summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/method/suggest.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/method/suggest.rs')
-rw-r--r--compiler/rustc_typeck/src/check/method/suggest.rs2286
1 files changed, 2286 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/method/suggest.rs b/compiler/rustc_typeck/src/check/method/suggest.rs
new file mode 100644
index 000000000..c92b93cbc
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/method/suggest.rs
@@ -0,0 +1,2286 @@
+//! Give useful errors and suggestions to users when an item can't be
+//! found or is otherwise invalid.
+
+use crate::check::FnCtxt;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{
+ pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
+ MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{ExprKind, Node, QPath};
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_middle::traits::util::supertraits;
+use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
+use rustc_middle::ty::print::with_crate_prefix;
+use rustc_middle::ty::ToPolyTraitRef;
+use rustc_middle::ty::{self, DefIdTree, ToPredicate, Ty, TyCtxt, TypeVisitable};
+use rustc_span::symbol::{kw, sym, Ident};
+use rustc_span::Symbol;
+use rustc_span::{lev_distance, source_map, ExpnKind, FileName, MacroKind, Span};
+use rustc_trait_selection::traits::error_reporting::on_unimplemented::InferCtxtExt as _;
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
+use rustc_trait_selection::traits::{
+ FulfillmentError, Obligation, ObligationCause, ObligationCauseCode, OnUnimplementedNote,
+};
+
+use std::cmp::Ordering;
+use std::iter;
+
+use super::probe::{Mode, ProbeScope};
+use super::{super::suggest_call_constructor, CandidateSource, MethodError, NoMatchData};
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ fn is_fn_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
+ let tcx = self.tcx;
+ match ty.kind() {
+ // Not all of these (e.g., unsafe fns) implement `FnOnce`,
+ // so we look for these beforehand.
+ ty::Closure(..) | ty::FnDef(..) | ty::FnPtr(_) => true,
+ // If it's not a simple function, look for things which implement `FnOnce`.
+ _ => {
+ let Some(fn_once) = tcx.lang_items().fn_once_trait() else {
+ return false;
+ };
+
+ // This conditional prevents us from asking to call errors and unresolved types.
+ // It might seem that we can use `predicate_must_hold_modulo_regions`,
+ // but since a Dummy binder is used to fill in the FnOnce trait's arguments,
+ // type resolution always gives a "maybe" here.
+ if self.autoderef(span, ty).any(|(ty, _)| {
+ info!("check deref {:?} error", ty);
+ matches!(ty.kind(), ty::Error(_) | ty::Infer(_))
+ }) {
+ return false;
+ }
+
+ self.autoderef(span, ty).any(|(ty, _)| {
+ info!("check deref {:?} impl FnOnce", ty);
+ self.probe(|_| {
+ let fn_once_substs = tcx.mk_substs_trait(
+ ty,
+ &[self
+ .next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span,
+ })
+ .into()],
+ );
+ let trait_ref = ty::TraitRef::new(fn_once, fn_once_substs);
+ let poly_trait_ref = ty::Binder::dummy(trait_ref);
+ let obligation = Obligation::misc(
+ span,
+ self.body_id,
+ self.param_env,
+ poly_trait_ref.without_const().to_predicate(tcx),
+ );
+ self.predicate_may_hold(&obligation)
+ })
+ })
+ }
+ }
+ }
+
+ fn is_slice_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
+ self.autoderef(span, ty).any(|(ty, _)| matches!(ty.kind(), ty::Slice(..) | ty::Array(..)))
+ }
+
+ pub fn report_method_error(
+ &self,
+ mut span: Span,
+ rcvr_ty: Ty<'tcx>,
+ item_name: Ident,
+ source: SelfSource<'tcx>,
+ error: MethodError<'tcx>,
+ args: Option<&'tcx [hir::Expr<'tcx>]>,
+ ) -> Option<DiagnosticBuilder<'_, ErrorGuaranteed>> {
+ // Avoid suggestions when we don't know what's going on.
+ if rcvr_ty.references_error() {
+ return None;
+ }
+
+ let report_candidates = |span: Span,
+ err: &mut Diagnostic,
+ mut sources: Vec<CandidateSource>,
+ sugg_span: Span| {
+ sources.sort();
+ sources.dedup();
+ // Dynamic limit to avoid hiding just one candidate, which is silly.
+ let limit = if sources.len() == 5 { 5 } else { 4 };
+
+ for (idx, source) in sources.iter().take(limit).enumerate() {
+ match *source {
+ CandidateSource::Impl(impl_did) => {
+ // Provide the best span we can. Use the item, if local to crate, else
+ // the impl, if local to crate (item may be defaulted), else nothing.
+ let Some(item) = self.associated_value(impl_did, item_name).or_else(|| {
+ let impl_trait_ref = self.tcx.impl_trait_ref(impl_did)?;
+ self.associated_value(impl_trait_ref.def_id, item_name)
+ }) else {
+ continue;
+ };
+
+ let note_span = if item.def_id.is_local() {
+ Some(self.tcx.def_span(item.def_id))
+ } else if impl_did.is_local() {
+ Some(self.tcx.def_span(impl_did))
+ } else {
+ None
+ };
+
+ let impl_ty = self.tcx.at(span).type_of(impl_did);
+
+ let insertion = match self.tcx.impl_trait_ref(impl_did) {
+ None => String::new(),
+ Some(trait_ref) => format!(
+ " of the trait `{}`",
+ self.tcx.def_path_str(trait_ref.def_id)
+ ),
+ };
+
+ let (note_str, idx) = if sources.len() > 1 {
+ (
+ format!(
+ "candidate #{} is defined in an impl{} for the type `{}`",
+ idx + 1,
+ insertion,
+ impl_ty,
+ ),
+ Some(idx + 1),
+ )
+ } else {
+ (
+ format!(
+ "the candidate is defined in an impl{} for the type `{}`",
+ insertion, impl_ty,
+ ),
+ None,
+ )
+ };
+ if let Some(note_span) = note_span {
+ // We have a span pointing to the method. Show note with snippet.
+ err.span_note(note_span, &note_str);
+ } else {
+ err.note(&note_str);
+ }
+ if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_did) {
+ let path = self.tcx.def_path_str(trait_ref.def_id);
+
+ let ty = match item.kind {
+ ty::AssocKind::Const | ty::AssocKind::Type => rcvr_ty,
+ ty::AssocKind::Fn => self
+ .tcx
+ .fn_sig(item.def_id)
+ .inputs()
+ .skip_binder()
+ .get(0)
+ .filter(|ty| ty.is_region_ptr() && !rcvr_ty.is_region_ptr())
+ .copied()
+ .unwrap_or(rcvr_ty),
+ };
+ print_disambiguation_help(
+ item_name,
+ args,
+ err,
+ path,
+ ty,
+ item.kind,
+ item.def_id,
+ sugg_span,
+ idx,
+ self.tcx.sess.source_map(),
+ item.fn_has_self_parameter,
+ );
+ }
+ }
+ CandidateSource::Trait(trait_did) => {
+ let Some(item) = self.associated_value(trait_did, item_name) else { continue };
+ let item_span = self.tcx.def_span(item.def_id);
+ let idx = if sources.len() > 1 {
+ let msg = &format!(
+ "candidate #{} is defined in the trait `{}`",
+ idx + 1,
+ self.tcx.def_path_str(trait_did)
+ );
+ err.span_note(item_span, msg);
+ Some(idx + 1)
+ } else {
+ let msg = &format!(
+ "the candidate is defined in the trait `{}`",
+ self.tcx.def_path_str(trait_did)
+ );
+ err.span_note(item_span, msg);
+ None
+ };
+ let path = self.tcx.def_path_str(trait_did);
+ print_disambiguation_help(
+ item_name,
+ args,
+ err,
+ path,
+ rcvr_ty,
+ item.kind,
+ item.def_id,
+ sugg_span,
+ idx,
+ self.tcx.sess.source_map(),
+ item.fn_has_self_parameter,
+ );
+ }
+ }
+ }
+ if sources.len() > limit {
+ err.note(&format!("and {} others", sources.len() - limit));
+ }
+ };
+
+ let sugg_span = if let SelfSource::MethodCall(expr) = source {
+ // Given `foo.bar(baz)`, `expr` is `bar`, but we want to point to the whole thing.
+ self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id)).span
+ } else {
+ span
+ };
+
+ match error {
+ MethodError::NoMatch(NoMatchData {
+ static_candidates: static_sources,
+ unsatisfied_predicates,
+ out_of_scope_traits,
+ lev_candidate,
+ mode,
+ }) => {
+ let tcx = self.tcx;
+
+ let actual = self.resolve_vars_if_possible(rcvr_ty);
+ let ty_str = self.ty_to_string(actual);
+ let is_method = mode == Mode::MethodCall;
+ let item_kind = if is_method {
+ "method"
+ } else if actual.is_enum() {
+ "variant or associated item"
+ } else {
+ match (item_name.as_str().chars().next(), actual.is_fresh_ty()) {
+ (Some(name), false) if name.is_lowercase() => "function or associated item",
+ (Some(_), false) => "associated item",
+ (Some(_), true) | (None, false) => "variant or associated item",
+ (None, true) => "variant",
+ }
+ };
+
+ if self.suggest_constraining_numerical_ty(
+ tcx, actual, source, span, item_kind, item_name, &ty_str,
+ ) {
+ return None;
+ }
+
+ span = item_name.span;
+
+ // Don't show generic arguments when the method can't be found in any implementation (#81576).
