summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/method/probe.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/method/probe.rs')
-rw-r--r--compiler/rustc_typeck/src/check/method/probe.rs1932
1 files changed, 1932 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/method/probe.rs b/compiler/rustc_typeck/src/check/method/probe.rs
new file mode 100644
index 000000000..efe15fec7
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/method/probe.rs
@@ -0,0 +1,1932 @@
+use super::suggest;
+use super::CandidateSource;
+use super::MethodError;
+use super::NoMatchData;
+
+use crate::check::FnCtxt;
+use crate::errors::MethodCallOnUnknownType;
+use crate::hir::def::DefKind;
+use crate::hir::def_id::DefId;
+
+use rustc_data_structures::fx::FxHashSet;
+use rustc_errors::Applicability;
+use rustc_hir as hir;
+use rustc_hir::def::Namespace;
+use rustc_infer::infer::canonical::OriginalQueryValues;
+use rustc_infer::infer::canonical::{Canonical, QueryResponse};
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
+use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
+use rustc_middle::middle::stability;
+use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
+use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
+use rustc_middle::ty::GenericParamDefKind;
+use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
+use rustc_session::lint;
+use rustc_span::def_id::LocalDefId;
+use rustc_span::lev_distance::{
+ find_best_match_for_name_with_substrings, lev_distance_with_substrings,
+};
+use rustc_span::symbol::sym;
+use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
+use rustc_trait_selection::autoderef::{self, Autoderef};
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
+use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
+use rustc_trait_selection::traits::query::method_autoderef::{
+ CandidateStep, MethodAutoderefStepsResult,
+};
+use rustc_trait_selection::traits::query::CanonicalTyGoal;
+use rustc_trait_selection::traits::{self, ObligationCause};
+use std::cmp::max;
+use std::iter;
+use std::mem;
+use std::ops::Deref;
+
+use smallvec::{smallvec, SmallVec};
+
+use self::CandidateKind::*;
+pub use self::PickKind::*;
+
+/// Boolean flag used to indicate if this search is for a suggestion
+/// or not. If true, we can allow ambiguity and so forth.
+#[derive(Clone, Copy, Debug)]
+pub struct IsSuggestion(pub bool);
+
+struct ProbeContext<'a, 'tcx> {
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ span: Span,
+ mode: Mode,
+ method_name: Option<Ident>,
+ return_type: Option<Ty<'tcx>>,
+
+ /// This is the OriginalQueryValues for the steps queries
+ /// that are answered in steps.
+ orig_steps_var_values: OriginalQueryValues<'tcx>,
+ steps: &'tcx [CandidateStep<'tcx>],
+
+ inherent_candidates: Vec<Candidate<'tcx>>,
+ extension_candidates: Vec<Candidate<'tcx>>,
+ impl_dups: FxHashSet<DefId>,
+
+ /// Collects near misses when the candidate functions are missing a `self` keyword and is only
+ /// used for error reporting
+ static_candidates: Vec<CandidateSource>,
+
+ /// When probing for names, include names that are close to the
+ /// requested name (by Levensthein distance)
+ allow_similar_names: bool,
+
+ /// Some(candidate) if there is a private candidate
+ private_candidate: Option<(DefKind, DefId)>,
+
+ /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
+ /// for error reporting
+ unsatisfied_predicates:
+ Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
+
+ is_suggestion: IsSuggestion,
+
+ scope_expr_id: hir::HirId,
+}
+
+impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
+ type Target = FnCtxt<'a, 'tcx>;
+ fn deref(&self) -> &Self::Target {
+ self.fcx
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Candidate<'tcx> {
+ // Candidates are (I'm not quite sure, but they are mostly) basically
+ // some metadata on top of a `ty::AssocItem` (without substs).
+ //
+ // However, method probing wants to be able to evaluate the predicates
+ // for a function with the substs applied - for example, if a function
+ // has `where Self: Sized`, we don't want to consider it unless `Self`
+ // is actually `Sized`, and similarly, return-type suggestions want
+ // to consider the "actual" return type.
+ //
+ // The way this is handled is through `xform_self_ty`. It contains
+ // the receiver type of this candidate, but `xform_self_ty`,
+ // `xform_ret_ty` and `kind` (which contains the predicates) have the
+ // generic parameters of this candidate substituted with the *same set*
+ // of inference variables, which acts as some weird sort of "query".
+ //
+ // When we check out a candidate, we require `xform_self_ty` to be
+ // a subtype of the passed-in self-type, and this equates the type
+ // variables in the rest of the fields.
+ //
+ // For example, if we have this candidate:
+ // ```
+ // trait Foo {
+ // fn foo(&self) where Self: Sized;
+ // }
+ // ```
+ //
+ // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
+ // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
+ // the receiver `&T`, we'll do the subtyping which will make `?X`
+ // get the right value, then when we evaluate the predicate we'll check
+ // if `T: Sized`.
+ xform_self_ty: Ty<'tcx>,
+ xform_ret_ty: Option<Ty<'tcx>>,
+ item: ty::AssocItem,
+ kind: CandidateKind<'tcx>,
+ import_ids: SmallVec<[LocalDefId; 1]>,
+}
+
+#[derive(Debug, Clone)]
+enum CandidateKind<'tcx> {
+ InherentImplCandidate(
+ SubstsRef<'tcx>,
+ // Normalize obligations
+ Vec<traits::PredicateObligation<'tcx>>,
+ ),
+ ObjectCandidate,
+ TraitCandidate(ty::TraitRef<'tcx>),
+ WhereClauseCandidate(
+ // Trait
+ ty::PolyTraitRef<'tcx>,
+ ),
+}
+
+#[derive(Debug, PartialEq, Eq, Copy, Clone)]
+enum ProbeResult {
+ NoMatch,
+ BadReturnType,
+ Match,
+}
+
+/// When adjusting a receiver we often want to do one of
+///
+/// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
+/// - If the receiver has type `*mut T`, convert it to `*const T`
+///
+/// This type tells us which one to do.
+///
+/// Note that in principle we could do both at the same time. For example, when the receiver has
+/// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
+/// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
+/// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
+/// `mut`), or it has type `*mut T` and we convert it to `*const T`.
+#[derive(Debug, PartialEq, Copy, Clone)]
+pub enum AutorefOrPtrAdjustment {
+ /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
+ /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
+ Autoref {
+ mutbl: hir::Mutability,
+
+ /// Indicates that the source expression should be "unsized" to a target type.
+ /// This is special-cased for just arrays unsizing to slices.
+ unsize: bool,
+ },
+ /// Receiver has type `*mut T`, convert to `*const T`
+ ToConstPtr,
+}
+
+impl AutorefOrPtrAdjustment {
+ fn get_unsize(&self) -> bool {
+ match self {
+ AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
+ AutorefOrPtrAdjustment::ToConstPtr => false,
+ }
+ }
+}
+
+#[derive(Debug, PartialEq, Clone)]
+pub struct Pick<'tcx> {
+ pub item: ty::AssocItem,
+ pub kind: PickKind<'tcx>,
+ pub import_ids: SmallVec<[LocalDefId; 1]>,
+
+ /// Indicates that the source expression should be autoderef'd N times
+ /// ```ignore (not-rust)
+ /// A = expr | *expr | **expr | ...
