summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_ty_utils/src/ty.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_ty_utils/src/ty.rs')
-rw-r--r--compiler/rustc_ty_utils/src/ty.rs481
1 files changed, 481 insertions, 0 deletions
diff --git a/compiler/rustc_ty_utils/src/ty.rs b/compiler/rustc_ty_utils/src/ty.rs
new file mode 100644
index 000000000..db0d45b86
--- /dev/null
+++ b/compiler/rustc_ty_utils/src/ty.rs
@@ -0,0 +1,481 @@
+use rustc_data_structures::fx::FxIndexSet;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_middle::ty::subst::Subst;
+use rustc_middle::ty::{self, Binder, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt};
+use rustc_trait_selection::traits;
+
+fn sized_constraint_for_ty<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ adtdef: ty::AdtDef<'tcx>,
+ ty: Ty<'tcx>,
+) -> Vec<Ty<'tcx>> {
+ use rustc_type_ir::sty::TyKind::*;
+
+ let result = match ty.kind() {
+ Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..)
+ | FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![],
+
+ Str | Dynamic(..) | Slice(_) | Foreign(..) | Error(_) | GeneratorWitness(..) => {
+ // these are never sized - return the target type
+ vec![ty]
+ }
+
+ Tuple(ref tys) => match tys.last() {
+ None => vec![],
+ Some(&ty) => sized_constraint_for_ty(tcx, adtdef, ty),
+ },
+
+ Adt(adt, substs) => {
+ // recursive case
+ let adt_tys = adt.sized_constraint(tcx);
+ debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys);
+ adt_tys
+ .0
+ .iter()
+ .map(|ty| adt_tys.rebind(*ty).subst(tcx, substs))
+ .flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty))
+ .collect()
+ }
+
+ Projection(..) | Opaque(..) => {
+ // must calculate explicitly.
+ // FIXME: consider special-casing always-Sized projections
+ vec![ty]
+ }
+
+ Param(..) => {
+ // perf hack: if there is a `T: Sized` bound, then
+ // we know that `T` is Sized and do not need to check
+ // it on the impl.
+
+ let Some(sized_trait) = tcx.lang_items().sized_trait() else { return vec![ty] };
+ let sized_predicate = ty::Binder::dummy(ty::TraitRef {
+ def_id: sized_trait,
+ substs: tcx.mk_substs_trait(ty, &[]),
+ })
+ .without_const()
+ .to_predicate(tcx);
+ let predicates = tcx.predicates_of(adtdef.did()).predicates;
+ if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] }
+ }
+
+ Placeholder(..) | Bound(..) | Infer(..) => {
+ bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty)
+ }
+ };
+ debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
+ result
+}
+
+fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness {
+ match tcx.hir().get_by_def_id(def_id.expect_local()) {
+ hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness,
+ hir::Node::ImplItem(hir::ImplItem { defaultness, .. })
+ | hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness,
+ node => {
+ bug!("`impl_defaultness` called on {:?}", node);
+ }
+ }
+}
+
+/// Calculates the `Sized` constraint.
+///
+/// In fact, there are only a few options for the types in the constraint:
+/// - an obviously-unsized type
+/// - a type parameter or projection whose Sizedness can't be known
+/// - a tuple of type parameters or projections, if there are multiple
+/// such.
+/// - an Error, if a type contained itself. The representability
+/// check should catch this case.
+fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> {
+ let def = tcx.adt_def(def_id);
+
+ let result = tcx.mk_type_list(
+ def.variants()
+ .iter()
+ .flat_map(|v| v.fields.last())
+ .flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did))),
+ );
+
+ debug!("adt_sized_constraint: {:?} => {:?}", def, result);
+
+ ty::AdtSizedConstraint(result)
+}
+
+/// See `ParamEnv` struct definition for details.
+#[instrument(level = "debug", skip(tcx))]
+fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
+ // The param_env of an impl Trait type is its defining function's param_env
+ if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
+ return param_env(tcx, parent.to_def_id());
+ }
+ // Compute the bounds on Self and the type parameters.
