summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/mod.rs')
-rw-r--r--compiler/rustc_typeck/src/check/mod.rs970
1 files changed, 970 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/mod.rs b/compiler/rustc_typeck/src/check/mod.rs
new file mode 100644
index 000000000..17c2e4868
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/mod.rs
@@ -0,0 +1,970 @@
+/*!
+
+# typeck: check phase
+
+Within the check phase of type check, we check each item one at a time
+(bodies of function expressions are checked as part of the containing
+function). Inference is used to supply types wherever they are unknown.
+
+By far the most complex case is checking the body of a function. This
+can be broken down into several distinct phases:
+
+- gather: creates type variables to represent the type of each local
+ variable and pattern binding.
+
+- main: the main pass does the lion's share of the work: it
+ determines the types of all expressions, resolves
+ methods, checks for most invalid conditions, and so forth. In
+ some cases, where a type is unknown, it may create a type or region
+ variable and use that as the type of an expression.
+
+ In the process of checking, various constraints will be placed on
+ these type variables through the subtyping relationships requested
+ through the `demand` module. The `infer` module is in charge
+ of resolving those constraints.
+
+- regionck: after main is complete, the regionck pass goes over all
+ types looking for regions and making sure that they did not escape
+ into places where they are not in scope. This may also influence the
+ final assignments of the various region variables if there is some
+ flexibility.
+
+- writeback: writes the final types within a function body, replacing
+ type variables with their final inferred types. These final types
+ are written into the `tcx.node_types` table, which should *never* contain
+ any reference to a type variable.
+
+## Intermediate types
+
+While type checking a function, the intermediate types for the
+expressions, blocks, and so forth contained within the function are
+stored in `fcx.node_types` and `fcx.node_substs`. These types
+may contain unresolved type variables. After type checking is
+complete, the functions in the writeback module are used to take the
+types from this table, resolve them, and then write them into their
+permanent home in the type context `tcx`.
+
+This means that during inferencing you should use `fcx.write_ty()`
+and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
+nodes within the function.
+
+The types of top-level items, which never contain unbound type
+variables, are stored directly into the `tcx` typeck_results.
+
+N.B., a type variable is not the same thing as a type parameter. A
+type variable is an instance of a type parameter. That is,
+given a generic function `fn foo<T>(t: T)`, while checking the
+function `foo`, the type `ty_param(0)` refers to the type `T`, which
+is treated in abstract. However, when `foo()` is called, `T` will be
+substituted for a fresh type variable `N`. This variable will
+eventually be resolved to some concrete type (which might itself be
+a type parameter).
+
+*/
+
+pub mod _match;
+mod autoderef;
+mod callee;
+pub mod cast;
+mod check;
+mod closure;
+pub mod coercion;
+mod compare_method;
+pub mod demand;
+mod diverges;
+pub mod dropck;
+mod expectation;
+mod expr;
+mod fallback;
+mod fn_ctxt;
+mod gather_locals;
+mod generator_interior;
+mod inherited;
+pub mod intrinsic;
+mod intrinsicck;
+pub mod method;
+mod op;
+mod pat;
+mod place_op;
+mod region;
+pub mod regionck;
+pub mod rvalue_scopes;
+mod upvar;
+pub mod wfcheck;
+pub mod writeback;
+
+use check::{check_abi, check_fn, check_mod_item_types};
+pub use diverges::Diverges;
+pub use expectation::Expectation;
+pub use fn_ctxt::*;
+use hir::def::CtorOf;
+pub use inherited::{Inherited, InheritedBuilder};
+
+use crate::astconv::AstConv;
+use crate::check::gather_locals::GatherLocalsVisitor;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{