+ /// ```
+ pub autoderefs: usize,
+
+ /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
+ /// `*mut T`, convert it to `*const T`.
+ pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
+ pub self_ty: Ty<'tcx>,
+}
+
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub enum PickKind<'tcx> {
+ InherentImplPick,
+ ObjectPick,
+ TraitPick,
+ WhereClausePick(
+ // Trait
+ ty::PolyTraitRef<'tcx>,
+ ),
+}
+
+pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
+
+#[derive(PartialEq, Eq, Copy, Clone, Debug)]
+pub enum Mode {
+ // An expression of the form `receiver.method_name(...)`.
+ // Autoderefs are performed on `receiver`, lookup is done based on the
+ // `self` argument of the method, and static methods aren't considered.
+ MethodCall,
+ // An expression of the form `Type::item` or `<T>::item`.
+ // No autoderefs are performed, lookup is done based on the type each
+ // implementation is for, and static methods are included.
+ Path,
+}
+
+#[derive(PartialEq, Eq, Copy, Clone, Debug)]
+pub enum ProbeScope {
+ // Assemble candidates coming only from traits in scope.
+ TraitsInScope,
+
+ // Assemble candidates coming from all traits.
+ AllTraits,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ /// This is used to offer suggestions to users. It returns methods
+ /// that could have been called which have the desired return
+ /// type. Some effort is made to rule out methods that, if called,
+ /// would result in an error (basically, the same criteria we
+ /// would use to decide if a method is a plausible fit for
+ /// ambiguity purposes).
+ #[instrument(level = "debug", skip(self, scope_expr_id))]
+ pub fn probe_for_return_type(
+ &self,
+ span: Span,
+ mode: Mode,
+ return_type: Ty<'tcx>,
+ self_ty: Ty<'tcx>,
+ scope_expr_id: hir::HirId,
+ ) -> Vec<ty::AssocItem> {
+ debug!(
+ "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
+ self_ty, return_type, scope_expr_id
+ );
+ let method_names = self
+ .probe_op(
+ span,
+ mode,
+ None,
+ Some(return_type),
+ IsSuggestion(true),
+ self_ty,
+ scope_expr_id,
+ ProbeScope::AllTraits,
+ |probe_cx| Ok(probe_cx.candidate_method_names()),
+ )
+ .unwrap_or_default();
+ method_names
+ .iter()
+ .flat_map(|&method_name| {
+ self.probe_op(
+ span,
+ mode,
+ Some(method_name),
+ Some(return_type),
+ IsSuggestion(true),
+ self_ty,
+ scope_expr_id,
+ ProbeScope::AllTraits,
+ |probe_cx| probe_cx.pick(),
+ )
+ .ok()
+ .map(|pick| pick.item)
+ })
+ .collect()
+ }
+
+ #[instrument(level = "debug", skip(self, scope_expr_id))]
+ pub fn probe_for_name(
+ &self,
+ span: Span,
+ mode: Mode,
+ item_name: Ident,
+ is_suggestion: IsSuggestion,
+ self_ty: Ty<'tcx>,
+ scope_expr_id: hir::HirId,
+ scope: ProbeScope,
+ ) -> PickResult<'tcx> {
+ debug!(
+ "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
+ self_ty, item_name, scope_expr_id
+ );
+ self.probe_op(
+ span,
+ mode,
+ Some(item_name),
+ None,
+ is_suggestion,
+ self_ty,
+ scope_expr_id,
+ scope,
+ |probe_cx| probe_cx.pick(),
+ )
+ }
+
+ fn probe_op<OP, R>(
+ &'a self,
+ span: Span,
+ mode: Mode,
+ method_name: Option<Ident>,
+ return_type: Option<Ty<'tcx>>,
+ is_suggestion: IsSuggestion,
+ self_ty: Ty<'tcx>,
+ scope_expr_id: hir::HirId,
+ scope: ProbeScope,
+ op: OP,
+ ) -> Result<R, MethodError<'tcx>>
+ where
+ OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
+ {
+ let mut orig_values = OriginalQueryValues::default();
+ let param_env_and_self_ty = self.canonicalize_query(
+ ParamEnvAnd { param_env: self.param_env, value: self_ty },
+ &mut orig_values,
+ );
+
+ let steps = if mode == Mode::MethodCall {
+ self.tcx.method_autoderef_steps(param_env_and_self_ty)
+ } else {
+ self.probe(|_| {
+ // Mode::Path - the deref steps is "trivial". This turns
+ // our CanonicalQuery into a "trivial" QueryResponse. This
+ // is a bit inefficient, but I don't think that writing
+ // special handling for this "trivial case" is a good idea.
+
+ let infcx = &self.infcx;
+ let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
+ infcx.instantiate_canonical_with_fresh_inference_vars(
+ span,
+ &param_env_and_self_ty,
+ );
+ debug!(
+ "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
+ param_env_and_self_ty, self_ty
+ );
+ MethodAutoderefStepsResult {
+ steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
+ self_ty: self.make_query_response_ignoring_pending_obligations(
+ canonical_inference_vars,
+ self_ty,
+ ),
+ autoderefs: 0,
+ from_unsafe_deref: false,
+ unsize: false,
+ }]),
+ opt_bad_ty: None,
+ reached_recursion_limit: false,
+ }
+ })
+ };
+
+ // If our autoderef loop had reached the recursion limit,
+ // report an overflow error, but continue going on with
+ // the truncated autoderef list.
+ if steps.reached_recursion_limit {
+ self.probe(|_| {
+ let ty = &steps
+ .steps
+ .last()
+ .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
+ .self_ty;
+ let ty = self
+ .probe_instantiate_query_response(span, &orig_values, ty)
+ .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
+ autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
+ });
+ }
+
+ // If we encountered an `_` type or an error type during autoderef, this is
+ // ambiguous.
+ if let Some(bad_ty) = &steps.opt_bad_ty {
+ if is_suggestion.0 {
+ // Ambiguity was encountered during a suggestion. Just keep going.
+ debug!("ProbeContext: encountered ambiguity in suggestion");
+ } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
+ // this case used to be allowed by the compiler,
+ // so we do a future-compat lint here for the 2015 edition
+ // (see https://github.com/rust-lang/rust/issues/46906)
+ if self.tcx.sess.rust_2018() {
+ self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
+ } else {
+ self.tcx.struct_span_lint_hir(
+ lint::builtin::TYVAR_BEHIND_RAW_POINTER,
+ scope_expr_id,
+ span,
+ |lint| {
+ lint.build("type annotations needed").emit();
+ },
+ );
+ }
+ } else {
+ // Encountered a real ambiguity, so abort the lookup. If `ty` is not
+ // an `Err`, report the right "type annotations needed" error pointing
+ // to it.
