summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/fallback.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/fallback.rs')
-rw-r--r--compiler/rustc_typeck/src/check/fallback.rs398
1 files changed, 398 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/fallback.rs b/compiler/rustc_typeck/src/check/fallback.rs
new file mode 100644
index 000000000..4059b3403
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/fallback.rs
@@ -0,0 +1,398 @@
+use crate::check::FnCtxt;
+use rustc_data_structures::{
+ fx::{FxHashMap, FxHashSet},
+ graph::WithSuccessors,
+ graph::{iterate::DepthFirstSearch, vec_graph::VecGraph},
+};
+use rustc_middle::ty::{self, Ty};
+
+impl<'tcx> FnCtxt<'_, 'tcx> {
+ /// Performs type inference fallback, returning true if any fallback
+ /// occurs.
+ pub(super) fn type_inference_fallback(&self) -> bool {
+ debug!(
+ "type-inference-fallback start obligations: {:#?}",
+ self.fulfillment_cx.borrow_mut().pending_obligations()
+ );
+
+ // All type checking constraints were added, try to fallback unsolved variables.
+ self.select_obligations_where_possible(false, |_| {});
+
+ debug!(
+ "type-inference-fallback post selection obligations: {:#?}",
+ self.fulfillment_cx.borrow_mut().pending_obligations()
+ );
+
+ // Check if we have any unsolved variables. If not, no need for fallback.
+ let unsolved_variables = self.unsolved_variables();
+ if unsolved_variables.is_empty() {
+ return false;
+ }
+
+ let diverging_fallback = self.calculate_diverging_fallback(&unsolved_variables);
+
+ let mut fallback_has_occurred = false;
+ // We do fallback in two passes, to try to generate
+ // better error messages.
+ // The first time, we do *not* replace opaque types.
+ for ty in unsolved_variables {
+ debug!("unsolved_variable = {:?}", ty);
+ fallback_has_occurred |= self.fallback_if_possible(ty, &diverging_fallback);
+ }
+
+ // We now see if we can make progress. This might cause us to
+ // unify inference variables for opaque types, since we may
+ // have unified some other type variables during the first
+ // phase of fallback. This means that we only replace
+ // inference variables with their underlying opaque types as a
+ // last resort.
+ //
+ // In code like this:
+ //
+ // ```rust
+ // type MyType = impl Copy;
+ // fn produce() -> MyType { true }
+ // fn bad_produce() -> MyType { panic!() }
+ // ```
+ //
+ // we want to unify the opaque inference variable in `bad_produce`
+ // with the diverging fallback for `panic!` (e.g. `()` or `!`).
+ // This will produce a nice error message about conflicting concrete
+ // types for `MyType`.
+ //
+ // If we had tried to fallback the opaque inference variable to `MyType`,
+ // we will generate a confusing type-check error that does not explicitly
+ // refer to opaque types.
+ self.select_obligations_where_possible(fallback_has_occurred, |_| {});
+
+ fallback_has_occurred
+ }
+
+ // Tries to apply a fallback to `ty` if it is an unsolved variable.
+ //
+ // - Unconstrained ints are replaced with `i32`.
+ //
+ // - Unconstrained floats are replaced with with `f64`.
+ //
+ // - Non-numerics may get replaced with `()` or `!`, depending on
+ // how they were categorized by `calculate_diverging_fallback`
+ // (and the setting of `#![feature(never_type_fallback)]`).
+ //
+ // Fallback becomes very dubious if we have encountered
+ // type-checking errors. In that case, fallback to Error.
+ //
+ // The return value indicates whether fallback has occurred.
+ fn fallback_if_possible(
+ &self,
+ ty: Ty<'tcx>,
+ diverging_fallback: &FxHashMap<Ty<'tcx>, Ty<'tcx>>,
+ ) -> bool {
+ // Careful: we do NOT shallow-resolve `ty`. We know that `ty`
+ // is an unsolved variable, and we determine its fallback
+ // based solely on how it was created, not what other type
+ // variables it may have been unified with since then.
