summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/astconv/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/astconv/mod.rs')
-rw-r--r--compiler/rustc_typeck/src/astconv/mod.rs3091
1 files changed, 3091 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/astconv/mod.rs b/compiler/rustc_typeck/src/astconv/mod.rs
new file mode 100644
index 000000000..8a5c7fee6
--- /dev/null
+++ b/compiler/rustc_typeck/src/astconv/mod.rs
@@ -0,0 +1,3091 @@
+//! Conversion from AST representation of types to the `ty.rs` representation.
+//! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
+//! instance of `AstConv`.
+
+mod errors;
+mod generics;
+
+use crate::bounds::Bounds;
+use crate::collect::HirPlaceholderCollector;
+use crate::errors::{
+ AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
+ TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
+};
+use crate::middle::resolve_lifetime as rl;
+use crate::require_c_abi_if_c_variadic;
+use rustc_ast::TraitObjectSyntax;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{
+ struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, FatalError, MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::{walk_generics, Visitor as _};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{GenericArg, GenericArgs, OpaqueTyOrigin};
+use rustc_middle::middle::stability::AllowUnstable;
+use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, Subst, SubstsRef};
+use rustc_middle::ty::GenericParamDefKind;
+use rustc_middle::ty::{
+ self, Const, DefIdTree, EarlyBinder, IsSuggestable, Ty, TyCtxt, TypeVisitable,
+};
+use rustc_session::lint::builtin::{AMBIGUOUS_ASSOCIATED_ITEMS, BARE_TRAIT_OBJECTS};
+use rustc_span::edition::Edition;
+use rustc_span::lev_distance::find_best_match_for_name;
+use rustc_span::symbol::{kw, Ident, Symbol};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::spec::abi;
+use rustc_trait_selection::traits;
+use rustc_trait_selection::traits::astconv_object_safety_violations;
+use rustc_trait_selection::traits::error_reporting::{
+ report_object_safety_error, suggestions::NextTypeParamName,
+};
+use rustc_trait_selection::traits::wf::object_region_bounds;
+
+use smallvec::SmallVec;
+use std::collections::BTreeSet;
+use std::slice;
+
+#[derive(Debug)]
+pub struct PathSeg(pub DefId, pub usize);
+
+pub trait AstConv<'tcx> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
+
+ fn item_def_id(&self) -> Option<DefId>;
+
+ /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
+ /// is a type parameter `X` with the given id `def_id` and T
+ /// matches `assoc_name`. This is a subset of the full set of
+ /// predicates.
+ ///
+ /// This is used for one specific purpose: resolving "short-hand"
+ /// associated type references like `T::Item`. In principle, we
+ /// would do that by first getting the full set of predicates in
+ /// scope and then filtering down to find those that apply to `T`,
+ /// but this can lead to cycle errors. The problem is that we have
+ /// to do this resolution *in order to create the predicates in
+ /// the first place*. Hence, we have this "special pass".
+ fn get_type_parameter_bounds(
+ &self,
+ span: Span,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> ty::GenericPredicates<'tcx>;
+
+ /// Returns the lifetime to use when a lifetime is omitted (and not elided).
+ fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
+ -> Option<ty::Region<'tcx>>;
+
+ /// Returns the type to use when a type is omitted.
+ fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
+
+ /// Returns `true` if `_` is allowed in type signatures in the current context.
+ fn allow_ty_infer(&self) -> bool;
+
+ /// Returns the const to use when a const is omitted.
+ fn ct_infer(
+ &self,
+ ty: Ty<'tcx>,
+ param: Option<&ty::GenericParamDef>,
+ span: Span,
+ ) -> Const<'tcx>;
+
+ /// Projecting an associated type from a (potentially)
+ /// higher-ranked trait reference is more complicated, because of
+ /// the possibility of late-bound regions appearing in the
+ /// associated type binding. This is not legal in function
+ /// signatures for that reason. In a function body, we can always
+ /// handle it because we can use inference variables to remove the
+ /// late-bound regions.
+ fn projected_ty_from_poly_trait_ref(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx>;
+
+ /// Normalize an associated type coming from the user.
+ fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
+
+ /// Invoked when we encounter an error from some prior pass
+ /// (e.g., resolve) that is translated into a ty-error. This is
+ /// used to help suppress derived errors typeck might otherwise
+ /// report.
+ fn set_tainted_by_errors(&self);
+
+ fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
+}
+
+#[derive(Debug)]
+struct ConvertedBinding<'a, 'tcx> {
+ hir_id: hir::HirId,
+ item_name: Ident,
+ kind: ConvertedBindingKind<'a, 'tcx>,
+ gen_args: &'a GenericArgs<'a>,
+ span: Span,
+}
+
+#[derive(Debug)]
+enum ConvertedBindingKind<'a, 'tcx> {
+ Equality(ty::Term<'tcx>),
+ Constraint(&'a [hir::GenericBound<'a>]),
+}
+
+/// New-typed boolean indicating whether explicit late-bound lifetimes
+/// are present in a set of generic arguments.
+///
+/// For example if we have some method `fn f<'a>(&'a self)` implemented
+/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
+/// is late-bound so should not be provided explicitly. Thus, if `f` is
+/// instantiated with some generic arguments providing `'a` explicitly,
+/// we taint those arguments with `ExplicitLateBound::Yes` so that we
+/// can provide an appropriate diagnostic later.
+#[derive(Copy, Clone, PartialEq)]
+pub enum ExplicitLateBound {
+ Yes,
+ No,
+}
+
+#[derive(Copy, Clone, PartialEq)]
+pub enum IsMethodCall {
+ Yes,
+ No,
+}
+
+/// Denotes the "position" of a generic argument, indicating if it is a generic type,
+/// generic function or generic method call.
+#[derive(Copy, Clone, PartialEq)]
+pub(crate) enum GenericArgPosition {
+ Type,
+ Value, // e.g., functions
+ MethodCall,
+}
+
+/// A marker denoting that the generic arguments that were
+/// provided did not match the respective generic parameters.
+#[derive(Clone, Default)]
+pub struct GenericArgCountMismatch {
+ /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
+ pub reported: Option<ErrorGuaranteed>,
+ /// A list of spans of arguments provided that were not valid.
+ pub invalid_args: Vec<Span>,
+}
+
+/// Decorates the result of a generic argument count mismatch
+/// check with whether explicit late bounds were provided.
+#[derive(Clone)]
+pub struct GenericArgCountResult {
+ pub explicit_late_bound: ExplicitLateBound,
+ pub correct: Result<(), GenericArgCountMismatch>,
+}
+
+pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
+ fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
+
+ fn provided_kind(
+ &mut self,
+ param: &ty::GenericParamDef,
+ arg: &GenericArg<'_>,
+ ) -> subst::GenericArg<'tcx>;
+
+ fn inferred_kind(
+ &mut self,
+ substs: Option<&[subst::GenericArg<'tcx>]>,
+ param: &ty::GenericParamDef,
+ infer_args: bool,
+ ) -> subst::GenericArg<'tcx>;
+}
+
+impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
+ #[tracing::instrument(level = "debug", skip(self))]
+ pub fn ast_region_to_region(
+ &self,
+ lifetime: &hir::Lifetime,
+ def: Option<&ty::GenericParamDef>,
+ ) -> ty::Region<'tcx> {
+ let tcx = self.tcx();
+ let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
+
+ let r = match tcx.named_region(lifetime.hir_id) {
+ Some(rl::Region::Static) => tcx.lifetimes.re_static,
+
+ Some(rl::Region::LateBound(debruijn, index, def_id)) => {
+ let name = lifetime_name(def_id.expect_local());
+ let br = ty::BoundRegion {
+ var: ty::BoundVar::from_u32(index),
+ kind: ty::BrNamed(def_id, name),
+ };
+ tcx.mk_region(ty::ReLateBound(debruijn, br))
+ }
+
+ Some(rl::Region::EarlyBound(index, id)) => {
+ let name = lifetime_name(id.expect_local());
+ tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
+ }
+
+ Some(rl::Region::Free(scope, id)) => {
+ let name = lifetime_name(id.expect_local());
+ tcx.mk_region(ty::ReFree(ty::FreeRegion {
+ scope,
+ bound_region: ty::BrNamed(id, name),
+ }))
+
+ // (*) -- not late-bound, won't change
+ }
+
+ None => {
+ self.re_infer(def, lifetime.span).unwrap_or_else(|| {
+ debug!(?lifetime, "unelided lifetime in signature");
+
+ // This indicates an illegal lifetime
+ // elision. `resolve_lifetime` should have
+ // reported an error in this case -- but if
+ // not, let's error out.
+ tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
+
+ // Supply some dummy value. We don't have an
+ // `re_error`, annoyingly, so use `'static`.
+ tcx.lifetimes.re_static
+ })
+ }
+ };
+
+ debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
+
+ r
+ }
+
+ /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
+ /// returns an appropriate set of substitutions for this particular reference to `I`.
+ pub fn ast_path_substs_for_ty(
+ &self,
+ span: Span,
+ def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ ) -> SubstsRef<'tcx> {
+ let (substs, _) = self.create_substs_for_ast_path(
+ span,
+ def_id,
+ &[],
+ item_segment,
+ item_segment.args(),
+ item_segment.infer_args,
+ None,
+ );
+ let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
+
+ if let Some(b) = assoc_bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ }
+
+ substs
+ }
+
+ /// Given the type/lifetime/const arguments provided to some path (along with
+ /// an implicit `Self`, if this is a trait reference), returns the complete
+ /// set of substitutions. This may involve applying defaulted type parameters.
+ /// Constraints on associated types are created from `create_assoc_bindings_for_generic_args`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// T: std::ops::Index<usize, Output = u32>
+ /// // ^1 ^^^^^^^^^^^^^^2 ^^^^3 ^^^^^^^^^^^4
+ /// ```
+ ///
+ /// 1. The `self_ty` here would refer to the type `T`.
+ /// 2. The path in question is the path to the trait `std::ops::Index`,
+ /// which will have been resolved to a `def_id`
+ /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
+ /// parameters are returned in the `SubstsRef`, the associated type bindings like
+ /// `Output = u32` are returned from `create_assoc_bindings_for_generic_args`.
+ ///
+ /// Note that the type listing given here is *exactly* what the user provided.
+ ///
+ /// For (generic) associated types
+ ///
+ /// ```ignore (illustrative)
+ /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
+ /// ```
+ ///
+ /// We have the parent substs are the substs for the parent trait:
+ /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
+ /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
+ /// lists: `[Vec<u8>, u8, 'a]`.
+ #[tracing::instrument(level = "debug", skip(self, span))]
+ fn create_substs_for_ast_path<'a>(
+ &self,
+ span: Span,
+ def_id: DefId,
+ parent_substs: &[subst::GenericArg<'tcx>],
+ seg: &hir::PathSegment<'_>,
+ generic_args: &'a hir::GenericArgs<'_>,
+ infer_args: bool,
+ self_ty: Option<Ty<'tcx>>,
+ ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
+ // If the type is parameterized by this region, then replace this
+ // region with the current anon region binding (in other words,
+ // whatever & would get replaced with).
+
+ let tcx = self.tcx();
+ let generics = tcx.generics_of(def_id);
+ debug!("generics: {:?}", generics);
+
+ if generics.has_self {
+ if generics.parent.is_some() {
+ // The parent is a trait so it should have at least one subst
+ // for the `Self` type.
+ assert!(!parent_substs.is_empty())
+ } else {
+ // This item (presumably a trait) needs a self-type.
+ assert!(self_ty.is_some());
+ }
+ } else {
+ assert!(self_ty.is_none() && parent_substs.is_empty());
+ }
+
+ let arg_count = Self::check_generic_arg_count(
+ tcx,
+ span,
+ def_id,
+ seg,
+ generics,
+ generic_args,
+ GenericArgPosition::Type,
+ self_ty.is_some(),
+ infer_args,
+ );
+
+ // Skip processing if type has no generic parameters.