+ let mut ty_str_reported = ty_str.clone();
+ if let ty::Adt(_, generics) = actual.kind() {
+ if generics.len() > 0 {
+ let mut autoderef = self.autoderef(span, actual);
+ let candidate_found = autoderef.any(|(ty, _)| {
+ if let ty::Adt(adt_deref, _) = ty.kind() {
+ self.tcx
+ .inherent_impls(adt_deref.did())
+ .iter()
+ .filter_map(|def_id| self.associated_value(*def_id, item_name))
+ .count()
+ >= 1
+ } else {
+ false
+ }
+ });
+ let has_deref = autoderef.step_count() > 0;
+ if !candidate_found && !has_deref && unsatisfied_predicates.is_empty() {
+ if let Some((path_string, _)) = ty_str.split_once('<') {
+ ty_str_reported = path_string.to_string();
+ }
+ }
+ }
+ }
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0599,
+ "no {} named `{}` found for {} `{}` in the current scope",
+ item_kind,
+ item_name,
+ actual.prefix_string(self.tcx),
+ ty_str_reported,
+ );
+ if actual.references_error() {
+ err.downgrade_to_delayed_bug();
+ }
+
+ if let Mode::MethodCall = mode && let SelfSource::MethodCall(cal) = source {
+ self.suggest_await_before_method(
+ &mut err, item_name, actual, cal, span,
+ );
+ }
+ if let Some(span) = tcx.resolutions(()).confused_type_with_std_module.get(&span) {
+ err.span_suggestion(
+ span.shrink_to_lo(),
+ "you are looking for the module in `std`, not the primitive type",
+ "std::",
+ Applicability::MachineApplicable,
+ );
+ }
+ if let ty::RawPtr(_) = &actual.kind() {
+ err.note(
+ "try using `<*const T>::as_ref()` to get a reference to the \
+ type behind the pointer: https://doc.rust-lang.org/std/\
+ primitive.pointer.html#method.as_ref",
+ );
+ err.note(
+ "using `<*const T>::as_ref()` on a pointer which is unaligned or points \
+ to invalid or uninitialized memory is undefined behavior",
+ );
+ }
+
+ let ty_span = match actual.kind() {
+ ty::Param(param_type) => {
+ let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
+ let type_param = generics.type_param(param_type, self.tcx);
+ Some(self.tcx.def_span(type_param.def_id))
+ }
+ ty::Adt(def, _) if def.did().is_local() => Some(tcx.def_span(def.did())),
+ _ => None,
+ };
+
+ if let Some(span) = ty_span {
+ err.span_label(
+ span,
+ format!(
+ "{item_kind} `{item_name}` not found for this {}",
+ actual.prefix_string(self.tcx)
+ ),
+ );
+ }
+
+ if self.is_fn_ty(rcvr_ty, span) {
+ if let SelfSource::MethodCall(expr) = source {
+ let suggest = if let ty::FnDef(def_id, _) = rcvr_ty.kind() {
+ if let Some(local_id) = def_id.as_local() {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(local_id);
+ let node = tcx.hir().get(hir_id);
+ let fields = node.tuple_fields();
+ if let Some(fields) = fields
+ && let Some(DefKind::Ctor(of, _)) = self.tcx.opt_def_kind(local_id) {
+ Some((fields.len(), of))
+ } else {
+ None
+ }
+ } else {
+ // The logic here isn't smart but `associated_item_def_ids`
+ // doesn't work nicely on local.
+ if let DefKind::Ctor(of, _) = tcx.def_kind(def_id) {
+ let parent_def_id = tcx.parent(*def_id);
+ Some((tcx.associated_item_def_ids(parent_def_id).len(), of))
+ } else {
+ None
+ }
+ }
+ } else {
+ None
+ };
+
+ // If the function is a tuple constructor, we recommend that they call it
+ if let Some((fields, kind)) = suggest {
+ suggest_call_constructor(expr.span, kind, fields, &mut err);
+ } else {
+ // General case
+ err.span_label(
+ expr.span,
+ "this is a function, perhaps you wish to call it",
+ );
+ }
+ }
+ }
+
+ let mut custom_span_label = false;
+
+ if !static_sources.is_empty() {
+ err.note(
+ "found the following associated functions; to be used as methods, \
+ functions must have a `self` parameter",
+ );
+ err.span_label(span, "this is an associated function, not a method");
+ custom_span_label = true;
+ }
+ if static_sources.len() == 1 {
+ let ty_str =
+ if let Some(CandidateSource::Impl(impl_did)) = static_sources.get(0) {
+ // When the "method" is resolved through dereferencing, we really want the
+ // original type that has the associated function for accurate suggestions.
+ // (#61411)
+ let ty = tcx.at(span).type_of(*impl_did);
+ match (&ty.peel_refs().kind(), &actual.peel_refs().kind()) {
+ (ty::Adt(def, _), ty::Adt(def_actual, _)) if def == def_actual => {
+ // Use `actual` as it will have more `substs` filled in.
+ self.ty_to_value_string(actual.peel_refs())
+ }
+ _ => self.ty_to_value_string(ty.peel_refs()),
+ }
+ } else {
+ self.ty_to_value_string(actual.peel_refs())
+ };
+ if let SelfSource::MethodCall(expr) = source {
+ err.span_suggestion(
+ expr.span.to(span),
+ "use associated function syntax instead",
+ format!("{}::{}", ty_str, item_name),
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.help(&format!("try with `{}::{}`", ty_str, item_name,));
+ }
+
+ report_candidates(span, &mut err, static_sources, sugg_span);
+ } else if static_sources.len() > 1 {
+ report_candidates(span, &mut err, static_sources, sugg_span);
+ }
+
+ let mut bound_spans = vec![];
+ let mut restrict_type_params = false;
+ let mut unsatisfied_bounds = false;
+ if item_name.name == sym::count && self.is_slice_ty(actual, span) {
+ let msg = "consider using `len` instead";
+ if let SelfSource::MethodCall(_expr) = source {
+ err.span_suggestion_short(
+ span,
+ msg,
+ "len",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_label(span, msg);
+ }
+ if let Some(iterator_trait) = self.tcx.get_diagnostic_item(sym::Iterator) {
+ let iterator_trait = self.tcx.def_path_str(iterator_trait);
+ err.note(&format!("`count` is defined on `{iterator_trait}`, which `{actual}` does not implement"));
+ }
+ } else if !unsatisfied_predicates.is_empty() {
+ let mut type_params = FxHashMap::default();
+
+ // Pick out the list of unimplemented traits on the receiver.
+ // This is used for custom error messages with the `#[rustc_on_unimplemented]` attribute.
+ let mut unimplemented_traits = FxHashMap::default();
+ let mut unimplemented_traits_only = true;
+ for (predicate, _parent_pred, cause) in &unsatisfied_predicates {
+ if let (ty::PredicateKind::Trait(p), Some(cause)) =
+ (predicate.kind().skip_binder(), cause.as_ref())
+ {
+ if p.trait_ref.self_ty() != rcvr_ty {
+ // This is necessary, not just to keep the errors clean, but also
+ // because our derived obligations can wind up with a trait ref that
+ // requires a different param_env to be correctly compared.
+ continue;
+ }
+ unimplemented_traits.entry(p.trait_ref.def_id).or_insert((
+ predicate.kind().rebind(p.trait_ref),
+ Obligation {
+ cause: cause.clone(),
+ param_env: self.param_env,
+ predicate: *predicate,
+ recursion_depth: 0,
+ },
+ ));
+ }
+ }
+
+ // Make sure that, if any traits other than the found ones were involved,
+ // we don't don't report an unimplemented trait.
+ // We don't want to say that `iter::Cloned` is not an iterator, just
+ // because of some non-Clone item being iterated over.
+ for (predicate, _parent_pred, _cause) in &unsatisfied_predicates {
+ match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(p)
+ if unimplemented_traits.contains_key(&p.trait_ref.def_id) => {}
+ _ => {
+ unimplemented_traits_only = false;
+ break;
+ }
+ }
+ }
+
+ let mut collect_type_param_suggestions =
+ |self_ty: Ty<'tcx>, parent_pred: ty::Predicate<'tcx>, obligation: &str| {
+ // We don't care about regions here, so it's fine to skip the binder here.
+ if let (ty::Param(_), ty::PredicateKind::Trait(p)) =
+ (self_ty.kind(), parent_pred.kind().skip_binder())
+ {
+ let node = match p.trait_ref.self_ty().kind() {
+ ty::Param(_) => {
+ // Account for `fn` items like in `issue-35677.rs` to
+ // suggest restricting its type params.
+ let did = self.tcx.hir().body_owner_def_id(hir::BodyId {
+ hir_id: self.body_id,
+ });
+ Some(
+ self.tcx
+ .hir()
+ .get(self.tcx.hir().local_def_id_to_hir_id(did)),
+ )
+ }
+ ty::Adt(def, _) => def.did().as_local().map(|def_id| {
+ self.tcx
+ .hir()
+ .get(self.tcx.hir().local_def_id_to_hir_id(def_id))
+ }),
+ _ => None,
+ };
+ if let Some(hir::Node::Item(hir::Item { kind, .. })) = node {
+ if let Some(g) = kind.generics() {
+ let key = (
+ g.tail_span_for_predicate_suggestion(),
+ g.add_where_or_trailing_comma(),
+ );
+ type_params
+ .entry(key)
+ .or_insert_with(FxHashSet::default)
+ .insert(obligation.to_owned());
+ }
+ }
+ }
+ };
+ let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
+ let msg = format!(
+ "doesn't satisfy `{}`",
+ if obligation.len() > 50 { quiet } else { obligation }
+ );
+ match &self_ty.kind() {
+ // Point at the type that couldn't satisfy the bound.
+ ty::Adt(def, _) => {
+ bound_spans.push((self.tcx.def_span(def.did()), msg))
+ }
+ // Point at the trait object that couldn't satisfy the bound.
+ ty::Dynamic(preds, _) => {
+ for pred in preds.iter() {
+ match pred.skip_binder() {
+ ty::ExistentialPredicate::Trait(tr) => bound_spans
+ .push((self.tcx.def_span(tr.def_id), msg.clone())),
+ ty::ExistentialPredicate::Projection(_)
+ | ty::ExistentialPredicate::AutoTrait(_) => {}
+ }
+ }
+ }
+ // Point at the closure that couldn't satisfy the bound.