+ pluralize, struct_span_err, Applicability, DiagnosticBuilder, EmissionGuarantee, MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def::Res;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::{HirIdMap, ImplicitSelfKind, Node};
+use rustc_index::bit_set::BitSet;
+use rustc_index::vec::Idx;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
+use rustc_middle::ty::{self, Ty, TyCtxt, UserType};
+use rustc_session::config;
+use rustc_session::parse::feature_err;
+use rustc_session::Session;
+use rustc_span::source_map::DUMMY_SP;
+use rustc_span::symbol::{kw, Ident};
+use rustc_span::{self, BytePos, Span};
+use rustc_target::abi::VariantIdx;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits;
+use rustc_trait_selection::traits::error_reporting::recursive_type_with_infinite_size_error;
+use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
+use std::cell::RefCell;
+
+use crate::require_c_abi_if_c_variadic;
+use crate::util::common::indenter;
+
+use self::coercion::DynamicCoerceMany;
+use self::region::region_scope_tree;
+pub use self::Expectation::*;
+
+#[macro_export]
+macro_rules! type_error_struct {
+ ($session:expr, $span:expr, $typ:expr, $code:ident, $($message:tt)*) => ({
+ let mut err = rustc_errors::struct_span_err!($session, $span, $code, $($message)*);
+
+ if $typ.references_error() {
+ err.downgrade_to_delayed_bug();
+ }
+
+ err
+ })
+}
+
+/// The type of a local binding, including the revealed type for anon types.
+#[derive(Copy, Clone, Debug)]
+pub struct LocalTy<'tcx> {
+ decl_ty: Ty<'tcx>,
+ revealed_ty: Ty<'tcx>,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum Needs {
+ MutPlace,
+ None,
+}
+
+impl Needs {
+ fn maybe_mut_place(m: hir::Mutability) -> Self {
+ match m {
+ hir::Mutability::Mut => Needs::MutPlace,
+ hir::Mutability::Not => Needs::None,
+ }
+ }
+}
+
+#[derive(Copy, Clone)]
+pub struct UnsafetyState {
+ pub def: hir::HirId,
+ pub unsafety: hir::Unsafety,
+ from_fn: bool,
+}
+
+impl UnsafetyState {
+ pub fn function(unsafety: hir::Unsafety, def: hir::HirId) -> UnsafetyState {
+ UnsafetyState { def, unsafety, from_fn: true }
+ }
+
+ pub fn recurse(self, blk: &hir::Block<'_>) -> UnsafetyState {
+ use hir::BlockCheckMode;
+ match self.unsafety {
+ // If this unsafe, then if the outer function was already marked as
+ // unsafe we shouldn't attribute the unsafe'ness to the block. This
+ // way the block can be warned about instead of ignoring this
+ // extraneous block (functions are never warned about).
+ hir::Unsafety::Unsafe if self.from_fn => self,
+
+ unsafety => {
+ let (unsafety, def) = match blk.rules {
+ BlockCheckMode::UnsafeBlock(..) => (hir::Unsafety::Unsafe, blk.hir_id),
+ BlockCheckMode::DefaultBlock => (unsafety, self.def),
+ };
+ UnsafetyState { def, unsafety, from_fn: false }
+ }
+ }
+ }
+}
+
+#[derive(Debug, Copy, Clone)]
+pub enum PlaceOp {
+ Deref,
+ Index,
+}
+
+pub struct BreakableCtxt<'tcx> {
+ may_break: bool,
+
+ // this is `null` for loops where break with a value is illegal,
+ // such as `while`, `for`, and `while let`
+ coerce: Option<DynamicCoerceMany<'tcx>>,
+}
+
+pub struct EnclosingBreakables<'tcx> {
+ stack: Vec<BreakableCtxt<'tcx>>,
+ by_id: HirIdMap<usize>,
+}
+
+impl<'tcx> EnclosingBreakables<'tcx> {
+ fn find_breakable(&mut self, target_id: hir::HirId) -> &mut BreakableCtxt<'tcx> {
+ self.opt_find_breakable(target_id).unwrap_or_else(|| {
+ bug!("could not find enclosing breakable with id {}", target_id);
+ })
+ }
+
+ fn opt_find_breakable(&mut self, target_id: hir::HirId) -> Option<&mut BreakableCtxt<'tcx>> {
+ match self.by_id.get(&target_id) {
+ Some(ix) => Some(&mut self.stack[*ix]),
+ None => None,
+ }
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ method::provide(providers);
+ wfcheck::provide(providers);
+ *providers = Providers {
+ typeck_item_bodies,
+ typeck_const_arg,
+ typeck,
+ diagnostic_only_typeck,
+ has_typeck_results,
+ adt_destructor,
+ used_trait_imports,
+ check_mod_item_types,
+ region_scope_tree,
+ ..*providers
+ };
+}
+
+fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
+ tcx.calculate_dtor(def_id, dropck::check_drop_impl)
+}
+
+/// If this `DefId` is a "primary tables entry", returns
+/// `Some((body_id, body_ty, fn_sig))`. Otherwise, returns `None`.