+ // Traits always have `Self` as a generic parameter, which means they will not return early
+ // here and so associated type bindings will be handled regardless of whether there are any
+ // non-`Self` generic parameters.
+ if generics.params.is_empty() {
+ return (tcx.intern_substs(&[]), arg_count);
+ }
+
+ let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
+
+ struct SubstsForAstPathCtxt<'a, 'tcx> {
+ astconv: &'a (dyn AstConv<'tcx> + 'a),
+ def_id: DefId,
+ generic_args: &'a GenericArgs<'a>,
+ span: Span,
+ missing_type_params: Vec<Symbol>,
+ inferred_params: Vec<Span>,
+ infer_args: bool,
+ is_object: bool,
+ }
+
+ impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
+ fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
+ let tcx = self.astconv.tcx();
+ if let GenericParamDefKind::Type { has_default, .. } = param.kind {
+ if self.is_object && has_default {
+ let default_ty = tcx.at(self.span).type_of(param.def_id);
+ let self_param = tcx.types.self_param;
+ if default_ty.walk().any(|arg| arg == self_param.into()) {
+ // There is no suitable inference default for a type parameter
+ // that references self, in an object type.
+ return true;
+ }
+ }
+ }
+
+ false
+ }
+ }
+
+ impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
+ fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
+ if did == self.def_id {
+ (Some(self.generic_args), self.infer_args)
+ } else {
+ // The last component of this tuple is unimportant.
+ (None, false)
+ }
+ }
+
+ fn provided_kind(
+ &mut self,
+ param: &ty::GenericParamDef,
+ arg: &GenericArg<'_>,
+ ) -> subst::GenericArg<'tcx> {
+ let tcx = self.astconv.tcx();
+
+ let mut handle_ty_args = |has_default, ty: &hir::Ty<'_>| {
+ if has_default {
+ tcx.check_optional_stability(
+ param.def_id,
+ Some(arg.id()),
+ arg.span(),
+ None,
+ AllowUnstable::No,
+ |_, _| {
+ // Default generic parameters may not be marked
+ // with stability attributes, i.e. when the
+ // default parameter was defined at the same time
+ // as the rest of the type. As such, we ignore missing
+ // stability attributes.
+ },
+ );
+ }
+ if let (hir::TyKind::Infer, false) = (&ty.kind, self.astconv.allow_ty_infer()) {
+ self.inferred_params.push(ty.span);
+ tcx.ty_error().into()
+ } else {
+ self.astconv.ast_ty_to_ty(ty).into()
+ }
+ };
+
+ match (&param.kind, arg) {
+ (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
+ self.astconv.ast_region_to_region(lt, Some(param)).into()
+ }
+ (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
+ handle_ty_args(has_default, ty)
+ }
+ (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Infer(inf)) => {
+ handle_ty_args(has_default, &inf.to_ty())
+ }
+ (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
+ ty::Const::from_opt_const_arg_anon_const(
+ tcx,
+ ty::WithOptConstParam {
+ did: tcx.hir().local_def_id(ct.value.hir_id),
+ const_param_did: Some(param.def_id),
+ },
+ )
+ .into()
+ }
+ (&GenericParamDefKind::Const { .. }, hir::GenericArg::Infer(inf)) => {
+ let ty = tcx.at(self.span).type_of(param.def_id);
+ if self.astconv.allow_ty_infer() {
+ self.astconv.ct_infer(ty, Some(param), inf.span).into()
+ } else {
+ self.inferred_params.push(inf.span);
+ tcx.const_error(ty).into()
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+
+ fn inferred_kind(
+ &mut self,
+ substs: Option<&[subst::GenericArg<'tcx>]>,
+ param: &ty::GenericParamDef,
+ infer_args: bool,
+ ) -> subst::GenericArg<'tcx> {
+ let tcx = self.astconv.tcx();
+ match param.kind {
+ GenericParamDefKind::Lifetime => self
+ .astconv
+ .re_infer(Some(param), self.span)
+ .unwrap_or_else(|| {
+ debug!(?param, "unelided lifetime in signature");
+
+ // This indicates an illegal lifetime in a non-assoc-trait position
+ tcx.sess.delay_span_bug(self.span, "unelided lifetime in signature");
+
+ // Supply some dummy value. We don't have an
+ // `re_error`, annoyingly, so use `'static`.
+ tcx.lifetimes.re_static
+ })
+ .into(),
+ GenericParamDefKind::Type { has_default, .. } => {
+ if !infer_args && has_default {
+ // No type parameter provided, but a default exists.
+
+ // If we are converting an object type, then the
+ // `Self` parameter is unknown. However, some of the
+ // other type parameters may reference `Self` in their
+ // defaults. This will lead to an ICE if we are not
+ // careful!
+ if self.default_needs_object_self(param) {
+ self.missing_type_params.push(param.name);
+ tcx.ty_error().into()
+ } else {
+ // This is a default type parameter.
+ let substs = substs.unwrap();
+ if substs.iter().any(|arg| match arg.unpack() {
+ GenericArgKind::Type(ty) => ty.references_error(),
+ _ => false,
+ }) {
+ // Avoid ICE #86756 when type error recovery goes awry.
+ return tcx.ty_error().into();
+ }
+ self.astconv
+ .normalize_ty(
+ self.span,
+ EarlyBinder(tcx.at(self.span).type_of(param.def_id))
+ .subst(tcx, substs),
+ )
+ .into()
+ }
+ } else if infer_args {
+ // No type parameters were provided, we can infer all.
+ let param = if !self.default_needs_object_self(param) {
+ Some(param)
+ } else {
+ None
+ };
+ self.astconv.ty_infer(param, self.span).into()
+ } else {
+ // We've already errored above about the mismatch.
+ tcx.ty_error().into()
+ }
+ }
+ GenericParamDefKind::Const { has_default } => {
+ let ty = tcx.at(self.span).type_of(param.def_id);
+ if !infer_args && has_default {
+ tcx.bound_const_param_default(param.def_id)
+ .subst(tcx, substs.unwrap())
+ .into()
+ } else {
+ if infer_args {
+ self.astconv.ct_infer(ty, Some(param), self.span).into()
+ } else {
+ // We've already errored above about the mismatch.
+ tcx.const_error(ty).into()
+ }
+ }
+ }
+ }
+ }
+ }
+
+ let mut substs_ctx = SubstsForAstPathCtxt {
+ astconv: self,
+ def_id,
+ span,
+ generic_args,
+ missing_type_params: vec![],
+ inferred_params: vec![],
+ infer_args,
+ is_object,
+ };
+ let substs = Self::create_substs_for_generic_args(
+ tcx,
+ def_id,
+ parent_substs,
+ self_ty.is_some(),
+ self_ty,
+ &arg_count,
+ &mut substs_ctx,
+ );
+
+ self.complain_about_missing_type_params(
+ substs_ctx.missing_type_params,
+ def_id,
+ span,
+ generic_args.args.is_empty(),
+ );
+
+ debug!(
+ "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
+ generics, self_ty, substs
+ );
+
+ (substs, arg_count)
+ }
+
+ fn create_assoc_bindings_for_generic_args<'a>(
+ &self,
+ generic_args: &'a hir::GenericArgs<'_>,
+ ) -> Vec<ConvertedBinding<'a, 'tcx>> {
+ // Convert associated-type bindings or constraints into a separate vector.
+ // Example: Given this:
+ //
+ // T: Iterator<Item = u32>
+ //
+ // The `T` is passed in as a self-type; the `Item = u32` is
+ // not a "type parameter" of the `Iterator` trait, but rather
+ // a restriction on `<T as Iterator>::Item`, so it is passed
+ // back separately.
+ let assoc_bindings = generic_args
+ .bindings
+ .iter()
+ .map(|binding| {
+ let kind = match binding.kind {
+ hir::TypeBindingKind::Equality { ref term } => match term {
+ hir::Term::Ty(ref ty) => {
+ ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty).into())
+ }
+ hir::Term::Const(ref c) => {
+ let local_did = self.tcx().hir().local_def_id(c.hir_id);
+ let c = Const::from_anon_const(self.tcx(), local_did);
+ ConvertedBindingKind::Equality(c.into())
+ }
+ },
+ hir::TypeBindingKind::Constraint { ref bounds } => {
+ ConvertedBindingKind::Constraint(bounds)
+ }
+ };
+ ConvertedBinding {
+ hir_id: binding.hir_id,
+ item_name: binding.ident,
+ kind,
+ gen_args: binding.gen_args,
+ span: binding.span,
+ }
+ })
+ .collect();
+
+ assoc_bindings
+ }
+
+ pub(crate) fn create_substs_for_associated_item(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ parent_substs: SubstsRef<'tcx>,
+ ) -> SubstsRef<'tcx> {
+ debug!(
+ "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
+ span, item_def_id, item_segment
+ );
+ if tcx.generics_of(item_def_id).params.is_empty() {
+ self.prohibit_generics(slice::from_ref(item_segment).iter(), |_| {});
+
+ parent_substs
+ } else {
+ self.create_substs_for_ast_path(
+ span,
+ item_def_id,
+ parent_substs,
+ item_segment,
+ item_segment.args(),
+ item_segment.infer_args,
+ None,
+ )
+ .0
+ }
+ }
+
+ /// Instantiates the path for the given trait reference, assuming that it's
+ /// bound to a valid trait type. Returns the `DefId` of the defining trait.
+ /// The type _cannot_ be a type other than a trait type.
+ ///
+ /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
+ /// are disallowed. Otherwise, they are pushed onto the vector given.
+ pub fn instantiate_mono_trait_ref(
+ &self,
+ trait_ref: &hir::TraitRef<'_>,
+ self_ty: Ty<'tcx>,
+ ) -> ty::TraitRef<'tcx> {
+ self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
+
+ self.ast_path_to_mono_trait_ref(
+ trait_ref.path.span,
+ trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
+ self_ty,
+ trait_ref.path.segments.last().unwrap(),
+ true,
+ )
+ }
+
+ fn instantiate_poly_trait_ref_inner(
+ &self,
+ hir_id: hir::HirId,
+ span: Span,
+ binding_span: Option<Span>,
+ constness: ty::BoundConstness,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ trait_ref_span: Span,
+ trait_def_id: DefId,
+ trait_segment: &hir::PathSegment<'_>,
+ args: &GenericArgs<'_>,
+ infer_args: bool,
+ self_ty: Ty<'tcx>,
+ ) -> GenericArgCountResult {
+ let (substs, arg_count) = self.create_substs_for_ast_path(
+ trait_ref_span,
+ trait_def_id,
+ &[],
+ trait_segment,
+ args,
+ infer_args,
+ Some(self_ty),
+ );
+
+ let tcx = self.tcx();
+ let bound_vars = tcx.late_bound_vars(hir_id);
+ debug!(?bound_vars);
+
+ let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
+
+ let poly_trait_ref =
+ ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
+
+ debug!(?poly_trait_ref, ?assoc_bindings);
+ bounds.trait_bounds.push((poly_trait_ref, span, constness));
+
+ let mut dup_bindings = FxHashMap::default();
+ for binding in &assoc_bindings {
+ // Specify type to assert that error was already reported in `Err` case.
+ let _: Result<_, ErrorGuaranteed> = self.add_predicates_for_ast_type_binding(
+ hir_id,
+ poly_trait_ref,
+ binding,
+ bounds,
+ speculative,
+ &mut dup_bindings,
+ binding_span.unwrap_or(binding.span),
+ );
+ // Okay to ignore `Err` because of `ErrorGuaranteed` (see above).
+ }
+
+ arg_count
+ }
+
+ /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
+ /// a full trait reference. The resulting trait reference is returned. This may also generate
+ /// auxiliary bounds, which are added to `bounds`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// poly_trait_ref = Iterator<Item = u32>
+ /// self_ty = Foo
+ /// ```
+ ///
+ /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
+ ///
+ /// **A note on binders:** against our usual convention, there is an implied bounder around
+ /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
+ /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
+ /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
+ /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
+ /// however.