+ ty::Closure(def_id, _) => bound_spans.push((
+ tcx.def_span(*def_id),
+ format!("doesn't satisfy `{}`", quiet),
+ )),
+ _ => {}
+ }
+ };
+ let mut format_pred = |pred: ty::Predicate<'tcx>| {
+ let bound_predicate = pred.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Projection(pred) => {
+ let pred = bound_predicate.rebind(pred);
+ // `<Foo as Iterator>::Item = String`.
+ let projection_ty = pred.skip_binder().projection_ty;
+
+ let substs_with_infer_self = tcx.mk_substs(
+ iter::once(tcx.mk_ty_var(ty::TyVid::from_u32(0)).into())
+ .chain(projection_ty.substs.iter().skip(1)),
+ );
+
+ let quiet_projection_ty = ty::ProjectionTy {
+ substs: substs_with_infer_self,
+ item_def_id: projection_ty.item_def_id,
+ };
+
+ let term = pred.skip_binder().term;
+
+ let obligation = format!("{} = {}", projection_ty, term);
+ let quiet = format!("{} = {}", quiet_projection_ty, term);
+
+ bound_span_label(projection_ty.self_ty(), &obligation, &quiet);
+ Some((obligation, projection_ty.self_ty()))
+ }
+ ty::PredicateKind::Trait(poly_trait_ref) => {
+ let p = poly_trait_ref.trait_ref;
+ let self_ty = p.self_ty();
+ let path = p.print_only_trait_path();
+ let obligation = format!("{}: {}", self_ty, path);
+ let quiet = format!("_: {}", path);
+ bound_span_label(self_ty, &obligation, &quiet);
+ Some((obligation, self_ty))
+ }
+ _ => None,
+ }
+ };
+
+ // Find all the requirements that come from a local `impl` block.
+ let mut skip_list: FxHashSet<_> = Default::default();
+ let mut spanned_predicates: FxHashMap<MultiSpan, _> = Default::default();
+ for (data, p, parent_p, impl_def_id, cause) in unsatisfied_predicates
+ .iter()
+ .filter_map(|(p, parent, c)| c.as_ref().map(|c| (p, parent, c)))
+ .filter_map(|(p, parent, c)| match c.code() {
+ ObligationCauseCode::ImplDerivedObligation(ref data) => {
+ Some((&data.derived, p, parent, data.impl_def_id, data))
+ }
+ _ => None,
+ })
+ {
+ let parent_trait_ref = data.parent_trait_pred;
+ let path = parent_trait_ref.print_modifiers_and_trait_path();
+ let tr_self_ty = parent_trait_ref.skip_binder().self_ty();
+ let unsatisfied_msg = "unsatisfied trait bound introduced here";
+ let derive_msg =
+ "unsatisfied trait bound introduced in this `derive` macro";
+ match self.tcx.hir().get_if_local(impl_def_id) {
+ // Unmet obligation comes from a `derive` macro, point at it once to
+ // avoid multiple span labels pointing at the same place.
+ Some(Node::Item(hir::Item {
+ kind: hir::ItemKind::Trait(..),
+ ident,
+ ..
+ })) if matches!(
+ ident.span.ctxt().outer_expn_data().kind,
+ ExpnKind::Macro(MacroKind::Derive, _)
+ ) =>
+ {
+ let span = ident.span.ctxt().outer_expn_data().call_site;
+ let mut spans: MultiSpan = span.into();
+ spans.push_span_label(span, derive_msg);
+ let entry = spanned_predicates.entry(spans);
+ entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
+ }
+
+ Some(Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, .. }),
+ ..
+ })) if matches!(
+ self_ty.span.ctxt().outer_expn_data().kind,
+ ExpnKind::Macro(MacroKind::Derive, _)
+ ) || matches!(
+ of_trait.as_ref().map(|t| t
+ .path
+ .span
+ .ctxt()
+ .outer_expn_data()
+ .kind),
+ Some(ExpnKind::Macro(MacroKind::Derive, _))
+ ) =>
+ {
+ let span = self_ty.span.ctxt().outer_expn_data().call_site;
+ let mut spans: MultiSpan = span.into();
+ spans.push_span_label(span, derive_msg);
+ let entry = spanned_predicates.entry(spans);
+ entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
+ }
+
+ // Unmet obligation coming from a `trait`.
+ Some(Node::Item(hir::Item {
+ kind: hir::ItemKind::Trait(..),
+ ident,
+ span: item_span,
+ ..
+ })) if !matches!(
+ ident.span.ctxt().outer_expn_data().kind,
+ ExpnKind::Macro(MacroKind::Derive, _)
+ ) =>
+ {
+ if let Some(pred) = parent_p {
+ // Done to add the "doesn't satisfy" `span_label`.
+ let _ = format_pred(*pred);
+ }
+ skip_list.insert(p);
+ let mut spans = if cause.span != *item_span {
+ let mut spans: MultiSpan = cause.span.into();
+ spans.push_span_label(cause.span, unsatisfied_msg);
+ spans
+ } else {
+ ident.span.into()
+ };
+ spans.push_span_label(ident.span, "in this trait");
+ let entry = spanned_predicates.entry(spans);
+ entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
+ }
+
+ // Unmet obligation coming from an `impl`.
+ Some(Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Impl(hir::Impl {
+ of_trait, self_ty, generics, ..
+ }),
+ span: item_span,
+ ..
+ })) if !matches!(
+ self_ty.span.ctxt().outer_expn_data().kind,
+ ExpnKind::Macro(MacroKind::Derive, _)
+ ) && !matches!(
+ of_trait.as_ref().map(|t| t
+ .path
+ .span
+ .ctxt()
+ .outer_expn_data()
+ .kind),
+ Some(ExpnKind::Macro(MacroKind::Derive, _))
+ ) =>
+ {
+ let sized_pred =
+ unsatisfied_predicates.iter().any(|(pred, _, _)| {
+ match pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(pred) => {
+ Some(pred.def_id())
+ == self.tcx.lang_items().sized_trait()
+ && pred.polarity == ty::ImplPolarity::Positive
+ }
+ _ => false,
+ }
+ });
+ for param in generics.params {
+ if param.span == cause.span && sized_pred {
+ let (sp, sugg) = match param.colon_span {
+ Some(sp) => (sp.shrink_to_hi(), " ?Sized +"),
+ None => (param.span.shrink_to_hi(), ": ?Sized"),
+ };
+ err.span_suggestion_verbose(
+ sp,
+ "consider relaxing the type parameter's implicit \
+ `Sized` bound",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ if let Some(pred) = parent_p {
+ // Done to add the "doesn't satisfy" `span_label`.
+ let _ = format_pred(*pred);
+ }
+ skip_list.insert(p);
+ let mut spans = if cause.span != *item_span {
+ let mut spans: MultiSpan = cause.span.into();
+ spans.push_span_label(cause.span, unsatisfied_msg);
+ spans
+ } else {
+ let mut spans = Vec::with_capacity(2);
+ if let Some(trait_ref) = of_trait {
+ spans.push(trait_ref.path.span);
+ }
+ spans.push(self_ty.span);
+ spans.into()
+ };
+ if let Some(trait_ref) = of_trait {
+ spans.push_span_label(trait_ref.path.span, "");
+ }
+ spans.push_span_label(self_ty.span, "");
+
+ let entry = spanned_predicates.entry(spans);
+ entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
+ }
+ _ => {}
+ }
+ }
+ let mut spanned_predicates: Vec<_> = spanned_predicates.into_iter().collect();
+ spanned_predicates.sort_by_key(|(span, (_, _, _))| span.primary_span());
+ for (span, (_path, _self_ty, preds)) in spanned_predicates {
+ let mut preds: Vec<_> = preds
+ .into_iter()
+ .filter_map(|pred| format_pred(*pred))
+ .map(|(p, _)| format!("`{}`", p))
+ .collect();
+ preds.sort();
+ preds.dedup();
+ let msg = if let [pred] = &preds[..] {
+ format!("trait bound {} was not satisfied", pred)
+ } else {
+ format!(
+ "the following trait bounds were not satisfied:\n{}",
+ preds.join("\n"),
+ )
+ };
+ err.span_note(span, &msg);
+ unsatisfied_bounds = true;
+ }
+
+ // The requirements that didn't have an `impl` span to show.
+ let mut bound_list = unsatisfied_predicates
+ .iter()
+ .filter_map(|(pred, parent_pred, _cause)| {
+ format_pred(*pred).map(|(p, self_ty)| {
+ collect_type_param_suggestions(self_ty, *pred, &p);
+ (
+ match parent_pred {
+ None => format!("`{}`", &p),
+ Some(parent_pred) => match format_pred(*parent_pred) {
+ None => format!("`{}`", &p),
+ Some((parent_p, _)) => {
+ collect_type_param_suggestions(
+ self_ty,
+ *parent_pred,
+ &p,
+ );
+ format!(
+ "`{}`\nwhich is required by `{}`",
+ p, parent_p
+ )
+ }
+ },
+ },
+ *pred,
+ )
+ })
+ })
+ .filter(|(_, pred)| !skip_list.contains(&pred))
+ .map(|(t, _)| t)
+ .enumerate()
+ .collect::<Vec<(usize, String)>>();
+
+ for ((span, add_where_or_comma), obligations) in type_params.into_iter() {
+ restrict_type_params = true;
+ // #74886: Sort here so that the output is always the same.
+ let mut obligations = obligations.into_iter().collect::<Vec<_>>();
+ obligations.sort();
+ err.span_suggestion_verbose(
+ span,
+ &format!(
+ "consider restricting the type parameter{s} to satisfy the \
+ trait bound{s}",
+ s = pluralize!(obligations.len())
+ ),
+ format!("{} {}", add_where_or_comma, obligations.join(", ")),
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ bound_list.sort_by(|(_, a), (_, b)| a.cmp(b)); // Sort alphabetically.
