summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_ty_utils/src/consts.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_ty_utils/src/consts.rs')
-rw-r--r--compiler/rustc_ty_utils/src/consts.rs469
1 files changed, 469 insertions, 0 deletions
diff --git a/compiler/rustc_ty_utils/src/consts.rs b/compiler/rustc_ty_utils/src/consts.rs
new file mode 100644
index 000000000..7c2f4db94
--- /dev/null
+++ b/compiler/rustc_ty_utils/src/consts.rs
@@ -0,0 +1,469 @@
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::LocalDefId;
+use rustc_index::vec::IndexVec;
+use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput};
+use rustc_middle::ty::abstract_const::{CastKind, Node, NodeId};
+use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
+use rustc_middle::{mir, thir};
+use rustc_span::Span;
+use rustc_target::abi::VariantIdx;
+
+use std::iter;
+
+/// Destructures array, ADT or tuple constants into the constants
+/// of their fields.
+pub(crate) fn destructure_const<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ const_: ty::Const<'tcx>,
+) -> ty::DestructuredConst<'tcx> {
+ let ty::ConstKind::Value(valtree) = const_.kind() else {
+ bug!("cannot destructure constant {:?}", const_)
+ };
+
+ let branches = match valtree {
+ ty::ValTree::Branch(b) => b,
+ _ => bug!("cannot destructure constant {:?}", const_),
+ };
+
+ let (fields, variant) = match const_.ty().kind() {
+ ty::Array(inner_ty, _) | ty::Slice(inner_ty) => {
+ // construct the consts for the elements of the array/slice
+ let field_consts = branches
+ .iter()
+ .map(|b| tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(*b), ty: *inner_ty }))
+ .collect::<Vec<_>>();
+ debug!(?field_consts);
+
+ (field_consts, None)
+ }
+ ty::Adt(def, _) if def.variants().is_empty() => bug!("unreachable"),
+ ty::Adt(def, substs) => {
+ let (variant_idx, branches) = if def.is_enum() {
+ let (head, rest) = branches.split_first().unwrap();
+ (VariantIdx::from_u32(head.unwrap_leaf().try_to_u32().unwrap()), rest)
+ } else {
+ (VariantIdx::from_u32(0), branches)
+ };
+ let fields = &def.variant(variant_idx).fields;
+ let mut field_consts = Vec::with_capacity(fields.len());
+
+ for (field, field_valtree) in iter::zip(fields, branches) {
+ let field_ty = field.ty(tcx, substs);
+ let field_const = tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Value(*field_valtree),
+ ty: field_ty,
+ });
+ field_consts.push(field_const);
+ }
+ debug!(?field_consts);
+
+ (field_consts, Some(variant_idx))
+ }
+ ty::Tuple(elem_tys) => {
+ let fields = iter::zip(*elem_tys, branches)
+ .map(|(elem_ty, elem_valtree)| {
+ tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Value(*elem_valtree),
+ ty: elem_ty,
+ })
+ })
+ .collect::<Vec<_>>();
+
+ (fields, None)
+ }
+ _ => bug!("cannot destructure constant {:?}", const_),
+ };
+
+ let fields = tcx.arena.alloc_from_iter(fields.into_iter());
+
+ ty::DestructuredConst { variant, fields }
+}
+
+pub struct AbstractConstBuilder<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ body_id: thir::ExprId,
+ body: &'a thir::Thir<'tcx>,
+ /// The current WIP node tree.
