summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/traits/wf.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/wf.rs')
-rw-r--r--compiler/rustc_trait_selection/src/traits/wf.rs888
1 files changed, 888 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/wf.rs b/compiler/rustc_trait_selection/src/traits/wf.rs
new file mode 100644
index 000000000..414857f0a
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/wf.rs
@@ -0,0 +1,888 @@
+use crate::infer::InferCtxt;
+use crate::traits;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
+use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeVisitable};
+use rustc_span::Span;
+
+use std::iter;
+/// Returns the set of obligations needed to make `arg` well-formed.
+/// If `arg` contains unresolved inference variables, this may include
+/// further WF obligations. However, if `arg` IS an unresolved
+/// inference variable, returns `None`, because we are not able to
+/// make any progress at all. This is to prevent "livelock" where we
+/// say "$0 is WF if $0 is WF".
+pub fn obligations<'a, 'tcx>(
+ infcx: &InferCtxt<'a, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ recursion_depth: usize,
+ arg: GenericArg<'tcx>,
+ span: Span,
+) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
+ // Handle the "livelock" case (see comment above) by bailing out if necessary.
+ let arg = match arg.unpack() {
+ GenericArgKind::Type(ty) => {
+ match ty.kind() {
+ ty::Infer(ty::TyVar(_)) => {
+ let resolved_ty = infcx.shallow_resolve(ty);
+ if resolved_ty == ty {
+ // No progress, bail out to prevent "livelock".
+ return None;
+ }
+
+ resolved_ty
+ }
+ _ => ty,
+ }
+ .into()
+ }
+ GenericArgKind::Const(ct) => {
+ match ct.kind() {
+ ty::ConstKind::Infer(infer) => {
+ let resolved = infcx.shallow_resolve(infer);
+ if resolved == infer {
+ // No progress.
+ return None;
+ }
+
+ infcx
+ .tcx
+ .mk_const(ty::ConstS { kind: ty::ConstKind::Infer(resolved), ty: ct.ty() })
+ }
+ _ => ct,
+ }
+ .into()
+ }
+ // There is nothing we have to do for lifetimes.
+ GenericArgKind::Lifetime(..) => return Some(Vec::new()),
+ };
+
+ let mut wf = WfPredicates {
+ tcx: infcx.tcx,
+ param_env,
+ body_id,
+ span,
+ out: vec![],
+ recursion_depth,
+ item: None,
+ };
+ wf.compute(arg);
+ debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
+
+ let result = wf.normalize(infcx);
+ debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
+ Some(result)
+}
+
+/// Returns the obligations that make this trait reference
+/// well-formed. For example, if there is a trait `Set` defined like
+/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
+/// if `Bar: Eq`.
+pub fn trait_obligations<'a, 'tcx>(
+ infcx: &InferCtxt<'a, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ trait_pred: &ty::TraitPredicate<'tcx>,
+ span: Span,
+ item: &'tcx hir::Item<'tcx>,
+) -> Vec<traits::PredicateObligation<'tcx>> {
+ let mut wf = WfPredicates {
+ tcx: infcx.tcx,
+ param_env,
+ body_id,
+ span,
+ out: vec![],
+ recursion_depth: 0,
+ item: Some(item),
+ };
+ wf.compute_trait_pred(trait_pred, Elaborate::All);
+ debug!(obligations = ?wf.out);
+ wf.normalize(infcx)
+}
+
+pub fn predicate_obligations<'a, 'tcx>(
+ infcx: &InferCtxt<'a, 'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ predicate: ty::Predicate<'tcx>,
+ span: Span,
+) -> Vec<traits::PredicateObligation<'tcx>> {
+ let mut wf = WfPredicates {
+ tcx: infcx.tcx,
+ param_env,
+ body_id,
+ span,
+ out: vec![],
+ recursion_depth: 0,
+ item: None,
+ };
+
+ // It's ok to skip the binder here because wf code is prepared for it
+ match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(t) => {
+ wf.compute_trait_pred(&t, Elaborate::None);
+ }