+///
+/// If this function returns `Some`, then `typeck_results(def_id)` will
+/// succeed; if it returns `None`, then `typeck_results(def_id)` may or
+/// may not succeed. In some cases where this function returns `None`
+/// (notably closures), `typeck_results(def_id)` would wind up
+/// redirecting to the owning function.
+fn primary_body_of(
+ tcx: TyCtxt<'_>,
+ id: hir::HirId,
+) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnSig<'_>>)> {
+ match tcx.hir().get(id) {
+ Node::Item(item) => match item.kind {
+ hir::ItemKind::Const(ty, body) | hir::ItemKind::Static(ty, _, body) => {
+ Some((body, Some(ty), None))
+ }
+ hir::ItemKind::Fn(ref sig, .., body) => Some((body, None, Some(sig))),
+ _ => None,
+ },
+ Node::TraitItem(item) => match item.kind {
+ hir::TraitItemKind::Const(ty, Some(body)) => Some((body, Some(ty), None)),
+ hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
+ Some((body, None, Some(sig)))
+ }
+ _ => None,
+ },
+ Node::ImplItem(item) => match item.kind {
+ hir::ImplItemKind::Const(ty, body) => Some((body, Some(ty), None)),
+ hir::ImplItemKind::Fn(ref sig, body) => Some((body, None, Some(sig))),
+ _ => None,
+ },
+ Node::AnonConst(constant) => Some((constant.body, None, None)),
+ _ => None,
+ }
+}
+
+fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ // Closures' typeck results come from their outermost function,
+ // as they are part of the same "inference environment".
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
+ if typeck_root_def_id != def_id {
+ return tcx.has_typeck_results(typeck_root_def_id);
+ }
+
+ if let Some(def_id) = def_id.as_local() {
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ primary_body_of(tcx, id).is_some()
+ } else {
+ false
+ }
+}
+
+fn used_trait_imports(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &FxHashSet<LocalDefId> {
+ &*tcx.typeck(def_id).used_trait_imports
+}
+
+fn typeck_const_arg<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ (did, param_did): (LocalDefId, DefId),
+) -> &ty::TypeckResults<'tcx> {
+ let fallback = move || tcx.type_of(param_did);
+ typeck_with_fallback(tcx, did, fallback)
+}
+
+fn typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
+ if let Some(param_did) = tcx.opt_const_param_of(def_id) {
+ tcx.typeck_const_arg((def_id, param_did))
+ } else {
+ let fallback = move || tcx.type_of(def_id.to_def_id());
+ typeck_with_fallback(tcx, def_id, fallback)
+ }
+}
+
+/// Used only to get `TypeckResults` for type inference during error recovery.
+/// Currently only used for type inference of `static`s and `const`s to avoid type cycle errors.