+ nodes: IndexVec<NodeId, Node<'tcx>>,
+}
+
+impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> {
+ fn root_span(&self) -> Span {
+ self.body.exprs[self.body_id].span
+ }
+
+ fn error(&mut self, span: Span, msg: &str) -> Result<!, ErrorGuaranteed> {
+ let reported = self
+ .tcx
+ .sess
+ .struct_span_err(self.root_span(), "overly complex generic constant")
+ .span_label(span, msg)
+ .help("consider moving this anonymous constant into a `const` function")
+ .emit();
+
+ Err(reported)
+ }
+ fn maybe_supported_error(&mut self, span: Span, msg: &str) -> Result<!, ErrorGuaranteed> {
+ let reported = self
+ .tcx
+ .sess
+ .struct_span_err(self.root_span(), "overly complex generic constant")
+ .span_label(span, msg)
+ .help("consider moving this anonymous constant into a `const` function")
+ .note("this operation may be supported in the future")
+ .emit();
+
+ Err(reported)
+ }
+
+ #[instrument(skip(tcx, body, body_id), level = "debug")]
+ pub fn new(
+ tcx: TyCtxt<'tcx>,
+ (body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId),
+ ) -> Result<Option<AbstractConstBuilder<'a, 'tcx>>, ErrorGuaranteed> {
+ let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() };
+
+ struct IsThirPolymorphic<'a, 'tcx> {
+ is_poly: bool,
+ thir: &'a thir::Thir<'tcx>,
+ }
+
+ use crate::rustc_middle::thir::visit::Visitor;
+ use thir::visit;
+
+ impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> {
+ fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool {
+ if expr.ty.has_param_types_or_consts() {
+ return true;
+ }
+
+ match expr.kind {
+ thir::ExprKind::NamedConst { substs, .. } => substs.has_param_types_or_consts(),
+ thir::ExprKind::ConstParam { .. } => true,
+ thir::ExprKind::Repeat { value, count } => {
+ self.visit_expr(&self.thir()[value]);
+ count.has_param_types_or_consts()
+ }
+ _ => false,
+ }
+ }
+
+ fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool {
+ if pat.ty.has_param_types_or_consts() {
+ return true;
+ }
+
+ match pat.kind.as_ref() {
+ thir::PatKind::Constant { value } => value.has_param_types_or_consts(),
+ thir::PatKind::Range(thir::PatRange { lo, hi, .. }) => {
+ lo.has_param_types_or_consts() || hi.has_param_types_or_consts()
+ }
+ _ => false,
+ }
+ }
+ }
+
+ impl<'a, 'tcx> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> {
+ fn thir(&self) -> &'a thir::Thir<'tcx> {
+ &self.thir
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) {
+ self.is_poly |= self.expr_is_poly(expr);
+ if !self.is_poly {
+ visit::walk_expr(self, expr)
+ }
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) {
+ self.is_poly |= self.pat_is_poly(pat);
+ if !self.is_poly {
+ visit::walk_pat(self, pat);
+ }
+ }
+ }
+
+ let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body };
+ visit::walk_expr(&mut is_poly_vis, &body[body_id]);
+ debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly);
+ if !is_poly_vis.is_poly {
+ return Ok(None);
+ }
+
+ Ok(Some(builder))
+ }
+
+ /// We do not allow all binary operations in abstract consts, so filter disallowed ones.
+ fn check_binop(op: mir::BinOp) -> bool {
+ use mir::BinOp::*;
+ match op {
+ Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le
+ | Ne | Ge | Gt => true,
+ Offset => false,
+ }
+ }
+
+ /// While we currently allow all unary operations, we still want to explicitly guard against
+ /// future changes here.
+ fn check_unop(op: mir::UnOp) -> bool {
+ use mir::UnOp::*;
+ match op {
+ Not | Neg => true,
+ }
+ }
+
+ /// Builds the abstract const by walking the thir and bailing out when
+ /// encountering an unsupported operation.
+ pub fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorGuaranteed> {
+ debug!("AbstractConstBuilder::build: body={:?}", &*self.body);
+ self.recurse_build(self.body_id)?;
+
+ for n in self.nodes.iter() {
+ if let Node::Leaf(ct) = n {
+ if let ty::ConstKind::Unevaluated(ct) = ct.kind() {
+ // `AbstractConst`s should not contain any promoteds as they require references which
+ // are not allowed.