+ ty::PredicateKind::RegionOutlives(..) => {}
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
+ wf.compute(ty.into());
+ }
+ ty::PredicateKind::Projection(t) => {
+ wf.compute_projection(t.projection_ty);
+ wf.compute(match t.term {
+ ty::Term::Ty(ty) => ty.into(),
+ ty::Term::Const(c) => c.into(),
+ })
+ }
+ ty::PredicateKind::WellFormed(arg) => {
+ wf.compute(arg);
+ }
+ ty::PredicateKind::ObjectSafe(_) => {}
+ ty::PredicateKind::ClosureKind(..) => {}
+ ty::PredicateKind::Subtype(ty::SubtypePredicate { a, b, a_is_expected: _ }) => {
+ wf.compute(a.into());
+ wf.compute(b.into());
+ }
+ ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) => {
+ wf.compute(a.into());
+ wf.compute(b.into());
+ }
+ ty::PredicateKind::ConstEvaluatable(uv) => {
+ let obligations = wf.nominal_obligations(uv.def.did, uv.substs);
+ wf.out.extend(obligations);
+
+ for arg in uv.substs.iter() {
+ wf.compute(arg);
+ }
+ }
+ ty::PredicateKind::ConstEquate(c1, c2) => {
+ wf.compute(c1.into());
+ wf.compute(c2.into());
+ }
+ ty::PredicateKind::TypeWellFormedFromEnv(..) => {
+ bug!("TypeWellFormedFromEnv is only used for Chalk")
+ }
+ }
+
+ wf.normalize(infcx)
+}
+
+struct WfPredicates<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ span: Span,
+ out: Vec<traits::PredicateObligation<'tcx>>,
+ recursion_depth: usize,
+ item: Option<&'tcx hir::Item<'tcx>>,
+}
+
+/// Controls whether we "elaborate" supertraits and so forth on the WF
+/// predicates. This is a kind of hack to address #43784. The
+/// underlying problem in that issue was a trait structure like:
+///
+/// ```ignore (illustrative)
+/// trait Foo: Copy { }
+/// trait Bar: Foo { }
+/// impl<T: Bar> Foo for T { }
+/// impl<T> Bar for T { }
+/// ```
+///
+/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
+/// we decide that this is true because `T: Bar` is in the
+/// where-clauses (and we can elaborate that to include `T:
+/// Copy`). This wouldn't be a problem, except that when we check the
+/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
+/// impl. And so nowhere did we check that `T: Copy` holds!
+///
+/// To resolve this, we elaborate the WF requirements that must be
+/// proven when checking impls. This means that (e.g.) the `impl Bar
+/// for T` will be forced to prove not only that `T: Foo` but also `T:
+/// Copy` (which it won't be able to do, because there is no `Copy`
+/// impl for `T`).
+#[derive(Debug, PartialEq, Eq, Copy, Clone)]
+enum Elaborate {
+ All,
+ None,
+}
+
+fn extend_cause_with_original_assoc_item_obligation<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ref: &ty::TraitRef<'tcx>,
+ item: Option<&hir::Item<'tcx>>,
+ cause: &mut traits::ObligationCause<'tcx>,
+ pred: ty::Predicate<'tcx>,
+) {
+ debug!(
+ "extended_cause_with_original_assoc_item_obligation {:?} {:?} {:?} {:?}",
+ trait_ref, item, cause, pred
+ );
+ let (items, impl_def_id) = match item {
+ Some(hir::Item { kind: hir::ItemKind::Impl(impl_), def_id, .. }) => (impl_.items, *def_id),
+ _ => return,
+ };
+ let fix_span =
+ |impl_item_ref: &hir::ImplItemRef| match tcx.hir().impl_item(impl_item_ref.id).kind {
+ hir::ImplItemKind::Const(ty, _) | hir::ImplItemKind::TyAlias(ty) => ty.span,
+ _ => impl_item_ref.span,
+ };
+
+ // It is fine to skip the binder as we don't care about regions here.
+ match pred.kind().skip_binder() {
+ ty::PredicateKind::Projection(proj) => {
+ // The obligation comes not from the current `impl` nor the `trait` being implemented,
+ // but rather from a "second order" obligation, where an associated type has a
+ // projection coming from another associated type. See
+ // `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs` and
+ // `traits-assoc-type-in-supertrait-bad.rs`.
