$0 ==
+ // usize`, etc. This spells an ambiguity.
+
+ let mut candidates = self.filter_impls(candidates, stack.obligation);
+
+ // If there is more than one candidate, first winnow them down
+ // by considering extra conditions (nested obligations and so
+ // forth). We don't winnow if there is exactly one
+ // candidate. This is a relatively minor distinction but it
+ // can lead to better inference and error-reporting. An
+ // example would be if there was an impl:
+ //
+ // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
+ //
+ // and we were to see some code `foo.push_clone()` where `boo`
+ // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
+ // we were to winnow, we'd wind up with zero candidates.
+ // Instead, we select the right impl now but report "`Bar` does
+ // not implement `Clone`".
+ if candidates.len() == 1 {
+ return self.filter_reservation_impls(candidates.pop().unwrap(), stack.obligation);
+ }
+
+ // Winnow, but record the exact outcome of evaluation, which
+ // is needed for specialization. Propagate overflow if it occurs.
+ let mut candidates = candidates
+ .into_iter()
+ .map(|c| match self.evaluate_candidate(stack, &c) {
+ Ok(eval) if eval.may_apply() => {
+ Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
+ }
+ Ok(_) => Ok(None),
+ Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
+ Err(OverflowError::ErrorReporting) => Err(ErrorReporting),
+ Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
+ })
+ .flat_map(Result::transpose)
+ .collect::<Result<Vec<_>, _>>()?;
+
+ debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
+
+ let needs_infer = stack.obligation.predicate.has_infer_types_or_consts();
+
+ // If there are STILL multiple candidates, we can further
+ // reduce the list by dropping duplicates -- including
+ // resolving specializations.
+ if candidates.len() > 1 {
+ let mut i = 0;
+ while i < candidates.len() {
+ let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
+ self.candidate_should_be_dropped_in_favor_of(
+ &candidates[i],
+ &candidates[j],
+ needs_infer,
+ )
+ });
+ if is_dup {
+ debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
+ candidates.swap_remove(i);
+ } else {
+ debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
+ i += 1;
+
+ // If there are *STILL* multiple candidates, give up
+ // and report ambiguity.
+ if i > 1 {
+ debug!("multiple matches, ambig");
+ return Err(Ambiguous(
+ candidates
+ .into_iter()
+ .filter_map(|c| match c.candidate {
+ SelectionCandidate::ImplCandidate(def_id) => Some(def_id),
+ _ => None,
+ })
+ .collect(),
+ ));
+ }
+ }
+ }
+ }
+
+ // If there are *NO* candidates, then there are no impls --
+ // that we know of, anyway. Note that in the case where there
+ // are unbound type variables within the obligation, it might
+ // be the case that you could still satisfy the obligation
+ // from another crate by instantiating the type variables with
+ // a type from another crate that does have an impl. This case
+ // is checked for in `evaluate_stack` (and hence users
+ // who might care about this case, like coherence, should use
+ // that function).
+ if candidates.is_empty() {
+ // If there's an error type, 'downgrade' our result from
+ // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
+ // emitting additional spurious errors, since we're guaranteed
+ // to have emitted at least one.
+ if stack.obligation.predicate.references_error() {
+ debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
+ return Ok(None);
+ }
+ return Err(Unimplemented);
+ }
+
+ // Just one candidate left.
+ self.filter_reservation_impls(candidates.pop().unwrap().candidate, stack.obligation)
+ }
+
+ #[instrument(skip(self, stack), level = "debug")]
+ pub(super) fn assemble_candidates<'o>(
+ &mut self,
+ stack: &TraitObligationStack<'o, 'tcx>,
+ ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
+ let TraitObligationStack { obligation, .. } = *stack;
+ let obligation = &Obligation {
+ param_env: obligation.param_env,
+ cause: obligation.cause.clone(),
+ recursion_depth: obligation.recursion_depth,
+ predicate: self.infcx().resolve_vars_if_possible(obligation.predicate),
+ };
+
+ if obligation.predicate.skip_binder().self_ty().is_ty_var() {
+ debug!(ty = ?obligation.predicate.skip_binder().self_ty(), "ambiguous inference var or opaque type");
+ // Self is a type variable (e.g., `_: AsRef<str>`).