+ let ty = &bad_ty.ty;
+ let ty = self
+ .probe_instantiate_query_response(span, &orig_values, ty)
+ .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
+ let ty = self.structurally_resolved_type(span, ty.value);
+ assert!(matches!(ty.kind(), ty::Error(_)));
+ return Err(MethodError::NoMatch(NoMatchData {
+ static_candidates: Vec::new(),
+ unsatisfied_predicates: Vec::new(),
+ out_of_scope_traits: Vec::new(),
+ lev_candidate: None,
+ mode,
+ }));
+ }
+ }
+
+ debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
+
+ // this creates one big transaction so that all type variables etc
+ // that we create during the probe process are removed later
+ self.probe(|_| {
+ let mut probe_cx = ProbeContext::new(
+ self,
+ span,
+ mode,
+ method_name,
+ return_type,
+ orig_values,
+ steps.steps,
+ is_suggestion,
+ scope_expr_id,
+ );
+
+ probe_cx.assemble_inherent_candidates();
+ match scope {
+ ProbeScope::TraitsInScope => {
+ probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
+ }
+ ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
+ };
+ op(probe_cx)
+ })
+ }
+}
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ providers.method_autoderef_steps = method_autoderef_steps;
+}
+
+fn method_autoderef_steps<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ goal: CanonicalTyGoal<'tcx>,
+) -> MethodAutoderefStepsResult<'tcx> {
+ debug!("method_autoderef_steps({:?})", goal);
+
+ tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
+ let ParamEnvAnd { param_env, value: self_ty } = goal;
+
+ let mut autoderef =
+ Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
+ .include_raw_pointers()
+ .silence_errors();
+ let mut reached_raw_pointer = false;
+ let mut steps: Vec<_> = autoderef
+ .by_ref()
+ .map(|(ty, d)| {
+ let step = CandidateStep {
+ self_ty: infcx.make_query_response_ignoring_pending_obligations(
+ inference_vars.clone(),
+ ty,
+ ),
+ autoderefs: d,
+ from_unsafe_deref: reached_raw_pointer,
+ unsize: false,
+ };
+ if let ty::RawPtr(_) = ty.kind() {
+ // all the subsequent steps will be from_unsafe_deref
+ reached_raw_pointer = true;
+ }
+ step
+ })
+ .collect();
+
+ let final_ty = autoderef.final_ty(true);
+ let opt_bad_ty = match final_ty.kind() {
+ ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
+ reached_raw_pointer,
+ ty: infcx
+ .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
+ }),
+ ty::Array(elem_ty, _) => {
+ let dereferences = steps.len() - 1;
+
+ steps.push(CandidateStep {
+ self_ty: infcx.make_query_response_ignoring_pending_obligations(
+ inference_vars,
+ infcx.tcx.mk_slice(*elem_ty),
+ ),
+ autoderefs: dereferences,
+ // this could be from an unsafe deref if we had
+ // a *mut/const [T; N]
+ from_unsafe_deref: reached_raw_pointer,
+ unsize: true,
+ });
+
+ None
+ }
+ _ => None,
+ };
+
+ debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
+
+ MethodAutoderefStepsResult {
+ steps: tcx.arena.alloc_from_iter(steps),
+ opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
+ reached_recursion_limit: autoderef.reached_recursion_limit(),
+ }
+ })
+}
+
+impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
+ fn new(
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ span: Span,
+ mode: Mode,
+ method_name: Option<Ident>,
+ return_type: Option<Ty<'tcx>>,
+ orig_steps_var_values: OriginalQueryValues<'tcx>,
+ steps: &'tcx [CandidateStep<'tcx>],
+ is_suggestion: IsSuggestion,
+ scope_expr_id: hir::HirId,
+ ) -> ProbeContext<'a, 'tcx> {
+ ProbeContext {
+ fcx,
+ span,
+ mode,
+ method_name,
+ return_type,
+ inherent_candidates: Vec::new(),
+ extension_candidates: Vec::new(),
+ impl_dups: FxHashSet::default(),
+ orig_steps_var_values,
+ steps,
+ static_candidates: Vec::new(),
+ allow_similar_names: false,
+ private_candidate: None,
+ unsatisfied_predicates: Vec::new(),
+ is_suggestion,
+ scope_expr_id,
+ }
+ }
+
+ fn reset(&mut self) {
+ self.inherent_candidates.clear();
+ self.extension_candidates.clear();
+ self.impl_dups.clear();
+ self.static_candidates.clear();
+ self.private_candidate = None;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // CANDIDATE ASSEMBLY
+
+ fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
+ let is_accessible = if let Some(name) = self.method_name {
+ let item = candidate.item;
+ let def_scope = self
+ .tcx
+ .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
+ .1;
+ item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
+ } else {
+ true
+ };
+ if is_accessible {
+ if is_inherent {
+ self.inherent_candidates.push(candidate);
+ } else {
+ self.extension_candidates.push(candidate);
+ }
+ } else if self.private_candidate.is_none() {
+ self.private_candidate =
+ Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
+ }
+ }
+
+ fn assemble_inherent_candidates(&mut self) {
+ for step in self.steps.iter() {
+ self.assemble_probe(&step.self_ty);
+ }
+ }
+
+ fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
+ debug!("assemble_probe: self_ty={:?}", self_ty);
+ let raw_self_ty = self_ty.value.value;
+ match *raw_self_ty.kind() {
+ ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
+ // Subtle: we can't use `instantiate_query_response` here: using it will
+ // commit to all of the type equalities assumed by inference going through
+ // autoderef (see the `method-probe-no-guessing` test).
+ //
+ // However, in this code, it is OK if we end up with an object type that is
+ // "more general" than the object type that we are evaluating. For *every*
+ // object type `MY_OBJECT`, a function call that goes through a trait-ref
+ // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
+ // `ObjectCandidate`, and it should be discoverable "exactly" through one
+ // of the iterations in the autoderef loop, so there is no problem with it
+ // being discoverable in another one of these iterations.
+ //
+ // Using `instantiate_canonical_with_fresh_inference_vars` on our
+ // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
+ // `CanonicalVarValues` will exactly give us such a generalization - it
+ // will still match the original object type, but it won't pollute our
+ // type variables in any form, so just do that!
+ let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
+ self.fcx
+ .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
+
+ self.assemble_inherent_candidates_from_object(generalized_self_ty);
+ self.assemble_inherent_impl_candidates_for_type(p.def_id());
+ if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
+ self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+ }
+ }
+ ty::Adt(def, _) => {
+ let def_id = def.did();
+ self.assemble_inherent_impl_candidates_for_type(def_id);
+ if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
+ self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+ }
+ }
+ ty::Foreign(did) => {
+ self.assemble_inherent_impl_candidates_for_type(did);
+ if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
+ self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
+ }
+ }
+ ty::Param(p) => {
+ self.assemble_inherent_candidates_from_param(p);
+ }
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Str
+ | ty::Array(..)
+ | ty::Slice(_)
+ | ty::RawPtr(_)
+ | ty::Ref(..)
+ | ty::Never
+ | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
+ _ => {}
+ }
+ }
+
+ fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
+ let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
+ bug!("unexpected incoherent type: {:?}", self_ty)
+ };
+ for &impl_def_id in self.tcx.incoherent_impls(simp) {
+ self.assemble_inherent_impl_probe(impl_def_id);
+ }
+ }
+
+ fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
+ let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
+ for &impl_def_id in impl_def_ids.iter() {
+ self.assemble_inherent_impl_probe(impl_def_id);
+ }
+ }
+
+ fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
+ if !self.impl_dups.insert(impl_def_id) {
+ return; // already visited
+ }
+
+ debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
+
+ for item in self.impl_or_trait_item(impl_def_id) {
+ if !self.has_applicable_self(&item) {
+ // No receiver declared. Not a candidate.