+ if let Some(ty::Projection(projection_ty)) = proj.term.ty().map(|ty| ty.kind())
+ && let Some(&impl_item_id) =
+ tcx.impl_item_implementor_ids(impl_def_id).get(&projection_ty.item_def_id)
+ && let Some(impl_item_span) = items
+ .iter()
+ .find(|item| item.id.def_id.to_def_id() == impl_item_id)
+ .map(fix_span)
+ {
+ cause.span = impl_item_span;
+ }
+ }
+ ty::PredicateKind::Trait(pred) => {
+ // An associated item obligation born out of the `trait` failed to be met. An example
+ // can be seen in `ui/associated-types/point-at-type-on-obligation-failure-2.rs`.
+ debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
+ if let ty::Projection(ty::ProjectionTy { item_def_id, .. }) = *pred.self_ty().kind()
+ && let Some(&impl_item_id) =
+ tcx.impl_item_implementor_ids(impl_def_id).get(&item_def_id)
+ && let Some(impl_item_span) = items
+ .iter()
+ .find(|item| item.id.def_id.to_def_id() == impl_item_id)
+ .map(fix_span)
+ {
+ cause.span = impl_item_span;
+ }
+ }
+ _ => {}
+ }
+}
+
+impl<'tcx> WfPredicates<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
+ traits::ObligationCause::new(self.span, self.body_id, code)
+ }
+
+ fn normalize(self, infcx: &InferCtxt<'_, 'tcx>) -> Vec<traits::PredicateObligation<'tcx>> {
+ let cause = self.cause(traits::WellFormed(None));
+ let param_env = self.param_env;
+ let mut obligations = Vec::with_capacity(self.out.len());
+ for mut obligation in self.out {
+ assert!(!obligation.has_escaping_bound_vars());
+ let mut selcx = traits::SelectionContext::new(infcx);
+ // Don't normalize the whole obligation, the param env is either
+ // already normalized, or we're currently normalizing the
+ // param_env. Either way we should only normalize the predicate.
+ let normalized_predicate = traits::project::normalize_with_depth_to(
+ &mut selcx,
+ param_env,
+ cause.clone(),
+ self.recursion_depth,
+ obligation.predicate,
+ &mut obligations,
+ );
+ obligation.predicate = normalized_predicate;
+ obligations.push(obligation);
+ }
+ obligations
+ }
+
+ /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
+ fn compute_trait_pred(&mut self, trait_pred: &ty::TraitPredicate<'tcx>, elaborate: Elaborate) {
+ let tcx = self.tcx;
+ let trait_ref = &trait_pred.trait_ref;
+
+ // if the trait predicate is not const, the wf obligations should not be const as well.
+ let obligations = if trait_pred.constness == ty::BoundConstness::NotConst {
+ self.nominal_obligations_without_const(trait_ref.def_id, trait_ref.substs)
+ } else {
+ self.nominal_obligations(trait_ref.def_id, trait_ref.substs)
+ };
+
+ debug!("compute_trait_pred obligations {:?}", obligations);
+ let param_env = self.param_env;
+ let depth = self.recursion_depth;
+
+ let item = self.item;
+
+ let extend = |traits::PredicateObligation { predicate, mut cause, .. }| {
+ if let Some(parent_trait_pred) = predicate.to_opt_poly_trait_pred() {
+ cause = cause.derived_cause(
+ parent_trait_pred,
+ traits::ObligationCauseCode::DerivedObligation,
+ );
+ }
+ extend_cause_with_original_assoc_item_obligation(
+ tcx, trait_ref, item, &mut cause, predicate,
+ );
+ traits::Obligation::with_depth(cause, depth, param_env, predicate)
+ };
+
+ if let Elaborate::All = elaborate {
+ let implied_obligations = traits::util::elaborate_obligations(tcx, obligations);
+ let implied_obligations = implied_obligations.map(extend);
+ self.out.extend(implied_obligations);
+ } else {
+ self.out.extend(obligations);
+ }
+
+ let tcx = self.tcx();
+ self.out.extend(
+ trait_ref
+ .substs
+ .iter()
+ .enumerate()
+ .filter(|(_, arg)| {
+ matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
+ })
+ .filter(|(_, arg)| !arg.has_escaping_bound_vars())
+ .map(|(i, arg)| {
+ let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
+ // The first subst is the self ty - use the correct span for it.