+ assert_eq!(ct.promoted, None);
+ assert_eq!(ct, self.tcx.erase_regions(ct));
+ }
+ }
+ }
+
+ Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter()))
+ }
+
+ fn recurse_build(&mut self, node: thir::ExprId) -> Result<NodeId, ErrorGuaranteed> {
+ use thir::ExprKind;
+ let node = &self.body.exprs[node];
+ Ok(match &node.kind {
+ // I dont know if handling of these 3 is correct
+ &ExprKind::Scope { value, .. } => self.recurse_build(value)?,
+ &ExprKind::PlaceTypeAscription { source, .. }
+ | &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?,
+ &ExprKind::Literal { lit, neg} => {
+ let sp = node.span;
+ let constant =
+ match self.tcx.at(sp).lit_to_const(LitToConstInput { lit: &lit.node, ty: node.ty, neg }) {
+ Ok(c) => c,
+ Err(LitToConstError::Reported) => {
+ self.tcx.const_error(node.ty)
+ }
+ Err(LitToConstError::TypeError) => {
+ bug!("encountered type error in lit_to_const")
+ }
+ };
+
+ self.nodes.push(Node::Leaf(constant))
+ }
+ &ExprKind::NonHirLiteral { lit , user_ty: _} => {
+ let val = ty::ValTree::from_scalar_int(lit);
+ self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
+ }
+ &ExprKind::ZstLiteral { user_ty: _ } => {
+ let val = ty::ValTree::zst();
+ self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
+ }
+ &ExprKind::NamedConst { def_id, substs, user_ty: _ } => {
+ let uneval = ty::Unevaluated::new(ty::WithOptConstParam::unknown(def_id), substs);
+
+ let constant = self.tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Unevaluated(uneval),
+ ty: node.ty,
+ });
+
+ self.nodes.push(Node::Leaf(constant))
+ }
+
+ ExprKind::ConstParam {param, ..} => {
+ let const_param = self.tcx.mk_const(ty::ConstS {
+ kind: ty::ConstKind::Param(*param),
+ ty: node.ty,
+ });
+ self.nodes.push(Node::Leaf(const_param))
+ }
+
+ ExprKind::Call { fun, args, .. } => {
+ let fun = self.recurse_build(*fun)?;
+
+ let mut new_args = Vec::<NodeId>::with_capacity(args.len());
+ for &id in args.iter() {
+ new_args.push(self.recurse_build(id)?);
+ }
+ let new_args = self.tcx.arena.alloc_slice(&new_args);
+ self.nodes.push(Node::FunctionCall(fun, new_args))
+ }
+ &ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => {
+ let lhs = self.recurse_build(lhs)?;
+ let rhs = self.recurse_build(rhs)?;
+ self.nodes.push(Node::Binop(op, lhs, rhs))
+ }
+ &ExprKind::Unary { op, arg } if Self::check_unop(op) => {
+ let arg = self.recurse_build(arg)?;
+ self.nodes.push(Node::UnaryOp(op, arg))
+ }
+ // This is necessary so that the following compiles:
+ //
+ // ```
+ // fn foo<const N: usize>(a: [(); N + 1]) {
+ // bar::<{ N + 1 }>();
+ // }
+ // ```
+ ExprKind::Block { body: thir::Block { stmts: box [], expr: Some(e), .. } } => {
+ self.recurse_build(*e)?
+ }
+ // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a
+ // "coercion cast" i.e. using a coercion or is a no-op.
+ // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested)
+ &ExprKind::Use { source } => {
+ let arg = self.recurse_build(source)?;
+ self.nodes.push(Node::Cast(CastKind::Use, arg, node.ty))
+ }
+ &ExprKind::Cast { source } => {
+ let arg = self.recurse_build(source)?;
+ self.nodes.push(Node::Cast(CastKind::As, arg, node.ty))
+ }
+ ExprKind::Borrow{ arg, ..} => {
+ let arg_node = &self.body.exprs[*arg];
+
+ // Skip reborrows for now until we allow Deref/Borrow/AddressOf
+ // expressions.
+ // FIXME(generic_const_exprs): Verify/explain why this is sound
+ if let ExprKind::Deref { arg } = arg_node.kind {
+ self.recurse_build(arg)?
+ } else {
+ self.maybe_supported_error(
+ node.span,
+ "borrowing is not supported in generic constants",
+ )?
+ }
+ }
+ // FIXME(generic_const_exprs): We may want to support these.