+ #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
+ pub(crate) fn instantiate_poly_trait_ref(
+ &self,
+ trait_ref: &hir::TraitRef<'_>,
+ span: Span,
+ constness: ty::BoundConstness,
+ self_ty: Ty<'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ ) -> GenericArgCountResult {
+ let hir_id = trait_ref.hir_ref_id;
+ let binding_span = None;
+ let trait_ref_span = trait_ref.path.span;
+ let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
+ let trait_segment = trait_ref.path.segments.last().unwrap();
+ let args = trait_segment.args();
+ let infer_args = trait_segment.infer_args;
+
+ self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
+ self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, false);
+
+ self.instantiate_poly_trait_ref_inner(
+ hir_id,
+ span,
+ binding_span,
+ constness,
+ bounds,
+ speculative,
+ trait_ref_span,
+ trait_def_id,
+ trait_segment,
+ args,
+ infer_args,
+ self_ty,
+ )
+ }
+
+ pub(crate) fn instantiate_lang_item_trait_ref(
+ &self,
+ lang_item: hir::LangItem,
+ span: Span,
+ hir_id: hir::HirId,
+ args: &GenericArgs<'_>,
+ self_ty: Ty<'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ ) {
+ let binding_span = Some(span);
+ let constness = ty::BoundConstness::NotConst;
+ let speculative = false;
+ let trait_ref_span = span;
+ let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
+ let trait_segment = &hir::PathSegment::invalid();
+ let infer_args = false;
+
+ self.instantiate_poly_trait_ref_inner(
+ hir_id,
+ span,
+ binding_span,
+ constness,
+ bounds,
+ speculative,
+ trait_ref_span,
+ trait_def_id,
+ trait_segment,
+ args,
+ infer_args,
+ self_ty,
+ );
+ }
+
+ fn ast_path_to_mono_trait_ref(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ trait_segment: &hir::PathSegment<'_>,
+ is_impl: bool,
+ ) -> ty::TraitRef<'tcx> {
+ let (substs, _) = self.create_substs_for_ast_trait_ref(
+ span,
+ trait_def_id,
+ self_ty,
+ trait_segment,
+ is_impl,
+ );
+ let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
+ if let Some(b) = assoc_bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ }
+ ty::TraitRef::new(trait_def_id, substs)
+ }
+
+ #[tracing::instrument(level = "debug", skip(self, span))]
+ fn create_substs_for_ast_trait_ref<'a>(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ trait_segment: &'a hir::PathSegment<'a>,
+ is_impl: bool,
+ ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
+ self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, is_impl);
+
+ self.create_substs_for_ast_path(
+ span,
+ trait_def_id,
+ &[],
+ trait_segment,
+ trait_segment.args(),
+ trait_segment.infer_args,
+ Some(self_ty),
+ )
+ }
+
+ fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
+ self.tcx()
+ .associated_items(trait_def_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
+ .is_some()
+ }
+ fn trait_defines_associated_const_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
+ self.tcx()
+ .associated_items(trait_def_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Const, trait_def_id)
+ .is_some()
+ }
+
+ // Sets `implicitly_sized` to true on `Bounds` if necessary
+ pub(crate) fn add_implicitly_sized<'hir>(
+ &self,
+ bounds: &mut Bounds<'hir>,
+ ast_bounds: &'hir [hir::GenericBound<'hir>],
+ self_ty_where_predicates: Option<(hir::HirId, &'hir [hir::WherePredicate<'hir>])>,
+ span: Span,
+ ) {
+ let tcx = self.tcx();
+
+ // Try to find an unbound in bounds.
+ let mut unbound = None;
+ let mut search_bounds = |ast_bounds: &'hir [hir::GenericBound<'hir>]| {
+ for ab in ast_bounds {
+ if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
+ if unbound.is_none() {
+ unbound = Some(&ptr.trait_ref);
+ } else {
+ tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
+ }
+ }
+ }
+ };
+ search_bounds(ast_bounds);
+ if let Some((self_ty, where_clause)) = self_ty_where_predicates {
+ let self_ty_def_id = tcx.hir().local_def_id(self_ty).to_def_id();
+ for clause in where_clause {
+ if let hir::WherePredicate::BoundPredicate(pred) = clause {
+ if pred.is_param_bound(self_ty_def_id) {
+ search_bounds(pred.bounds);
+ }
+ }
+ }
+ }
+
+ let sized_def_id = tcx.lang_items().require(LangItem::Sized);
+ match (&sized_def_id, unbound) {
+ (Ok(sized_def_id), Some(tpb))
+ if tpb.path.res == Res::Def(DefKind::Trait, *sized_def_id) =>
+ {
+ // There was in fact a `?Sized` bound, return without doing anything
+ return;
+ }
+ (_, Some(_)) => {
+ // There was a `?Trait` bound, but it was not `?Sized`; warn.
+ tcx.sess.span_warn(
+ span,
+ "default bound relaxed for a type parameter, but \
+ this does nothing because the given bound is not \
+ a default; only `?Sized` is supported",
+ );
+ // Otherwise, add implicitly sized if `Sized` is available.
+ }
+ _ => {
+ // There was no `?Sized` bound; add implicitly sized if `Sized` is available.
+ }
+ }
+ if sized_def_id.is_err() {
+ // No lang item for `Sized`, so we can't add it as a bound.
+ return;
+ }
+ bounds.implicitly_sized = Some(span);
+ }
+
+ /// This helper takes a *converted* parameter type (`param_ty`)
+ /// and an *unconverted* list of bounds:
+ ///
+ /// ```text
+ /// fn foo<T: Debug>
+ /// ^ ^^^^^ `ast_bounds` parameter, in HIR form
+ /// |
+ /// `param_ty`, in ty form
+ /// ```
+ ///
+ /// It adds these `ast_bounds` into the `bounds` structure.
+ ///
+ /// **A note on binders:** there is an implied binder around
+ /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
+ /// for more details.
+ #[tracing::instrument(level = "debug", skip(self, ast_bounds, bounds))]
+ pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'hir>>>(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: I,
+ bounds: &mut Bounds<'tcx>,
+ bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
+ ) {
+ for ast_bound in ast_bounds {
+ match ast_bound {
+ hir::GenericBound::Trait(poly_trait_ref, modifier) => {
+ let constness = match modifier {
+ hir::TraitBoundModifier::MaybeConst => ty::BoundConstness::ConstIfConst,
+ hir::TraitBoundModifier::None => ty::BoundConstness::NotConst,
+ hir::TraitBoundModifier::Maybe => continue,
+ };
+
+ let _ = self.instantiate_poly_trait_ref(
+ &poly_trait_ref.trait_ref,
+ poly_trait_ref.span,
+ constness,
+ param_ty,
+ bounds,
+ false,
+ );
+ }
+ &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
+ self.instantiate_lang_item_trait_ref(
+ lang_item, span, hir_id, args, param_ty, bounds,
+ );
+ }
+ hir::GenericBound::Outlives(lifetime) => {
+ let region = self.ast_region_to_region(lifetime, None);
+ bounds
+ .region_bounds
+ .push((ty::Binder::bind_with_vars(region, bound_vars), lifetime.span));
+ }
+ }
+ }
+ }
+
+ /// Translates a list of bounds from the HIR into the `Bounds` data structure.
+ /// The self-type for the bounds is given by `param_ty`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// fn foo<T: Bar + Baz>() { }
+ /// // ^ ^^^^^^^^^ ast_bounds
+ /// // param_ty
+ /// ```
+ ///
+ /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
+ /// considered `Sized` unless there is an explicit `?Sized` bound. This would be true in the
+ /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
+ ///
+ /// `span` should be the declaration size of the parameter.
+ pub(crate) fn compute_bounds(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ ) -> Bounds<'tcx> {
+ self.compute_bounds_inner(param_ty, ast_bounds)
+ }
+
+ /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
+ /// named `assoc_name` into ty::Bounds. Ignore the rest.
+ pub(crate) fn compute_bounds_that_match_assoc_type(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ assoc_name: Ident,
+ ) -> Bounds<'tcx> {
+ let mut result = Vec::new();
+
+ for ast_bound in ast_bounds {
+ if let Some(trait_ref) = ast_bound.trait_ref()
+ && let Some(trait_did) = trait_ref.trait_def_id()
+ && self.tcx().trait_may_define_assoc_type(trait_did, assoc_name)
+ {
+ result.push(ast_bound.clone());
+ }
+ }
+
+ self.compute_bounds_inner(param_ty, &result)
+ }
+
+ fn compute_bounds_inner(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ ) -> Bounds<'tcx> {
+ let mut bounds = Bounds::default();
+
+ self.add_bounds(param_ty, ast_bounds.iter(), &mut bounds, ty::List::empty());
+ debug!(?bounds);
+
+ bounds
+ }
+
+ /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
+ /// onto `bounds`.
+ ///
+ /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
+ /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
+ /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
+ #[tracing::instrument(
+ level = "debug",
+ skip(self, bounds, speculative, dup_bindings, path_span)
+ )]
+ fn add_predicates_for_ast_type_binding(
+ &self,
+ hir_ref_id: hir::HirId,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+ binding: &ConvertedBinding<'_, 'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ dup_bindings: &mut FxHashMap<DefId, Span>,
+ path_span: Span,
+ ) -> Result<(), ErrorGuaranteed> {
+ // Given something like `U: SomeTrait<T = X>`, we want to produce a
+ // predicate like `<U as SomeTrait>::T = X`. This is somewhat
+ // subtle in the event that `T` is defined in a supertrait of
+ // `SomeTrait`, because in that case we need to upcast.
+ //
+ // That is, consider this case:
+ //
+ // ```
+ // trait SubTrait: SuperTrait<i32> { }
+ // trait SuperTrait<A> { type T; }
+ //
+ // ... B: SubTrait<T = foo> ...
+ // ```
+ //
+ // We want to produce `<B as SuperTrait<i32>>::T == foo`.
+
+ let tcx = self.tcx();
+
+ let candidate =
+ if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
+ // Simple case: X is defined in the current trait.
+ trait_ref
+ } else {
+ // Otherwise, we have to walk through the supertraits to find
+ // those that do.
+ self.one_bound_for_assoc_type(
+ || traits::supertraits(tcx, trait_ref),
+ || trait_ref.print_only_trait_path().to_string(),
+ binding.item_name,
+ path_span,
+ || match binding.kind {
+ ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
+ _ => None,
+ },
+ )?
+ };
+
+ let (assoc_ident, def_scope) =
+ tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
+
+ // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
+ // of calling `filter_by_name_and_kind`.
+ let find_item_of_kind = |kind| {
+ tcx.associated_items(candidate.def_id())
+ .filter_by_name_unhygienic(assoc_ident.name)
+ .find(|i| i.kind == kind && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident)
+ };
+ let assoc_item = find_item_of_kind(ty::AssocKind::Type)
+ .or_else(|| find_item_of_kind(ty::AssocKind::Const))
+ .expect("missing associated type");
+
+ if !assoc_item.visibility(tcx).is_accessible_from(def_scope, tcx) {
+ tcx.sess
+ .struct_span_err(
+ binding.span,
+ &format!("{} `{}` is private", assoc_item.kind, binding.item_name),
+ )
+ .span_label(binding.span, &format!("private {}", assoc_item.kind))
+ .emit();
+ }
+ tcx.check_stability(assoc_item.def_id, Some(hir_ref_id), binding.span, None);
+
+ if !speculative {
+ dup_bindings
+ .entry(assoc_item.def_id)
+ .and_modify(|prev_span| {
+ self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
+ span: binding.span,
+ prev_span: *prev_span,
+ item_name: binding.item_name,
+ def_path: tcx.def_path_str(assoc_item.container_id(tcx)),
+ });
+ })
+ .or_insert(binding.span);
+ }
+
+ // Include substitutions for generic parameters of associated types
+ let projection_ty = candidate.map_bound(|trait_ref| {
+ let ident = Ident::new(assoc_item.name, binding.item_name.span);
+ let item_segment = hir::PathSegment {
+ ident,
+ hir_id: Some(binding.hir_id),
+ res: None,
+ args: Some(binding.gen_args),
+ infer_args: false,
+ };
+
+ let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
+ tcx,
+ path_span,
+ assoc_item.def_id,
+ &item_segment,
+ trait_ref.substs,
+ );
+
+ debug!(
+ "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
+ substs_trait_ref_and_assoc_item
+ );
+
+ ty::ProjectionTy {
+ item_def_id: assoc_item.def_id,
+ substs: substs_trait_ref_and_assoc_item,
+ }
+ });
+
+ if !speculative {
+ // Find any late-bound regions declared in `ty` that are not
+ // declared in the trait-ref or assoc_item. These are not well-formed.