+ //
+ // The reason this matters is that other attempts at fallback
+ // may (in principle) conflict with this fallback, and we wish
+ // to generate a type error in that case. (However, this
+ // actually isn't true right now, because we're only using the
+ // builtin fallback rules. This would be true if we were using
+ // user-supplied fallbacks. But it's still useful to write the
+ // code to detect bugs.)
+ //
+ // (Note though that if we have a general type variable `?T`
+ // that is then unified with an integer type variable `?I`
+ // that ultimately never gets resolved to a special integral
+ // type, `?T` is not considered unsolved, but `?I` is. The
+ // same is true for float variables.)
+ let fallback = match ty.kind() {
+ _ if self.is_tainted_by_errors() => self.tcx.ty_error(),
+ ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
+ ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
+ _ => match diverging_fallback.get(&ty) {
+ Some(&fallback_ty) => fallback_ty,
+ None => return false,
+ },
+ };
+ debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);
+
+ let span = self
+ .infcx
+ .type_var_origin(ty)
+ .map(|origin| origin.span)
+ .unwrap_or(rustc_span::DUMMY_SP);
+ self.demand_eqtype(span, ty, fallback);
+ true
+ }
+
+ /// The "diverging fallback" system is rather complicated. This is
+ /// a result of our need to balance 'do the right thing' with
+ /// backwards compatibility.
+ ///
+ /// "Diverging" type variables are variables created when we
+ /// coerce a `!` type into an unbound type variable `?X`. If they
+ /// never wind up being constrained, the "right and natural" thing
+ /// is that `?X` should "fallback" to `!`. This means that e.g. an
+ /// expression like `Some(return)` will ultimately wind up with a
+ /// type like `Option<!>` (presuming it is not assigned or
+ /// constrained to have some other type).
+ ///
+ /// However, the fallback used to be `()` (before the `!` type was
+ /// added). Moreover, there are cases where the `!` type 'leaks
+ /// out' from dead code into type variables that affect live
+ /// code. The most common case is something like this:
+ ///
+ /// ```rust
+ /// # fn foo() -> i32 { 4 }
+ /// match foo() {
+ /// 22 => Default::default(), // call this type `?D`
+ /// _ => return, // return has type `!`
+ /// } // call the type of this match `?M`
+ /// ```
+ ///
+ /// Here, coercing the type `!` into `?M` will create a diverging
+ /// type variable `?X` where `?X <: ?M`. We also have that `?D <:
+ /// ?M`. If `?M` winds up unconstrained, then `?X` will
+ /// fallback. If it falls back to `!`, then all the type variables
+ /// will wind up equal to `!` -- this includes the type `?D`
+ /// (since `!` doesn't implement `Default`, we wind up a "trait
+ /// not implemented" error in code like this). But since the
+ /// original fallback was `()`, this code used to compile with `?D
+ /// = ()`. This is somewhat surprising, since `Default::default()`
+ /// on its own would give an error because the types are
+ /// insufficiently constrained.
+ ///
+ /// Our solution to this dilemma is to modify diverging variables
+ /// so that they can *either* fallback to `!` (the default) or to
+ /// `()` (the backwards compatibility case). We decide which
+ /// fallback to use based on whether there is a coercion pattern
+ /// like this:
+ ///
+ /// ```ignore (not-rust)
+ /// ?Diverging -> ?V
+ /// ?NonDiverging -> ?V
+ /// ?V != ?NonDiverging
+ /// ```
+ ///
+ /// Here `?Diverging` represents some diverging type variable and
+ /// `?NonDiverging` represents some non-diverging type
+ /// variable. `?V` can be any type variable (diverging or not), so
+ /// long as it is not equal to `?NonDiverging`.
+ ///
+ /// Intuitively, what we are looking for is a case where a
+ /// "non-diverging" type variable (like `?M` in our example above)
+ /// is coerced *into* some variable `?V` that would otherwise
+ /// fallback to `!`. In that case, we make `?V` fallback to `!`,
+ /// along with anything that would flow into `?V`.