+ ExprKind::AddressOf { .. } | ExprKind::Deref {..}=> self.maybe_supported_error(
+ node.span,
+ "dereferencing or taking the address is not supported in generic constants",
+ )?,
+ ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error(
+ node.span,
+ "array construction is not supported in generic constants",
+ )?,
+ ExprKind::Block { .. } => self.maybe_supported_error(
+ node.span,
+ "blocks are not supported in generic constant",
+ )?,
+ ExprKind::NeverToAny { .. } => self.maybe_supported_error(
+ node.span,
+ "converting nevers to any is not supported in generic constant",
+ )?,
+ ExprKind::Tuple { .. } => self.maybe_supported_error(
+ node.span,
+ "tuple construction is not supported in generic constants",
+ )?,
+ ExprKind::Index { .. } => self.maybe_supported_error(
+ node.span,
+ "indexing is not supported in generic constant",
+ )?,
+ ExprKind::Field { .. } => self.maybe_supported_error(
+ node.span,
+ "field access is not supported in generic constant",
+ )?,
+ ExprKind::ConstBlock { .. } => self.maybe_supported_error(
+ node.span,
+ "const blocks are not supported in generic constant",
+ )?,
+ ExprKind::Adt(_) => self.maybe_supported_error(
+ node.span,
+ "struct/enum construction is not supported in generic constants",
+ )?,
+ // dont know if this is correct
+ ExprKind::Pointer { .. } =>
+ self.error(node.span, "pointer casts are not allowed in generic constants")?,
+ ExprKind::Yield { .. } =>
+ self.error(node.span, "generator control flow is not allowed in generic constants")?,
+ ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => self
+ .error(
+ node.span,
+ "loops and loop control flow are not supported in generic constants",
+ )?,
+ ExprKind::Box { .. } =>
+ self.error(node.span, "allocations are not allowed in generic constants")?,
+
+ ExprKind::Unary { .. } => unreachable!(),
+ // we handle valid unary/binary ops above
+ ExprKind::Binary { .. } =>
+ self.error(node.span, "unsupported binary operation in generic constants")?,
+ ExprKind::LogicalOp { .. } =>
+ self.error(node.span, "unsupported operation in generic constants, short-circuiting operations would imply control flow")?,
+ ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
+ self.error(node.span, "assignment is not supported in generic constants")?
+ }
+ ExprKind::Closure { .. } | ExprKind::Return { .. } => self.error(
+ node.span,
+ "closures and function keywords are not supported in generic constants",
+ )?,
+ // let expressions imply control flow
+ ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } =>
+ self.error(node.span, "control flow is not supported in generic constants")?,
+ ExprKind::InlineAsm { .. } => {
+ self.error(node.span, "assembly is not supported in generic constants")?
+ }
+
+ // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen
+ ExprKind::VarRef { .. }
+ | ExprKind::UpvarRef { .. }
+ | ExprKind::StaticRef { .. }
+ | ExprKind::ThreadLocalRef(_) => {
+ self.error(node.span, "unsupported operation in generic constant")?
+ }
+ })
+ }
+}
+
+/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
+pub fn thir_abstract_const<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def: ty::WithOptConstParam<LocalDefId>,
+) -> Result<Option<&'tcx [Node<'tcx>]>, ErrorGuaranteed> {
+ if tcx.features().generic_const_exprs {
+ match tcx.def_kind(def.did) {
+ // FIXME(generic_const_exprs): We currently only do this for anonymous constants,
+ // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether
+ // we want to look into them or treat them as opaque projections.
+ //
+ // Right now we do neither of that and simply always fail to unify them.
+ DefKind::AnonConst | DefKind::InlineConst => (),
+ _ => return Ok(None),
+ }
+
+ let body = tcx.thir_body(def)?;
+
+ AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))?
+ .map(AbstractConstBuilder::build)
+ .transpose()
+ } else {
+ Ok(None)
+ }
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ *providers = ty::query::Providers {
+ destructure_const,
+ thir_abstract_const: |tcx, def_id| {
+ let def_id = def_id.expect_local();
+ if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
+ tcx.thir_abstract_const_of_const_arg(def)
+ } else {
+ thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id))
+ }
+ },
+ thir_abstract_const_of_const_arg: |tcx, (did, param_did)| {
+ thir_abstract_const(
+ tcx,
+ ty::WithOptConstParam { did, const_param_did: Some(param_did) },
+ )
+ },
+ ..*providers
+ };
+}