summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/dropck.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/dropck.rs')
-rw-r--r--compiler/rustc_typeck/src/check/dropck.rs327
1 files changed, 327 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/dropck.rs b/compiler/rustc_typeck/src/check/dropck.rs
new file mode 100644
index 000000000..321064ec0
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/dropck.rs
@@ -0,0 +1,327 @@
+// FIXME(@lcnr): Move this module out of `rustc_typeck`.
+//
+// We don't do any drop checking during hir typeck.
+use crate::hir::def_id::{DefId, LocalDefId};
+use rustc_errors::{struct_span_err, ErrorGuaranteed};
+use rustc_middle::ty::error::TypeError;
+use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::util::IgnoreRegions;
+use rustc_middle::ty::{self, Predicate, Ty, TyCtxt};
+
+/// This function confirms that the `Drop` implementation identified by
+/// `drop_impl_did` is not any more specialized than the type it is
+/// attached to (Issue #8142).
+///
+/// This means:
+///
+/// 1. The self type must be nominal (this is already checked during
+/// coherence),
+///
+/// 2. The generic region/type parameters of the impl's self type must
+/// all be parameters of the Drop impl itself (i.e., no
+/// specialization like `impl Drop for Foo<i32>`), and,
+///
+/// 3. Any bounds on the generic parameters must be reflected in the
+/// struct/enum definition for the nominal type itself (i.e.
+/// cannot do `struct S<T>; impl<T:Clone> Drop for S<T> { ... }`).
+///
+pub fn check_drop_impl(tcx: TyCtxt<'_>, drop_impl_did: DefId) -> Result<(), ErrorGuaranteed> {
+ let dtor_self_type = tcx.type_of(drop_impl_did);
+ let dtor_predicates = tcx.predicates_of(drop_impl_did);
+ match dtor_self_type.kind() {
+ ty::Adt(adt_def, self_to_impl_substs) => {
+ ensure_drop_params_and_item_params_correspond(
+ tcx,
+ drop_impl_did.expect_local(),
+ adt_def.did(),
+ self_to_impl_substs,
+ )?;
+
+ ensure_drop_predicates_are_implied_by_item_defn(
+ tcx,
+ dtor_predicates,
+ adt_def.did().expect_local(),
+ self_to_impl_substs,
+ )
+ }
+ _ => {
+ // Destructors only work on nominal types. This was
+ // already checked by coherence, but compilation may
+ // not have been terminated.
+ let span = tcx.def_span(drop_impl_did);
+ let reported = tcx.sess.delay_span_bug(
+ span,
+ &format!("should have been rejected by coherence check: {dtor_self_type}"),
+ );
+ Err(reported)
+ }
+ }
+}
+
+fn ensure_drop_params_and_item_params_correspond<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ drop_impl_did: LocalDefId,
+ self_type_did: DefId,
+ drop_impl_substs: SubstsRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let Err(arg) = tcx.uses_unique_generic_params(drop_impl_substs, IgnoreRegions::No) else {
+ return Ok(())
+ };
+
+ let drop_impl_span = tcx.def_span(drop_impl_did);
+ let item_span = tcx.def_span(self_type_did);
+ let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
+ let mut err =
+ struct_span_err!(tcx.sess, drop_impl_span, E0366, "`Drop` impls cannot be specialized");
+ match arg {
+ ty::util::NotUniqueParam::DuplicateParam(arg) => {
+ err.note(&format!("`{arg}` is mentioned multiple times"))
+ }
+ ty::util::NotUniqueParam::NotParam(arg) => {
+ err.note(&format!("`{arg}` is not a generic parameter"))
+ }
+ };
+ err.span_note(
+ item_span,
+ &format!(
+ "use the same sequence of generic lifetime, type and const parameters \
+ as the {self_descr} definition",
+ ),
+ );
+ Err(err.emit())
+}
+
+/// Confirms that every predicate imposed by dtor_predicates is
+/// implied by assuming the predicates attached to self_type_did.
+fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ dtor_predicates: ty::GenericPredicates<'tcx>,
+ self_type_did: LocalDefId,
+ self_to_impl_substs: SubstsRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let mut result = Ok(());
+
+ // Here is an example, analogous to that from
+ // `compare_impl_method`.
+ //
+ // Consider a struct type:
+ //
+ // struct Type<'c, 'b:'c, 'a> {
+ // x: &'a Contents // (contents are irrelevant;
+ // y: &'c Cell<&'b Contents>, // only the bounds matter for our purposes.)