+ //
+ // This is somewhat problematic, as the current scheme can't really
+ // handle it turning to be a projection. This does end up as truly
+ // ambiguous in most cases anyway.
+ //
+ // Take the fast path out - this also improves
+ // performance by preventing assemble_candidates_from_impls from
+ // matching every impl for this trait.
+ return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
+ }
+
+ let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
+
+ // The only way to prove a NotImplemented(T: Foo) predicate is via a negative impl.
+ // There are no compiler built-in rules for this.
+ if obligation.polarity() == ty::ImplPolarity::Negative {
+ self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
+ self.assemble_candidates_from_impls(obligation, &mut candidates);
+ } else {
+ self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
+
+ // Other bounds. Consider both in-scope bounds from fn decl
+ // and applicable impls. There is a certain set of precedence rules here.
+ let def_id = obligation.predicate.def_id();
+ let lang_items = self.tcx().lang_items();
+
+ if lang_items.copy_trait() == Some(def_id) {
+ debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
+
+ // User-defined copy impls are permitted, but only for
+ // structs and enums.
+ self.assemble_candidates_from_impls(obligation, &mut candidates);
+
+ // For other types, we'll use the builtin rules.
+ let copy_conditions = self.copy_clone_conditions(obligation);
+ self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates);
+ } else if lang_items.discriminant_kind_trait() == Some(def_id) {
+ // `DiscriminantKind` is automatically implemented for every type.
+ candidates.vec.push(DiscriminantKindCandidate);
+ } else if lang_items.pointee_trait() == Some(def_id) {
+ // `Pointee` is automatically implemented for every type.
+ candidates.vec.push(PointeeCandidate);
+ } else if lang_items.sized_trait() == Some(def_id) {
+ // Sized is never implementable by end-users, it is
+ // always automatically computed.
+ let sized_conditions = self.sized_conditions(obligation);
+ self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates);
+ } else if lang_items.unsize_trait() == Some(def_id) {
+ self.assemble_candidates_for_unsizing(obligation, &mut candidates);
+ } else if lang_items.destruct_trait() == Some(def_id) {
+ self.assemble_const_destruct_candidates(obligation, &mut candidates);
+ } else if lang_items.transmute_trait() == Some(def_id) {
+ // User-defined transmutability impls are permitted.
+ self.assemble_candidates_from_impls(obligation, &mut candidates);
+ self.assemble_candidates_for_transmutability(obligation, &mut candidates);
+ } else {
+ if lang_items.clone_trait() == Some(def_id) {
+ // Same builtin conditions as `Copy`, i.e., every type which has builtin support
+ // for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
+ // types have builtin support for `Clone`.
+ let clone_conditions = self.copy_clone_conditions(obligation);
+ self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates);
+ }
+
+ self.assemble_generator_candidates(obligation, &mut candidates);
+ self.assemble_closure_candidates(obligation, &mut candidates);
+ self.assemble_fn_pointer_candidates(obligation, &mut candidates);
+ self.assemble_candidates_from_impls(obligation, &mut candidates);
+ self.assemble_candidates_from_object_ty(obligation, &mut candidates);
+ }
+
+ self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
+ self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
+ // Auto implementations have lower priority, so we only
+ // consider triggering a default if there is no other impl that can apply.
+ if candidates.vec.is_empty() {
+ self.assemble_candidates_from_auto_impls(obligation, &mut candidates);
+ }
+ }
+ debug!("candidate list size: {}", candidates.vec.len());
+ Ok(candidates)
+ }
+
+ #[tracing::instrument(level = "debug", skip(self, candidates))]
+ fn assemble_candidates_from_projected_tys(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // Before we go into the whole placeholder thing, just
+ // quickly check if the self-type is a projection at all.
+ match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
+ ty::Projection(_) | ty::Opaque(..) => {}
+ ty::Infer(ty::TyVar(_)) => {
+ span_bug!(
+ obligation.cause.span,
+ "Self=_ should have been handled by assemble_candidates"
+ );
+ }
+ _ => return,
+ }
+
+ let result = self
+ .infcx
+ .probe(|_| self.match_projection_obligation_against_definition_bounds(obligation));
+
+ candidates.vec.extend(result.into_iter().map(ProjectionCandidate));
+ }
+
+ /// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
+ /// supplied to find out whether it is listed among them.