+ bound_list.dedup_by(|(_, a), (_, b)| a == b); // #35677
+ bound_list.sort_by_key(|(pos, _)| *pos); // Keep the original predicate order.
+
+ if !bound_list.is_empty() || !skip_list.is_empty() {
+ let bound_list = bound_list
+ .into_iter()
+ .map(|(_, path)| path)
+ .collect::<Vec<_>>()
+ .join("\n");
+ let actual_prefix = actual.prefix_string(self.tcx);
+ info!("unimplemented_traits.len() == {}", unimplemented_traits.len());
+ let (primary_message, label) =
+ if unimplemented_traits.len() == 1 && unimplemented_traits_only {
+ unimplemented_traits
+ .into_iter()
+ .next()
+ .map(|(_, (trait_ref, obligation))| {
+ if trait_ref.self_ty().references_error()
+ || actual.references_error()
+ {
+ // Avoid crashing.
+ return (None, None);
+ }
+ let OnUnimplementedNote { message, label, .. } =
+ self.on_unimplemented_note(trait_ref, &obligation);
+ (message, label)
+ })
+ .unwrap_or((None, None))
+ } else {
+ (None, None)
+ };
+ let primary_message = primary_message.unwrap_or_else(|| format!(
+ "the {item_kind} `{item_name}` exists for {actual_prefix} `{ty_str}`, but its trait bounds were not satisfied"
+ ));
+ err.set_primary_message(&primary_message);
+ if let Some(label) = label {
+ custom_span_label = true;
+ err.span_label(span, label);
+ }
+ if !bound_list.is_empty() {
+ err.note(&format!(
+ "the following trait bounds were not satisfied:\n{bound_list}"
+ ));
+ }
+ self.suggest_derive(&mut err, &unsatisfied_predicates);
+
+ unsatisfied_bounds = true;
+ }
+ }
+
+ let label_span_not_found = |err: &mut DiagnosticBuilder<'_, _>| {
+ if unsatisfied_predicates.is_empty() {
+ err.span_label(span, format!("{item_kind} not found in `{ty_str}`"));
+ let is_string_or_ref_str = match actual.kind() {
+ ty::Ref(_, ty, _) => {
+ ty.is_str()
+ || matches!(
+ ty.kind(),
+ ty::Adt(adt, _) if self.tcx.is_diagnostic_item(sym::String, adt.did())
+ )
+ }
+ ty::Adt(adt, _) => self.tcx.is_diagnostic_item(sym::String, adt.did()),
+ _ => false,
+ };
+ if is_string_or_ref_str && item_name.name == sym::iter {
+ err.span_suggestion_verbose(
+ item_name.span,
+ "because of the in-memory representation of `&str`, to obtain \
+ an `Iterator` over each of its codepoint use method `chars`",
+ "chars",
+ Applicability::MachineApplicable,
+ );
+ }
+ if let ty::Adt(adt, _) = rcvr_ty.kind() {
+ let mut inherent_impls_candidate = self
+ .tcx
+ .inherent_impls(adt.did())
+ .iter()
+ .copied()
+ .filter(|def_id| {
+ if let Some(assoc) = self.associated_value(*def_id, item_name) {
+ // Check for both mode is the same so we avoid suggesting
+ // incorrect associated item.
+ match (mode, assoc.fn_has_self_parameter, source) {
+ (Mode::MethodCall, true, SelfSource::MethodCall(_)) => {
+ // We check that the suggest type is actually
+ // different from the received one
+ // So we avoid suggestion method with Box<Self>
+ // for instance
+ self.tcx.at(span).type_of(*def_id) != actual
+ && self.tcx.at(span).type_of(*def_id) != rcvr_ty
+ }
+ (Mode::Path, false, _) => true,
+ _ => false,
+ }
+ } else {
+ false
+ }
+ })
+ .collect::<Vec<_>>();
+ if !inherent_impls_candidate.is_empty() {
+ inherent_impls_candidate.sort();
+ inherent_impls_candidate.dedup();
+
+ // number of type to shows at most.
+ let limit = if inherent_impls_candidate.len() == 5 { 5 } else { 4 };
+ let type_candidates = inherent_impls_candidate
+ .iter()
+ .take(limit)
+ .map(|impl_item| {
+ format!("- `{}`", self.tcx.at(span).type_of(*impl_item))
+ })
+ .collect::<Vec<_>>()
+ .join("\n");
+ let additional_types = if inherent_impls_candidate.len() > limit {
+ format!(
+ "\nand {} more types",
+ inherent_impls_candidate.len() - limit
+ )
+ } else {
+ "".to_string()
+ };
+ err.note(&format!(
+ "the {item_kind} was found for\n{}{}",
+ type_candidates, additional_types
+ ));
+ }
+ }
+ } else {
+ err.span_label(span, format!("{item_kind} cannot be called on `{ty_str}` due to unsatisfied trait bounds"));
+ }
+ };
+
+ // If the method name is the name of a field with a function or closure type,
+ // give a helping note that it has to be called as `(x.f)(...)`.
+ if let SelfSource::MethodCall(expr) = source {
+ if !self.suggest_field_call(span, rcvr_ty, expr, item_name, &mut err)
+ && lev_candidate.is_none()
+ && !custom_span_label
+ {
+ label_span_not_found(&mut err);
+ }
+ } else if !custom_span_label {
+ label_span_not_found(&mut err);
+ }
+
+ self.check_for_field_method(&mut err, source, span, actual, item_name);
+
+ self.check_for_unwrap_self(&mut err, source, span, actual, item_name);
+
+ bound_spans.sort();
+ bound_spans.dedup();
+ for (span, msg) in bound_spans.into_iter() {
+ err.span_label(span, &msg);
+ }
+
+ if actual.is_numeric() && actual.is_fresh() || restrict_type_params {
+ } else {
+ self.suggest_traits_to_import(
+ &mut err,
+ span,
+ rcvr_ty,
+ item_name,
+ args.map(|args| args.len()),
+ source,
+ out_of_scope_traits,
+ &unsatisfied_predicates,
+ unsatisfied_bounds,
+ );
+ }
+
+ // Don't emit a suggestion if we found an actual method
+ // that had unsatisfied trait bounds
+ if unsatisfied_predicates.is_empty() && actual.is_enum() {
+ let adt_def = actual.ty_adt_def().expect("enum is not an ADT");
+ if let Some(suggestion) = lev_distance::find_best_match_for_name(
+ &adt_def.variants().iter().map(|s| s.name).collect::<Vec<_>>(),
+ item_name.name,
+ None,
+ ) {
+ err.span_suggestion(
+ span,
+ "there is a variant with a similar name",
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ if item_name.name == sym::as_str && actual.peel_refs().is_str() {
+ let msg = "remove this method call";
+ let mut fallback_span = true;
+ if let SelfSource::MethodCall(expr) = source {
+ let call_expr =
+ self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id));
+ if let Some(span) = call_expr.span.trim_start(expr.span) {
+ err.span_suggestion(span, msg, "", Applicability::MachineApplicable);
+ fallback_span = false;
+ }
+ }
+ if fallback_span {
+ err.span_label(span, msg);
+ }
+ } else if let Some(lev_candidate) = lev_candidate {
+ // Don't emit a suggestion if we found an actual method
+ // that had unsatisfied trait bounds
+ if unsatisfied_predicates.is_empty() {
+ let def_kind = lev_candidate.kind.as_def_kind();
+ err.span_suggestion(
+ span,
+ &format!(
+ "there is {} {} with a similar name",
+ def_kind.article(),
+ def_kind.descr(lev_candidate.def_id),
+ ),
+ lev_candidate.name,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ return Some(err);
+ }
+
+ MethodError::Ambiguity(sources) => {
+ let mut err = struct_span_err!(
+ self.sess(),
+ item_name.span,
+ E0034,
+ "multiple applicable items in scope"
+ );
+ err.span_label(item_name.span, format!("multiple `{}` found", item_name));
+
+ report_candidates(span, &mut err, sources, sugg_span);
+ err.emit();
+ }
+
+ MethodError::PrivateMatch(kind, def_id, out_of_scope_traits) => {
+ let kind = kind.descr(def_id);
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ item_name.span,
+ E0624,
+ "{} `{}` is private",
+ kind,
+ item_name
+ );
+ err.span_label(item_name.span, &format!("private {}", kind));
+ let sp = self
+ .tcx
+ .hir()
+ .span_if_local(def_id)
+ .unwrap_or_else(|| self.tcx.def_span(def_id));
+ err.span_label(sp, &format!("private {} defined here", kind));
+ self.suggest_valid_traits(&mut err, out_of_scope_traits);
+ err.emit();
+ }
+
+ MethodError::IllegalSizedBound(candidates, needs_mut, bound_span) => {
+ let msg = format!("the `{}` method cannot be invoked on a trait object", item_name);