+ //
+ // Example:
+ //
+ // for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
+ // for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
+ if let ConvertedBindingKind::Equality(ty) = binding.kind {
+ let late_bound_in_trait_ref =
+ tcx.collect_constrained_late_bound_regions(&projection_ty);
+ let late_bound_in_ty =
+ tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
+ debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
+ debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
+
+ // FIXME: point at the type params that don't have appropriate lifetimes:
+ // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
+ // ---- ---- ^^^^^^^
+ self.validate_late_bound_regions(
+ late_bound_in_trait_ref,
+ late_bound_in_ty,
+ |br_name| {
+ struct_span_err!(
+ tcx.sess,
+ binding.span,
+ E0582,
+ "binding for associated type `{}` references {}, \
+ which does not appear in the trait input types",
+ binding.item_name,
+ br_name
+ )
+ },
+ );
+ }
+ }
+
+ match binding.kind {
+ ConvertedBindingKind::Equality(mut term) => {
+ // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
+ // the "projection predicate" for:
+ //
+ // `<T as Iterator>::Item = u32`
+ let assoc_item_def_id = projection_ty.skip_binder().item_def_id;
+ let def_kind = tcx.def_kind(assoc_item_def_id);
+ match (def_kind, term) {
+ (hir::def::DefKind::AssocTy, ty::Term::Ty(_))
+ | (hir::def::DefKind::AssocConst, ty::Term::Const(_)) => (),
+ (_, _) => {
+ let got = if let ty::Term::Ty(_) = term { "type" } else { "constant" };
+ let expected = def_kind.descr(assoc_item_def_id);
+ tcx.sess
+ .struct_span_err(
+ binding.span,
+ &format!("expected {expected} bound, found {got}"),
+ )
+ .span_note(
+ tcx.def_span(assoc_item_def_id),
+ &format!("{expected} defined here"),
+ )
+ .emit();
+ term = match def_kind {
+ hir::def::DefKind::AssocTy => tcx.ty_error().into(),
+ hir::def::DefKind::AssocConst => tcx
+ .const_error(
+ tcx.bound_type_of(assoc_item_def_id)
+ .subst(tcx, projection_ty.skip_binder().substs),
+ )
+ .into(),
+ _ => unreachable!(),
+ };
+ }
+ }
+ bounds.projection_bounds.push((
+ projection_ty.map_bound(|projection_ty| ty::ProjectionPredicate {
+ projection_ty,
+ term: term,
+ }),
+ binding.span,
+ ));
+ }
+ ConvertedBindingKind::Constraint(ast_bounds) => {
+ // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
+ //
+ // `<T as Iterator>::Item: Debug`
+ //
+ // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
+ // parameter to have a skipped binder.
+ let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
+ self.add_bounds(param_ty, ast_bounds.iter(), bounds, candidate.bound_vars());
+ }
+ }
+ Ok(())
+ }
+
+ fn ast_path_to_ty(
+ &self,
+ span: Span,
+ did: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ ) -> Ty<'tcx> {
+ let substs = self.ast_path_substs_for_ty(span, did, item_segment);
+ self.normalize_ty(
+ span,
+ EarlyBinder(self.tcx().at(span).type_of(did)).subst(self.tcx(), substs),
+ )
+ }
+
+ fn conv_object_ty_poly_trait_ref(
+ &self,
+ span: Span,
+ trait_bounds: &[hir::PolyTraitRef<'_>],
+ lifetime: &hir::Lifetime,
+ borrowed: bool,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let mut bounds = Bounds::default();
+ let mut potential_assoc_types = Vec::new();
+ let dummy_self = self.tcx().types.trait_object_dummy_self;
+ for trait_bound in trait_bounds.iter().rev() {
+ if let GenericArgCountResult {
+ correct:
+ Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
+ ..
+ } = self.instantiate_poly_trait_ref(
+ &trait_bound.trait_ref,
+ trait_bound.span,
+ ty::BoundConstness::NotConst,
+ dummy_self,
+ &mut bounds,
+ false,
+ ) {
+ potential_assoc_types.extend(cur_potential_assoc_types);
+ }
+ }
+
+ // Expand trait aliases recursively and check that only one regular (non-auto) trait
+ // is used and no 'maybe' bounds are used.
+ let expanded_traits =
+ traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
+ let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) = expanded_traits
+ .filter(|i| i.trait_ref().self_ty().skip_binder() == dummy_self)
+ .partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
+ if regular_traits.len() > 1 {
+ let first_trait = &regular_traits[0];
+ let additional_trait = &regular_traits[1];
+ let mut err = struct_span_err!(
+ tcx.sess,
+ additional_trait.bottom().1,
+ E0225,
+ "only auto traits can be used as additional traits in a trait object"
+ );
+ additional_trait.label_with_exp_info(
+ &mut err,
+ "additional non-auto trait",
+ "additional use",
+ );
+ first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
+ err.help(&format!(
+ "consider creating a new trait with all of these as supertraits and using that \
+ trait here instead: `trait NewTrait: {} {{}}`",
+ regular_traits
+ .iter()
+ .map(|t| t.trait_ref().print_only_trait_path().to_string())
+ .collect::<Vec<_>>()
+ .join(" + "),
+ ));
+ err.note(
+ "auto-traits like `Send` and `Sync` are traits that have special properties; \
+ for more information on them, visit \
+ <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
+ );
+ err.emit();
+ }
+
+ if regular_traits.is_empty() && auto_traits.is_empty() {
+ let trait_alias_span = bounds
+ .trait_bounds
+ .iter()
+ .map(|&(trait_ref, _, _)| trait_ref.def_id())
+ .find(|&trait_ref| tcx.is_trait_alias(trait_ref))
+ .map(|trait_ref| tcx.def_span(trait_ref));
+ tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span });
+ return tcx.ty_error();
+ }
+
+ // Check that there are no gross object safety violations;
+ // most importantly, that the supertraits don't contain `Self`,
+ // to avoid ICEs.
+ for item in &regular_traits {
+ let object_safety_violations =
+ astconv_object_safety_violations(tcx, item.trait_ref().def_id());
+ if !object_safety_violations.is_empty() {
+ report_object_safety_error(
+ tcx,
+ span,
+ item.trait_ref().def_id(),
+ &object_safety_violations,
+ )
+ .emit();
+ return tcx.ty_error();
+ }
+ }
+
+ // Use a `BTreeSet` to keep output in a more consistent order.
+ let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
+
+ let regular_traits_refs_spans = bounds
+ .trait_bounds
+ .into_iter()
+ .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
+
+ for (base_trait_ref, span, constness) in regular_traits_refs_spans {
+ assert_eq!(constness, ty::BoundConstness::NotConst);
+
+ for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
+ debug!(
+ "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
+ obligation.predicate
+ );
+
+ let bound_predicate = obligation.predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(pred) => {
+ let pred = bound_predicate.rebind(pred);
+ associated_types.entry(span).or_default().extend(
+ tcx.associated_items(pred.def_id())
+ .in_definition_order()
+ .filter(|item| item.kind == ty::AssocKind::Type)
+ .map(|item| item.def_id),
+ );
+ }
+ ty::PredicateKind::Projection(pred) => {
+ let pred = bound_predicate.rebind(pred);
+ // A `Self` within the original bound will be substituted with a
+ // `trait_object_dummy_self`, so check for that.
+ let references_self = match pred.skip_binder().term {
+ ty::Term::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
+ ty::Term::Const(c) => c.ty().walk().any(|arg| arg == dummy_self.into()),
+ };
+
+ // If the projection output contains `Self`, force the user to
+ // elaborate it explicitly to avoid a lot of complexity.
+ //
+ // The "classically useful" case is the following:
+ // ```
+ // trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
+ // type MyOutput;
+ // }
+ // ```
+ //
+ // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
+ // but actually supporting that would "expand" to an infinitely-long type
+ // `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
+ //
+ // Instead, we force the user to write
+ // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
+ // the discussion in #56288 for alternatives.
+ if !references_self {
+ // Include projections defined on supertraits.
+ bounds.projection_bounds.push((pred, span));
+ }
+ }
+ _ => (),
+ }
+ }
+ }
+
+ for (projection_bound, _) in &bounds.projection_bounds {
+ for def_ids in associated_types.values_mut() {
+ def_ids.remove(&projection_bound.projection_def_id());
+ }
+ }
+
+ self.complain_about_missing_associated_types(
+ associated_types,
+ potential_assoc_types,
+ trait_bounds,
+ );
+
+ // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
+ // `dyn Trait + Send`.
+ // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
+ // the bounds
+ let mut duplicates = FxHashSet::default();
+ auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
+ debug!("regular_traits: {:?}", regular_traits);
+ debug!("auto_traits: {:?}", auto_traits);
+
+ // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
+ let existential_trait_refs = regular_traits.iter().map(|i| {
+ i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
+ if trait_ref.self_ty() != dummy_self {
+ // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
+ // which picks up non-supertraits where clauses - but also, the object safety
+ // completely ignores trait aliases, which could be object safety hazards. We
+ // `delay_span_bug` here to avoid an ICE in stable even when the feature is
+ // disabled. (#66420)
+ tcx.sess.delay_span_bug(
+ DUMMY_SP,
+ &format!(
+ "trait_ref_to_existential called on {:?} with non-dummy Self",
+ trait_ref,
+ ),
+ );
+ }
+ ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
+ })
+ });
+ let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
+ bound.map_bound(|b| {
+ if b.projection_ty.self_ty() != dummy_self {
+ tcx.sess.delay_span_bug(
+ DUMMY_SP,
+ &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
+ );
+ }
+ ty::ExistentialProjection::erase_self_ty(tcx, b)
+ })
+ });
+
+ let regular_trait_predicates = existential_trait_refs
+ .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
+ let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
+ ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
+ });
+ // N.b. principal, projections, auto traits
+ // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
+ let mut v = regular_trait_predicates
+ .chain(
+ existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
+ )
+ .chain(auto_trait_predicates)
+ .collect::<SmallVec<[_; 8]>>();
+ v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
+ v.dedup();
+ let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
+
+ // Use explicitly-specified region bound.
+ let region_bound = if !lifetime.is_elided() {
+ self.ast_region_to_region(lifetime, None)
+ } else {
+ self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
+ if tcx.named_region(lifetime.hir_id).is_some() {
+ self.ast_region_to_region(lifetime, None)
+ } else {
+ self.re_infer(None, span).unwrap_or_else(|| {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0228,
+ "the lifetime bound for this object type cannot be deduced \
+ from context; please supply an explicit bound"
+ );
+ if borrowed {
+ // We will have already emitted an error E0106 complaining about a
+ // missing named lifetime in `&dyn Trait`, so we elide this one.