+ ///
+ /// Never affects the inference environment.
+ #[tracing::instrument(level = "debug", skip(self, stack, candidates))]
+ fn assemble_candidates_from_caller_bounds<'o>(
+ &mut self,
+ stack: &TraitObligationStack<'o, 'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) -> Result<(), SelectionError<'tcx>> {
+ debug!(?stack.obligation);
+
+ let all_bounds = stack
+ .obligation
+ .param_env
+ .caller_bounds()
+ .iter()
+ .filter_map(|o| o.to_opt_poly_trait_pred());
+
+ // Micro-optimization: filter out predicates relating to different traits.
+ let matching_bounds =
+ all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
+
+ // Keep only those bounds which may apply, and propagate overflow if it occurs.
+ for bound in matching_bounds {
+ // FIXME(oli-obk): it is suspicious that we are dropping the constness and
+ // polarity here.
+ let wc = self.where_clause_may_apply(stack, bound.map_bound(|t| t.trait_ref))?;
+ if wc.may_apply() {
+ candidates.vec.push(ParamCandidate(bound));
+ }
+ }
+
+ Ok(())
+ }
+
+ fn assemble_generator_candidates(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
+ return;
+ }
+
+ // Okay to skip binder because the substs on generator types never
+ // touch bound regions, they just capture the in-scope
+ // type/region parameters.
+ let self_ty = obligation.self_ty().skip_binder();
+ match self_ty.kind() {
+ ty::Generator(..) => {
+ debug!(?self_ty, ?obligation, "assemble_generator_candidates",);
+
+ candidates.vec.push(GeneratorCandidate);
+ }
+ ty::Infer(ty::TyVar(_)) => {
+ debug!("assemble_generator_candidates: ambiguous self-type");
+ candidates.ambiguous = true;
+ }
+ _ => {}
+ }
+ }
+
+ /// Checks for the artificial impl that the compiler will create for an obligation like `X :
+ /// FnMut<..>` where `X` is a closure type.
+ ///
+ /// Note: the type parameters on a closure candidate are modeled as *output* type
+ /// parameters and hence do not affect whether this trait is a match or not. They will be
+ /// unified during the confirmation step.
+ fn assemble_closure_candidates(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ let Some(kind) = self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) else {
+ return;
+ };
+
+ // Okay to skip binder because the substs on closure types never
+ // touch bound regions, they just capture the in-scope
+ // type/region parameters
+ match *obligation.self_ty().skip_binder().kind() {
+ ty::Closure(_, closure_substs) => {
+ debug!(?kind, ?obligation, "assemble_unboxed_candidates");
+ match self.infcx.closure_kind(closure_substs) {
+ Some(closure_kind) => {
+ debug!(?closure_kind, "assemble_unboxed_candidates");
+ if closure_kind.extends(kind) {
+ candidates.vec.push(ClosureCandidate);
+ }
+ }
+ None => {
+ debug!("assemble_unboxed_candidates: closure_kind not yet known");
+ candidates.vec.push(ClosureCandidate);
+ }
+ }
+ }
+ ty::Infer(ty::TyVar(_)) => {
+ debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
+ candidates.ambiguous = true;
+ }
+ _ => {}
+ }
+ }
+
+ /// Implements one of the `Fn()` family for a fn pointer.
+ fn assemble_fn_pointer_candidates(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // We provide impl of all fn traits for fn pointers.
+ if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
+ return;
+ }
+
+ // Okay to skip binder because what we are inspecting doesn't involve bound regions.
+ let self_ty = obligation.self_ty().skip_binder();
+ match *self_ty.kind() {
+ ty::Infer(ty::TyVar(_)) => {
+ debug!("assemble_fn_pointer_candidates: ambiguous self-type");
+ candidates.ambiguous = true; // Could wind up being a fn() type.
+ }
+ // Provide an impl, but only for suitable `fn` pointers.
+ ty::FnPtr(_) => {
+ if let ty::FnSig {
+ unsafety: hir::Unsafety::Normal,
+ abi: Abi::Rust,
+ c_variadic: false,
+ ..