+ // }
+ //
+ // and a Drop impl:
+ //
+ // impl<'z, 'y:'z, 'x:'y> Drop for P<'z, 'y, 'x> {
+ // fn drop(&mut self) { self.y.set(self.x); } // (only legal if 'x: 'y)
+ // }
+ //
+ // We start out with self_to_impl_substs, that maps the generic
+ // parameters of Type to that of the Drop impl.
+ //
+ // self_to_impl_substs = {'c => 'z, 'b => 'y, 'a => 'x}
+ //
+ // Applying this to the predicates (i.e., assumptions) provided by the item
+ // definition yields the instantiated assumptions:
+ //
+ // ['y : 'z]
+ //
+ // We then check all of the predicates of the Drop impl:
+ //
+ // ['y:'z, 'x:'y]
+ //
+ // and ensure each is in the list of instantiated
+ // assumptions. Here, `'y:'z` is present, but `'x:'y` is
+ // absent. So we report an error that the Drop impl injected a
+ // predicate that is not present on the struct definition.
+
+ // We can assume the predicates attached to struct/enum definition
+ // hold.
+ let generic_assumptions = tcx.predicates_of(self_type_did);
+
+ let assumptions_in_impl_context = generic_assumptions.instantiate(tcx, &self_to_impl_substs);
+ let assumptions_in_impl_context = assumptions_in_impl_context.predicates;
+
+ let self_param_env = tcx.param_env(self_type_did);
+
+ // An earlier version of this code attempted to do this checking
+ // via the traits::fulfill machinery. However, it ran into trouble
+ // since the fulfill machinery merely turns outlives-predicates
+ // 'a:'b and T:'b into region inference constraints. It is simpler
+ // just to look for all the predicates directly.
+
+ assert_eq!(dtor_predicates.parent, None);
+ for &(predicate, predicate_sp) in dtor_predicates.predicates {
+ // (We do not need to worry about deep analysis of type
+ // expressions etc because the Drop impls are already forced
+ // to take on a structure that is roughly an alpha-renaming of
+ // the generic parameters of the item definition.)
+
+ // This path now just checks *all* predicates via an instantiation of
+ // the `SimpleEqRelation`, which simply forwards to the `relate` machinery
+ // after taking care of anonymizing late bound regions.
+ //
+ // However, it may be more efficient in the future to batch
+ // the analysis together via the fulfill (see comment above regarding
+ // the usage of the fulfill machinery), rather than the
+ // repeated `.iter().any(..)` calls.
+
+ // This closure is a more robust way to check `Predicate` equality
+ // than simple `==` checks (which were the previous implementation).
+ // It relies on `ty::relate` for `TraitPredicate`, `ProjectionPredicate`,
+ // `ConstEvaluatable` and `TypeOutlives` (which implement the Relate trait),
+ // while delegating on simple equality for the other `Predicate`.
+ // This implementation solves (Issue #59497) and (Issue #58311).
+ // It is unclear to me at the moment whether the approach based on `relate`
+ // could be extended easily also to the other `Predicate`.
+ let predicate_matches_closure = |p: Predicate<'tcx>| {
+ let mut relator: SimpleEqRelation<'tcx> = SimpleEqRelation::new(tcx, self_param_env);
+ let predicate = predicate.kind();
+ let p = p.kind();
+ match (predicate.skip_binder(), p.skip_binder()) {
+ (ty::PredicateKind::Trait(a), ty::PredicateKind::Trait(b)) => {
+ // Since struct predicates cannot have ~const, project the impl predicate
+ // onto one that ignores the constness. This is equivalent to saying that
+ // we match a `Trait` bound on the struct with a `Trait` or `~const Trait`
+ // in the impl.