+ err.delay_as_bug();
+ } else {
+ err.emit();
+ }
+ tcx.lifetimes.re_static
+ })
+ }
+ })
+ };
+ debug!("region_bound: {:?}", region_bound);
+
+ let ty = tcx.mk_dynamic(existential_predicates, region_bound);
+ debug!("trait_object_type: {:?}", ty);
+ ty
+ }
+
+ fn report_ambiguous_associated_type(
+ &self,
+ span: Span,
+ type_str: &str,
+ trait_str: &str,
+ name: Symbol,
+ ) -> ErrorGuaranteed {
+ let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
+ if self
+ .tcx()
+ .resolutions(())
+ .confused_type_with_std_module
+ .keys()
+ .any(|full_span| full_span.contains(span))
+ {
+ err.span_suggestion(
+ span.shrink_to_lo(),
+ "you are looking for the module in `std`, not the primitive type",
+ "std::",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_suggestion(
+ span,
+ "use fully-qualified syntax",
+ format!("<{} as {}>::{}", type_str, trait_str, name),
+ Applicability::HasPlaceholders,
+ );
+ }
+ err.emit()
+ }
+
+ // Search for a bound on a type parameter which includes the associated item
+ // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
+ // This function will fail if there are no suitable bounds or there is
+ // any ambiguity.
+ fn find_bound_for_assoc_item(
+ &self,
+ ty_param_def_id: LocalDefId,
+ assoc_name: Ident,
+ span: Span,
+ ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed> {
+ let tcx = self.tcx();
+
+ debug!(
+ "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
+ ty_param_def_id, assoc_name, span,
+ );
+
+ let predicates = &self
+ .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
+ .predicates;
+
+ debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
+
+ let param_name = tcx.hir().ty_param_name(ty_param_def_id);
+ self.one_bound_for_assoc_type(
+ || {
+ traits::transitive_bounds_that_define_assoc_type(
+ tcx,
+ predicates.iter().filter_map(|(p, _)| {
+ Some(p.to_opt_poly_trait_pred()?.map_bound(|t| t.trait_ref))
+ }),
+ assoc_name,
+ )
+ },
+ || param_name.to_string(),
+ assoc_name,
+ span,
+ || None,
+ )
+ }
+
+ // Checks that `bounds` contains exactly one element and reports appropriate
+ // errors otherwise.
+ fn one_bound_for_assoc_type<I>(
+ &self,
+ all_candidates: impl Fn() -> I,
+ ty_param_name: impl Fn() -> String,
+ assoc_name: Ident,
+ span: Span,
+ is_equality: impl Fn() -> Option<String>,
+ ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed>
+ where
+ I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
+ {
+ let mut matching_candidates = all_candidates()
+ .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
+ let mut const_candidates = all_candidates()
+ .filter(|r| self.trait_defines_associated_const_named(r.def_id(), assoc_name));
+
+ let (bound, next_cand) = match (matching_candidates.next(), const_candidates.next()) {
+ (Some(bound), _) => (bound, matching_candidates.next()),
+ (None, Some(bound)) => (bound, const_candidates.next()),
+ (None, None) => {
+ let reported = self.complain_about_assoc_type_not_found(
+ all_candidates,
+ &ty_param_name(),
+ assoc_name,
+ span,
+ );
+ return Err(reported);
+ }
+ };
+ debug!("one_bound_for_assoc_type: bound = {:?}", bound);
+
+ if let Some(bound2) = next_cand {
+ debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
+
+ let is_equality = is_equality();
+ let bounds = IntoIterator::into_iter([bound, bound2]).chain(matching_candidates);
+ let mut err = if is_equality.is_some() {
+ // More specific Error Index entry.
+ struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0222,
+ "ambiguous associated type `{}` in bounds of `{}`",
+ assoc_name,
+ ty_param_name()
+ )
+ } else {
+ struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0221,
+ "ambiguous associated type `{}` in bounds of `{}`",
+ assoc_name,
+ ty_param_name()
+ )
+ };
+ err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
+
+ let mut where_bounds = vec![];
+ for bound in bounds {
+ let bound_id = bound.def_id();
+ let bound_span = self
+ .tcx()
+ .associated_items(bound_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
+ .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
+
+ if let Some(bound_span) = bound_span {
+ err.span_label(
+ bound_span,
+ format!(
+ "ambiguous `{}` from `{}`",
+ assoc_name,
+ bound.print_only_trait_path(),
+ ),
+ );
+ if let Some(constraint) = &is_equality {
+ where_bounds.push(format!(
+ " T: {trait}::{assoc} = {constraint}",
+ trait=bound.print_only_trait_path(),
+ assoc=assoc_name,
+ constraint=constraint,
+ ));
+ } else {
+ err.span_suggestion_verbose(
+ span.with_hi(assoc_name.span.lo()),
+ "use fully qualified syntax to disambiguate",
+ format!(
+ "<{} as {}>::",
+ ty_param_name(),
+ bound.print_only_trait_path(),
+ ),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ } else {
+ err.note(&format!(
+ "associated type `{}` could derive from `{}`",
+ ty_param_name(),
+ bound.print_only_trait_path(),
+ ));
+ }
+ }
+ if !where_bounds.is_empty() {
+ err.help(&format!(
+ "consider introducing a new type parameter `T` and adding `where` constraints:\
+ \n where\n T: {},\n{}",
+ ty_param_name(),
+ where_bounds.join(",\n"),
+ ));
+ }
+ let reported = err.emit();
+ if !where_bounds.is_empty() {
+ return Err(reported);
+ }
+ }
+
+ Ok(bound)
+ }
+
+ // Create a type from a path to an associated type.
+ // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
+ // and item_segment is the path segment for `D`. We return a type and a def for
+ // the whole path.
+ // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
+ // parameter or `Self`.
+ // NOTE: When this function starts resolving `Trait::AssocTy` successfully
+ // it should also start reporting the `BARE_TRAIT_OBJECTS` lint.
+ pub fn associated_path_to_ty(
+ &self,
+ hir_ref_id: hir::HirId,
+ span: Span,
+ qself_ty: Ty<'tcx>,
+ qself: &hir::Ty<'_>,
+ assoc_segment: &hir::PathSegment<'_>,
+ permit_variants: bool,
+ ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorGuaranteed> {
+ let tcx = self.tcx();
+ let assoc_ident = assoc_segment.ident;
+ let qself_res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
+ path.res
+ } else {
+ Res::Err
+ };
+
+ debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
+
+ // Check if we have an enum variant.
+ let mut variant_resolution = None;
+ if let ty::Adt(adt_def, _) = qself_ty.kind() {
+ if adt_def.is_enum() {
+ let variant_def = adt_def
+ .variants()
+ .iter()
+ .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident(tcx), adt_def.did()));
+ if let Some(variant_def) = variant_def {
+ if permit_variants {
+ tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
+ self.prohibit_generics(slice::from_ref(assoc_segment).iter(), |err| {
+ err.note("enum variants can't have type parameters");
+ let type_name = tcx.item_name(adt_def.did());
+ let msg = format!(
+ "you might have meant to specity type parameters on enum \
+ `{type_name}`"
+ );
+ let Some(args) = assoc_segment.args else { return; };
+ // Get the span of the generics args *including* the leading `::`.
+ let args_span = assoc_segment.ident.span.shrink_to_hi().to(args.span_ext);
+ if tcx.generics_of(adt_def.did()).count() == 0 {
+ // FIXME(estebank): we could also verify that the arguments being
+ // work for the `enum`, instead of just looking if it takes *any*.
+ err.span_suggestion_verbose(
+ args_span,
+ &format!("{type_name} doesn't have generic parameters"),
+ "",
+ Applicability::MachineApplicable,
+ );
+ return;
+ }
+ let Ok(snippet) = tcx.sess.source_map().span_to_snippet(args_span) else {
+ err.note(&msg);
+ return;
+ };
+ let (qself_sugg_span, is_self) = if let hir::TyKind::Path(
+ hir::QPath::Resolved(_, ref path)
+ ) = qself.kind {
+ // If the path segment already has type params, we want to overwrite
+ // them.
+ match &path.segments[..] {
+ // `segment` is the previous to last element on the path,
+ // which would normally be the `enum` itself, while the last
+ // `_` `PathSegment` corresponds to the variant.
+ [.., hir::PathSegment {
+ ident,
+ args,
+ res: Some(Res::Def(DefKind::Enum, _)),
+ ..
+ }, _] => (
+ // We need to include the `::` in `Type::Variant::<Args>`
+ // to point the span to `::<Args>`, not just `<Args>`.
+ ident.span.shrink_to_hi().to(args.map_or(
+ ident.span.shrink_to_hi(),
+ |a| a.span_ext)),
+ false,
+ ),
+ [segment] => (
+ // We need to include the `::` in `Type::Variant::<Args>`
+ // to point the span to `::<Args>`, not just `<Args>`.
+ segment.ident.span.shrink_to_hi().to(segment.args.map_or(
+ segment.ident.span.shrink_to_hi(),
+ |a| a.span_ext)),
+ kw::SelfUpper == segment.ident.name,
+ ),
+ _ => {
+ err.note(&msg);
+ return;
+ }
+ }
+ } else {
+ err.note(&msg);
+ return;
+ };
+ let suggestion = vec![
+ if is_self {
+ // Account for people writing `Self::Variant::<Args>`, where
+ // `Self` is the enum, and suggest replacing `Self` with the
+ // appropriate type: `Type::<Args>::Variant`.
+ (qself.span, format!("{type_name}{snippet}"))
+ } else {
+ (qself_sugg_span, snippet)
+ },
+ (args_span, String::new()),
+ ];
+ err.multipart_suggestion_verbose(
+ &msg,
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ });
+ return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
+ } else {
+ variant_resolution = Some(variant_def.def_id);
+ }
+ }
+ }
+ }
+
+ // Find the type of the associated item, and the trait where the associated
+ // item is declared.
+ let bound = match (&qself_ty.kind(), qself_res) {
+ (_, Res::SelfTy { trait_: Some(_), alias_to: Some((impl_def_id, _)) }) => {
+ // `Self` in an impl of a trait -- we have a concrete self type and a
+ // trait reference.
+ let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
+ // A cycle error occurred, most likely.
+ let guar = tcx.sess.delay_span_bug(span, "expected cycle error");
+ return Err(guar);
+ };
+
+ self.one_bound_for_assoc_type(
+ || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
+ || "Self".to_string(),
+ assoc_ident,
+ span,
+ || None,
+ )?
+ }
+ (
+ &ty::Param(_),
+ Res::SelfTy { trait_: Some(param_did), alias_to: None }
+ | Res::Def(DefKind::TyParam, param_did),
+ ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
+ _ => {
+ let reported = if variant_resolution.is_some() {
+ // Variant in type position
+ let msg = format!("expected type, found variant `{}`", assoc_ident);
+ tcx.sess.span_err(span, &msg)
+ } else if qself_ty.is_enum() {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ assoc_ident.span,
+ E0599,
+ "no variant named `{}` found for enum `{}`",
+ assoc_ident,
+ qself_ty,
+ );
+
+ let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
+ if let Some(suggested_name) = find_best_match_for_name(
+ &adt_def
+ .variants()
+ .iter()
+ .map(|variant| variant.name)
+ .collect::<Vec<Symbol>>(),
+ assoc_ident.name,
+ None,
+ ) {
+ err.span_suggestion(
+ assoc_ident.span,
+ "there is a variant with a similar name",
+ suggested_name,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_label(
+ assoc_ident.span,
+ format!("variant not found in `{}`", qself_ty),
+ );
+ }
+
+ if let Some(sp) = tcx.hir().span_if_local(adt_def.did()) {
+ err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
+ }
+
+ err.emit()
+ } else if let Some(reported) = qself_ty.error_reported() {
+ reported
+ } else {
+ // Don't print `TyErr` to the user.
+ self.report_ambiguous_associated_type(
+ span,
+ &qself_ty.to_string(),
+ "Trait",
+ assoc_ident.name,
+ )
+ };
+ return Err(reported);
+ }
+ };
+
+ let trait_did = bound.def_id();
+ let (assoc_ident, def_scope) =
+ tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
+
+ // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
+ // of calling `filter_by_name_and_kind`.
+ let item = tcx.associated_items(trait_did).in_definition_order().find(|i| {
+ i.kind.namespace() == Namespace::TypeNS
+ && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident
+ });
+ // Assume that if it's not matched, there must be a const defined with the same name
+ // but it was used in a type position.