+ let mut err = self.sess().struct_span_err(span, &msg);
+ err.span_label(bound_span, "this has a `Sized` requirement");
+ if !candidates.is_empty() {
+ let help = format!(
+ "{an}other candidate{s} {were} found in the following trait{s}, perhaps \
+ add a `use` for {one_of_them}:",
+ an = if candidates.len() == 1 { "an" } else { "" },
+ s = pluralize!(candidates.len()),
+ were = pluralize!("was", candidates.len()),
+ one_of_them = if candidates.len() == 1 { "it" } else { "one_of_them" },
+ );
+ self.suggest_use_candidates(&mut err, help, candidates);
+ }
+ if let ty::Ref(region, t_type, mutability) = rcvr_ty.kind() {
+ if needs_mut {
+ let trait_type = self.tcx.mk_ref(
+ *region,
+ ty::TypeAndMut { ty: *t_type, mutbl: mutability.invert() },
+ );
+ err.note(&format!("you need `{}` instead of `{}`", trait_type, rcvr_ty));
+ }
+ }
+ err.emit();
+ }
+
+ MethodError::BadReturnType => bug!("no return type expectations but got BadReturnType"),
+ }
+ None
+ }
+
+ fn suggest_field_call(
+ &self,
+ span: Span,
+ rcvr_ty: Ty<'tcx>,
+ expr: &hir::Expr<'_>,
+ item_name: Ident,
+ err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ ) -> bool {
+ let tcx = self.tcx;
+ let field_receiver = self.autoderef(span, rcvr_ty).find_map(|(ty, _)| match ty.kind() {
+ ty::Adt(def, substs) if !def.is_enum() => {
+ let variant = &def.non_enum_variant();
+ tcx.find_field_index(item_name, variant).map(|index| {
+ let field = &variant.fields[index];
+ let field_ty = field.ty(tcx, substs);
+ (field, field_ty)
+ })
+ }
+ _ => None,
+ });
+ if let Some((field, field_ty)) = field_receiver {
+ let scope = tcx.parent_module(self.body_id).to_def_id();
+ let is_accessible = field.vis.is_accessible_from(scope, tcx);
+
+ if is_accessible {
+ if self.is_fn_ty(field_ty, span) {
+ let expr_span = expr.span.to(item_name.span);
+ err.multipart_suggestion(
+ &format!(
+ "to call the function stored in `{}`, \
+ surround the field access with parentheses",
+ item_name,
+ ),
+ vec![
+ (expr_span.shrink_to_lo(), '('.to_string()),
+ (expr_span.shrink_to_hi(), ')'.to_string()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ } else {
+ let call_expr = tcx.hir().expect_expr(tcx.hir().get_parent_node(expr.hir_id));
+
+ if let Some(span) = call_expr.span.trim_start(item_name.span) {
+ err.span_suggestion(
+ span,
+ "remove the arguments",
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+
+ let field_kind = if is_accessible { "field" } else { "private field" };
+ err.span_label(item_name.span, format!("{}, not a method", field_kind));
+ return true;
+ }
+ false
+ }
+
+ fn suggest_constraining_numerical_ty(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ actual: Ty<'tcx>,
+ source: SelfSource<'_>,
+ span: Span,
+ item_kind: &str,
+ item_name: Ident,
+ ty_str: &str,
+ ) -> bool {
+ let found_candidate = all_traits(self.tcx)
+ .into_iter()
+ .any(|info| self.associated_value(info.def_id, item_name).is_some());
+ let found_assoc = |ty: Ty<'tcx>| {
+ simplify_type(tcx, ty, TreatParams::AsInfer)
+ .and_then(|simp| {
+ tcx.incoherent_impls(simp)
+ .iter()
+ .find_map(|&id| self.associated_value(id, item_name))
+ })
+ .is_some()
+ };
+ let found_candidate = found_candidate
+ || found_assoc(tcx.types.i8)
+ || found_assoc(tcx.types.i16)
+ || found_assoc(tcx.types.i32)
+ || found_assoc(tcx.types.i64)
+ || found_assoc(tcx.types.i128)
+ || found_assoc(tcx.types.u8)
+ || found_assoc(tcx.types.u16)
+ || found_assoc(tcx.types.u32)
+ || found_assoc(tcx.types.u64)
+ || found_assoc(tcx.types.u128)
+ || found_assoc(tcx.types.f32)
+ || found_assoc(tcx.types.f32);
+ if found_candidate
+ && actual.is_numeric()
+ && !actual.has_concrete_skeleton()
+ && let SelfSource::MethodCall(expr) = source
+ {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0689,
+ "can't call {} `{}` on ambiguous numeric type `{}`",
+ item_kind,
+ item_name,
+ ty_str
+ );
+ let concrete_type = if actual.is_integral() { "i32" } else { "f32" };
+ match expr.kind {
+ ExprKind::Lit(ref lit) => {
+ // numeric literal
+ let snippet = tcx
+ .sess
+ .source_map()
+ .span_to_snippet(lit.span)
+ .unwrap_or_else(|_| "<numeric literal>".to_owned());
+
+ // If this is a floating point literal that ends with '.',
+ // get rid of it to stop this from becoming a member access.
+ let snippet = snippet.strip_suffix('.').unwrap_or(&snippet);
+
+ err.span_suggestion(
+ lit.span,
+ &format!(
+ "you must specify a concrete type for this numeric value, \
+ like `{}`",
+ concrete_type
+ ),
+ format!("{snippet}_{concrete_type}"),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ ExprKind::Path(QPath::Resolved(_, path)) => {
+ // local binding
+ if let hir::def::Res::Local(hir_id) = path.res {
+ let span = tcx.hir().span(hir_id);
+ let snippet = tcx.sess.source_map().span_to_snippet(span);
+ let filename = tcx.sess.source_map().span_to_filename(span);
+
+ let parent_node =
+ self.tcx.hir().get(self.tcx.hir().get_parent_node(hir_id));
+ let msg = format!(
+ "you must specify a type for this binding, like `{}`",
+ concrete_type,
+ );
+
+ match (filename, parent_node, snippet) {
+ (
+ FileName::Real(_),
+ Node::Local(hir::Local {
+ source: hir::LocalSource::Normal,
+ ty,
+ ..
+ }),
+ Ok(ref snippet),
+ ) => {
+ err.span_suggestion(
+ // account for `let x: _ = 42;`
+ // ^^^^
+ span.to(ty.as_ref().map(|ty| ty.span).unwrap_or(span)),
+ &msg,
+ format!("{}: {}", snippet, concrete_type),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {
+ err.span_label(span, msg);
+ }
+ }
+ }
+ }
+ _ => {}
+ }
+ err.emit();
+ return true;
+ }
+ false
+ }
+
+ fn check_for_field_method(
+ &self,
+ err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ source: SelfSource<'tcx>,
+ span: Span,
+ actual: Ty<'tcx>,
+ item_name: Ident,
+ ) {
+ if let SelfSource::MethodCall(expr) = source
+ && let Some((fields, substs)) = self.get_field_candidates(span, actual)
+ {
+ let call_expr = self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id));
+ for candidate_field in fields.iter() {
+ if let Some(field_path) = self.check_for_nested_field_satisfying(
+ span,
+ &|_, field_ty| {
+ self.lookup_probe(
+ span,
+ item_name,
+ field_ty,
+ call_expr,
+ ProbeScope::AllTraits,
+ )
+ .is_ok()
+ },
+ candidate_field,
+ substs,
+ vec![],
+ self.tcx.parent_module(expr.hir_id).to_def_id(),
+ ) {
+ let field_path_str = field_path
+ .iter()
+ .map(|id| id.name.to_ident_string())
+ .collect::<Vec<String>>()
+ .join(".");
+ debug!("field_path_str: {:?}", field_path_str);
+
+ err.span_suggestion_verbose(
+ item_name.span.shrink_to_lo(),
+ "one of the expressions' fields has a method of the same name",
+ format!("{field_path_str}."),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ }
+
+ fn check_for_unwrap_self(
+ &self,
+ err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ source: SelfSource<'tcx>,
+ span: Span,
+ actual: Ty<'tcx>,
+ item_name: Ident,
+ ) {
+ let tcx = self.tcx;
+ let SelfSource::MethodCall(expr) = source else { return; };
+ let call_expr = tcx.hir().expect_expr(tcx.hir().get_parent_node(expr.hir_id));
+
+ let ty::Adt(kind, substs) = actual.kind() else { return; };
+ if !kind.is_enum() {
+ return;
+ }
+
+ let matching_variants: Vec<_> = kind
+ .variants()
+ .iter()
+ .flat_map(|variant| {
+ let [field] = &variant.fields[..] else { return None; };
+ let field_ty = field.ty(tcx, substs);
+
+ // Skip `_`, since that'll just lead to ambiguity.