+ } = self_ty.fn_sig(self.tcx()).skip_binder()
+ {
+ candidates.vec.push(FnPointerCandidate { is_const: false });
+ }
+ }
+ // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
+ ty::FnDef(def_id, _) => {
+ if let ty::FnSig {
+ unsafety: hir::Unsafety::Normal,
+ abi: Abi::Rust,
+ c_variadic: false,
+ ..
+ } = self_ty.fn_sig(self.tcx()).skip_binder()
+ {
+ if self.tcx().codegen_fn_attrs(def_id).target_features.is_empty() {
+ candidates
+ .vec
+ .push(FnPointerCandidate { is_const: self.tcx().is_const_fn(def_id) });
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+
+ /// Searches for impls that might apply to `obligation`.
+ fn assemble_candidates_from_impls(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ debug!(?obligation, "assemble_candidates_from_impls");
+
+ // Essentially any user-written impl will match with an error type,
+ // so creating `ImplCandidates` isn't useful. However, we might
+ // end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized)
+ // This helps us avoid overflow: see issue #72839
+ // Since compilation is already guaranteed to fail, this is just
+ // to try to show the 'nicest' possible errors to the user.
+ // We don't check for errors in the `ParamEnv` - in practice,
+ // it seems to cause us to be overly aggressive in deciding
+ // to give up searching for candidates, leading to spurious errors.
+ if obligation.predicate.references_error() {
+ return;
+ }
+
+ self.tcx().for_each_relevant_impl(
+ obligation.predicate.def_id(),
+ obligation.predicate.skip_binder().trait_ref.self_ty(),
+ |impl_def_id| {
+ // Before we create the substitutions and everything, first
+ // consider a "quick reject". This avoids creating more types
+ // and so forth that we need to.
+ let impl_trait_ref = self.tcx().bound_impl_trait_ref(impl_def_id).unwrap();
+ if self.fast_reject_trait_refs(obligation, &impl_trait_ref.0) {
+ return;
+ }
+
+ self.infcx.probe(|_| {
+ if let Ok(_substs) = self.match_impl(impl_def_id, impl_trait_ref, obligation) {
+ candidates.vec.push(ImplCandidate(impl_def_id));
+ }
+ });
+ },
+ );
+ }
+
+ fn assemble_candidates_from_auto_impls(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // Okay to skip binder here because the tests we do below do not involve bound regions.
+ let self_ty = obligation.self_ty().skip_binder();
+ debug!(?self_ty, "assemble_candidates_from_auto_impls");
+
+ let def_id = obligation.predicate.def_id();
+
+ if self.tcx().trait_is_auto(def_id) {
+ match self_ty.kind() {
+ ty::Dynamic(..) => {
+ // For object types, we don't know what the closed
+ // over types are. This means we conservatively
+ // say nothing; a candidate may be added by
+ // `assemble_candidates_from_object_ty`.
+ }
+ ty::Foreign(..) => {
+ // Since the contents of foreign types is unknown,
+ // we don't add any `..` impl. Default traits could
+ // still be provided by a manual implementation for
+ // this trait and type.
+ }
+ ty::Param(..) | ty::Projection(..) => {
+ // In these cases, we don't know what the actual
+ // type is. Therefore, we cannot break it down
+ // into its constituent types. So we don't
+ // consider the `..` impl but instead just add no
+ // candidates: this means that typeck will only
+ // succeed if there is another reason to believe
+ // that this obligation holds. That could be a
+ // where-clause or, in the case of an object type,
+ // it could be that the object type lists the
+ // trait (e.g., `Foo+Send : Send`). See
+ // `ui/typeck/typeck-default-trait-impl-send-param.rs`
+ // for an example of a test case that exercises
+ // this path.
+ }
+ ty::Infer(ty::TyVar(_)) => {
+ // The auto impl might apply; we don't know.
+ candidates.ambiguous = true;
+ }
+ ty::Generator(_, _, movability)
+ if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
+ {
+ match movability {
+ hir::Movability::Static => {
+ // Immovable generators are never `Unpin`, so
+ // suppress the normal auto-impl candidate for it.
+ }
+ hir::Movability::Movable => {
+ // Movable generators are always `Unpin`, so add an
+ // unconditional builtin candidate.