+fn diagnostic_only_typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
+ let fallback = move || {
+ let span = tcx.hir().span(tcx.hir().local_def_id_to_hir_id(def_id));
+ tcx.ty_error_with_message(span, "diagnostic only typeck table used")
+ };
+ typeck_with_fallback(tcx, def_id, fallback)
+}
+
+#[instrument(skip(tcx, fallback))]
+fn typeck_with_fallback<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ fallback: impl Fn() -> Ty<'tcx> + 'tcx,
+) -> &'tcx ty::TypeckResults<'tcx> {
+ // Closures' typeck results come from their outermost function,
+ // as they are part of the same "inference environment".
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id()).expect_local();
+ if typeck_root_def_id != def_id {
+ return tcx.typeck(typeck_root_def_id);
+ }
+
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let span = tcx.hir().span(id);
+
+ // Figure out what primary body this item has.
+ let (body_id, body_ty, fn_sig) = primary_body_of(tcx, id).unwrap_or_else(|| {
+ span_bug!(span, "can't type-check body of {:?}", def_id);
+ });
+ let body = tcx.hir().body(body_id);
+
+ let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
+ let param_env = tcx.param_env(def_id);
+ let fcx = if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
+ let fn_sig = if crate::collect::get_infer_ret_ty(&decl.output).is_some() {
+ let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
+ <dyn AstConv<'_>>::ty_of_fn(&fcx, id, header.unsafety, header.abi, decl, None, None)
+ } else {
+ tcx.fn_sig(def_id)
+ };
+
+ check_abi(tcx, id, span, fn_sig.abi());
+
+ // Compute the function signature from point of view of inside the fn.
+ let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
+ let fn_sig = inh.normalize_associated_types_in(
+ body.value.span,
+ body_id.hir_id,
+ param_env,
+ fn_sig,
+ );
+ check_fn(&inh, param_env, fn_sig, decl, id, body, None, true).0
+ } else {
+ let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
+ let expected_type = body_ty
+ .and_then(|ty| match ty.kind {
+ hir::TyKind::Infer => Some(<dyn AstConv<'_>>::ast_ty_to_ty(&fcx, ty)),
+ _ => None,
+ })
+ .unwrap_or_else(|| match tcx.hir().get(id) {
+ Node::AnonConst(_) => match tcx.hir().get(tcx.hir().get_parent_node(id)) {
+ Node::Expr(&hir::Expr {
+ kind: hir::ExprKind::ConstBlock(ref anon_const),
+ ..
+ }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ }),
+ Node::Ty(&hir::Ty {
+ kind: hir::TyKind::Typeof(ref anon_const), ..
+ }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ }),
+ Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
+ | Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
+ let operand_ty = asm
+ .operands
+ .iter()
+ .filter_map(|(op, _op_sp)| match op {
+ hir::InlineAsmOperand::Const { anon_const }
+ if anon_const.hir_id == id =>
+ {
+ // Inline assembly constants must be integers.
+ Some(fcx.next_int_var())
+ }
+ hir::InlineAsmOperand::SymFn { anon_const }
+ if anon_const.hir_id == id =>
+ {
+ Some(fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span,
+ }))
+ }
+ _ => None,
+ })
+ .next();
+ operand_ty.unwrap_or_else(fallback)
+ }
+ _ => fallback(),
+ },
+ _ => fallback(),
+ });
+
+ let expected_type = fcx.normalize_associated_types_in(body.value.span, expected_type);
+ fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
+
+ // Gather locals in statics (because of block expressions).
+ GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+ fcx.check_expr_coercable_to_type(&body.value, expected_type, None);
+
+ fcx.write_ty(id, expected_type);
+
+ fcx
+ };
+
+ let fallback_has_occurred = fcx.type_inference_fallback();
+
+ // Even though coercion casts provide type hints, we check casts after fallback for
+ // backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
+ fcx.check_casts();
+ fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});
+
+ // Closure and generator analysis may run after fallback
+ // because they don't constrain other type variables.