+
+ let ty::InstantiatedPredicates { mut predicates, .. } =
+ tcx.predicates_of(def_id).instantiate_identity(tcx);
+
+ // Finally, we have to normalize the bounds in the environment, in
+ // case they contain any associated type projections. This process
+ // can yield errors if the put in illegal associated types, like
+ // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
+ // report these errors right here; this doesn't actually feel
+ // right to me, because constructing the environment feels like a
+ // kind of an "idempotent" action, but I'm not sure where would be
+ // a better place. In practice, we construct environments for
+ // every fn once during type checking, and we'll abort if there
+ // are any errors at that point, so outside of type inference you can be
+ // sure that this will succeed without errors anyway.
+
+ if tcx.sess.opts.unstable_opts.chalk {
+ let environment = well_formed_types_in_env(tcx, def_id);
+ predicates.extend(environment);
+ }
+
+ let local_did = def_id.as_local();
+ let hir_id = local_did.map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id));
+
+ let constness = match hir_id {
+ Some(hir_id) => match tcx.hir().get(hir_id) {
+ hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. })
+ if tcx.is_const_default_method(def_id) =>
+ {
+ hir::Constness::Const
+ }
+
+ hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(..), .. })
+ | hir::Node::Item(hir::Item { kind: hir::ItemKind::Static(..), .. })
+ | hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Const(..), ..
+ })
+ | hir::Node::AnonConst(_)
+ | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
+ | hir::Node::ImplItem(hir::ImplItem {
+ kind:
+ hir::ImplItemKind::Fn(
+ hir::FnSig {
+ header: hir::FnHeader { constness: hir::Constness::Const, .. },
+ ..
+ },
+ ..,
+ ),
+ ..
+ }) => hir::Constness::Const,
+
+ hir::Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::Fn(..),
+ ..
+ }) => {
+ let parent_hir_id = tcx.hir().get_parent_node(hir_id);
+ match tcx.hir().get(parent_hir_id) {
+ hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
+ ..
+ }) => *constness,
+ _ => span_bug!(
+ tcx.def_span(parent_hir_id.owner),
+ "impl item's parent node is not an impl",
+ ),
+ }
+ }
+
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Fn(hir::FnSig { header: hir::FnHeader { constness, .. }, .. }, ..),
+ ..
+ })
+ | hir::Node::TraitItem(hir::TraitItem {
+ kind:
+ hir::TraitItemKind::Fn(
+ hir::FnSig { header: hir::FnHeader { constness, .. }, .. },
+ ..,
+ ),
+ ..
+ })
+ | hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
+ ..
+ }) => *constness,
+
+ _ => hir::Constness::NotConst,
+ },
+ None => hir::Constness::NotConst,
+ };
+
+ let unnormalized_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ traits::Reveal::UserFacing,
+ constness,
+ );
+
+ let body_id =
+ local_did.and_then(|id| tcx.hir().maybe_body_owned_by(id).map(|body| body.hir_id));
+ let body_id = match body_id {
+ Some(id) => id,
+ None if hir_id.is_some() => hir_id.unwrap(),
+ _ => hir::CRATE_HIR_ID,
+ };
+
+ let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
+ traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
+}
+
+/// Elaborate the environment.
+///
+/// Collect a list of `Predicate`'s used for building the `ParamEnv`. Adds `TypeWellFormedFromEnv`'s
+/// that are assumed to be well-formed (because they come from the environment).
+///
+/// Used only in chalk mode.
+fn well_formed_types_in_env<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+) -> &'tcx ty::List<Predicate<'tcx>> {
+ use rustc_hir::{ForeignItemKind, ImplItemKind, ItemKind, Node, TraitItemKind};
+ use rustc_middle::ty::subst::GenericArgKind;
+
+ debug!("environment(def_id = {:?})", def_id);
+
+ // The environment of an impl Trait type is its defining function's environment.
+ if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
+ return well_formed_types_in_env(tcx, parent.to_def_id());
+ }
+
+ // Compute the bounds on `Self` and the type parameters.