+ self.record_static_candidate(CandidateSource::Impl(impl_def_id));
+ continue;
+ }
+
+ let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
+ let impl_ty = impl_ty.subst(self.tcx, impl_substs);
+
+ debug!("impl_ty: {:?}", impl_ty);
+
+ // Determine the receiver type that the method itself expects.
+ let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
+ debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
+
+ // We can't use normalize_associated_types_in as it will pollute the
+ // fcx's fulfillment context after this probe is over.
+ // Note: we only normalize `xform_self_ty` here since the normalization
+ // of the return type can lead to inference results that prohibit
+ // valid candidates from being found, see issue #85671
+ // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
+ // which might be caused by the `param_env` itself. The clauses of the `param_env`
+ // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
+ // see issue #89650
+ let cause = traits::ObligationCause::misc(self.span, self.body_id);
+ let selcx = &mut traits::SelectionContext::new(self.fcx);
+ let traits::Normalized { value: xform_self_ty, obligations } =
+ traits::normalize(selcx, self.param_env, cause, xform_self_ty);
+ debug!(
+ "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
+ xform_self_ty, xform_ret_ty
+ );
+
+ self.push_candidate(
+ Candidate {
+ xform_self_ty,
+ xform_ret_ty,
+ item,
+ kind: InherentImplCandidate(impl_substs, obligations),
+ import_ids: smallvec![],
+ },
+ true,
+ );
+ }
+ }
+
+ fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
+ debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
+
+ let principal = match self_ty.kind() {
+ ty::Dynamic(ref data, ..) => Some(data),
+ _ => None,
+ }
+ .and_then(|data| data.principal())
+ .unwrap_or_else(|| {
+ span_bug!(
+ self.span,
+ "non-object {:?} in assemble_inherent_candidates_from_object",
+ self_ty
+ )
+ });
+
+ // It is illegal to invoke a method on a trait instance that refers to
+ // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
+ // will be reported by `object_safety.rs` if the method refers to the
+ // `Self` type anywhere other than the receiver. Here, we use a
+ // substitution that replaces `Self` with the object type itself. Hence,
+ // a `&self` method will wind up with an argument type like `&dyn Trait`.
+ let trait_ref = principal.with_self_ty(self.tcx, self_ty);
+ self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
+ let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
+
+ let (xform_self_ty, xform_ret_ty) =
+ this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
+ this.push_candidate(
+ Candidate {
+ xform_self_ty,
+ xform_ret_ty,
+ item,
+ kind: ObjectCandidate,
+ import_ids: smallvec![],
+ },
+ true,
+ );
+ });
+ }
+
+ fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
+ // FIXME: do we want to commit to this behavior for param bounds?
+ debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
+
+ let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
+ let bound_predicate = predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(trait_predicate) => {
+ match *trait_predicate.trait_ref.self_ty().kind() {
+ ty::Param(p) if p == param_ty => {
+ Some(bound_predicate.rebind(trait_predicate.trait_ref))
+ }
+ _ => None,
+ }
+ }
+ ty::PredicateKind::Subtype(..)
+ | ty::PredicateKind::Coerce(..)
+ | ty::PredicateKind::Projection(..)
+ | ty::PredicateKind::RegionOutlives(..)
+ | ty::PredicateKind::WellFormed(..)
+ | ty::PredicateKind::ObjectSafe(..)
+ | ty::PredicateKind::ClosureKind(..)
+ | ty::PredicateKind::TypeOutlives(..)
+ | ty::PredicateKind::ConstEvaluatable(..)
+ | ty::PredicateKind::ConstEquate(..)
+ | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
+ }
+ });
+
+ self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
+ let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
+
+ let (xform_self_ty, xform_ret_ty) =
+ this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
+
+ // Because this trait derives from a where-clause, it
+ // should not contain any inference variables or other
+ // artifacts. This means it is safe to put into the
+ // `WhereClauseCandidate` and (eventually) into the
+ // `WhereClausePick`.
+ assert!(!trait_ref.substs.needs_infer());
+
+ this.push_candidate(
+ Candidate {
+ xform_self_ty,
+ xform_ret_ty,
+ item,
+ kind: WhereClauseCandidate(poly_trait_ref),
+ import_ids: smallvec![],
+ },
+ true,
+ );
+ });
+ }
+
+ // Do a search through a list of bounds, using a callback to actually
+ // create the candidates.
+ fn elaborate_bounds<F>(
+ &mut self,
+ bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
+ mut mk_cand: F,
+ ) where
+ F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
+ {
+ let tcx = self.tcx;
+ for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
+ debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
+ for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
+ if !self.has_applicable_self(&item) {
+ self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
+ } else {
+ mk_cand(self, bound_trait_ref, item);
+ }
+ }
+ }
+ }
+
+ fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
+ let mut duplicates = FxHashSet::default();
+ let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
+ if let Some(applicable_traits) = opt_applicable_traits {
+ for trait_candidate in applicable_traits.iter() {
+ let trait_did = trait_candidate.def_id;
+ if duplicates.insert(trait_did) {
+ self.assemble_extension_candidates_for_trait(
+ &trait_candidate.import_ids,
+ trait_did,
+ );
+ }
+ }
+ }
+ }
+
+ fn assemble_extension_candidates_for_all_traits(&mut self) {
+ let mut duplicates = FxHashSet::default();
+ for trait_info in suggest::all_traits(self.tcx) {
+ if duplicates.insert(trait_info.def_id) {
+ self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
+ }
+ }
+ }
+
+ pub fn matches_return_type(
+ &self,
+ method: &ty::AssocItem,
+ self_ty: Option<Ty<'tcx>>,
+ expected: Ty<'tcx>,
+ ) -> bool {
+ match method.kind {
+ ty::AssocKind::Fn => {
+ let fty = self.tcx.bound_fn_sig(method.def_id);
+ self.probe(|_| {
+ let substs = self.fresh_substs_for_item(self.span, method.def_id);
+ let fty = fty.subst(self.tcx, substs);
+ let fty =
+ self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
+
+ if let Some(self_ty) = self_ty {
+ if self
+ .at(&ObligationCause::dummy(), self.param_env)
+ .sup(fty.inputs()[0], self_ty)
+ .is_err()
+ {
+ return false;
+ }
+ }
+ self.can_sub(self.param_env, fty.output(), expected).is_ok()
+ })
+ }
+ _ => false,
+ }
+ }
+
+ fn assemble_extension_candidates_for_trait(
+ &mut self,
+ import_ids: &SmallVec<[LocalDefId; 1]>,
+ trait_def_id: DefId,
+ ) {
+ debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
+ let trait_substs = self.fresh_item_substs(trait_def_id);
+ let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
+
+ if self.tcx.is_trait_alias(trait_def_id) {
+ // For trait aliases, assume all supertraits are relevant.
+ let bounds = iter::once(ty::Binder::dummy(trait_ref));
+ self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
+ let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
+
+ let (xform_self_ty, xform_ret_ty) =
+ this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
+ this.push_candidate(
+ Candidate {
+ xform_self_ty,
+ xform_ret_ty,
+ item,
+ import_ids: import_ids.clone(),
+ kind: TraitCandidate(new_trait_ref),
+ },
+ false,
+ );
+ });
+ } else {
+ debug_assert!(self.tcx.is_trait(trait_def_id));
+ for item in self.impl_or_trait_item(trait_def_id) {
+ // Check whether `trait_def_id` defines a method with suitable name.