+ let Some(item) = item else {
+ let msg = format!("found associated const `{assoc_ident}` when type was expected");
+ let guar = tcx.sess.struct_span_err(span, &msg).emit();
+ return Err(guar);
+ };
+
+ let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
+ let ty = self.normalize_ty(span, ty);
+
+ let kind = DefKind::AssocTy;
+ if !item.visibility(tcx).is_accessible_from(def_scope, tcx) {
+ let kind = kind.descr(item.def_id);
+ let msg = format!("{} `{}` is private", kind, assoc_ident);
+ tcx.sess
+ .struct_span_err(span, &msg)
+ .span_label(span, &format!("private {}", kind))
+ .emit();
+ }
+ tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
+
+ if let Some(variant_def_id) = variant_resolution {
+ tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
+ let mut err = lint.build("ambiguous associated item");
+ let mut could_refer_to = |kind: DefKind, def_id, also| {
+ let note_msg = format!(
+ "`{}` could{} refer to the {} defined here",
+ assoc_ident,
+ also,
+ kind.descr(def_id)
+ );
+ err.span_note(tcx.def_span(def_id), &note_msg);
+ };
+
+ could_refer_to(DefKind::Variant, variant_def_id, "");
+ could_refer_to(kind, item.def_id, " also");
+
+ err.span_suggestion(
+ span,
+ "use fully-qualified syntax",
+ format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
+ Applicability::MachineApplicable,
+ );
+
+ err.emit();
+ });
+ }
+ Ok((ty, kind, item.def_id))
+ }
+
+ fn qpath_to_ty(
+ &self,
+ span: Span,
+ opt_self_ty: Option<Ty<'tcx>>,
+ item_def_id: DefId,
+ trait_segment: &hir::PathSegment<'_>,
+ item_segment: &hir::PathSegment<'_>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let trait_def_id = tcx.parent(item_def_id);
+
+ debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
+
+ let Some(self_ty) = opt_self_ty else {
+ let path_str = tcx.def_path_str(trait_def_id);
+
+ let def_id = self.item_def_id();
+
+ debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
+
+ let parent_def_id = def_id
+ .and_then(|def_id| {
+ def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
+ })
+ .map(|hir_id| tcx.hir().get_parent_item(hir_id).to_def_id());
+
+ debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
+
+ // If the trait in segment is the same as the trait defining the item,
+ // use the `<Self as ..>` syntax in the error.
+ let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
+ let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
+
+ let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
+ "Self"
+ } else {
+ "Type"
+ };
+
+ self.report_ambiguous_associated_type(
+ span,
+ type_name,
+ &path_str,
+ item_segment.ident.name,
+ );
+ return tcx.ty_error();
+ };
+
+ debug!("qpath_to_ty: self_type={:?}", self_ty);
+
+ let trait_ref =
+ self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment, false);
+
+ let item_substs = self.create_substs_for_associated_item(
+ tcx,
+ span,
+ item_def_id,
+ item_segment,
+ trait_ref.substs,
+ );
+
+ debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
+
+ self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
+ }
+
+ pub fn prohibit_generics<'a>(
+ &self,
+ segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
+ extend: impl Fn(&mut DiagnosticBuilder<'tcx, ErrorGuaranteed>),
+ ) -> bool {
+ let args = segments.clone().flat_map(|segment| segment.args().args);
+
+ let (lt, ty, ct, inf) =
+ args.clone().fold((false, false, false, false), |(lt, ty, ct, inf), arg| match arg {
+ hir::GenericArg::Lifetime(_) => (true, ty, ct, inf),
+ hir::GenericArg::Type(_) => (lt, true, ct, inf),
+ hir::GenericArg::Const(_) => (lt, ty, true, inf),
+ hir::GenericArg::Infer(_) => (lt, ty, ct, true),
+ });
+ let mut emitted = false;
+ if lt || ty || ct || inf {
+ let types_and_spans: Vec<_> = segments
+ .clone()
+ .flat_map(|segment| {
+ segment.res.and_then(|res| {
+ if segment.args().args.is_empty() {
+ None
+ } else {
+ Some((
+ match res {
+ Res::PrimTy(ty) => format!("{} `{}`", res.descr(), ty.name()),
+ Res::Def(_, def_id)
+ if let Some(name) = self.tcx().opt_item_name(def_id) => {
+ format!("{} `{name}`", res.descr())
+ }
+ Res::Err => "this type".to_string(),
+ _ => res.descr().to_string(),
+ },
+ segment.ident.span,
+ ))
+ }
+ })
+ })
+ .collect();
+ let this_type = match &types_and_spans[..] {
+ [.., _, (last, _)] => format!(
+ "{} and {last}",
+ types_and_spans[..types_and_spans.len() - 1]
+ .iter()
+ .map(|(x, _)| x.as_str())
+ .intersperse(&", ")
+ .collect::<String>()
+ ),
+ [(only, _)] => only.to_string(),
+ [] => "this type".to_string(),
+ };
+
+ let arg_spans: Vec<Span> = args.map(|arg| arg.span()).collect();
+
+ let mut kinds = Vec::with_capacity(4);
+ if lt {
+ kinds.push("lifetime");
+ }
+ if ty {
+ kinds.push("type");
+ }
+ if ct {
+ kinds.push("const");
+ }
+ if inf {
+ kinds.push("generic");
+ }
+ let (kind, s) = match kinds[..] {
+ [.., _, last] => (
+ format!(
+ "{} and {last}",
+ kinds[..kinds.len() - 1]
+ .iter()
+ .map(|&x| x)
+ .intersperse(", ")
+ .collect::<String>()
+ ),
+ "s",
+ ),
+ [only] => (format!("{only}"), ""),
+ [] => unreachable!(),
+ };
+ let last_span = *arg_spans.last().unwrap();
+ let span: MultiSpan = arg_spans.into();
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0109,
+ "{kind} arguments are not allowed on {this_type}",
+ );
+ err.span_label(last_span, format!("{kind} argument{s} not allowed"));
+ for (what, span) in types_and_spans {
+ err.span_label(span, format!("not allowed on {what}"));
+ }
+ extend(&mut err);
+ err.emit();
+ emitted = true;
+ }
+
+ for segment in segments {
+ // Only emit the first error to avoid overloading the user with error messages.
+ if let [binding, ..] = segment.args().bindings {
+ Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
+ return true;
+ }
+ }
+ emitted
+ }
+
+ // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
+ pub fn def_ids_for_value_path_segments(
+ &self,
+ segments: &[hir::PathSegment<'_>],
+ self_ty: Option<Ty<'tcx>>,
+ kind: DefKind,
+ def_id: DefId,
+ ) -> Vec<PathSeg> {
+ // We need to extract the type parameters supplied by the user in
+ // the path `path`. Due to the current setup, this is a bit of a
+ // tricky-process; the problem is that resolve only tells us the
+ // end-point of the path resolution, and not the intermediate steps.
+ // Luckily, we can (at least for now) deduce the intermediate steps
+ // just from the end-point.
+ //
+ // There are basically five cases to consider:
+ //
+ // 1. Reference to a constructor of a struct:
+ //
+ // struct Foo<T>(...)
+ //
+ // In this case, the parameters are declared in the type space.
+ //
+ // 2. Reference to a constructor of an enum variant:
+ //
+ // enum E<T> { Foo(...) }
+ //
+ // In this case, the parameters are defined in the type space,
+ // but may be specified either on the type or the variant.
+ //
+ // 3. Reference to a fn item or a free constant:
+ //
+ // fn foo<T>() { }
+ //
+ // In this case, the path will again always have the form
+ // `a::b::foo::<T>` where only the final segment should have
+ // type parameters. However, in this case, those parameters are
+ // declared on a value, and hence are in the `FnSpace`.
+ //
+ // 4. Reference to a method or an associated constant:
+ //
+ // impl<A> SomeStruct<A> {
+ // fn foo<B>(...)
+ // }
+ //
+ // Here we can have a path like
+ // `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
+ // may appear in two places. The penultimate segment,
+ // `SomeStruct::<A>`, contains parameters in TypeSpace, and the
+ // final segment, `foo::<B>` contains parameters in fn space.
+ //
+ // The first step then is to categorize the segments appropriately.
+
+ let tcx = self.tcx();
+
+ assert!(!segments.is_empty());
+ let last = segments.len() - 1;
+
+ let mut path_segs = vec![];
+
+ match kind {
+ // Case 1. Reference to a struct constructor.
+ DefKind::Ctor(CtorOf::Struct, ..) => {
+ // Everything but the final segment should have no
+ // parameters at all.
+ let generics = tcx.generics_of(def_id);
+ // Variant and struct constructors use the
+ // generics of their parent type definition.
+ let generics_def_id = generics.parent.unwrap_or(def_id);
+ path_segs.push(PathSeg(generics_def_id, last));
+ }
+
+ // Case 2. Reference to a variant constructor.
+ DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
+ let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
+ let (generics_def_id, index) = if let Some(adt_def) = adt_def {
+ debug_assert!(adt_def.is_enum());
+ (adt_def.did(), last)
+ } else if last >= 1 && segments[last - 1].args.is_some() {
+ // Everything but the penultimate segment should have no
+ // parameters at all.
+ let mut def_id = def_id;
+
+ // `DefKind::Ctor` -> `DefKind::Variant`
+ if let DefKind::Ctor(..) = kind {
+ def_id = tcx.parent(def_id);
+ }
+
+ // `DefKind::Variant` -> `DefKind::Enum`
+ let enum_def_id = tcx.parent(def_id);
+ (enum_def_id, last - 1)
+ } else {
+ // FIXME: lint here recommending `Enum::<...>::Variant` form
+ // instead of `Enum::Variant::<...>` form.
+
+ // Everything but the final segment should have no
+ // parameters at all.
+ let generics = tcx.generics_of(def_id);
+ // Variant and struct constructors use the
+ // generics of their parent type definition.
+ (generics.parent.unwrap_or(def_id), last)
+ };
+ path_segs.push(PathSeg(generics_def_id, index));
+ }
+
+ // Case 3. Reference to a top-level value.
+ DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static(_) => {
+ path_segs.push(PathSeg(def_id, last));
+ }
+
+ // Case 4. Reference to a method or associated const.
+ DefKind::AssocFn | DefKind::AssocConst => {
+ if segments.len() >= 2 {
+ let generics = tcx.generics_of(def_id);
+ path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
+ }
+ path_segs.push(PathSeg(def_id, last));
+ }
+
+ kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
+ }
+
+ debug!("path_segs = {:?}", path_segs);
+
+ path_segs
+ }
+
+ // Check a type `Path` and convert it to a `Ty`.
+ pub fn res_to_ty(
+ &self,
+ opt_self_ty: Option<Ty<'tcx>>,
+ path: &hir::Path<'_>,
+ permit_variants: bool,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ debug!(
+ "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
+ path.res, opt_self_ty, path.segments
+ );
+
+ let span = path.span;
+ match path.res {
+ Res::Def(DefKind::OpaqueTy, did) => {
+ // Check for desugared `impl Trait`.
+ assert!(ty::is_impl_trait_defn(tcx, did).is_none());
+ let item_segment = path.segments.split_last().unwrap();
+ self.prohibit_generics(item_segment.1.iter(), |err| {
+ err.note("`impl Trait` types can't have type parameters");
+ });
+ let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
+ self.normalize_ty(span, tcx.mk_opaque(did, substs))
+ }
+ Res::Def(
+ DefKind::Enum
+ | DefKind::TyAlias
+ | DefKind::Struct
+ | DefKind::Union
+ | DefKind::ForeignTy,
+ did,
+ ) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.split_last().unwrap().1.iter(), |_| {});
+ self.ast_path_to_ty(span, did, path.segments.last().unwrap())
+ }
+ Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
+ // Convert "variant type" as if it were a real type.
+ // The resulting `Ty` is type of the variant's enum for now.