+ let ty::InstantiatedPredicates { predicates, .. } =
+ tcx.predicates_of(def_id).instantiate_identity(tcx);
+
+ let clauses = predicates.into_iter();
+
+ if !def_id.is_local() {
+ return ty::List::empty();
+ }
+ let node = tcx.hir().get_by_def_id(def_id.expect_local());
+
+ enum NodeKind {
+ TraitImpl,
+ InherentImpl,
+ Fn,
+ Other,
+ }
+
+ let node_kind = match node {
+ Node::TraitItem(item) => match item.kind {
+ TraitItemKind::Fn(..) => NodeKind::Fn,
+ _ => NodeKind::Other,
+ },
+
+ Node::ImplItem(item) => match item.kind {
+ ImplItemKind::Fn(..) => NodeKind::Fn,
+ _ => NodeKind::Other,
+ },
+
+ Node::Item(item) => match item.kind {
+ ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => NodeKind::TraitImpl,
+ ItemKind::Impl(hir::Impl { of_trait: None, .. }) => NodeKind::InherentImpl,
+ ItemKind::Fn(..) => NodeKind::Fn,
+ _ => NodeKind::Other,
+ },
+
+ Node::ForeignItem(item) => match item.kind {
+ ForeignItemKind::Fn(..) => NodeKind::Fn,
+ _ => NodeKind::Other,
+ },
+
+ // FIXME: closures?
+ _ => NodeKind::Other,
+ };
+
+ // FIXME(eddyb) isn't the unordered nature of this a hazard?
+ let mut inputs = FxIndexSet::default();
+
+ match node_kind {
+ // In a trait impl, we assume that the header trait ref and all its
+ // constituents are well-formed.
+ NodeKind::TraitImpl => {
+ let trait_ref = tcx.impl_trait_ref(def_id).expect("not an impl");
+
+ // FIXME(chalk): this has problems because of late-bound regions
+ //inputs.extend(trait_ref.substs.iter().flat_map(|arg| arg.walk()));
+ inputs.extend(trait_ref.substs.iter());
+ }
+
+ // In an inherent impl, we assume that the receiver type and all its
+ // constituents are well-formed.
+ NodeKind::InherentImpl => {
+ let self_ty = tcx.type_of(def_id);
+ inputs.extend(self_ty.walk());
+ }
+
+ // In an fn, we assume that the arguments and all their constituents are
+ // well-formed.
+ NodeKind::Fn => {
+ let fn_sig = tcx.fn_sig(def_id);
+ let fn_sig = tcx.liberate_late_bound_regions(def_id, fn_sig);
+
+ inputs.extend(fn_sig.inputs().iter().flat_map(|ty| ty.walk()));
+ }
+
+ NodeKind::Other => (),
+ }
+ let input_clauses = inputs.into_iter().filter_map(|arg| {
+ match arg.unpack() {
+ GenericArgKind::Type(ty) => {
+ let binder = Binder::dummy(PredicateKind::TypeWellFormedFromEnv(ty));
+ Some(tcx.mk_predicate(binder))
+ }
+
+ // FIXME(eddyb) no WF conditions from lifetimes?
+ GenericArgKind::Lifetime(_) => None,
+
+ // FIXME(eddyb) support const generics in Chalk
+ GenericArgKind::Const(_) => None,
+ }
+ });
+
+ tcx.mk_predicates(clauses.chain(input_clauses))
+}
+
+fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
+ tcx.param_env(def_id).with_reveal_all_normalized(tcx)
+}
+
+fn instance_def_size_estimate<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance_def: ty::InstanceDef<'tcx>,
+) -> usize {
+ use ty::InstanceDef;
+
+ match instance_def {
+ InstanceDef::Item(..) | InstanceDef::DropGlue(..) => {
+ let mir = tcx.instance_mir(instance_def);
+ mir.basic_blocks().iter().map(|bb| bb.statements.len() + 1).sum()
+ }
+ // Estimate the size of other compiler-generated shims to be 1.
+ _ => 1,
+ }
+}
+
+/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
+///
+/// See [`ty::ImplOverlapKind::Issue33140`] for more details.
+fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Ty<'_>> {
+ debug!("issue33140_self_ty({:?})", def_id);
+
+ let trait_ref = tcx
+ .impl_trait_ref(def_id)
+ .unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id));
+
+ debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);
+
+ let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive
+ && tcx.associated_item_def_ids(trait_ref.def_id).is_empty();
+
+ // Check whether these impls would be ok for a marker trait.
+ if !is_marker_like {
+ debug!("issue33140_self_ty - not marker-like!");
+ return None;
+ }
+
+ // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
+ if trait_ref.substs.len() != 1 {
+ debug!("issue33140_self_ty - impl has substs!");
+ return None;
+ }
+
+ let predicates = tcx.predicates_of(def_id);
+ if predicates.parent.is_some() || !predicates.predicates.is_empty() {
+ debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
+ return None;
+ }
+
+ let self_ty = trait_ref.self_ty();
+ let self_ty_matches = match self_ty.kind() {
+ ty::Dynamic(ref data, re) if re.is_static() => data.principal().is_none(),
+ _ => false,
+ };
+
+ if self_ty_matches {
+ debug!("issue33140_self_ty - MATCHES!");
+ Some(self_ty)
+ } else {
+ debug!("issue33140_self_ty - non-matching self type");
+ None
+ }
+}
+
+/// Check if a function is async.
+fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
+ let node = tcx.hir().get_by_def_id(def_id.expect_local());
+ if let Some(fn_kind) = node.fn_kind() { fn_kind.asyncness() } else { hir::IsAsync::NotAsync }
+}
+
+/// Don't call this directly: use ``tcx.conservative_is_privately_uninhabited`` instead.
+#[instrument(level = "debug", skip(tcx))]
+pub fn conservative_is_privately_uninhabited_raw<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env_and: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
+) -> bool {
+ let (param_env, ty) = param_env_and.into_parts();
+ match ty.kind() {
+ ty::Never => {
+ debug!("ty::Never =>");
+ true
+ }
+ ty::Adt(def, _) if def.is_union() => {
+ debug!("ty::Adt(def, _) if def.is_union() =>");
+ // For now, `union`s are never considered uninhabited.
+ false
+ }
+ ty::Adt(def, substs) => {
+ debug!("ty::Adt(def, _) if def.is_not_union() =>");
+ // Any ADT is uninhabited if either:
+ // (a) It has no variants (i.e. an empty `enum`);
+ // (b) Each of its variants (a single one in the case of a `struct`) has at least
+ // one uninhabited field.
+ def.variants().iter().all(|var| {
+ var.fields.iter().any(|field| {
+ let ty = tcx.bound_type_of(field.did).subst(tcx, substs);
+ tcx.conservative_is_privately_uninhabited(param_env.and(ty))
+ })
+ })
+ }
+ ty::Tuple(fields) => {
+ debug!("ty::Tuple(..) =>");
+ fields.iter().any(|ty| tcx.conservative_is_privately_uninhabited(param_env.and(ty)))
+ }
+ ty::Array(ty, len) => {
+ debug!("ty::Array(ty, len) =>");
+ match len.try_eval_usize(tcx, param_env) {
+ Some(0) | None => false,
+ // If the array is definitely non-empty, it's uninhabited if
+ // the type of its elements is uninhabited.
+ Some(1..) => tcx.conservative_is_privately_uninhabited(param_env.and(*ty)),
+ }
+ }
+ ty::Ref(..) => {
+ debug!("ty::Ref(..) =>");
+ // References to uninitialised memory is valid for any type, including
+ // uninhabited types, in unsafe code, so we treat all references as
+ // inhabited.
+ false
+ }
+ _ => {
+ debug!("_ =>");
+ false
+ }
+ }
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ *providers = ty::query::Providers {
+ asyncness,
+ adt_sized_constraint,
+ param_env,
+ param_env_reveal_all_normalized,
+ instance_def_size_estimate,
+ issue33140_self_ty,
+ impl_defaultness,
+ conservative_is_privately_uninhabited: conservative_is_privately_uninhabited_raw,
+ ..*providers
+ };
+}