+ let non_const_a =
+ ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..a };
+ relator.relate(predicate.rebind(non_const_a), p.rebind(b)).is_ok()
+ }
+ (ty::PredicateKind::Projection(a), ty::PredicateKind::Projection(b)) => {
+ relator.relate(predicate.rebind(a), p.rebind(b)).is_ok()
+ }
+ (
+ ty::PredicateKind::ConstEvaluatable(a),
+ ty::PredicateKind::ConstEvaluatable(b),
+ ) => tcx.try_unify_abstract_consts(self_param_env.and((a, b))),
+ (
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_a, lt_a)),
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_b, lt_b)),
+ ) => {
+ relator.relate(predicate.rebind(ty_a), p.rebind(ty_b)).is_ok()
+ && relator.relate(predicate.rebind(lt_a), p.rebind(lt_b)).is_ok()
+ }
+ (ty::PredicateKind::WellFormed(arg_a), ty::PredicateKind::WellFormed(arg_b)) => {
+ relator.relate(predicate.rebind(arg_a), p.rebind(arg_b)).is_ok()
+ }
+ _ => predicate == p,
+ }
+ };
+
+ if !assumptions_in_impl_context.iter().copied().any(predicate_matches_closure) {
+ let item_span = tcx.def_span(self_type_did);
+ let self_descr = tcx.def_kind(self_type_did).descr(self_type_did.to_def_id());
+ let reported = struct_span_err!(
+ tcx.sess,
+ predicate_sp,
+ E0367,
+ "`Drop` impl requires `{predicate}` but the {self_descr} it is implemented for does not",
+ )
+ .span_note(item_span, "the implementor must specify the same requirement")
+ .emit();
+ result = Err(reported);
+ }
+ }
+
+ result
+}
+
+// This is an implementation of the TypeRelation trait with the
+// aim of simply comparing for equality (without side-effects).
+// It is not intended to be used anywhere else other than here.
+pub(crate) struct SimpleEqRelation<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+}
+
+impl<'tcx> SimpleEqRelation<'tcx> {
+ fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> SimpleEqRelation<'tcx> {
+ SimpleEqRelation { tcx, param_env }
+ }
+}
+
+impl<'tcx> TypeRelation<'tcx> for SimpleEqRelation<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn param_env(&self) -> ty::ParamEnv<'tcx> {
+ self.param_env
+ }
+
+ fn tag(&self) -> &'static str {
+ "dropck::SimpleEqRelation"
+ }
+
+ fn a_is_expected(&self) -> bool {
+ true
+ }
+
+ fn relate_with_variance<T: Relate<'tcx>>(
+ &mut self,
+ _: ty::Variance,
+ _info: ty::VarianceDiagInfo<'tcx>,
+ a: T,
+ b: T,
+ ) -> RelateResult<'tcx, T> {
+ // Here we ignore variance because we require drop impl's types
+ // to be *exactly* the same as to the ones in the struct definition.
+ self.relate(a, b)
+ }
+
+ fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
+ debug!("SimpleEqRelation::tys(a={:?}, b={:?})", a, b);
+ ty::relate::super_relate_tys(self, a, b)
+ }
+
+ fn regions(
+ &mut self,
+ a: ty::Region<'tcx>,
+ b: ty::Region<'tcx>,
+ ) -> RelateResult<'tcx, ty::Region<'tcx>> {
+ debug!("SimpleEqRelation::regions(a={:?}, b={:?})", a, b);
+
+ // We can just equate the regions because LBRs have been
+ // already anonymized.
+ if a == b {
+ Ok(a)
+ } else {
+ // I'm not sure is this `TypeError` is the right one, but
+ // it should not matter as it won't be checked (the dropck
+ // will emit its own, more informative and higher-level errors
+ // in case anything goes wrong).
+ Err(TypeError::RegionsPlaceholderMismatch)
+ }
+ }
+
+ fn consts(
+ &mut self,
+ a: ty::Const<'tcx>,
+ b: ty::Const<'tcx>,
+ ) -> RelateResult<'tcx, ty::Const<'tcx>> {
+ debug!("SimpleEqRelation::consts(a={:?}, b={:?})", a, b);
+ ty::relate::super_relate_consts(self, a, b)
+ }
+
+ fn binders<T>(
+ &mut self,
+ a: ty::Binder<'tcx, T>,
+ b: ty::Binder<'tcx, T>,
+ ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
+ where
+ T: Relate<'tcx>,
+ {
+ debug!("SimpleEqRelation::binders({:?}: {:?}", a, b);
+
+ // Anonymizing the LBRs is necessary to solve (Issue #59497).
+ // After we do so, it should be totally fine to skip the binders.
+ let anon_a = self.tcx.anonymize_bound_vars(a);
+ let anon_b = self.tcx.anonymize_bound_vars(b);
+ self.relate(anon_a.skip_binder(), anon_b.skip_binder())?;
+
+ Ok(a)
+ }
+}