+ ///
+ /// The algorithm we use:
+ /// * Identify all variables that are coerced *into* by a
+ /// diverging variable. Do this by iterating over each
+ /// diverging, unsolved variable and finding all variables
+ /// reachable from there. Call that set `D`.
+ /// * Walk over all unsolved, non-diverging variables, and find
+ /// any variable that has an edge into `D`.
+ fn calculate_diverging_fallback(
+ &self,
+ unsolved_variables: &[Ty<'tcx>],
+ ) -> FxHashMap<Ty<'tcx>, Ty<'tcx>> {
+ debug!("calculate_diverging_fallback({:?})", unsolved_variables);
+
+ let relationships = self.fulfillment_cx.borrow_mut().relationships().clone();
+
+ // Construct a coercion graph where an edge `A -> B` indicates
+ // a type variable is that is coerced
+ let coercion_graph = self.create_coercion_graph();
+
+ // Extract the unsolved type inference variable vids; note that some
+ // unsolved variables are integer/float variables and are excluded.
+ let unsolved_vids = unsolved_variables.iter().filter_map(|ty| ty.ty_vid());
+
+ // Compute the diverging root vids D -- that is, the root vid of
+ // those type variables that (a) are the target of a coercion from
+ // a `!` type and (b) have not yet been solved.
+ //
+ // These variables are the ones that are targets for fallback to
+ // either `!` or `()`.
+ let diverging_roots: FxHashSet<ty::TyVid> = self
+ .diverging_type_vars
+ .borrow()
+ .iter()
+ .map(|&ty| self.shallow_resolve(ty))
+ .filter_map(|ty| ty.ty_vid())
+ .map(|vid| self.root_var(vid))
+ .collect();
+ debug!(
+ "calculate_diverging_fallback: diverging_type_vars={:?}",
+ self.diverging_type_vars.borrow()
+ );
+ debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);
+
+ // Find all type variables that are reachable from a diverging
+ // type variable. These will typically default to `!`, unless
+ // we find later that they are *also* reachable from some
+ // other type variable outside this set.
+ let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
+ let mut diverging_vids = vec![];
+ let mut non_diverging_vids = vec![];
+ for unsolved_vid in unsolved_vids {
+ let root_vid = self.root_var(unsolved_vid);
+ debug!(
+ "calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
+ unsolved_vid,
+ root_vid,
+ diverging_roots.contains(&root_vid),
+ );
+ if diverging_roots.contains(&root_vid) {
+ diverging_vids.push(unsolved_vid);
+ roots_reachable_from_diverging.push_start_node(root_vid);
+
+ debug!(
+ "calculate_diverging_fallback: root_vid={:?} reaches {:?}",
+ root_vid,
+ coercion_graph.depth_first_search(root_vid).collect::<Vec<_>>()
+ );
+
+ // drain the iterator to visit all nodes reachable from this node
+ roots_reachable_from_diverging.complete_search();
+ } else {
+ non_diverging_vids.push(unsolved_vid);
+ }
+ }
+
+ debug!(
+ "calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
+ roots_reachable_from_diverging,
+ );
+
+ // Find all type variables N0 that are not reachable from a
+ // diverging variable, and then compute the set reachable from
+ // N0, which we call N. These are the *non-diverging* type
+ // variables. (Note that this set consists of "root variables".)
+ let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
+ for &non_diverging_vid in &non_diverging_vids {
+ let root_vid = self.root_var(non_diverging_vid);
+ if roots_reachable_from_diverging.visited(root_vid) {
+ continue;
+ }
+ roots_reachable_from_non_diverging.push_start_node(root_vid);
+ roots_reachable_from_non_diverging.complete_search();
+ }
+ debug!(
+ "calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
+ roots_reachable_from_non_diverging,
+ );
+
+ debug!("inherited: {:#?}", self.inh.fulfillment_cx.borrow_mut().pending_obligations());
+ debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());
+ debug!("relationships: {:#?}", relationships);
+
+ // For each diverging variable, figure out whether it can
+ // reach a member of N. If so, it falls back to `()`. Else
+ // `!`.