+ if self.resolve_vars_if_possible(field_ty).is_ty_var() {
+ return None;
+ }
+
+ self.lookup_probe(span, item_name, field_ty, call_expr, ProbeScope::AllTraits)
+ .ok()
+ .map(|pick| (variant, field, pick))
+ })
+ .collect();
+
+ let ret_ty_matches = |diagnostic_item| {
+ if let Some(ret_ty) = self
+ .ret_coercion
+ .as_ref()
+ .map(|c| self.resolve_vars_if_possible(c.borrow().expected_ty()))
+ && let ty::Adt(kind, _) = ret_ty.kind()
+ && tcx.get_diagnostic_item(diagnostic_item) == Some(kind.did())
+ {
+ true
+ } else {
+ false
+ }
+ };
+
+ match &matching_variants[..] {
+ [(_, field, pick)] => {
+ let self_ty = field.ty(tcx, substs);
+ err.span_note(
+ tcx.def_span(pick.item.def_id),
+ &format!("the method `{item_name}` exists on the type `{self_ty}`"),
+ );
+ let (article, kind, variant, question) =
+ if Some(kind.did()) == tcx.get_diagnostic_item(sym::Result) {
+ ("a", "Result", "Err", ret_ty_matches(sym::Result))
+ } else if Some(kind.did()) == tcx.get_diagnostic_item(sym::Option) {
+ ("an", "Option", "None", ret_ty_matches(sym::Option))
+ } else {
+ return;
+ };
+ if question {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "use the `?` operator to extract the `{self_ty}` value, propagating \
+ {article} `{kind}::{variant}` value to the caller"
+ ),
+ "?",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "consider using `{kind}::expect` to unwrap the `{self_ty}` value, \
+ panicking if the value is {article} `{kind}::{variant}`"
+ ),
+ ".expect(\"REASON\")",
+ Applicability::HasPlaceholders,
+ );
+ }
+ }
+ // FIXME(compiler-errors): Support suggestions for other matching enum variants
+ _ => {}
+ }
+ }
+
+ pub(crate) fn note_unmet_impls_on_type(
+ &self,
+ err: &mut Diagnostic,
+ errors: Vec<FulfillmentError<'tcx>>,
+ ) {
+ let all_local_types_needing_impls =
+ errors.iter().all(|e| match e.obligation.predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(pred) => match pred.self_ty().kind() {
+ ty::Adt(def, _) => def.did().is_local(),
+ _ => false,
+ },
+ _ => false,
+ });
+ let mut preds: Vec<_> = errors
+ .iter()
+ .filter_map(|e| match e.obligation.predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(pred) => Some(pred),
+ _ => None,
+ })
+ .collect();
+ preds.sort_by_key(|pred| (pred.def_id(), pred.self_ty()));
+ let def_ids = preds
+ .iter()
+ .filter_map(|pred| match pred.self_ty().kind() {
+ ty::Adt(def, _) => Some(def.did()),
+ _ => None,
+ })
+ .collect::<FxHashSet<_>>();
+ let mut spans: MultiSpan = def_ids
+ .iter()
+ .filter_map(|def_id| {
+ let span = self.tcx.def_span(*def_id);
+ if span.is_dummy() { None } else { Some(span) }
+ })
+ .collect::<Vec<_>>()
+ .into();
+
+ for pred in &preds {
+ match pred.self_ty().kind() {
+ ty::Adt(def, _) if def.did().is_local() => {
+ spans.push_span_label(
+ self.tcx.def_span(def.did()),
+ format!("must implement `{}`", pred.trait_ref.print_only_trait_path()),
+ );
+ }
+ _ => {}
+ }
+ }
+
+ if all_local_types_needing_impls && spans.primary_span().is_some() {
+ let msg = if preds.len() == 1 {
+ format!(
+ "an implementation of `{}` might be missing for `{}`",
+ preds[0].trait_ref.print_only_trait_path(),
+ preds[0].self_ty()
+ )
+ } else {
+ format!(
+ "the following type{} would have to `impl` {} required trait{} for this \
+ operation to be valid",
+ pluralize!(def_ids.len()),
+ if def_ids.len() == 1 { "its" } else { "their" },
+ pluralize!(preds.len()),
+ )
+ };
+ err.span_note(spans, &msg);
+ }
+
+ let preds: Vec<_> = errors
+ .iter()
+ .map(|e| (e.obligation.predicate, None, Some(e.obligation.cause.clone())))
+ .collect();
+ self.suggest_derive(err, &preds);
+ }
+
+ fn suggest_derive(
+ &self,
+ err: &mut Diagnostic,
+ unsatisfied_predicates: &[(
+ ty::Predicate<'tcx>,
+ Option<ty::Predicate<'tcx>>,
+ Option<ObligationCause<'tcx>>,
+ )],
+ ) {
+ let mut derives = Vec::<(String, Span, Symbol)>::new();
+ let mut traits = Vec::<Span>::new();
+ for (pred, _, _) in unsatisfied_predicates {
+ let ty::PredicateKind::Trait(trait_pred) = pred.kind().skip_binder() else { continue };
+ let adt = match trait_pred.self_ty().ty_adt_def() {
+ Some(adt) if adt.did().is_local() => adt,
+ _ => continue,
+ };
+ if let Some(diagnostic_name) = self.tcx.get_diagnostic_name(trait_pred.def_id()) {
+ let can_derive = match diagnostic_name {
+ sym::Default => !adt.is_enum(),
+ sym::Eq
+ | sym::PartialEq
+ | sym::Ord
+ | sym::PartialOrd
+ | sym::Clone
+ | sym::Copy
+ | sym::Hash
+ | sym::Debug => true,
+ _ => false,
+ };
+ if can_derive {
+ let self_name = trait_pred.self_ty().to_string();
+ let self_span = self.tcx.def_span(adt.did());
+ if let Some(poly_trait_ref) = pred.to_opt_poly_trait_pred() {
+ for super_trait in supertraits(self.tcx, poly_trait_ref.to_poly_trait_ref())
+ {
+ if let Some(parent_diagnostic_name) =
+ self.tcx.get_diagnostic_name(super_trait.def_id())
+ {
+ derives.push((
+ self_name.clone(),
+ self_span,
+ parent_diagnostic_name,
+ ));
+ }
+ }
+ }
+ derives.push((self_name, self_span, diagnostic_name));
+ } else {
+ traits.push(self.tcx.def_span(trait_pred.def_id()));
+ }
+ } else {
+ traits.push(self.tcx.def_span(trait_pred.def_id()));
+ }
+ }
+ traits.sort();
+ traits.dedup();
+
+ derives.sort();
+ derives.dedup();
+
+ let mut derives_grouped = Vec::<(String, Span, String)>::new();
+ for (self_name, self_span, trait_name) in derives.into_iter() {
+ if let Some((last_self_name, _, ref mut last_trait_names)) = derives_grouped.last_mut()
+ {
+ if last_self_name == &self_name {
+ last_trait_names.push_str(format!(", {}", trait_name).as_str());
+ continue;
+ }
+ }
+ derives_grouped.push((self_name, self_span, trait_name.to_string()));
+ }
+
+ let len = traits.len();
+ if len > 0 {
+ let span: MultiSpan = traits.into();
+ err.span_note(
+ span,
+ &format!("the following trait{} must be implemented", pluralize!(len),),
+ );
+ }
+
+ for (self_name, self_span, traits) in &derives_grouped {
+ err.span_suggestion_verbose(
+ self_span.shrink_to_lo(),
+ &format!("consider annotating `{}` with `#[derive({})]`", self_name, traits),
+ format!("#[derive({})]\n", traits),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ /// Print out the type for use in value namespace.
+ fn ty_to_value_string(&self, ty: Ty<'tcx>) -> String {
+ match ty.kind() {
+ ty::Adt(def, substs) => format!("{}", ty::Instance::new(def.did(), substs)),
+ _ => self.ty_to_string(ty),
+ }
+ }
+
+ fn suggest_await_before_method(
+ &self,
+ err: &mut Diagnostic,
+ item_name: Ident,
+ ty: Ty<'tcx>,
+ call: &hir::Expr<'_>,
+ span: Span,
+ ) {
+ let output_ty = match self.get_impl_future_output_ty(ty) {
+ Some(output_ty) => self.resolve_vars_if_possible(output_ty).skip_binder(),
+ _ => return,
+ };
+ let method_exists = self.method_exists(item_name, output_ty, call.hir_id, true);
+ debug!("suggest_await_before_method: is_method_exist={}", method_exists);
+ if method_exists {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ "consider `await`ing on the `Future` and calling the method on its `Output`",
+ "await.",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ fn suggest_use_candidates(&self, err: &mut Diagnostic, msg: String, candidates: Vec<DefId>) {
+ let parent_map = self.tcx.visible_parent_map(());
+
+ // Separate out candidates that must be imported with a glob, because they are named `_`
+ // and cannot be referred with their identifier.
+ let (candidates, globs): (Vec<_>, Vec<_>) = candidates.into_iter().partition(|trait_did| {
+ if let Some(parent_did) = parent_map.get(trait_did) {
+ // If the item is re-exported as `_`, we should suggest a glob-import instead.
+ if *parent_did != self.tcx.parent(*trait_did)
+ && self
+ .tcx
+ .module_children(*parent_did)
+ .iter()
+ .filter(|child| child.res.opt_def_id() == Some(*trait_did))
+ .all(|child| child.ident.name == kw::Underscore)
+ {
+ return false;
+ }
+ }
+
+ true
+ });
+
+ let module_did = self.tcx.parent_module(self.body_id);
+ let (module, _, _) = self.tcx.hir().get_module(module_did);
+ let span = module.spans.inject_use_span;
+
+ let path_strings = candidates.iter().map(|trait_did| {
+ format!("use {};\n", with_crate_prefix!(self.tcx.def_path_str(*trait_did)),)
+ });
+
+ let glob_path_strings = globs.iter().map(|trait_did| {
+ let parent_did = parent_map.get(trait_did).unwrap();
+ format!(
+ "use {}::*; // trait {}\n",
+ with_crate_prefix!(self.tcx.def_path_str(*parent_did)),
+ self.tcx.item_name(*trait_did),
+ )
+ });
+
+ err.span_suggestions(
+ span,
+ &msg,
+ path_strings.chain(glob_path_strings),
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ fn suggest_valid_traits(
+ &self,
+ err: &mut Diagnostic,
+ valid_out_of_scope_traits: Vec<DefId>,
+ ) -> bool {
+ if !valid_out_of_scope_traits.is_empty() {
+ let mut candidates = valid_out_of_scope_traits;
+ candidates.sort();
+ candidates.dedup();
+
+ // `TryFrom` and `FromIterator` have no methods
+ let edition_fix = candidates
+ .iter()
+ .find(|did| self.tcx.is_diagnostic_item(sym::TryInto, **did))
+ .copied();
+
+ err.help("items from traits can only be used if the trait is in scope");
+ let msg = format!(
+ "the following {traits_are} implemented but not in scope; \
+ perhaps add a `use` for {one_of_them}:",
+ traits_are = if candidates.len() == 1 { "trait is" } else { "traits are" },
+ one_of_them = if candidates.len() == 1 { "it" } else { "one of them" },
+ );
+
+ self.suggest_use_candidates(err, msg, candidates);
+ if let Some(did) = edition_fix {
+ err.note(&format!(
+ "'{}' is included in the prelude starting in Edition 2021",
+ with_crate_prefix!(self.tcx.def_path_str(did))
+ ));
+ }
+
+ true
+ } else {
+ false
+ }
+ }
+
+ fn suggest_traits_to_import(
+ &self,
+ err: &mut Diagnostic,
+ span: Span,
+ rcvr_ty: Ty<'tcx>,
+ item_name: Ident,
+ inputs_len: Option<usize>,
+ source: SelfSource<'tcx>,
+ valid_out_of_scope_traits: Vec<DefId>,
+ unsatisfied_predicates: &[(
+ ty::Predicate<'tcx>,
+ Option<ty::Predicate<'tcx>>,
+ Option<ObligationCause<'tcx>>,
+ )],
+ unsatisfied_bounds: bool,
+ ) {
+ let mut alt_rcvr_sugg = false;
+ if let (SelfSource::MethodCall(rcvr), false) = (source, unsatisfied_bounds) {
+ debug!(?span, ?item_name, ?rcvr_ty, ?rcvr);
+ let skippable = [
+ self.tcx.lang_items().clone_trait(),
+ self.tcx.lang_items().deref_trait(),
+ self.tcx.lang_items().deref_mut_trait(),
+ self.tcx.lang_items().drop_trait(),
+ self.tcx.get_diagnostic_item(sym::AsRef),
+ ];
+ // Try alternative arbitrary self types that could fulfill this call.