+ candidates.vec.push(BuiltinCandidate { has_nested: false });
+ }
+ }
+ }
+
+ _ => candidates.vec.push(AutoImplCandidate(def_id)),
+ }
+ }
+ }
+
+ /// Searches for impls that might apply to `obligation`.
+ fn assemble_candidates_from_object_ty(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ debug!(
+ self_ty = ?obligation.self_ty().skip_binder(),
+ "assemble_candidates_from_object_ty",
+ );
+
+ self.infcx.probe(|_snapshot| {
+ // The code below doesn't care about regions, and the
+ // self-ty here doesn't escape this probe, so just erase
+ // any LBR.
+ let self_ty = self.tcx().erase_late_bound_regions(obligation.self_ty());
+ let poly_trait_ref = match self_ty.kind() {
+ ty::Dynamic(ref data, ..) => {
+ if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
+ debug!(
+ "assemble_candidates_from_object_ty: matched builtin bound, \
+ pushing candidate"
+ );
+ candidates.vec.push(BuiltinObjectCandidate);
+ return;
+ }
+
+ if let Some(principal) = data.principal() {
+ if !self.infcx.tcx.features().object_safe_for_dispatch {
+ principal.with_self_ty(self.tcx(), self_ty)
+ } else if self.tcx().is_object_safe(principal.def_id()) {
+ principal.with_self_ty(self.tcx(), self_ty)
+ } else {
+ return;
+ }
+ } else {
+ // Only auto trait bounds exist.
+ return;
+ }
+ }
+ ty::Infer(ty::TyVar(_)) => {
+ debug!("assemble_candidates_from_object_ty: ambiguous");
+ candidates.ambiguous = true; // could wind up being an object type
+ return;
+ }
+ _ => return,
+ };
+
+ debug!(?poly_trait_ref, "assemble_candidates_from_object_ty");
+
+ let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
+ let placeholder_trait_predicate =
+ self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
+
+ // Count only those upcast versions that match the trait-ref
+ // we are looking for. Specifically, do not only check for the
+ // correct trait, but also the correct type parameters.
+ // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
+ // but `Foo` is declared as `trait Foo: Bar<u32>`.
+ let candidate_supertraits = util::supertraits(self.tcx(), poly_trait_ref)
+ .enumerate()
+ .filter(|&(_, upcast_trait_ref)| {
+ self.infcx.probe(|_| {
+ self.match_normalize_trait_ref(
+ obligation,
+ upcast_trait_ref,
+ placeholder_trait_predicate.trait_ref,
+ )
+ .is_ok()
+ })
+ })
+ .map(|(idx, _)| ObjectCandidate(idx));
+
+ candidates.vec.extend(candidate_supertraits);
+ })
+ }
+
+ /// Temporary migration for #89190
+ fn need_migrate_deref_output_trait_object(
+ &mut self,
+ ty: Ty<'tcx>,
+ cause: &traits::ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ ) -> Option<(Ty<'tcx>, DefId)> {
+ let tcx = self.tcx();
+ if tcx.features().trait_upcasting {
+ return None;
+ }
+
+ // <ty as Deref>
+ let trait_ref = ty::TraitRef {
+ def_id: tcx.lang_items().deref_trait()?,
+ substs: tcx.mk_substs_trait(ty, &[]),
+ };
+
+ let obligation = traits::Obligation::new(
+ cause.clone(),
+ param_env,
+ ty::Binder::dummy(trait_ref).without_const().to_predicate(tcx),
+ );
+ if !self.infcx.predicate_may_hold(&obligation) {
+ return None;
+ }
+
+ let mut fulfillcx = traits::FulfillmentContext::new_in_snapshot();
+ let normalized_ty = fulfillcx.normalize_projection_type(
+ &self.infcx,
+ param_env,
+ ty::ProjectionTy {
+ item_def_id: tcx.lang_items().deref_target()?,
+ substs: trait_ref.substs,
+ },
+ cause.clone(),
+ );
+
+ let ty::Dynamic(data, ..) = normalized_ty.kind() else {
+ return None;
+ };
+
+ let def_id = data.principal_def_id()?;
+
+ return Some((normalized_ty, def_id));
+ }
+
+ /// Searches for unsizing that might apply to `obligation`.