+ assert_eq!(opt_self_ty, None);
+
+ let path_segs =
+ self.def_ids_for_value_path_segments(path.segments, None, kind, def_id);
+ let generic_segs: FxHashSet<_> =
+ path_segs.iter().map(|PathSeg(_, index)| index).collect();
+ self.prohibit_generics(
+ path.segments.iter().enumerate().filter_map(|(index, seg)| {
+ if !generic_segs.contains(&index) { Some(seg) } else { None }
+ }),
+ |err| {
+ err.note("enum variants can't have type parameters");
+ },
+ );
+
+ let PathSeg(def_id, index) = path_segs.last().unwrap();
+ self.ast_path_to_ty(span, *def_id, &path.segments[*index])
+ }
+ Res::Def(DefKind::TyParam, def_id) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ if let Some(span) = tcx.def_ident_span(def_id) {
+ let name = tcx.item_name(def_id);
+ err.span_note(span, &format!("type parameter `{name}` defined here"));
+ }
+ });
+
+ let def_id = def_id.expect_local();
+ let item_def_id = tcx.hir().ty_param_owner(def_id);
+ let generics = tcx.generics_of(item_def_id);
+ let index = generics.param_def_id_to_index[&def_id.to_def_id()];
+ tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id))
+ }
+ Res::SelfTy { trait_: Some(_), alias_to: None } => {
+ // `Self` in trait or type alias.
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ if let [hir::PathSegment { args: Some(args), ident, .. }] = &path.segments[..] {
+ err.span_suggestion_verbose(
+ ident.span.shrink_to_hi().to(args.span_ext),
+ "the `Self` type doesn't accept type parameters",
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ });
+ tcx.types.self_param
+ }
+ Res::SelfTy { trait_: _, alias_to: Some((def_id, forbid_generic)) } => {
+ // `Self` in impl (we know the concrete type).
+ assert_eq!(opt_self_ty, None);
+ // Try to evaluate any array length constants.
+ let ty = tcx.at(span).type_of(def_id);
+ let span_of_impl = tcx.span_of_impl(def_id);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ let def_id = match *ty.kind() {
+ ty::Adt(self_def, _) => self_def.did(),
+ _ => return,
+ };
+
+ let type_name = tcx.item_name(def_id);
+ let span_of_ty = tcx.def_ident_span(def_id);
+ let generics = tcx.generics_of(def_id).count();
+
+ let msg = format!("`Self` is of type `{ty}`");
+ if let (Ok(i_sp), Some(t_sp)) = (span_of_impl, span_of_ty) {
+ let mut span: MultiSpan = vec![t_sp].into();
+ span.push_span_label(
+ i_sp,
+ &format!("`Self` is on type `{type_name}` in this `impl`"),
+ );
+ let mut postfix = "";
+ if generics == 0 {
+ postfix = ", which doesn't have generic parameters";
+ }
+ span.push_span_label(
+ t_sp,
+ &format!("`Self` corresponds to this type{postfix}"),
+ );
+ err.span_note(span, &msg);
+ } else {
+ err.note(&msg);
+ }
+ for segment in path.segments {
+ if let Some(args) = segment.args && segment.ident.name == kw::SelfUpper {
+ if generics == 0 {
+ // FIXME(estebank): we could also verify that the arguments being
+ // work for the `enum`, instead of just looking if it takes *any*.
+ err.span_suggestion_verbose(
+ segment.ident.span.shrink_to_hi().to(args.span_ext),
+ "the `Self` type doesn't accept type parameters",
+ "",
+ Applicability::MachineApplicable,
+ );
+ return;
+ } else {
+ err.span_suggestion_verbose(
+ segment.ident.span,
+ format!(
+ "the `Self` type doesn't accept type parameters, use the \
+ concrete type's name `{type_name}` instead if you want to \
+ specify its type parameters"
+ ),
+ type_name,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ });
+ // HACK(min_const_generics): Forbid generic `Self` types
+ // here as we can't easily do that during nameres.
+ //
+ // We do this before normalization as we otherwise allow
+ // ```rust
+ // trait AlwaysApplicable { type Assoc; }
+ // impl<T: ?Sized> AlwaysApplicable for T { type Assoc = usize; }
+ //
+ // trait BindsParam<T> {
+ // type ArrayTy;
+ // }
+ // impl<T> BindsParam<T> for <T as AlwaysApplicable>::Assoc {
+ // type ArrayTy = [u8; Self::MAX];
+ // }
+ // ```
+ // Note that the normalization happens in the param env of
+ // the anon const, which is empty. This is why the
+ // `AlwaysApplicable` impl needs a `T: ?Sized` bound for
+ // this to compile if we were to normalize here.
+ if forbid_generic && ty.needs_subst() {
+ let mut err = tcx.sess.struct_span_err(
+ path.span,
+ "generic `Self` types are currently not permitted in anonymous constants",
+ );
+ if let Some(hir::Node::Item(&hir::Item {
+ kind: hir::ItemKind::Impl(ref impl_),
+ ..
+ })) = tcx.hir().get_if_local(def_id)
+ {
+ err.span_note(impl_.self_ty.span, "not a concrete type");
+ }
+ err.emit();
+ tcx.ty_error()
+ } else {
+ self.normalize_ty(span, ty)
+ }
+ }
+ Res::Def(DefKind::AssocTy, def_id) => {
+ debug_assert!(path.segments.len() >= 2);
+ self.prohibit_generics(path.segments[..path.segments.len() - 2].iter(), |_| {});
+ self.qpath_to_ty(
+ span,
+ opt_self_ty,
+ def_id,
+ &path.segments[path.segments.len() - 2],
+ path.segments.last().unwrap(),
+ )
+ }
+ Res::PrimTy(prim_ty) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ let name = prim_ty.name_str();
+ for segment in path.segments {
+ if let Some(args) = segment.args {
+ err.span_suggestion_verbose(
+ segment.ident.span.shrink_to_hi().to(args.span_ext),
+ &format!("primitive type `{name}` doesn't have generic parameters"),
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ });
+ match prim_ty {
+ hir::PrimTy::Bool => tcx.types.bool,
+ hir::PrimTy::Char => tcx.types.char,
+ hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
+ hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
+ hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
+ hir::PrimTy::Str => tcx.types.str_,
+ }
+ }
+ Res::Err => {
+ self.set_tainted_by_errors();
+ self.tcx().ty_error()
+ }
+ _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
+ }
+ }
+
+ /// Parses the programmer's textual representation of a type into our
+ /// internal notion of a type.
+ pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ self.ast_ty_to_ty_inner(ast_ty, false, false)
+ }
+
+ /// Parses the programmer's textual representation of a type into our
+ /// internal notion of a type. This is meant to be used within a path.
+ pub fn ast_ty_to_ty_in_path(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ self.ast_ty_to_ty_inner(ast_ty, false, true)
+ }
+
+ /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
+ /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
+ #[tracing::instrument(level = "debug", skip(self))]
+ fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool, in_path: bool) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let result_ty = match ast_ty.kind {
+ hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(ty)),
+ hir::TyKind::Ptr(ref mt) => {
+ tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(mt.ty), mutbl: mt.mutbl })
+ }
+ hir::TyKind::Rptr(ref region, ref mt) => {
+ let r = self.ast_region_to_region(region, None);
+ debug!(?r);
+ let t = self.ast_ty_to_ty_inner(mt.ty, true, false);
+ tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
+ }
+ hir::TyKind::Never => tcx.types.never,
+ hir::TyKind::Tup(fields) => tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(t))),
+ hir::TyKind::BareFn(bf) => {
+ require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, ast_ty.span);
+
+ tcx.mk_fn_ptr(self.ty_of_fn(
+ ast_ty.hir_id,
+ bf.unsafety,
+ bf.abi,
+ bf.decl,
+ None,
+ Some(ast_ty),
+ ))
+ }
+ hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
+ self.maybe_lint_bare_trait(ast_ty, in_path);
+ self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
+ }
+ hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
+ debug!(?maybe_qself, ?path);
+ let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
+ self.res_to_ty(opt_self_ty, path, false)
+ }
+ hir::TyKind::OpaqueDef(item_id, lifetimes) => {
+ let opaque_ty = tcx.hir().item(item_id);
+ let def_id = item_id.def_id.to_def_id();
+
+ match opaque_ty.kind {
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
+ self.impl_trait_ty_to_ty(def_id, lifetimes, origin)
+ }
+ ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
+ }
+ }
+ hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
+ debug!(?qself, ?segment);
+ let ty = self.ast_ty_to_ty_inner(qself, false, true);
+ self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, qself, segment, false)
+ .map(|(ty, _, _)| ty)
+ .unwrap_or_else(|_| tcx.ty_error())
+ }
+ hir::TyKind::Path(hir::QPath::LangItem(lang_item, span, _)) => {
+ let def_id = tcx.require_lang_item(lang_item, Some(span));
+ let (substs, _) = self.create_substs_for_ast_path(
+ span,
+ def_id,
+ &[],
+ &hir::PathSegment::invalid(),
+ &GenericArgs::none(),
+ true,
+ None,
+ );
+ EarlyBinder(self.normalize_ty(span, tcx.at(span).type_of(def_id)))
+ .subst(tcx, substs)
+ }
+ hir::TyKind::Array(ref ty, ref length) => {
+ let length = match length {
+ &hir::ArrayLen::Infer(_, span) => self.ct_infer(tcx.types.usize, None, span),
+ hir::ArrayLen::Body(constant) => {
+ let length_def_id = tcx.hir().local_def_id(constant.hir_id);
+ ty::Const::from_anon_const(tcx, length_def_id)
+ }
+ };
+
+ let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(ty), length));
+ self.normalize_ty(ast_ty.span, array_ty)
+ }
+ hir::TyKind::Typeof(ref e) => {
+ let ty = tcx.type_of(tcx.hir().local_def_id(e.hir_id));
+ let span = ast_ty.span;
+ tcx.sess.emit_err(TypeofReservedKeywordUsed {
+ span,
+ ty,
+ opt_sugg: Some((span, Applicability::MachineApplicable))
+ .filter(|_| ty.is_suggestable(tcx, false)),
+ });
+
+ ty
+ }
+ hir::TyKind::Infer => {
+ // Infer also appears as the type of arguments or return
+ // values in an ExprKind::Closure, or as
+ // the type of local variables. Both of these cases are
+ // handled specially and will not descend into this routine.
+ self.ty_infer(None, ast_ty.span)
+ }
+ hir::TyKind::Err => tcx.ty_error(),
+ };
+
+ debug!(?result_ty);
+
+ self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
+ result_ty
+ }
+
+ fn impl_trait_ty_to_ty(
+ &self,
+ def_id: DefId,
+ lifetimes: &[hir::GenericArg<'_>],
+ origin: OpaqueTyOrigin,
+ ) -> Ty<'tcx> {
+ debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
+ let tcx = self.tcx();
+
+ let generics = tcx.generics_of(def_id);
+
+ debug!("impl_trait_ty_to_ty: generics={:?}", generics);
+ let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
+ if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
+ // Our own parameters are the resolved lifetimes.
+ if let GenericParamDefKind::Lifetime = param.kind {
+ if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
+ self.ast_region_to_region(lifetime, None).into()
+ } else {
+ bug!()
+ }
+ } else {
+ bug!()
+ }
+ } else {
+ match param.kind {
+ // For RPIT (return position impl trait), only lifetimes
+ // mentioned in the impl Trait predicate are captured by
+ // the opaque type, so the lifetime parameters from the
+ // parent item need to be replaced with `'static`.
+ //
+ // For `impl Trait` in the types of statics, constants,
+ // locals and type aliases. These capture all parent
+ // lifetimes, so they can use their identity subst.
+ GenericParamDefKind::Lifetime
+ if matches!(
+ origin,
+ hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..)