+ if !self.has_applicable_self(&item) {
+ debug!("method has inapplicable self");
+ self.record_static_candidate(CandidateSource::Trait(trait_def_id));
+ continue;
+ }
+
+ let (xform_self_ty, xform_ret_ty) =
+ self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
+ self.push_candidate(
+ Candidate {
+ xform_self_ty,
+ xform_ret_ty,
+ item,
+ import_ids: import_ids.clone(),
+ kind: TraitCandidate(trait_ref),
+ },
+ false,
+ );
+ }
+ }
+ }
+
+ fn candidate_method_names(&self) -> Vec<Ident> {
+ let mut set = FxHashSet::default();
+ let mut names: Vec<_> = self
+ .inherent_candidates
+ .iter()
+ .chain(&self.extension_candidates)
+ .filter(|candidate| {
+ if let Some(return_ty) = self.return_type {
+ self.matches_return_type(&candidate.item, None, return_ty)
+ } else {
+ true
+ }
+ })
+ .map(|candidate| candidate.item.ident(self.tcx))
+ .filter(|&name| set.insert(name))
+ .collect();
+
+ // Sort them by the name so we have a stable result.
+ names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
+ names
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // THE ACTUAL SEARCH
+
+ fn pick(mut self) -> PickResult<'tcx> {
+ assert!(self.method_name.is_some());
+
+ if let Some(r) = self.pick_core() {
+ return r;
+ }
+
+ debug!("pick: actual search failed, assemble diagnostics");
+
+ let static_candidates = mem::take(&mut self.static_candidates);
+ let private_candidate = self.private_candidate.take();
+ let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
+
+ // things failed, so lets look at all traits, for diagnostic purposes now:
+ self.reset();
+
+ let span = self.span;
+ let tcx = self.tcx;
+
+ self.assemble_extension_candidates_for_all_traits();
+
+ let out_of_scope_traits = match self.pick_core() {
+ Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
+ //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
+ Some(Err(MethodError::Ambiguity(v))) => v
+ .into_iter()
+ .map(|source| match source {
+ CandidateSource::Trait(id) => id,
+ CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
+ Some(id) => id,
+ None => span_bug!(span, "found inherent method when looking at traits"),
+ },
+ })
+ .collect(),
+ Some(Err(MethodError::NoMatch(NoMatchData {
+ out_of_scope_traits: others, ..
+ }))) => {
+ assert!(others.is_empty());
+ vec![]
+ }
+ _ => vec![],
+ };
+
+ if let Some((kind, def_id)) = private_candidate {
+ return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
+ }
+ let lev_candidate = self.probe_for_lev_candidate()?;
+
+ Err(MethodError::NoMatch(NoMatchData {
+ static_candidates,
+ unsatisfied_predicates,
+ out_of_scope_traits,
+ lev_candidate,
+ mode: self.mode,
+ }))
+ }
+
+ fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
+ let mut unstable_candidates = Vec::new();
+ let pick = self.pick_all_method(Some(&mut unstable_candidates));
+
+ // In this case unstable picking is done by `pick_method`.
+ if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
+ return pick;
+ }
+
+ match pick {
+ // Emit a lint if there are unstable candidates alongside the stable ones.
+ //
+ // We suppress warning if we're picking the method only because it is a
+ // suggestion.
+ Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
+ self.emit_unstable_name_collision_hint(p, &unstable_candidates);
+ pick
+ }
+ Some(_) => pick,
+ None => self.pick_all_method(None),
+ }
+ }
+
+ fn pick_all_method(
+ &mut self,
+ mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>> {
+ let steps = self.steps.clone();
+ steps
+ .iter()
+ .filter(|step| {
+ debug!("pick_all_method: step={:?}", step);
+ // skip types that are from a type error or that would require dereferencing
+ // a raw pointer
+ !step.self_ty.references_error() && !step.from_unsafe_deref
+ })
+ .flat_map(|step| {
+ let InferOk { value: self_ty, obligations: _ } = self
+ .fcx
+ .probe_instantiate_query_response(
+ self.span,
+ &self.orig_steps_var_values,
+ &step.self_ty,
+ )
+ .unwrap_or_else(|_| {
+ span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
+ });
+ self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
+ .or_else(|| {
+ self.pick_autorefd_method(
+ step,
+ self_ty,
+ hir::Mutability::Not,
+ unstable_candidates.as_deref_mut(),
+ )
+ .or_else(|| {
+ self.pick_autorefd_method(
+ step,
+ self_ty,
+ hir::Mutability::Mut,
+ unstable_candidates.as_deref_mut(),
+ )
+ })
+ .or_else(|| {
+ self.pick_const_ptr_method(
+ step,
+ self_ty,
+ unstable_candidates.as_deref_mut(),
+ )
+ })
+ })
+ })
+ .next()
+ }
+
+ /// For each type `T` in the step list, this attempts to find a method where
+ /// the (transformed) self type is exactly `T`. We do however do one
+ /// transformation on the adjustment: if we are passing a region pointer in,
+ /// we will potentially *reborrow* it to a shorter lifetime. This allows us
+ /// to transparently pass `&mut` pointers, in particular, without consuming
+ /// them for their entire lifetime.
+ fn pick_by_value_method(
+ &mut self,
+ step: &CandidateStep<'tcx>,
+ self_ty: Ty<'tcx>,
+ unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>> {
+ if step.unsize {
+ return None;
+ }
+
+ self.pick_method(self_ty, unstable_candidates).map(|r| {
+ r.map(|mut pick| {
+ pick.autoderefs = step.autoderefs;
+
+ // Insert a `&*` or `&mut *` if this is a reference type:
+ if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
+ pick.autoderefs += 1;
+ pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
+ mutbl,
+ unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
+ })
+ }
+
+ pick
+ })
+ })
+ }
+
+ fn pick_autorefd_method(
+ &mut self,
+ step: &CandidateStep<'tcx>,
+ self_ty: Ty<'tcx>,
+ mutbl: hir::Mutability,
+ unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>> {
+ let tcx = self.tcx;
+
+ // In general, during probing we erase regions.
+ let region = tcx.lifetimes.re_erased;
+
+ let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
+ self.pick_method(autoref_ty, unstable_candidates).map(|r| {
+ r.map(|mut pick| {
+ pick.autoderefs = step.autoderefs;
+ pick.autoref_or_ptr_adjustment =
+ Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
+ pick
+ })
+ })
+ }
+
+ /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
+ /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
+ /// autorefs would require dereferencing the pointer, which is not safe.
+ fn pick_const_ptr_method(
+ &mut self,
+ step: &CandidateStep<'tcx>,
+ self_ty: Ty<'tcx>,
+ unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>> {
+ // Don't convert an unsized reference to ptr
+ if step.unsize {
+ return None;
+ }
+
+ let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
+ return None;
+ };
+
+ let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
+ let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
+ self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
+ r.map(|mut pick| {
+ pick.autoderefs = step.autoderefs;
+ pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
+ pick
+ })
+ })
+ }
+
+ fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
+ debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
+
+ let mut possibly_unsatisfied_predicates = Vec::new();
+ let mut unstable_candidates = Vec::new();
+
+ for (kind, candidates) in
+ &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
+ {
+ debug!("searching {} candidates", kind);
+ let res = self.consider_candidates(
+ self_ty,
+ candidates.iter(),
+ &mut possibly_unsatisfied_predicates,
+ Some(&mut unstable_candidates),
+ );
+ if let Some(pick) = res {
+ if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
+ if let Ok(p) = &pick {
+ // Emit a lint if there are unstable candidates alongside the stable ones.