+ fn assemble_candidates_for_unsizing(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // We currently never consider higher-ranked obligations e.g.
+ // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
+ // because they are a priori invalid, and we could potentially add support
+ // for them later, it's just that there isn't really a strong need for it.
+ // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
+ // impl, and those are generally applied to concrete types.
+ //
+ // That said, one might try to write a fn with a where clause like
+ // for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
+ // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
+ // Still, you'd be more likely to write that where clause as
+ // T: Trait
+ // so it seems ok if we (conservatively) fail to accept that `Unsize`
+ // obligation above. Should be possible to extend this in the future.
+ let Some(source) = obligation.self_ty().no_bound_vars() else {
+ // Don't add any candidates if there are bound regions.
+ return;
+ };
+ let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
+
+ debug!(?source, ?target, "assemble_candidates_for_unsizing");
+
+ match (source.kind(), target.kind()) {
+ // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
+ (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
+ // Upcast coercions permit several things:
+ //
+ // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
+ // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
+ // 3. Tightening trait to its super traits, eg. `Foo` to `Bar` if `Foo: Bar`
+ //
+ // Note that neither of the first two of these changes requires any
+ // change at runtime. The third needs to change pointer metadata at runtime.
+ //
+ // We always perform upcasting coercions when we can because of reason
+ // #2 (region bounds).
+ let auto_traits_compatible = data_b
+ .auto_traits()
+ // All of a's auto traits need to be in b's auto traits.
+ .all(|b| data_a.auto_traits().any(|a| a == b));
+ if auto_traits_compatible {
+ let principal_def_id_a = data_a.principal_def_id();
+ let principal_def_id_b = data_b.principal_def_id();
+ if principal_def_id_a == principal_def_id_b {
+ // no cyclic
+ candidates.vec.push(BuiltinUnsizeCandidate);
+ } else if principal_def_id_a.is_some() && principal_def_id_b.is_some() {
+ // not casual unsizing, now check whether this is trait upcasting coercion.
+ let principal_a = data_a.principal().unwrap();
+ let target_trait_did = principal_def_id_b.unwrap();
+ let source_trait_ref = principal_a.with_self_ty(self.tcx(), source);
+ if let Some((deref_output_ty, deref_output_trait_did)) = self
+ .need_migrate_deref_output_trait_object(
+ source,
+ &obligation.cause,
+ obligation.param_env,
+ )
+ {
+ if deref_output_trait_did == target_trait_did {
+ self.tcx().struct_span_lint_hir(
+ DEREF_INTO_DYN_SUPERTRAIT,
+ obligation.cause.body_id,
+ obligation.cause.span,
+ |lint| {
+ lint.build(&format!(
+ "`{}` implements `Deref` with supertrait `{}` as output",
+ source,
+ deref_output_ty
+ )).emit();
+ },
+ );
+ return;
+ }
+ }
+
+ for (idx, upcast_trait_ref) in
+ util::supertraits(self.tcx(), source_trait_ref).enumerate()
+ {
+ if upcast_trait_ref.def_id() == target_trait_did {
+ candidates.vec.push(TraitUpcastingUnsizeCandidate(idx));
+ }
+ }
+ }
+ }
+ }
+
+ // `T` -> `Trait`
+ (_, &ty::Dynamic(..)) => {
+ candidates.vec.push(BuiltinUnsizeCandidate);
+ }
+
+ // Ambiguous handling is below `T` -> `Trait`, because inference
+ // variables can still implement `Unsize<Trait>` and nested
+ // obligations will have the final say (likely deferred).