+ fcx.closure_analyze(body);
+ assert!(fcx.deferred_call_resolutions.borrow().is_empty());
+ // Before the generator analysis, temporary scopes shall be marked to provide more
+ // precise information on types to be captured.
+ fcx.resolve_rvalue_scopes(def_id.to_def_id());
+ fcx.resolve_generator_interiors(def_id.to_def_id());
+
+ for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
+ let ty = fcx.normalize_ty(span, ty);
+ fcx.require_type_is_sized(ty, span, code);
+ }
+
+ fcx.select_all_obligations_or_error();
+
+ if !fcx.infcx.is_tainted_by_errors() {
+ fcx.check_transmutes();
+ }
+
+ fcx.check_asms();
+
+ fcx.infcx.skip_region_resolution();
+
+ fcx.resolve_type_vars_in_body(body)
+ });
+
+ // Consistency check our TypeckResults instance can hold all ItemLocalIds
+ // it will need to hold.
+ assert_eq!(typeck_results.hir_owner, id.owner);
+
+ typeck_results
+}
+
+/// When `check_fn` is invoked on a generator (i.e., a body that
+/// includes yield), it returns back some information about the yield
+/// points.
+struct GeneratorTypes<'tcx> {
+ /// Type of generator argument / values returned by `yield`.
+ resume_ty: Ty<'tcx>,
+
+ /// Type of value that is yielded.
+ yield_ty: Ty<'tcx>,
+
+ /// Types that are captured (see `GeneratorInterior` for more).
+ interior: Ty<'tcx>,
+
+ /// Indicates if the generator is movable or static (immovable).
+ movability: hir::Movability,
+}
+
+/// Given a `DefId` for an opaque type in return position, find its parent item's return
+/// expressions.
+fn get_owner_return_paths<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+) -> Option<(LocalDefId, ReturnsVisitor<'tcx>)> {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
+ let body = tcx.hir().body(body_id);
+ let mut visitor = ReturnsVisitor::default();
+ visitor.visit_body(body);
+ (parent_id, visitor)
+ })
+}
+
+// Forbid defining intrinsics in Rust code,
+// as they must always be defined by the compiler.
+fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
+ if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
+ tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
+ }
+}
+
+fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
+ // Only restricted on wasm target for now
+ if !tcx.sess.target.is_like_wasm {
+ return;
+ }
+
+ // If `#[link_section]` is missing, then nothing to verify
+ let attrs = tcx.codegen_fn_attrs(id);
+ if attrs.link_section.is_none() {
+ return;
+ }
+
+ // For the wasm32 target statics with `#[link_section]` are placed into custom
+ // sections of the final output file, but this isn't link custom sections of
+ // other executable formats. Namely we can only embed a list of bytes,
+ // nothing with pointers to anything else or relocations. If any relocation
+ // show up, reject them here.
+ // `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
+ // the consumer's responsibility to ensure all bytes that have been read
+ // have defined values.
+ if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
+ && alloc.inner().relocations().len() != 0
+ {
+ let msg = "statics with a custom `#[link_section]` must be a \
+ simple list of bytes on the wasm target with no \
+ extra levels of indirection such as references";
+ tcx.sess.span_err(tcx.def_span(id), msg);
+ }
+}
+
+fn report_forbidden_specialization(
+ tcx: TyCtxt<'_>,
+ impl_item: &hir::ImplItemRef,
+ parent_impl: DefId,
+) {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_item.span,
+ E0520,
+ "`{}` specializes an item from a parent `impl`, but \
+ that item is not marked `default`",
+ impl_item.ident
+ );
+ err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));
+
+ match tcx.span_of_impl(parent_impl) {
+ Ok(span) => {
+ err.span_label(span, "parent `impl` is here");
+ err.note(&format!(
+ "to specialize, `{}` in the parent `impl` must be marked `default`",
+ impl_item.ident
+ ));
+ }
+ Err(cname) => {
+ err.note(&format!("parent implementation is in crate `{cname}`"));
+ }
+ }
+
+ err.emit();
+}
+
+fn missing_items_err(
+ tcx: TyCtxt<'_>,
+ impl_span: Span,
+ missing_items: &[&ty::AssocItem],
+ full_impl_span: Span,
+) {
+ let missing_items_msg = missing_items
+ .iter()
+ .map(|trait_item| trait_item.name.to_string())
+ .collect::<Vec<_>>()
+ .join("`, `");
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0046,
+ "not all trait items implemented, missing: `{missing_items_msg}`",
+ );
+ err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));
+
+ // `Span` before impl block closing brace.