+ let mut diverging_fallback = FxHashMap::default();
+ diverging_fallback.reserve(diverging_vids.len());
+ for &diverging_vid in &diverging_vids {
+ let diverging_ty = self.tcx.mk_ty_var(diverging_vid);
+ let root_vid = self.root_var(diverging_vid);
+ let can_reach_non_diverging = coercion_graph
+ .depth_first_search(root_vid)
+ .any(|n| roots_reachable_from_non_diverging.visited(n));
+
+ let mut relationship = ty::FoundRelationships { self_in_trait: false, output: false };
+
+ for (vid, rel) in relationships.iter() {
+ if self.root_var(*vid) == root_vid {
+ relationship.self_in_trait |= rel.self_in_trait;
+ relationship.output |= rel.output;
+ }
+ }
+
+ if relationship.self_in_trait && relationship.output {
+ // This case falls back to () to ensure that the code pattern in
+ // src/test/ui/never_type/fallback-closure-ret.rs continues to
+ // compile when never_type_fallback is enabled.
+ //
+ // This rule is not readily explainable from first principles,
+ // but is rather intended as a patchwork fix to ensure code
+ // which compiles before the stabilization of never type
+ // fallback continues to work.
+ //
+ // Typically this pattern is encountered in a function taking a
+ // closure as a parameter, where the return type of that closure
+ // (checked by `relationship.output`) is expected to implement
+ // some trait (checked by `relationship.self_in_trait`). This
+ // can come up in non-closure cases too, so we do not limit this
+ // rule to specifically `FnOnce`.
+ //
+ // When the closure's body is something like `panic!()`, the
+ // return type would normally be inferred to `!`. However, it
+ // needs to fall back to `()` in order to still compile, as the
+ // trait is specifically implemented for `()` but not `!`.
+ //
+ // For details on the requirements for these relationships to be
+ // set, see the relationship finding module in
+ // compiler/rustc_trait_selection/src/traits/relationships.rs.
+ debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
+ diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
+ } else if can_reach_non_diverging {
+ debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
+ diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
+ } else {
+ debug!("fallback to ! - all diverging: {:?}", diverging_vid);
+ diverging_fallback.insert(diverging_ty, self.tcx.mk_diverging_default());
+ }
+ }
+
+ diverging_fallback
+ }
+
+ /// Returns a graph whose nodes are (unresolved) inference variables and where
+ /// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
+ fn create_coercion_graph(&self) -> VecGraph<ty::TyVid> {
+ let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
+ debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
+ let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
+ .into_iter()
+ .filter_map(|obligation| {
+ // The predicates we are looking for look like `Coerce(?A -> ?B)`.
+ // They will have no bound variables.
+ obligation.predicate.kind().no_bound_vars()
+ })
+ .filter_map(|atom| {
+ // We consider both subtyping and coercion to imply 'flow' from
+ // some position in the code `a` to a different position `b`.
+ // This is then used to determine which variables interact with
+ // live code, and as such must fall back to `()` to preserve
+ // soundness.
+ //
+ // In practice currently the two ways that this happens is
+ // coercion and subtyping.
+ let (a, b) = if let ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) = atom {
+ (a, b)
+ } else if let ty::PredicateKind::Subtype(ty::SubtypePredicate {
+ a_is_expected: _,
+ a,
+ b,
+ }) = atom
+ {
+ (a, b)
+ } else {
+ return None;
+ };
+
+ let a_vid = self.root_vid(a)?;
+ let b_vid = self.root_vid(b)?;
+ Some((a_vid, b_vid))
+ })
+ .collect();
+ debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
+ let num_ty_vars = self.num_ty_vars();
+ VecGraph::new(num_ty_vars, coercion_edges)
+ }
+
+ /// If `ty` is an unresolved type variable, returns its root vid.
+ fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
+ Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
+ }
+}