+ // FIXME: probe for all types that *could* be arbitrary self-types, not
+ // just this list.
+ for (rcvr_ty, post) in &[
+ (rcvr_ty, ""),
+ (self.tcx.mk_mut_ref(self.tcx.lifetimes.re_erased, rcvr_ty), "&mut "),
+ (self.tcx.mk_imm_ref(self.tcx.lifetimes.re_erased, rcvr_ty), "&"),
+ ] {
+ match self.lookup_probe(span, item_name, *rcvr_ty, rcvr, ProbeScope::AllTraits) {
+ Ok(pick) => {
+ // If the method is defined for the receiver we have, it likely wasn't `use`d.
+ // We point at the method, but we just skip the rest of the check for arbitrary
+ // self types and rely on the suggestion to `use` the trait from
+ // `suggest_valid_traits`.
+ let did = Some(pick.item.container_id(self.tcx));
+ let skip = skippable.contains(&did);
+ if pick.autoderefs == 0 && !skip {
+ err.span_label(
+ pick.item.ident(self.tcx).span,
+ &format!("the method is available for `{}` here", rcvr_ty),
+ );
+ }
+ break;
+ }
+ Err(MethodError::Ambiguity(_)) => {
+ // If the method is defined (but ambiguous) for the receiver we have, it is also
+ // likely we haven't `use`d it. It may be possible that if we `Box`/`Pin`/etc.
+ // the receiver, then it might disambiguate this method, but I think these
+ // suggestions are generally misleading (see #94218).
+ break;
+ }
+ _ => {}
+ }
+
+ for (rcvr_ty, pre) in &[
+ (self.tcx.mk_lang_item(*rcvr_ty, LangItem::OwnedBox), "Box::new"),
+ (self.tcx.mk_lang_item(*rcvr_ty, LangItem::Pin), "Pin::new"),
+ (self.tcx.mk_diagnostic_item(*rcvr_ty, sym::Arc), "Arc::new"),
+ (self.tcx.mk_diagnostic_item(*rcvr_ty, sym::Rc), "Rc::new"),
+ ] {
+ if let Some(new_rcvr_t) = *rcvr_ty
+ && let Ok(pick) = self.lookup_probe(
+ span,
+ item_name,
+ new_rcvr_t,
+ rcvr,
+ ProbeScope::AllTraits,
+ )
+ {
+ debug!("try_alt_rcvr: pick candidate {:?}", pick);
+ let did = Some(pick.item.container_id(self.tcx));
+ // We don't want to suggest a container type when the missing
+ // method is `.clone()` or `.deref()` otherwise we'd suggest
+ // `Arc::new(foo).clone()`, which is far from what the user wants.
+ // Explicitly ignore the `Pin::as_ref()` method as `Pin` does not
+ // implement the `AsRef` trait.
+ let skip = skippable.contains(&did)
+ || (("Pin::new" == *pre) && (sym::as_ref == item_name.name))
+ || inputs_len.map_or(false, |inputs_len| pick.item.kind == ty::AssocKind::Fn && self.tcx.fn_sig(pick.item.def_id).skip_binder().inputs().len() != inputs_len);
+ // Make sure the method is defined for the *actual* receiver: we don't
+ // want to treat `Box<Self>` as a receiver if it only works because of
+ // an autoderef to `&self`
+ if pick.autoderefs == 0 && !skip {
+ err.span_label(
+ pick.item.ident(self.tcx).span,
+ &format!("the method is available for `{}` here", new_rcvr_t),
+ );
+ err.multipart_suggestion(
+ "consider wrapping the receiver expression with the \
+ appropriate type",
+ vec![
+ (rcvr.span.shrink_to_lo(), format!("{}({}", pre, post)),
+ (rcvr.span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ // We don't care about the other suggestions.
+ alt_rcvr_sugg = true;
+ }
+ }
+ }
+ }
+ }
+ if self.suggest_valid_traits(err, valid_out_of_scope_traits) {
+ return;
+ }
+
+ let type_is_local = self.type_derefs_to_local(span, rcvr_ty, source);
+
+ let mut arbitrary_rcvr = vec![];
+ // There are no traits implemented, so lets suggest some traits to
+ // implement, by finding ones that have the item name, and are
+ // legal to implement.
+ let mut candidates = all_traits(self.tcx)
+ .into_iter()
+ // Don't issue suggestions for unstable traits since they're
+ // unlikely to be implementable anyway
+ .filter(|info| match self.tcx.lookup_stability(info.def_id) {
+ Some(attr) => attr.level.is_stable(),
+ None => true,
+ })
+ .filter(|info| {
+ // We approximate the coherence rules to only suggest
+ // traits that are legal to implement by requiring that
+ // either the type or trait is local. Multi-dispatch means
+ // this isn't perfect (that is, there are cases when
+ // implementing a trait would be legal but is rejected
+ // here).
+ unsatisfied_predicates.iter().all(|(p, _, _)| {
+ match p.kind().skip_binder() {
+ // Hide traits if they are present in predicates as they can be fixed without
+ // having to implement them.
+ ty::PredicateKind::Trait(t) => t.def_id() == info.def_id,
+ ty::PredicateKind::Projection(p) => {
+ p.projection_ty.item_def_id == info.def_id
+ }
+ _ => false,
+ }
+ }) && (type_is_local || info.def_id.is_local())
+ && self
+ .associated_value(info.def_id, item_name)
+ .filter(|item| {
+ if let ty::AssocKind::Fn = item.kind {
+ let id = item
+ .def_id
+ .as_local()
+ .map(|def_id| self.tcx.hir().local_def_id_to_hir_id(def_id));
+ if let Some(hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(fn_sig, method),
+ ..
+ })) = id.map(|id| self.tcx.hir().get(id))
+ {
+ let self_first_arg = match method {
+ hir::TraitFn::Required([ident, ..]) => {
+ ident.name == kw::SelfLower
+ }
+ hir::TraitFn::Provided(body_id) => {
+ self.tcx.hir().body(*body_id).params.first().map_or(
+ false,
+ |param| {
+ matches!(
+ param.pat.kind,
+ hir::PatKind::Binding(_, _, ident, _)
+ if ident.name == kw::SelfLower
+ )
+ },
+ )
+ }
+ _ => false,
+ };
+
+ if !fn_sig.decl.implicit_self.has_implicit_self()
+ && self_first_arg
+ {
+ if let Some(ty) = fn_sig.decl.inputs.get(0) {
+ arbitrary_rcvr.push(ty.span);
+ }
+ return false;
+ }
+ }
+ }
+ // We only want to suggest public or local traits (#45781).
+ item.visibility(self.tcx).is_public() || info.def_id.is_local()
+ })
+ .is_some()
+ })
+ .collect::<Vec<_>>();
+ for span in &arbitrary_rcvr {
+ err.span_label(
+ *span,
+ "the method might not be found because of this arbitrary self type",
+ );
+ }
+ if alt_rcvr_sugg {
+ return;
+ }
+
+ if !candidates.is_empty() {
+ // Sort from most relevant to least relevant.
+ candidates.sort_by(|a, b| a.cmp(b).reverse());
+ candidates.dedup();
+
+ let param_type = match rcvr_ty.kind() {
+ ty::Param(param) => Some(param),
+ ty::Ref(_, ty, _) => match ty.kind() {
+ ty::Param(param) => Some(param),
+ _ => None,
+ },
+ _ => None,
+ };
+ err.help(if param_type.is_some() {
+ "items from traits can only be used if the type parameter is bounded by the trait"
+ } else {
+ "items from traits can only be used if the trait is implemented and in scope"
+ });
+ let candidates_len = candidates.len();
+ let message = |action| {
+ format!(
+ "the following {traits_define} an item `{name}`, perhaps you need to {action} \
+ {one_of_them}:",
+ traits_define =
+ if candidates_len == 1 { "trait defines" } else { "traits define" },
+ action = action,
+ one_of_them = if candidates_len == 1 { "it" } else { "one of them" },
+ name = item_name,
+ )
+ };
+ // Obtain the span for `param` and use it for a structured suggestion.
+ if let Some(param) = param_type {
+ let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
+ let type_param = generics.type_param(param, self.tcx);
+ let hir = self.tcx.hir();
+ if let Some(def_id) = type_param.def_id.as_local() {
+ let id = hir.local_def_id_to_hir_id(def_id);
+ // Get the `hir::Param` to verify whether it already has any bounds.
+ // We do this to avoid suggesting code that ends up as `T: FooBar`,
+ // instead we suggest `T: Foo + Bar` in that case.