+ let hi = full_impl_span.hi() - BytePos(1);
+ // Point at the place right before the closing brace of the relevant `impl` to suggest
+ // adding the associated item at the end of its body.
+ let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
+ // Obtain the level of indentation ending in `sugg_sp`.
+ let padding =
+ tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());
+
+ for trait_item in missing_items {
+ let snippet = suggestion_signature(trait_item, tcx);
+ let code = format!("{}{}\n{}", padding, snippet, padding);
+ let msg = format!("implement the missing item: `{snippet}`");
+ let appl = Applicability::HasPlaceholders;
+ if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
+ err.span_label(span, format!("`{}` from trait", trait_item.name));
+ err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
+ } else {
+ err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
+ }
+ }
+ err.emit();
+}
+
+fn missing_items_must_implement_one_of_err(
+ tcx: TyCtxt<'_>,
+ impl_span: Span,
+ missing_items: &[Ident],
+ annotation_span: Option<Span>,
+) {
+ let missing_items_msg =
+ missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0046,
+ "not all trait items implemented, missing one of: `{missing_items_msg}`",
+ );
+ err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));
+
+ if let Some(annotation_span) = annotation_span {
+ err.span_note(annotation_span, "required because of this annotation");
+ }
+
+ err.emit();
+}
+
+/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
+fn bounds_from_generic_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ predicates: ty::GenericPredicates<'tcx>,
+) -> (String, String) {
+ let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
+ let mut projections = vec![];
+ for (predicate, _) in predicates.predicates {
+ debug!("predicate {:?}", predicate);
+ let bound_predicate = predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(trait_predicate) => {
+ let entry = types.entry(trait_predicate.self_ty()).or_default();
+ let def_id = trait_predicate.def_id();
+ if Some(def_id) != tcx.lang_items().sized_trait() {
+ // Type params are `Sized` by default, do not add that restriction to the list
+ // if it is a positive requirement.
+ entry.push(trait_predicate.def_id());
+ }
+ }
+ ty::PredicateKind::Projection(projection_pred) => {
+ projections.push(bound_predicate.rebind(projection_pred));
+ }
+ _ => {}
+ }
+ }
+ let generics = if types.is_empty() {
+ "".to_string()
+ } else {
+ format!(
+ "<{}>",
+ types
+ .keys()
+ .filter_map(|t| match t.kind() {
+ ty::Param(_) => Some(t.to_string()),
+ // Avoid suggesting the following:
+ // fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
+ _ => None,
+ })
+ .collect::<Vec<_>>()
+ .join(", ")
+ )
+ };
+ let mut where_clauses = vec![];
+ for (ty, bounds) in types {
+ where_clauses
+ .extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
+ }
+ for projection in &projections {
+ let p = projection.skip_binder();
+ // FIXME: this is not currently supported syntax, we should be looking at the `types` and
+ // insert the associated types where they correspond, but for now let's be "lazy" and
+ // propose this instead of the following valid resugaring:
+ // `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
+ where_clauses.push(format!(
+ "{} = {}",
+ tcx.def_path_str(p.projection_ty.item_def_id),
+ p.term,
+ ));
+ }
+ let where_clauses = if where_clauses.is_empty() {
+ String::new()
+ } else {
+ format!(" where {}", where_clauses.join(", "))
+ };
+ (generics, where_clauses)
+}
+
+/// Return placeholder code for the given function.