+ ) =>
+ {
+ tcx.lifetimes.re_static.into()
+ }
+ _ => tcx.mk_param_from_def(param),
+ }
+ }
+ });
+ debug!("impl_trait_ty_to_ty: substs={:?}", substs);
+
+ let ty = tcx.mk_opaque(def_id, substs);
+ debug!("impl_trait_ty_to_ty: {}", ty);
+ ty
+ }
+
+ pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
+ match ty.kind {
+ hir::TyKind::Infer if expected_ty.is_some() => {
+ self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
+ expected_ty.unwrap()
+ }
+ _ => self.ast_ty_to_ty(ty),
+ }
+ }
+
+ pub fn ty_of_fn(
+ &self,
+ hir_id: hir::HirId,
+ unsafety: hir::Unsafety,
+ abi: abi::Abi,
+ decl: &hir::FnDecl<'_>,
+ generics: Option<&hir::Generics<'_>>,
+ hir_ty: Option<&hir::Ty<'_>>,
+ ) -> ty::PolyFnSig<'tcx> {
+ debug!("ty_of_fn");
+
+ let tcx = self.tcx();
+ let bound_vars = tcx.late_bound_vars(hir_id);
+ debug!(?bound_vars);
+
+ // We proactively collect all the inferred type params to emit a single error per fn def.
+ let mut visitor = HirPlaceholderCollector::default();
+ let mut infer_replacements = vec![];
+
+ if let Some(generics) = generics {
+ walk_generics(&mut visitor, generics);
+ }
+
+ let input_tys: Vec<_> = decl
+ .inputs
+ .iter()
+ .enumerate()
+ .map(|(i, a)| {
+ if let hir::TyKind::Infer = a.kind && !self.allow_ty_infer() {
+ if let Some(suggested_ty) =
+ self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, Some(i))
+ {
+ infer_replacements.push((a.span, suggested_ty.to_string()));
+ return suggested_ty;
+ }
+ }
+
+ // Only visit the type looking for `_` if we didn't fix the type above
+ visitor.visit_ty(a);
+ self.ty_of_arg(a, None)
+ })
+ .collect();
+
+ let output_ty = match decl.output {
+ hir::FnRetTy::Return(output) => {
+ if let hir::TyKind::Infer = output.kind
+ && !self.allow_ty_infer()
+ && let Some(suggested_ty) =
+ self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, None)
+ {
+ infer_replacements.push((output.span, suggested_ty.to_string()));
+ suggested_ty
+ } else {
+ visitor.visit_ty(output);
+ self.ast_ty_to_ty(output)
+ }
+ }
+ hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
+ };
+
+ debug!("ty_of_fn: output_ty={:?}", output_ty);
+
+ let fn_ty = tcx.mk_fn_sig(input_tys.into_iter(), output_ty, decl.c_variadic, unsafety, abi);
+ let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
+
+ if !self.allow_ty_infer() && !(visitor.0.is_empty() && infer_replacements.is_empty()) {
+ // We always collect the spans for placeholder types when evaluating `fn`s, but we
+ // only want to emit an error complaining about them if infer types (`_`) are not
+ // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
+ // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
+
+ let mut diag = crate::collect::placeholder_type_error_diag(
+ tcx,
+ generics,
+ visitor.0,
+ infer_replacements.iter().map(|(s, _)| *s).collect(),
+ true,
+ hir_ty,
+ "function",
+ );
+
+ if !infer_replacements.is_empty() {
+ diag.multipart_suggestion(&format!(
+ "try replacing `_` with the type{} in the corresponding trait method signature",
+ rustc_errors::pluralize!(infer_replacements.len()),
+ ), infer_replacements, Applicability::MachineApplicable);
+ }
+
+ diag.emit();
+ }
+
+ // Find any late-bound regions declared in return type that do
+ // not appear in the arguments. These are not well-formed.
+ //
+ // Example:
+ // for<'a> fn() -> &'a str <-- 'a is bad
+ // for<'a> fn(&'a String) -> &'a str <-- 'a is ok
+ let inputs = bare_fn_ty.inputs();
+ let late_bound_in_args =
+ tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
+ let output = bare_fn_ty.output();
+ let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
+
+ self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
+ struct_span_err!(
+ tcx.sess,
+ decl.output.span(),
+ E0581,
+ "return type references {}, which is not constrained by the fn input types",
+ br_name
+ )
+ });
+
+ bare_fn_ty
+ }
+
+ /// Given a fn_hir_id for a impl function, suggest the type that is found on the
+ /// corresponding function in the trait that the impl implements, if it exists.
+ /// If arg_idx is Some, then it corresponds to an input type index, otherwise it
+ /// corresponds to the return type.
+ fn suggest_trait_fn_ty_for_impl_fn_infer(
+ &self,
+ fn_hir_id: hir::HirId,
+ arg_idx: Option<usize>,
+ ) -> Option<Ty<'tcx>> {
+ let tcx = self.tcx();
+ let hir = tcx.hir();
+
+ let hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), ident, .. }) =
+ hir.get(fn_hir_id) else { return None };
+ let hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(i), .. }) =
+ hir.get(hir.get_parent_node(fn_hir_id)) else { bug!("ImplItem should have Impl parent") };
+
+ let trait_ref =
+ self.instantiate_mono_trait_ref(i.of_trait.as_ref()?, self.ast_ty_to_ty(i.self_ty));
+
+ let assoc = tcx.associated_items(trait_ref.def_id).find_by_name_and_kind(
+ tcx,
+ *ident,
+ ty::AssocKind::Fn,
+ trait_ref.def_id,
+ )?;
+
+ let fn_sig = tcx.bound_fn_sig(assoc.def_id).subst(
+ tcx,
+ trait_ref.substs.extend_to(tcx, assoc.def_id, |param, _| tcx.mk_param_from_def(param)),
+ );
+
+ let ty = if let Some(arg_idx) = arg_idx { fn_sig.input(arg_idx) } else { fn_sig.output() };
+
+ Some(tcx.liberate_late_bound_regions(fn_hir_id.expect_owner().to_def_id(), ty))
+ }
+
+ fn validate_late_bound_regions(
+ &self,
+ constrained_regions: FxHashSet<ty::BoundRegionKind>,
+ referenced_regions: FxHashSet<ty::BoundRegionKind>,
+ generate_err: impl Fn(&str) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ ) {
+ for br in referenced_regions.difference(&constrained_regions) {
+ let br_name = match *br {
+ ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(_) | ty::BrEnv => {
+ "an anonymous lifetime".to_string()
+ }
+ ty::BrNamed(_, name) => format!("lifetime `{}`", name),
+ };
+
+ let mut err = generate_err(&br_name);
+
+ if let ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(_) = *br {
+ // The only way for an anonymous lifetime to wind up
+ // in the return type but **also** be unconstrained is
+ // if it only appears in "associated types" in the
+ // input. See #47511 and #62200 for examples. In this case,
+ // though we can easily give a hint that ought to be
+ // relevant.
+ err.note(
+ "lifetimes appearing in an associated type are not considered constrained",
+ );
+ }
+
+ err.emit();
+ }
+ }
+
+ /// Given the bounds on an object, determines what single region bound (if any) we can
+ /// use to summarize this type. The basic idea is that we will use the bound the user
+ /// provided, if they provided one, and otherwise search the supertypes of trait bounds
+ /// for region bounds. It may be that we can derive no bound at all, in which case
+ /// we return `None`.
+ fn compute_object_lifetime_bound(
+ &self,
+ span: Span,
+ existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+ ) -> Option<ty::Region<'tcx>> // if None, use the default
+ {
+ let tcx = self.tcx();
+
+ debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
+
+ // No explicit region bound specified. Therefore, examine trait
+ // bounds and see if we can derive region bounds from those.
+ let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
+
+ // If there are no derived region bounds, then report back that we
+ // can find no region bound. The caller will use the default.
+ if derived_region_bounds.is_empty() {
+ return None;
+ }
+
+ // If any of the derived region bounds are 'static, that is always
+ // the best choice.
+ if derived_region_bounds.iter().any(|r| r.is_static()) {
+ return Some(tcx.lifetimes.re_static);
+ }
+
+ // Determine whether there is exactly one unique region in the set
+ // of derived region bounds. If so, use that. Otherwise, report an
+ // error.
+ let r = derived_region_bounds[0];
+ if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
+ tcx.sess.emit_err(AmbiguousLifetimeBound { span });
+ }
+ Some(r)
+ }
+
+ /// Make sure that we are in the condition to suggest the blanket implementation.
+ fn maybe_lint_blanket_trait_impl<T: rustc_errors::EmissionGuarantee>(
+ &self,
+ self_ty: &hir::Ty<'_>,
+ diag: &mut DiagnosticBuilder<'_, T>,
+ ) {
+ let tcx = self.tcx();
+ let parent_id = tcx.hir().get_parent_item(self_ty.hir_id);
+ if let hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Impl(hir::Impl {
+ self_ty: impl_self_ty, of_trait: Some(of_trait_ref), generics, ..
+ }),
+ ..
+ }) = tcx.hir().get_by_def_id(parent_id) && self_ty.hir_id == impl_self_ty.hir_id
+ {
+ if !of_trait_ref.trait_def_id().map_or(false, |def_id| def_id.is_local()) {
+ return;
+ }
+ let of_trait_span = of_trait_ref.path.span;
+ // make sure that we are not calling unwrap to abort during the compilation
+ let Ok(impl_trait_name) = tcx.sess.source_map().span_to_snippet(self_ty.span) else { return; };
+ let Ok(of_trait_name) = tcx.sess.source_map().span_to_snippet(of_trait_span) else { return; };
+ // check if the trait has generics, to make a correct suggestion
+ let param_name = generics.params.next_type_param_name(None);
+
+ let add_generic_sugg = if let Some(span) = generics.span_for_param_suggestion() {
+ (span, format!(", {}: {}", param_name, impl_trait_name))
+ } else {
+ (generics.span, format!("<{}: {}>", param_name, impl_trait_name))
+ };
+ diag.multipart_suggestion(
+ format!("alternatively use a blanket \
+ implementation to implement `{of_trait_name}` for \
+ all types that also implement `{impl_trait_name}`"),
+ vec![
+ (self_ty.span, param_name),
+ add_generic_sugg,
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ fn maybe_lint_bare_trait(&self, self_ty: &hir::Ty<'_>, in_path: bool) {
+ let tcx = self.tcx();
+ if let hir::TyKind::TraitObject([poly_trait_ref, ..], _, TraitObjectSyntax::None) =
+ self_ty.kind
+ {
+ let needs_bracket = in_path
+ && !tcx
+ .sess
+ .source_map()
+ .span_to_prev_source(self_ty.span)
+ .ok()
+ .map_or(false, |s| s.trim_end().ends_with('<'));
+
+ let is_global = poly_trait_ref.trait_ref.path.is_global();
+ let sugg = Vec::from_iter([
+ (
+ self_ty.span.shrink_to_lo(),
+ format!(
+ "{}dyn {}",
+ if needs_bracket { "<" } else { "" },
+ if is_global { "(" } else { "" },
+ ),
+ ),
+ (
+ self_ty.span.shrink_to_hi(),
+ format!(
+ "{}{}",
+ if is_global { ")" } else { "" },
+ if needs_bracket { ">" } else { "" },
+ ),
+ ),
+ ]);
+ if self_ty.span.edition() >= Edition::Edition2021 {
+ let msg = "trait objects must include the `dyn` keyword";
+ let label = "add `dyn` keyword before this trait";
+ let mut diag =
+ rustc_errors::struct_span_err!(tcx.sess, self_ty.span, E0782, "{}", msg);
+ diag.multipart_suggestion_verbose(label, sugg, Applicability::MachineApplicable);
+ // check if the impl trait that we are considering is a impl of a local trait
+ self.maybe_lint_blanket_trait_impl(&self_ty, &mut diag);
+ diag.emit();
+ } else {
+ let msg = "trait objects without an explicit `dyn` are deprecated";
+ tcx.struct_span_lint_hir(
+ BARE_TRAIT_OBJECTS,
+ self_ty.hir_id,
+ self_ty.span,
+ |lint| {
+ let mut diag = lint.build(msg);
+ diag.multipart_suggestion_verbose(
+ "use `dyn`",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ self.maybe_lint_blanket_trait_impl::<()>(&self_ty, &mut diag);
+ diag.emit();
+ },
+ );
+ }
+ }
+ }
+}