+ //
+ // We suppress warning if we're picking the method only because it is a
+ // suggestion.
+ self.emit_unstable_name_collision_hint(p, &unstable_candidates);
+ }
+ }
+ return Some(pick);
+ }
+ }
+
+ debug!("searching unstable candidates");
+ let res = self.consider_candidates(
+ self_ty,
+ unstable_candidates.iter().map(|(c, _)| c),
+ &mut possibly_unsatisfied_predicates,
+ None,
+ );
+ if res.is_none() {
+ self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
+ }
+ res
+ }
+
+ fn pick_method(
+ &mut self,
+ self_ty: Ty<'tcx>,
+ mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>> {
+ if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
+ return self.pick_method_with_unstable(self_ty);
+ }
+
+ debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
+
+ let mut possibly_unsatisfied_predicates = Vec::new();
+
+ for (kind, candidates) in
+ &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
+ {
+ debug!("searching {} candidates", kind);
+ let res = self.consider_candidates(
+ self_ty,
+ candidates.iter(),
+ &mut possibly_unsatisfied_predicates,
+ unstable_candidates.as_deref_mut(),
+ );
+ if let Some(pick) = res {
+ return Some(pick);
+ }
+ }
+
+ // `pick_method` may be called twice for the same self_ty if no stable methods
+ // match. Only extend once.
+ if unstable_candidates.is_some() {
+ self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
+ }
+ None
+ }
+
+ fn consider_candidates<'b, ProbesIter>(
+ &self,
+ self_ty: Ty<'tcx>,
+ probes: ProbesIter,
+ possibly_unsatisfied_predicates: &mut Vec<(
+ ty::Predicate<'tcx>,
+ Option<ty::Predicate<'tcx>>,
+ Option<ObligationCause<'tcx>>,
+ )>,
+ unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
+ ) -> Option<PickResult<'tcx>>
+ where
+ ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
+ 'tcx: 'b,
+ {
+ let mut applicable_candidates: Vec<_> = probes
+ .clone()
+ .map(|probe| {
+ (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
+ })
+ .filter(|&(_, status)| status != ProbeResult::NoMatch)
+ .collect();
+
+ debug!("applicable_candidates: {:?}", applicable_candidates);
+
+ if applicable_candidates.len() > 1 {
+ if let Some(pick) =
+ self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
+ {
+ return Some(Ok(pick));
+ }
+ }
+
+ if let Some(uc) = unstable_candidates {
+ applicable_candidates.retain(|&(p, _)| {
+ if let stability::EvalResult::Deny { feature, .. } =
+ self.tcx.eval_stability(p.item.def_id, None, self.span, None)
+ {
+ uc.push((p.clone(), feature));
+ return false;
+ }
+ true
+ });
+ }
+
+ if applicable_candidates.len() > 1 {
+ let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
+ return Some(Err(MethodError::Ambiguity(sources)));
+ }
+
+ applicable_candidates.pop().map(|(probe, status)| {
+ if status == ProbeResult::Match {
+ Ok(probe.to_unadjusted_pick(self_ty))
+ } else {
+ Err(MethodError::BadReturnType)
+ }
+ })
+ }
+
+ fn emit_unstable_name_collision_hint(
+ &self,
+ stable_pick: &Pick<'_>,
+ unstable_candidates: &[(Candidate<'tcx>, Symbol)],
+ ) {
+ self.tcx.struct_span_lint_hir(
+ lint::builtin::UNSTABLE_NAME_COLLISIONS,
+ self.scope_expr_id,
+ self.span,
+ |lint| {
+ let def_kind = stable_pick.item.kind.as_def_kind();
+ let mut diag = lint.build(&format!(
+ "{} {} with this name may be added to the standard library in the future",
+ def_kind.article(),
+ def_kind.descr(stable_pick.item.def_id),
+ ));
+ match (stable_pick.item.kind, stable_pick.item.container) {
+ (ty::AssocKind::Fn, _) => {
+ // FIXME: This should be a `span_suggestion` instead of `help`
+ // However `self.span` only
+ // highlights the method name, so we can't use it. Also consider reusing
+ // the code from `report_method_error()`.
+ diag.help(&format!(
+ "call with fully qualified syntax `{}(...)` to keep using the current \
+ method",
+ self.tcx.def_path_str(stable_pick.item.def_id),
+ ));
+ }
+ (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
+ let def_id = stable_pick.item.container_id(self.tcx);
+ diag.span_suggestion(
+ self.span,
+ "use the fully qualified path to the associated const",
+ format!(
+ "<{} as {}>::{}",
+ stable_pick.self_ty,
+ self.tcx.def_path_str(def_id),
+ stable_pick.item.name
+ ),
+ Applicability::MachineApplicable,
+ );
+ }
+ _ => {}
+ }
+ if self.tcx.sess.is_nightly_build() {
+ for (candidate, feature) in unstable_candidates {
+ diag.help(&format!(
+ "add `#![feature({})]` to the crate attributes to enable `{}`",
+ feature,
+ self.tcx.def_path_str(candidate.item.def_id),
+ ));
+ }
+ }
+
+ diag.emit();
+ },
+ );
+ }
+
+ fn select_trait_candidate(
+ &self,
+ trait_ref: ty::TraitRef<'tcx>,
+ ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
+ let cause = traits::ObligationCause::misc(self.span, self.body_id);
+ let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
+ let obligation = traits::Obligation::new(cause, self.param_env, predicate);
+ traits::SelectionContext::new(self).select(&obligation)
+ }
+
+ fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
+ match candidate.kind {
+ InherentImplCandidate(..) => {
+ CandidateSource::Impl(candidate.item.container_id(self.tcx))
+ }
+ ObjectCandidate | WhereClauseCandidate(_) => {
+ CandidateSource::Trait(candidate.item.container_id(self.tcx))
+ }
+ TraitCandidate(trait_ref) => self.probe(|_| {
+ let _ = self
+ .at(&ObligationCause::dummy(), self.param_env)
+ .define_opaque_types(false)
+ .sup(candidate.xform_self_ty, self_ty);
+ match self.select_trait_candidate(trait_ref) {
+ Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
+ // If only a single impl matches, make the error message point
+ // to that impl.
+ CandidateSource::Impl(impl_data.impl_def_id)
+ }
+ _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
+ }
+ }),
+ }
+ }
+
+ fn consider_probe(
+ &self,
+ self_ty: Ty<'tcx>,
+ probe: &Candidate<'tcx>,
+ possibly_unsatisfied_predicates: &mut Vec<(
+ ty::Predicate<'tcx>,
+ Option<ty::Predicate<'tcx>>,
+ Option<ObligationCause<'tcx>>,
+ )>,
+ ) -> ProbeResult {
+ debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
+
+ self.probe(|_| {
+ // First check that the self type can be related.