+fn fn_sig_suggestion<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sig: ty::FnSig<'tcx>,
+ ident: Ident,
+ predicates: ty::GenericPredicates<'tcx>,
+ assoc: &ty::AssocItem,
+) -> String {
+ let args = sig
+ .inputs()
+ .iter()
+ .enumerate()
+ .map(|(i, ty)| {
+ Some(match ty.kind() {
+ ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
+ ty::Ref(reg, ref_ty, mutability) if i == 0 => {
+ let reg = format!("{reg} ");
+ let reg = match &reg[..] {
+ "'_ " | " " => "",
+ reg => reg,
+ };
+ if assoc.fn_has_self_parameter {
+ match ref_ty.kind() {
+ ty::Param(param) if param.name == kw::SelfUpper => {
+ format!("&{}{}self", reg, mutability.prefix_str())
+ }
+
+ _ => format!("self: {ty}"),
+ }
+ } else {
+ format!("_: {ty}")
+ }
+ }
+ _ => {
+ if assoc.fn_has_self_parameter && i == 0 {
+ format!("self: {ty}")
+ } else {
+ format!("_: {ty}")
+ }
+ }
+ })
+ })
+ .chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
+ .flatten()
+ .collect::<Vec<String>>()
+ .join(", ");
+ let output = sig.output();
+ let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };
+
+ let unsafety = sig.unsafety.prefix_str();
+ let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
+
+ // FIXME: this is not entirely correct, as the lifetimes from borrowed params will
+ // not be present in the `fn` definition, not will we account for renamed
+ // lifetimes between the `impl` and the `trait`, but this should be good enough to
+ // fill in a significant portion of the missing code, and other subsequent
+ // suggestions can help the user fix the code.
+ format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
+}
+
+/// Return placeholder code for the given associated item.
+/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
+/// structured suggestion.
+fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
+ match assoc.kind {
+ ty::AssocKind::Fn => {
+ // We skip the binder here because the binder would deanonymize all
+ // late-bound regions, and we don't want method signatures to show up
+ // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
+ // regions just fine, showing `fn(&MyType)`.
+ fn_sig_suggestion(
+ tcx,
+ tcx.fn_sig(assoc.def_id).skip_binder(),
+ assoc.ident(tcx),
+ tcx.predicates_of(assoc.def_id),
+ assoc,
+ )
+ }
+ ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
+ ty::AssocKind::Const => {
+ let ty = tcx.type_of(assoc.def_id);
+ let val = expr::ty_kind_suggestion(ty).unwrap_or("value");
+ format!("const {}: {} = {};", assoc.name, ty, val)
+ }
+ }
+}
+
+/// Emit an error when encountering two or more variants in a transparent enum.
+fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
+ let variant_spans: Vec<_> = adt
+ .variants()
+ .iter()
+ .map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
+ .collect();
+ let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
+ let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
+ err.span_label(sp, &msg);
+ if let [start @ .., end] = &*variant_spans {
+ for variant_span in start {
+ err.span_label(*variant_span, "");
+ }
+ err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
+ }
+ err.emit();
+}
+
+/// Emit an error when encountering two or more non-zero-sized fields in a transparent
+/// enum.