+ if i == 0 {
+ if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
+ item.map(|i| &i.kind)
+ {
+ cause.span = self_ty.span;
+ }
+ }
+ traits::Obligation::with_depth(
+ cause,
+ depth,
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(tcx),
+ )
+ }),
+ );
+ }
+
+ /// Pushes the obligations required for `trait_ref::Item` to be WF
+ /// into `self.out`.
+ fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
+ // A projection is well-formed if
+ //
+ // (a) its predicates hold (*)
+ // (b) its substs are wf
+ //
+ // (*) The predicates of an associated type include the predicates of
+ // the trait that it's contained in. For example, given
+ //
+ // trait A<T>: Clone {
+ // type X where T: Copy;
+ // }
+ //
+ // The predicates of `<() as A<i32>>::X` are:
+ // [
+ // `(): Sized`
+ // `(): Clone`
+ // `(): A<i32>`
+ // `i32: Sized`
+ // `i32: Clone`
+ // `i32: Copy`
+ // ]
+ let obligations = self.nominal_obligations(data.item_def_id, data.substs);
+ self.out.extend(obligations);
+
+ let tcx = self.tcx();
+ let cause = self.cause(traits::WellFormed(None));
+ let param_env = self.param_env;
+ let depth = self.recursion_depth;
+
+ self.out.extend(
+ data.substs
+ .iter()
+ .filter(|arg| {
+ matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
+ })
+ .filter(|arg| !arg.has_escaping_bound_vars())
+ .map(|arg| {
+ traits::Obligation::with_depth(
+ cause.clone(),
+ depth,
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(tcx),
+ )
+ }),
+ );
+ }
+
+ fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
+ if !subty.has_escaping_bound_vars() {
+ let cause = self.cause(cause);
+ let trait_ref = ty::TraitRef {
+ def_id: self.tcx.require_lang_item(LangItem::Sized, None),
+ substs: self.tcx.mk_substs_trait(subty, &[]),
+ };
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ self.recursion_depth,
+ self.param_env,
+ ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx),
+ ));
+ }
+ }
+
+ /// Pushes all the predicates needed to validate that `ty` is WF into `out`.
+ fn compute(&mut self, arg: GenericArg<'tcx>) {
+ let mut walker = arg.walk();
+ let param_env = self.param_env;
+ let depth = self.recursion_depth;
+ while let Some(arg) = walker.next() {
+ let ty = match arg.unpack() {
+ GenericArgKind::Type(ty) => ty,
+
+ // No WF constraints for lifetimes being present, any outlives
+ // obligations are handled by the parent (e.g. `ty::Ref`).
+ GenericArgKind::Lifetime(_) => continue,
+
+ GenericArgKind::Const(constant) => {
+ match constant.kind() {
+ ty::ConstKind::Unevaluated(uv) => {
+ let obligations = self.nominal_obligations(uv.def.did, uv.substs);
+ self.out.extend(obligations);
+
+ let predicate =
+ ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv.shrink()))
+ .to_predicate(self.tcx());
+ let cause = self.cause(traits::WellFormed(None));
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ self.recursion_depth,
+ self.param_env,
+ predicate,
+ ));
+ }
+ ty::ConstKind::Infer(_) => {
+ let cause = self.cause(traits::WellFormed(None));
+
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ self.recursion_depth,
+ self.param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(constant.into()))
+ .to_predicate(self.tcx()),
+ ));
+ }
+ ty::ConstKind::Error(_)
+ | ty::ConstKind::Param(_)
+ | ty::ConstKind::Bound(..)
+ | ty::ConstKind::Placeholder(..) => {
+ // These variants are trivially WF, so nothing to do here.
+ }
+ ty::ConstKind::Value(..) => {
+ // FIXME: Enforce that values are structurally-matchable.
+ }
+ }
+ continue;
+ }
+ };
+
+ match *ty.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(..)
+ | ty::Uint(..)
+ | ty::Float(..)
+ | ty::Error(_)
+ | ty::Str
+ | ty::GeneratorWitness(..)
+ | ty::Never
+ | ty::Param(_)
+ | ty::Bound(..)
+ | ty::Placeholder(..)
+ | ty::Foreign(..) => {
+ // WfScalar, WfParameter, etc
+ }
+
+ // Can only infer to `ty::Int(_) | ty::Uint(_)`.
+ ty::Infer(ty::IntVar(_)) => {}
+
+ // Can only infer to `ty::Float(_)`.