+ match hir.get(id) {
+ Node::GenericParam(param) => {
+ enum Introducer {
+ Plus,
+ Colon,
+ Nothing,
+ }
+ let ast_generics = hir.get_generics(id.owner).unwrap();
+ let (sp, mut introducer) = if let Some(span) =
+ ast_generics.bounds_span_for_suggestions(def_id)
+ {
+ (span, Introducer::Plus)
+ } else if let Some(colon_span) = param.colon_span {
+ (colon_span.shrink_to_hi(), Introducer::Nothing)
+ } else {
+ (param.span.shrink_to_hi(), Introducer::Colon)
+ };
+ if matches!(
+ param.kind,
+ hir::GenericParamKind::Type { synthetic: true, .. },
+ ) {
+ introducer = Introducer::Plus
+ }
+ let trait_def_ids: FxHashSet<DefId> = ast_generics
+ .bounds_for_param(def_id)
+ .flat_map(|bp| bp.bounds.iter())
+ .filter_map(|bound| bound.trait_ref()?.trait_def_id())
+ .collect();
+ if !candidates.iter().any(|t| trait_def_ids.contains(&t.def_id)) {
+ err.span_suggestions(
+ sp,
+ &message(format!(
+ "restrict type parameter `{}` with",
+ param.name.ident(),
+ )),
+ candidates.iter().map(|t| {
+ format!(
+ "{} {}",
+ match introducer {
+ Introducer::Plus => " +",
+ Introducer::Colon => ":",
+ Introducer::Nothing => "",
+ },
+ self.tcx.def_path_str(t.def_id),
+ )
+ }),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ return;
+ }
+ Node::Item(hir::Item {
+ kind: hir::ItemKind::Trait(.., bounds, _),
+ ident,
+ ..
+ }) => {
+ let (sp, sep, article) = if bounds.is_empty() {
+ (ident.span.shrink_to_hi(), ":", "a")
+ } else {
+ (bounds.last().unwrap().span().shrink_to_hi(), " +", "another")
+ };
+ err.span_suggestions(
+ sp,
+ &message(format!("add {} supertrait for", article)),
+ candidates.iter().map(|t| {
+ format!("{} {}", sep, self.tcx.def_path_str(t.def_id),)
+ }),
+ Applicability::MaybeIncorrect,
+ );
+ return;
+ }
+ _ => {}
+ }
+ }
+ }
+
+ let (potential_candidates, explicitly_negative) = if param_type.is_some() {
+ // FIXME: Even though negative bounds are not implemented, we could maybe handle
+ // cases where a positive bound implies a negative impl.
+ (candidates, Vec::new())
+ } else if let Some(simp_rcvr_ty) =
+ simplify_type(self.tcx, rcvr_ty, TreatParams::AsPlaceholder)
+ {
+ let mut potential_candidates = Vec::new();
+ let mut explicitly_negative = Vec::new();
+ for candidate in candidates {
+ // Check if there's a negative impl of `candidate` for `rcvr_ty`
+ if self
+ .tcx
+ .all_impls(candidate.def_id)
+ .filter(|imp_did| {
+ self.tcx.impl_polarity(*imp_did) == ty::ImplPolarity::Negative
+ })
+ .any(|imp_did| {
+ let imp = self.tcx.impl_trait_ref(imp_did).unwrap();
+ let imp_simp =
+ simplify_type(self.tcx, imp.self_ty(), TreatParams::AsPlaceholder);
+ imp_simp.map_or(false, |s| s == simp_rcvr_ty)
+ })
+ {
+ explicitly_negative.push(candidate);
+ } else {
+ potential_candidates.push(candidate);
+ }
+ }
+ (potential_candidates, explicitly_negative)
+ } else {
+ // We don't know enough about `recv_ty` to make proper suggestions.
+ (candidates, Vec::new())
+ };
+
+ let action = if let Some(param) = param_type {
+ format!("restrict type parameter `{}` with", param)
+ } else {
+ // FIXME: it might only need to be imported into scope, not implemented.
+ "implement".to_string()
+ };
+ match &potential_candidates[..] {
+ [] => {}
+ [trait_info] if trait_info.def_id.is_local() => {
+ err.span_note(
+ self.tcx.def_span(trait_info.def_id),
+ &format!(
+ "`{}` defines an item `{}`, perhaps you need to {} it",
+ self.tcx.def_path_str(trait_info.def_id),
+ item_name,
+ action
+ ),
+ );
+ }
+ trait_infos => {
+ let mut msg = message(action);
+ for (i, trait_info) in trait_infos.iter().enumerate() {
+ msg.push_str(&format!(
+ "\ncandidate #{}: `{}`",
+ i + 1,
+ self.tcx.def_path_str(trait_info.def_id),
+ ));
+ }
+ err.note(&msg);
+ }
+ }
+ match &explicitly_negative[..] {
+ [] => {}
+ [trait_info] => {
+ let msg = format!(
+ "the trait `{}` defines an item `{}`, but is explicitly unimplemented",
+ self.tcx.def_path_str(trait_info.def_id),
+ item_name
+ );
+ err.note(&msg);
+ }
+ trait_infos => {
+ let mut msg = format!(
+ "the following traits define an item `{}`, but are explicitly unimplemented:",
+ item_name
+ );
+ for trait_info in trait_infos {
+ msg.push_str(&format!("\n{}", self.tcx.def_path_str(trait_info.def_id)));
+ }
+ err.note(&msg);
+ }
+ }
+ }
+ }
+
+ /// Checks whether there is a local type somewhere in the chain of
+ /// autoderefs of `rcvr_ty`.
+ fn type_derefs_to_local(
+ &self,
+ span: Span,
+ rcvr_ty: Ty<'tcx>,
+ source: SelfSource<'tcx>,
+ ) -> bool {
+ fn is_local(ty: Ty<'_>) -> bool {
+ match ty.kind() {
+ ty::Adt(def, _) => def.did().is_local(),
+ ty::Foreign(did) => did.is_local(),
+ ty::Dynamic(tr, ..) => tr.principal().map_or(false, |d| d.def_id().is_local()),
+ ty::Param(_) => true,
+
+ // Everything else (primitive types, etc.) is effectively
+ // non-local (there are "edge" cases, e.g., `(LocalType,)`, but
+ // the noise from these sort of types is usually just really
+ // annoying, rather than any sort of help).
+ _ => false,
+ }
+ }
+
+ // This occurs for UFCS desugaring of `T::method`, where there is no
+ // receiver expression for the method call, and thus no autoderef.
+ if let SelfSource::QPath(_) = source {
+ return is_local(self.resolve_vars_with_obligations(rcvr_ty));
+ }
+
+ self.autoderef(span, rcvr_ty).any(|(ty, _)| is_local(ty))
+ }
+}
+
+#[derive(Copy, Clone, Debug)]
+pub enum SelfSource<'a> {
+ QPath(&'a hir::Ty<'a>),
+ MethodCall(&'a hir::Expr<'a> /* rcvr */),
+}
+
+#[derive(Copy, Clone)]
+pub struct TraitInfo {
+ pub def_id: DefId,
+}
+
+impl PartialEq for TraitInfo {
+ fn eq(&self, other: &TraitInfo) -> bool {
+ self.cmp(other) == Ordering::Equal
+ }
+}
+impl Eq for TraitInfo {}
+impl PartialOrd for TraitInfo {
+ fn partial_cmp(&self, other: &TraitInfo) -> Option<Ordering> {
+ Some(self.cmp(other))
+ }
+}
+impl Ord for TraitInfo {
+ fn cmp(&self, other: &TraitInfo) -> Ordering {
+ // Local crates are more important than remote ones (local:
+ // `cnum == 0`), and otherwise we throw in the defid for totality.
+
+ let lhs = (other.def_id.krate, other.def_id);
+ let rhs = (self.def_id.krate, self.def_id);
+ lhs.cmp(&rhs)
+ }
+}
+
+/// Retrieves all traits in this crate and any dependent crates,
+/// and wraps them into `TraitInfo` for custom sorting.
+pub fn all_traits(tcx: TyCtxt<'_>) -> Vec<TraitInfo> {
+ tcx.all_traits().map(|def_id| TraitInfo { def_id }).collect()
+}
+
+fn print_disambiguation_help<'tcx>(
+ item_name: Ident,
+ args: Option<&'tcx [hir::Expr<'tcx>]>,
+ err: &mut Diagnostic,
+ trait_name: String,
+ rcvr_ty: Ty<'_>,
+ kind: ty::AssocKind,
+ def_id: DefId,
+ span: Span,
+ candidate: Option<usize>,
+ source_map: &source_map::SourceMap,
+ fn_has_self_parameter: bool,
+) {
+ let mut applicability = Applicability::MachineApplicable;
+ let (span, sugg) = if let (ty::AssocKind::Fn, Some(args)) = (kind, args) {
+ let args = format!(
+ "({}{})",
+ if rcvr_ty.is_region_ptr() {
+ if rcvr_ty.is_mutable_ptr() { "&mut " } else { "&" }
+ } else {
+ ""
+ },
+ args.iter()
+ .map(|arg| source_map.span_to_snippet(arg.span).unwrap_or_else(|_| {
+ applicability = Applicability::HasPlaceholders;
+ "_".to_owned()
+ }))
+ .collect::<Vec<_>>()
+ .join(", "),
+ );
+ let trait_name = if !fn_has_self_parameter {
+ format!("<{} as {}>", rcvr_ty, trait_name)
+ } else {
+ trait_name
+ };
+ (span, format!("{}::{}{}", trait_name, item_name, args))
+ } else {
+ (span.with_hi(item_name.span.lo()), format!("<{} as {}>::", rcvr_ty, trait_name))
+ };
+ err.span_suggestion_verbose(
+ span,
+ &format!(
+ "disambiguate the {} for {}",
+ kind.as_def_kind().descr(def_id),
+ if let Some(candidate) = candidate {
+ format!("candidate #{}", candidate)
+ } else {
+ "the candidate".to_string()
+ },
+ ),
+ sugg,
+ applicability,
+ );
+}