+ (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
+ debug!("assemble_candidates_for_unsizing: ambiguous");
+ candidates.ambiguous = true;
+ }
+
+ // `[T; n]` -> `[T]`
+ (&ty::Array(..), &ty::Slice(_)) => {
+ candidates.vec.push(BuiltinUnsizeCandidate);
+ }
+
+ // `Struct<T>` -> `Struct<U>`
+ (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
+ if def_id_a == def_id_b {
+ candidates.vec.push(BuiltinUnsizeCandidate);
+ }
+ }
+
+ // `(.., T)` -> `(.., U)`
+ (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
+ if tys_a.len() == tys_b.len() {
+ candidates.vec.push(BuiltinUnsizeCandidate);
+ }
+ }
+
+ _ => {}
+ };
+ }
+
+ #[tracing::instrument(level = "debug", skip(self, obligation, candidates))]
+ fn assemble_candidates_for_transmutability(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ if obligation.has_param_types_or_consts() {
+ return;
+ }
+
+ if obligation.has_infer_types_or_consts() {
+ candidates.ambiguous = true;
+ return;
+ }
+
+ candidates.vec.push(TransmutabilityCandidate);
+ }
+
+ #[tracing::instrument(level = "debug", skip(self, obligation, candidates))]
+ fn assemble_candidates_for_trait_alias(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // Okay to skip binder here because the tests we do below do not involve bound regions.
+ let self_ty = obligation.self_ty().skip_binder();
+ debug!(?self_ty);
+
+ let def_id = obligation.predicate.def_id();
+
+ if self.tcx().is_trait_alias(def_id) {
+ candidates.vec.push(TraitAliasCandidate(def_id));
+ }
+ }
+
+ /// Assembles the trait which are built-in to the language itself:
+ /// `Copy`, `Clone` and `Sized`.
+ #[tracing::instrument(level = "debug", skip(self, candidates))]
+ fn assemble_builtin_bound_candidates(
+ &mut self,
+ conditions: BuiltinImplConditions<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ match conditions {
+ BuiltinImplConditions::Where(nested) => {
+ candidates
+ .vec
+ .push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
+ }
+ BuiltinImplConditions::None => {}
+ BuiltinImplConditions::Ambiguous => {
+ candidates.ambiguous = true;
+ }
+ }
+ }
+
+ fn assemble_const_destruct_candidates(
+ &mut self,
+ obligation: &TraitObligation<'tcx>,
+ candidates: &mut SelectionCandidateSet<'tcx>,
+ ) {
+ // If the predicate is `~const Destruct` in a non-const environment, we don't actually need
+ // to check anything. We'll short-circuit checking any obligations in confirmation, too.
+ if !obligation.is_const() {
+ candidates.vec.push(ConstDestructCandidate(None));
+ return;
+ }
+
+ let self_ty = self.infcx().shallow_resolve(obligation.self_ty());
+ match self_ty.skip_binder().kind() {
+ ty::Opaque(..)
+ | ty::Dynamic(..)
+ | ty::Error(_)
+ | ty::Bound(..)
+ | ty::Param(_)
+ | ty::Placeholder(_)
+ | ty::Projection(_) => {
+ // We don't know if these are `~const Destruct`, at least
+ // not structurally... so don't push a candidate.
+ }
+
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Infer(ty::IntVar(_))
+ | ty::Infer(ty::FloatVar(_))
+ | ty::Str
+ | ty::RawPtr(_)
+ | ty::Ref(..)
+ | ty::FnDef(..)
+ | ty::FnPtr(_)
+ | ty::Never
+ | ty::Foreign(_)
+ | ty::Array(..)
+ | ty::Slice(_)
+ | ty::Closure(..)
+ | ty::Generator(..)
+ | ty::Tuple(_)
+ | ty::GeneratorWitness(_) => {
+ // These are built-in, and cannot have a custom `impl const Destruct`.
+ candidates.vec.push(ConstDestructCandidate(None));
+ }
+
+ ty::Adt(..) => {
+ // Find a custom `impl Drop` impl, if it exists
+ let relevant_impl = self.tcx().find_map_relevant_impl(
+ self.tcx().require_lang_item(LangItem::Drop, None),
+ obligation.predicate.skip_binder().trait_ref.self_ty(),
+ Some,
+ );
+
+ if let Some(impl_def_id) = relevant_impl {
+ // Check that `impl Drop` is actually const, if there is a custom impl
+ if self.tcx().constness(impl_def_id) == hir::Constness::Const {
+ candidates.vec.push(ConstDestructCandidate(Some(impl_def_id)));
+ }
+ } else {
+ // Otherwise check the ADT like a built-in type (structurally)
+ candidates.vec.push(ConstDestructCandidate(None));
+ }
+ }
+
+ ty::Infer(_) => {
+ candidates.ambiguous = true;
+ }
+ }
+ }
+}