+ let sub_obligations = match self
+ .at(&ObligationCause::dummy(), self.param_env)
+ .define_opaque_types(false)
+ .sup(probe.xform_self_ty, self_ty)
+ {
+ Ok(InferOk { obligations, value: () }) => obligations,
+ Err(err) => {
+ debug!("--> cannot relate self-types {:?}", err);
+ return ProbeResult::NoMatch;
+ }
+ };
+
+ let mut result = ProbeResult::Match;
+ let mut xform_ret_ty = probe.xform_ret_ty;
+ debug!(?xform_ret_ty);
+
+ let selcx = &mut traits::SelectionContext::new(self);
+ let cause = traits::ObligationCause::misc(self.span, self.body_id);
+
+ let mut parent_pred = None;
+
+ // If so, impls may carry other conditions (e.g., where
+ // clauses) that must be considered. Make sure that those
+ // match as well (or at least may match, sometimes we
+ // don't have enough information to fully evaluate).
+ match probe.kind {
+ InherentImplCandidate(ref substs, ref ref_obligations) => {
+ // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
+ // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
+ // for why this is necessary
+ let traits::Normalized {
+ value: normalized_xform_ret_ty,
+ obligations: normalization_obligations,
+ } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
+ xform_ret_ty = normalized_xform_ret_ty;
+ debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
+
+ // Check whether the impl imposes obligations we have to worry about.
+ let impl_def_id = probe.item.container_id(self.tcx);
+ let impl_bounds = self.tcx.predicates_of(impl_def_id);
+ let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
+ let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
+ traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
+
+ // Convert the bounds into obligations.
+ let impl_obligations =
+ traits::predicates_for_generics(cause, self.param_env, impl_bounds);
+
+ let candidate_obligations = impl_obligations
+ .chain(norm_obligations.into_iter())
+ .chain(ref_obligations.iter().cloned())
+ .chain(normalization_obligations.into_iter());
+
+ // Evaluate those obligations to see if they might possibly hold.
+ for o in candidate_obligations {
+ let o = self.resolve_vars_if_possible(o);
+ if !self.predicate_may_hold(&o) {
+ result = ProbeResult::NoMatch;
+ possibly_unsatisfied_predicates.push((
+ o.predicate,
+ None,
+ Some(o.cause),
+ ));
+ }
+ }
+ }
+
+ ObjectCandidate | WhereClauseCandidate(..) => {
+ // These have no additional conditions to check.
+ }
+
+ TraitCandidate(trait_ref) => {
+ if let Some(method_name) = self.method_name {
+ // Some trait methods are excluded for arrays before 2021.
+ // (`array.into_iter()` wants a slice iterator for compatibility.)
+ if self_ty.is_array() && !method_name.span.rust_2021() {
+ let trait_def = self.tcx.trait_def(trait_ref.def_id);
+ if trait_def.skip_array_during_method_dispatch {
+ return ProbeResult::NoMatch;
+ }
+ }
+ }
+ let predicate =
+ ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
+ parent_pred = Some(predicate);
+ let obligation = traits::Obligation::new(cause, self.param_env, predicate);
+ if !self.predicate_may_hold(&obligation) {
+ result = ProbeResult::NoMatch;
+ if self.probe(|_| {
+ match self.select_trait_candidate(trait_ref) {
+ Err(_) => return true,
+ Ok(Some(impl_source))
+ if !impl_source.borrow_nested_obligations().is_empty() =>
+ {
+ for obligation in impl_source.borrow_nested_obligations() {
+ // Determine exactly which obligation wasn't met, so
+ // that we can give more context in the error.
+ if !self.predicate_may_hold(obligation) {
+ let nested_predicate =
+ self.resolve_vars_if_possible(obligation.predicate);
+ let predicate =
+ self.resolve_vars_if_possible(predicate);
+ let p = if predicate == nested_predicate {
+ // Avoid "`MyStruct: Foo` which is required by
+ // `MyStruct: Foo`" in E0599.
+ None
+ } else {
+ Some(predicate)
+ };
+ possibly_unsatisfied_predicates.push((
+ nested_predicate,
+ p,
+ Some(obligation.cause.clone()),
+ ));
+ }
+ }
+ }
+ _ => {
+ // Some nested subobligation of this predicate
+ // failed.
+ let predicate = self.resolve_vars_if_possible(predicate);
+ possibly_unsatisfied_predicates.push((predicate, None, None));
+ }
+ }
+ false
+ }) {
+ // This candidate's primary obligation doesn't even
+ // select - don't bother registering anything in
+ // `potentially_unsatisfied_predicates`.
+ return ProbeResult::NoMatch;
+ }
+ }
+ }
+ }
+
+ // Evaluate those obligations to see if they might possibly hold.
+ for o in sub_obligations {
+ let o = self.resolve_vars_if_possible(o);
+ if !self.predicate_may_hold(&o) {
+ result = ProbeResult::NoMatch;
+ possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
+ }
+ }
+
+ if let ProbeResult::Match = result {
+ if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
+ let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
+ debug!(
+ "comparing return_ty {:?} with xform ret ty {:?}",
+ return_ty, probe.xform_ret_ty
+ );
+ if self
+ .at(&ObligationCause::dummy(), self.param_env)
+ .define_opaque_types(false)
+ .sup(return_ty, xform_ret_ty)
+ .is_err()
+ {
+ return ProbeResult::BadReturnType;
+ }
+ }
+ }
+
+ result
+ })
+ }
+
+ /// Sometimes we get in a situation where we have multiple probes that are all impls of the
+ /// same trait, but we don't know which impl to use. In this case, since in all cases the
+ /// external interface of the method can be determined from the trait, it's ok not to decide.
+ /// We can basically just collapse all of the probes for various impls into one where-clause
+ /// probe. This will result in a pending obligation so when more type-info is available we can
+ /// make the final decision.
+ ///
+ /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
+ ///
+ /// ```ignore (illustrative)
+ /// trait Foo { ... }
+ /// impl Foo for Vec<i32> { ... }
+ /// impl Foo for Vec<usize> { ... }
+ /// ```
+ ///
+ /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
+ /// use, so it's ok to just commit to "using the method from the trait Foo".
+ fn collapse_candidates_to_trait_pick(
+ &self,
+ self_ty: Ty<'tcx>,
+ probes: &[(&Candidate<'tcx>, ProbeResult)],
+ ) -> Option<Pick<'tcx>> {
+ // Do all probes correspond to the same trait?
+ let container = probes[0].0.item.trait_container(self.tcx)?;
+ for (p, _) in &probes[1..] {
+ let p_container = p.item.trait_container(self.tcx)?;
+ if p_container != container {
+ return None;
+ }
+ }
+
+ // FIXME: check the return type here somehow.
+ // If so, just use this trait and call it a day.
+ Some(Pick {
+ item: probes[0].0.item,
+ kind: TraitPick,
+ import_ids: probes[0].0.import_ids.clone(),
+ autoderefs: 0,
+ autoref_or_ptr_adjustment: None,
+ self_ty,
+ })
+ }
+
+ /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
+ /// candidate method where the method name may have been misspelled. Similarly to other
+ /// Levenshtein based suggestions, we provide at most one such suggestion.
+ fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
+ debug!("probing for method names similar to {:?}", self.method_name);
+
+ let steps = self.steps.clone();
+ self.probe(|_| {
+ let mut pcx = ProbeContext::new(
+ self.fcx,
+ self.span,
+ self.mode,
+ self.method_name,
+ self.return_type,
+ self.orig_steps_var_values.clone(),
+ steps,
+ IsSuggestion(true),
+ self.scope_expr_id,
+ );
+ pcx.allow_similar_names = true;
+ pcx.assemble_inherent_candidates();
+
+ let method_names = pcx.candidate_method_names();
+ pcx.allow_similar_names = false;
+ let applicable_close_candidates: Vec<ty::AssocItem> = method_names
+ .iter()
+ .filter_map(|&method_name| {
+ pcx.reset();
+ pcx.method_name = Some(method_name);
+ pcx.assemble_inherent_candidates();
+ pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
+ })
+ .collect();
+
+ if applicable_close_candidates.is_empty() {
+ Ok(None)
+ } else {
+ let best_name = {
+ let names = applicable_close_candidates
+ .iter()
+ .map(|cand| cand.name)
+ .collect::<Vec<Symbol>>();
+ find_best_match_for_name_with_substrings(
+ &names,
+ self.method_name.unwrap().name,
+ None,
+ )
+ }
+ .unwrap();
+ Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
+ }
+ })
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // MISCELLANY
+ fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
+ // "Fast track" -- check for usage of sugar when in method call
+ // mode.
+ //
+ // In Path mode (i.e., resolving a value like `T::next`), consider any
+ // associated value (i.e., methods, constants) but not types.
+ match self.mode {
+ Mode::MethodCall => item.fn_has_self_parameter,
+ Mode::Path => match item.kind {
+ ty::AssocKind::Type => false,
+ ty::AssocKind::Fn | ty::AssocKind::Const => true,
+ },
+ }
+ // FIXME -- check for types that deref to `Self`,
+ // like `Rc<Self>` and so on.
+ //
+ // Note also that the current code will break if this type
+ // includes any of the type parameters defined on the method
+ // -- but this could be overcome.
+ }
+
+ fn record_static_candidate(&mut self, source: CandidateSource) {
+ self.static_candidates.push(source);
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn xform_self_ty(
+ &self,
+ item: &ty::AssocItem,
+ impl_ty: Ty<'tcx>,
+ substs: SubstsRef<'tcx>,
+ ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
+ if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
+ let sig = self.xform_method_sig(item.def_id, substs);
+ (sig.inputs()[0], Some(sig.output()))
+ } else {
+ (impl_ty, None)
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
+ let fn_sig = self.tcx.bound_fn_sig(method);
+ debug!(?fn_sig);
+
+ assert!(!substs.has_escaping_bound_vars());
+
+ // It is possible for type parameters or early-bound lifetimes
+ // to appear in the signature of `self`. The substitutions we
+ // are given do not include type/lifetime parameters for the
+ // method yet. So create fresh variables here for those too,
+ // if there are any.
+ let generics = self.tcx.generics_of(method);
+ assert_eq!(substs.len(), generics.parent_count as usize);
+
+ let xform_fn_sig = if generics.params.is_empty() {
+ fn_sig.subst(self.tcx, substs)
+ } else {
+ let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
+ let i = param.index as usize;
+ if i < substs.len() {
+ substs[i]
+ } else {
+ match param.kind {
+ GenericParamDefKind::Lifetime => {
+ // In general, during probe we erase regions.
+ self.tcx.lifetimes.re_erased.into()
+ }
+ GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
+ self.var_for_def(self.span, param)
+ }
+ }
+ }
+ });
+ fn_sig.subst(self.tcx, substs)
+ };
+
+ self.erase_late_bound_regions(xform_fn_sig)
+ }
+
+ /// Gets the type of an impl and generate substitutions with inference vars.
+ fn impl_ty_and_substs(
+ &self,
+ impl_def_id: DefId,
+ ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
+ (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
+ }
+
+ fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
+ InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
+ GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
+ GenericParamDefKind::Type { .. } => self
+ .next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::SubstitutionPlaceholder,
+ span: self.tcx.def_span(def_id),
+ })
+ .into(),
+ GenericParamDefKind::Const { .. } => {
+ let span = self.tcx.def_span(def_id);
+ let origin = ConstVariableOrigin {
+ kind: ConstVariableOriginKind::SubstitutionPlaceholder,
+ span,
+ };
+ self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
+ }
+ })
+ }
+
+ /// Replaces late-bound-regions bound by `value` with `'static` using
+ /// `ty::erase_late_bound_regions`.
+ ///
+ /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
+ /// method matching. It is reasonable during the probe phase because we don't consider region
+ /// relationships at all. Therefore, we can just replace all the region variables with 'static
+ /// rather than creating fresh region variables. This is nice for two reasons:
+ ///
+ /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
+ /// particular method call, it winds up creating fewer types overall, which helps for memory
+ /// usage. (Admittedly, this is a rather small effect, though measurable.)
+ ///
+ /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
+ /// late-bound regions with 'static. Otherwise, if we were going to replace late-bound
+ /// regions with actual region variables as is proper, we'd have to ensure that the same
+ /// region got replaced with the same variable, which requires a bit more coordination
+ /// and/or tracking the substitution and
+ /// so forth.
+ fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ self.tcx.erase_late_bound_regions(value)
+ }
+
+ /// Finds the method with the appropriate name (or return type, as the case may be). If
+ /// `allow_similar_names` is set, find methods with close-matching names.
+ // The length of the returned iterator is nearly always 0 or 1 and this
+ // method is fairly hot.
+ fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
+ if let Some(name) = self.method_name {
+ if self.allow_similar_names {
+ let max_dist = max(name.as_str().len(), 3) / 3;
+ self.tcx
+ .associated_items(def_id)
+ .in_definition_order()
+ .filter(|x| {
+ if x.kind.namespace() != Namespace::ValueNS {
+ return false;
+ }
+ match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
+ {
+ Some(d) => d > 0,
+ None => false,
+ }
+ })
+ .copied()
+ .collect()
+ } else {
+ self.fcx
+ .associated_value(def_id, name)
+ .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
+ }
+ } else {
+ self.tcx.associated_items(def_id).in_definition_order().copied().collect()
+ }
+ }
+}
+
+impl<'tcx> Candidate<'tcx> {
+ fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
+ Pick {
+ item: self.item,
+ kind: match self.kind {
+ InherentImplCandidate(..) => InherentImplPick,
+ ObjectCandidate => ObjectPick,
+ TraitCandidate(_) => TraitPick,
+ WhereClauseCandidate(ref trait_ref) => {
+ // Only trait derived from where-clauses should
+ // appear here, so they should not contain any
+ // inference variables or other artifacts. This
+ // means they are safe to put into the
+ // `WhereClausePick`.
+ assert!(
+ !trait_ref.skip_binder().substs.needs_infer()
+ && !trait_ref.skip_binder().substs.has_placeholders()
+ );
+
+ WhereClausePick(*trait_ref)
+ }
+ },
+ import_ids: self.import_ids.clone(),
+ autoderefs: 0,
+ autoref_or_ptr_adjustment: None,
+ self_ty,
+ }
+ }
+}