+ ty::Infer(ty::FloatVar(_)) => {}
+
+ ty::Slice(subty) => {
+ self.require_sized(subty, traits::SliceOrArrayElem);
+ }
+
+ ty::Array(subty, _) => {
+ self.require_sized(subty, traits::SliceOrArrayElem);
+ // Note that we handle the len is implicitly checked while walking `arg`.
+ }
+
+ ty::Tuple(ref tys) => {
+ if let Some((_last, rest)) = tys.split_last() {
+ for &elem in rest {
+ self.require_sized(elem, traits::TupleElem);
+ }
+ }
+ }
+
+ ty::RawPtr(_) => {
+ // Simple cases that are WF if their type args are WF.
+ }
+
+ ty::Projection(data) => {
+ walker.skip_current_subtree(); // Subtree handled by compute_projection.
+ self.compute_projection(data);
+ }
+
+ ty::Adt(def, substs) => {
+ // WfNominalType
+ let obligations = self.nominal_obligations(def.did(), substs);
+ self.out.extend(obligations);
+ }
+
+ ty::FnDef(did, substs) => {
+ let obligations = self.nominal_obligations(did, substs);
+ self.out.extend(obligations);
+ }
+
+ ty::Ref(r, rty, _) => {
+ // WfReference
+ if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
+ let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ depth,
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::TypeOutlives(
+ ty::OutlivesPredicate(rty, r),
+ ))
+ .to_predicate(self.tcx()),
+ ));
+ }
+ }
+
+ ty::Generator(did, substs, ..) => {
+ // Walk ALL the types in the generator: this will
+ // include the upvar types as well as the yield
+ // type. Note that this is mildly distinct from
+ // the closure case, where we have to be careful
+ // about the signature of the closure. We don't
+ // have the problem of implied bounds here since
+ // generators don't take arguments.
+ let obligations = self.nominal_obligations(did, substs);
+ self.out.extend(obligations);
+ }
+
+ ty::Closure(did, substs) => {
+ // Only check the upvar types for WF, not the rest
+ // of the types within. This is needed because we
+ // capture the signature and it may not be WF
+ // without the implied bounds. Consider a closure
+ // like `|x: &'a T|` -- it may be that `T: 'a` is
+ // not known to hold in the creator's context (and
+ // indeed the closure may not be invoked by its
+ // creator, but rather turned to someone who *can*
+ // verify that).
+ //
+ // The special treatment of closures here really
+ // ought not to be necessary either; the problem
+ // is related to #25860 -- there is no way for us
+ // to express a fn type complete with the implied
+ // bounds that it is assuming. I think in reality
+ // the WF rules around fn are a bit messed up, and
+ // that is the rot problem: `fn(&'a T)` should
+ // probably always be WF, because it should be
+ // shorthand for something like `where(T: 'a) {
+ // fn(&'a T) }`, as discussed in #25860.
+ walker.skip_current_subtree(); // subtree handled below
+ // FIXME(eddyb) add the type to `walker` instead of recursing.
+ self.compute(substs.as_closure().tupled_upvars_ty().into());
+ // Note that we cannot skip the generic types
+ // types. Normally, within the fn
+ // body where they are created, the generics will
+ // always be WF, and outside of that fn body we
+ // are not directly inspecting closure types
+ // anyway, except via auto trait matching (which
+ // only inspects the upvar types).
+ // But when a closure is part of a type-alias-impl-trait
+ // then the function that created the defining site may
+ // have had more bounds available than the type alias
+ // specifies. This may cause us to have a closure in the
+ // hidden type that is not actually well formed and
+ // can cause compiler crashes when the user abuses unsafe
+ // code to procure such a closure.
+ // See src/test/ui/type-alias-impl-trait/wf_check_closures.rs
+ let obligations = self.nominal_obligations(did, substs);
+ self.out.extend(obligations);
+ }
+
+ ty::FnPtr(_) => {
+ // let the loop iterate into the argument/return
+ // types appearing in the fn signature
+ }
+
+ ty::Opaque(did, substs) => {
+ // All of the requirements on type parameters
+ // have already been checked for `impl Trait` in
+ // return position. We do need to check type-alias-impl-trait though.