+fn bad_non_zero_sized_fields<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ adt: ty::AdtDef<'tcx>,
+ field_count: usize,
+ field_spans: impl Iterator<Item = Span>,
+ sp: Span,
+) {
+ let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
+ let mut err = struct_span_err!(
+ tcx.sess,
+ sp,
+ E0690,
+ "{}transparent {} {}",
+ if adt.is_enum() { "the variant of a " } else { "" },
+ adt.descr(),
+ msg,
+ );
+ err.span_label(sp, &msg);
+ for sp in field_spans {
+ err.span_label(sp, "this field is non-zero-sized");
+ }
+ err.emit();
+}
+
+fn report_unexpected_variant_res(tcx: TyCtxt<'_>, res: Res, qpath: &hir::QPath<'_>, span: Span) {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0533,
+ "expected unit struct, unit variant or constant, found {} `{}`",
+ res.descr(),
+ rustc_hir_pretty::qpath_to_string(qpath),
+ )
+ .emit();
+}
+
+/// Controls whether the arguments are tupled. This is used for the call
+/// operator.
+///
+/// Tupling means that all call-side arguments are packed into a tuple and
+/// passed as a single parameter. For example, if tupling is enabled, this
+/// function:
+/// ```
+/// fn f(x: (isize, isize)) {}
+/// ```
+/// Can be called as:
+/// ```ignore UNSOLVED (can this be done in user code?)
+/// # fn f(x: (isize, isize)) {}
+/// f(1, 2);
+/// ```
+/// Instead of:
+/// ```
+/// # fn f(x: (isize, isize)) {}
+/// f((1, 2));
+/// ```
+#[derive(Clone, Eq, PartialEq)]
+enum TupleArgumentsFlag {
+ DontTupleArguments,
+ TupleArguments,
+}
+
+fn typeck_item_bodies(tcx: TyCtxt<'_>, (): ()) {
+ tcx.hir().par_body_owners(|body_owner_def_id| tcx.ensure().typeck(body_owner_def_id));
+}
+
+fn fatally_break_rust(sess: &Session) {
+ let handler = sess.diagnostic();
+ handler.span_bug_no_panic(
+ MultiSpan::new(),
+ "It looks like you're trying to break rust; would you like some ICE?",
+ );
+ handler.note_without_error("the compiler expectedly panicked. this is a feature.");
+ handler.note_without_error(
+ "we would appreciate a joke overview: \
+ https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675",
+ );
+ handler.note_without_error(&format!(
+ "rustc {} running on {}",
+ option_env!("CFG_VERSION").unwrap_or("unknown_version"),
+ config::host_triple(),
+ ));
+}
+
+fn potentially_plural_count(count: usize, word: &str) -> String {
+ format!("{} {}{}", count, word, pluralize!(count))
+}
+
+fn has_expected_num_generic_args<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_did: Option<DefId>,
+ expected: usize,
+) -> bool {
+ trait_did.map_or(true, |trait_did| {
+ let generics = tcx.generics_of(trait_did);
+ generics.count() == expected + if generics.has_self { 1 } else { 0 }
+ })
+}
+
+/// Suggests calling the constructor of a tuple struct or enum variant
+///
+/// * `snippet` - The snippet of code that references the constructor
+/// * `span` - The span of the snippet
+/// * `params` - The number of parameters the constructor accepts
+/// * `err` - A mutable diagnostic builder to add the suggestion to
+fn suggest_call_constructor<G: EmissionGuarantee>(
+ span: Span,
+ kind: CtorOf,
+ params: usize,
+ err: &mut DiagnosticBuilder<'_, G>,
+) {
+ // Note: tuple-structs don't have named fields, so just use placeholders
+ let args = vec!["_"; params].join(", ");
+ let applicable = if params > 0 {
+ Applicability::HasPlaceholders
+ } else {
+ // When n = 0, it's an empty-tuple struct/enum variant
+ // so we trivially know how to construct it
+ Applicability::MachineApplicable
+ };
+ let kind = match kind {
+ CtorOf::Struct => "a struct",
+ CtorOf::Variant => "an enum variant",
+ };
+ err.span_label(span, &format!("this is the constructor of {kind}"));
+ err.multipart_suggestion(
+ "call the constructor",
+ vec![(span.shrink_to_lo(), "(".to_string()), (span.shrink_to_hi(), format!(")({args})"))],
+ applicable,
+ );
+}