+ if ty::is_impl_trait_defn(self.tcx, did).is_none() {
+ let obligations = self.nominal_obligations(did, substs);
+ self.out.extend(obligations);
+ }
+ }
+
+ ty::Dynamic(data, r) => {
+ // WfObject
+ //
+ // Here, we defer WF checking due to higher-ranked
+ // regions. This is perhaps not ideal.
+ self.from_object_ty(ty, data, r);
+
+ // FIXME(#27579) RFC also considers adding trait
+ // obligations that don't refer to Self and
+ // checking those
+
+ let defer_to_coercion = self.tcx().features().object_safe_for_dispatch;
+
+ if !defer_to_coercion {
+ let cause = self.cause(traits::WellFormed(None));
+ let component_traits = data.auto_traits().chain(data.principal_def_id());
+ let tcx = self.tcx();
+ self.out.extend(component_traits.map(|did| {
+ traits::Obligation::with_depth(
+ cause.clone(),
+ depth,
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::ObjectSafe(did))
+ .to_predicate(tcx),
+ )
+ }));
+ }
+ }
+
+ // Inference variables are the complicated case, since we don't
+ // know what type they are. We do two things:
+ //
+ // 1. Check if they have been resolved, and if so proceed with
+ // THAT type.
+ // 2. If not, we've at least simplified things (e.g., we went
+ // from `Vec<$0>: WF` to `$0: WF`), so we can
+ // register a pending obligation and keep
+ // moving. (Goal is that an "inductive hypothesis"
+ // is satisfied to ensure termination.)
+ // See also the comment on `fn obligations`, describing "livelock"
+ // prevention, which happens before this can be reached.
+ ty::Infer(_) => {
+ let cause = self.cause(traits::WellFormed(None));
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ self.recursion_depth,
+ param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(ty.into()))
+ .to_predicate(self.tcx()),
+ ));
+ }
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn nominal_obligations_inner(
+ &mut self,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+ remap_constness: bool,
+ ) -> Vec<traits::PredicateObligation<'tcx>> {
+ let predicates = self.tcx.predicates_of(def_id);
+ let mut origins = vec![def_id; predicates.predicates.len()];
+ let mut head = predicates;
+ while let Some(parent) = head.parent {
+ head = self.tcx.predicates_of(parent);
+ origins.extend(iter::repeat(parent).take(head.predicates.len()));
+ }
+
+ let predicates = predicates.instantiate(self.tcx, substs);
+ trace!("{:#?}", predicates);
+ debug_assert_eq!(predicates.predicates.len(), origins.len());
+
+ iter::zip(iter::zip(predicates.predicates, predicates.spans), origins.into_iter().rev())
+ .map(|((mut pred, span), origin_def_id)| {
+ let code = if span.is_dummy() {
+ traits::MiscObligation
+ } else {
+ traits::BindingObligation(origin_def_id, span)
+ };
+ let cause = self.cause(code);
+ if remap_constness {
+ pred = pred.without_const(self.tcx);
+ }
+ traits::Obligation::with_depth(cause, self.recursion_depth, self.param_env, pred)
+ })
+ .filter(|pred| !pred.has_escaping_bound_vars())
+ .collect()
+ }
+
+ fn nominal_obligations(
+ &mut self,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+ ) -> Vec<traits::PredicateObligation<'tcx>> {
+ self.nominal_obligations_inner(def_id, substs, false)
+ }
+
+ fn nominal_obligations_without_const(
+ &mut self,
+ def_id: DefId,
+ substs: SubstsRef<'tcx>,
+ ) -> Vec<traits::PredicateObligation<'tcx>> {
+ self.nominal_obligations_inner(def_id, substs, true)
+ }
+
+ fn from_object_ty(
+ &mut self,
+ ty: Ty<'tcx>,
+ data: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+ region: ty::Region<'tcx>,
+ ) {
+ // Imagine a type like this:
+ //
+ // trait Foo { }
+ // trait Bar<'c> : 'c { }
+ //
+ // &'b (Foo+'c+Bar<'d>)
+ // ^
+ //
+ // In this case, the following relationships must hold:
+ //
+ // 'b <= 'c
+ // 'd <= 'c
+ //
+ // The first conditions is due to the normal region pointer
+ // rules, which say that a reference cannot outlive its
+ // referent.
+ //
+ // The final condition may be a bit surprising. In particular,
+ // you may expect that it would have been `'c <= 'd`, since
+ // usually lifetimes of outer things are conservative
+ // approximations for inner things. However, it works somewhat
+ // differently with trait objects: here the idea is that if the
+ // user specifies a region bound (`'c`, in this case) it is the
+ // "master bound" that *implies* that bounds from other traits are
+ // all met. (Remember that *all bounds* in a type like
+ // `Foo+Bar+Zed` must be met, not just one, hence if we write
+ // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
+ // 'y.)
+ //
+ // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
+ // am looking forward to the future here.
+ if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
+ let implicit_bounds = object_region_bounds(self.tcx, data);
+
+ let explicit_bound = region;
+
+ self.out.reserve(implicit_bounds.len());
+ for implicit_bound in implicit_bounds {
+ let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
+ let outlives =
+ ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
+ self.out.push(traits::Obligation::with_depth(
+ cause,
+ self.recursion_depth,
+ self.param_env,
+ outlives.to_predicate(self.tcx),
+ ));
+ }
+ }
+ }
+}
+
+/// Given an object type like `SomeTrait + Send`, computes the lifetime
+/// bounds that must hold on the elided self type. These are derived
+/// from the declarations of `SomeTrait`, `Send`, and friends -- if
+/// they declare `trait SomeTrait : 'static`, for example, then
+/// `'static` would appear in the list. The hard work is done by
+/// `infer::required_region_bounds`, see that for more information.
+pub fn object_region_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+) -> Vec<ty::Region<'tcx>> {
+ // Since we don't actually *know* the self type for an object,
+ // this "open(err)" serves as a kind of dummy standin -- basically
+ // a placeholder type.
+ let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
+
+ let predicates = existential_predicates.iter().filter_map(|predicate| {
+ if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
+ None
+ } else {
+ Some(predicate.with_self_ty(tcx, open_ty))
+ }
+ });
+
+ required_region_bounds(tcx, open_ty, predicates)
+}
+
+/// Given a set of predicates that apply to an object type, returns
+/// the region bounds that the (erased) `Self` type must
+/// outlive. Precisely *because* the `Self` type is erased, the
+/// parameter `erased_self_ty` must be supplied to indicate what type
+/// has been used to represent `Self` in the predicates
+/// themselves. This should really be a unique type; `FreshTy(0)` is a
+/// popular choice.
+///
+/// N.B., in some cases, particularly around higher-ranked bounds,
+/// this function returns a kind of conservative approximation.
+/// That is, all regions returned by this function are definitely
+/// required, but there may be other region bounds that are not
+/// returned, as well as requirements like `for<'a> T: 'a`.
+///
+/// Requires that trait definitions have been processed so that we can
+/// elaborate predicates and walk supertraits.
+#[instrument(skip(tcx, predicates), level = "debug")]
+pub(crate) fn required_region_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ erased_self_ty: Ty<'tcx>,
+ predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
+) -> Vec<ty::Region<'tcx>> {
+ assert!(!erased_self_ty.has_escaping_bound_vars());
+
+ traits::elaborate_predicates(tcx, predicates)
+ .filter_map(|obligation| {
+ debug!(?obligation);
+ match obligation.predicate.kind().skip_binder() {
+ ty::PredicateKind::Projection(..)
+ | ty::PredicateKind::Trait(..)
+ | ty::PredicateKind::Subtype(..)
+ | ty::PredicateKind::Coerce(..)
+ | ty::PredicateKind::WellFormed(..)
+ | ty::PredicateKind::ObjectSafe(..)
+ | ty::PredicateKind::ClosureKind(..)
+ | ty::PredicateKind::RegionOutlives(..)
+ | ty::PredicateKind::ConstEvaluatable(..)
+ | ty::PredicateKind::ConstEquate(..)
+ | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
+ // Search for a bound of the form `erased_self_ty
+ // : 'a`, but be wary of something like `for<'a>
+ // erased_self_ty : 'a` (we interpret a
+ // higher-ranked bound like that as 'static,
+ // though at present the code in `fulfill.rs`
+ // considers such bounds to be unsatisfiable, so
+ // it's kind of a moot point since you could never
+ // construct such an object, but this seems
+ // correct even if that code changes).
+ if t == &erased_self_ty && !r.has_escaping_bound_vars() {
+ Some(*r)
+ } else {
+ None
+ }
+ }
+ }
+ })
+ .collect()
+}