summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/upvar.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/upvar.rs')
-rw-r--r--compiler/rustc_typeck/src/check/upvar.rs2272
1 files changed, 2272 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/upvar.rs b/compiler/rustc_typeck/src/check/upvar.rs
new file mode 100644
index 000000000..dd8f943b9
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/upvar.rs
@@ -0,0 +1,2272 @@
+//! ### Inferring borrow kinds for upvars
+//!
+//! Whenever there is a closure expression, we need to determine how each
+//! upvar is used. We do this by initially assigning each upvar an
+//! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
+//! "escalating" the kind as needed. The borrow kind proceeds according to
+//! the following lattice:
+//! ```ignore (not-rust)
+//! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
+//! ```
+//! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
+//! will promote its borrow kind to mutable borrow. If we see an `&mut x`
+//! we'll do the same. Naturally, this applies not just to the upvar, but
+//! to everything owned by `x`, so the result is the same for something
+//! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
+//! struct). These adjustments are performed in
+//! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
+//! from there).
+//!
+//! The fact that we are inferring borrow kinds as we go results in a
+//! semi-hacky interaction with mem-categorization. In particular,
+//! mem-categorization will query the current borrow kind as it
+//! categorizes, and we'll return the *current* value, but this may get
+//! adjusted later. Therefore, in this module, we generally ignore the
+//! borrow kind (and derived mutabilities) that are returned from
+//! mem-categorization, since they may be inaccurate. (Another option
+//! would be to use a unification scheme, where instead of returning a
+//! concrete borrow kind like `ty::ImmBorrow`, we return a
+//! `ty::InferBorrow(upvar_id)` or something like that, but this would
+//! then mean that all later passes would have to check for these figments
+//! and report an error, and it just seems like more mess in the end.)
+
+use super::FnCtxt;
+
+use crate::expr_use_visitor as euv;
+use rustc_errors::{Applicability, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def_id::LocalDefId;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_infer::infer::UpvarRegion;
+use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
+use rustc_middle::mir::FakeReadCause;
+use rustc_middle::ty::{
+ self, ClosureSizeProfileData, Ty, TyCtxt, TypeckResults, UpvarCapture, UpvarSubsts,
+};
+use rustc_session::lint;
+use rustc_span::sym;
+use rustc_span::{BytePos, Pos, Span, Symbol};
+use rustc_trait_selection::infer::InferCtxtExt;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_index::vec::Idx;
+use rustc_target::abi::VariantIdx;
+
+use std::iter;
+
+/// Describe the relationship between the paths of two places
+/// eg:
+/// - `foo` is ancestor of `foo.bar.baz`
+/// - `foo.bar.baz` is an descendant of `foo.bar`
+/// - `foo.bar` and `foo.baz` are divergent
+enum PlaceAncestryRelation {
+ Ancestor,
+ Descendant,
+ SamePlace,
+ Divergent,
+}
+
+/// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
+/// during capture analysis. Information in this map feeds into the minimum capture
+/// analysis pass.
+type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
+ InferBorrowKindVisitor { fcx: self }.visit_body(body);
+
+ // it's our job to process these.
+ assert!(self.deferred_call_resolutions.borrow().is_empty());
+ }
+}
+
+/// Intermediate format to store the hir_id pointing to the use that resulted in the
+/// corresponding place being captured and a String which contains the captured value's
+/// name (i.e: a.b.c)
+#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
+enum UpvarMigrationInfo {
+ /// We previously captured all of `x`, but now we capture some sub-path.
+ CapturingPrecise { source_expr: Option<hir::HirId>, var_name: String },
+ CapturingNothing {
+ // where the variable appears in the closure (but is not captured)
+ use_span: Span,
+ },
+}
+
+/// Reasons that we might issue a migration warning.
+#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
+struct MigrationWarningReason {
+ /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
+ /// in this vec, but now we don't.
+ auto_traits: Vec<&'static str>,
+
+ /// When we used to capture `x` in its entirety, we would execute some destructors
+ /// at a different time.
+ drop_order: bool,
+}
+
+impl MigrationWarningReason {
+ fn migration_message(&self) -> String {
+ let base = "changes to closure capture in Rust 2021 will affect";
+ if !self.auto_traits.is_empty() && self.drop_order {
+ format!("{} drop order and which traits the closure implements", base)
+ } else if self.drop_order {
+ format!("{} drop order", base)
+ } else {
+ format!("{} which traits the closure implements", base)
+ }
+ }
+}
+
+/// Intermediate format to store information needed to generate a note in the migration lint.
+struct MigrationLintNote {
+ captures_info: UpvarMigrationInfo,
+
+ /// reasons why migration is needed for this capture
+ reason: MigrationWarningReason,
+}
+
+/// Intermediate format to store the hir id of the root variable and a HashSet containing
+/// information on why the root variable should be fully captured
+struct NeededMigration {
+ var_hir_id: hir::HirId,
+ diagnostics_info: Vec<MigrationLintNote>,
+}
+
+struct InferBorrowKindVisitor<'a, 'tcx> {
+ fcx: &'a FnCtxt<'a, 'tcx>,
+}
+
+impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
+ fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+ match expr.kind {
+ hir::ExprKind::Closure(&hir::Closure { capture_clause, body: body_id, .. }) => {
+ let body = self.fcx.tcx.hir().body(body_id);
+ self.visit_body(body);
+ self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, capture_clause);
+ }
+ hir::ExprKind::ConstBlock(anon_const) => {
+ let body = self.fcx.tcx.hir().body(anon_const.body);
+ self.visit_body(body);
+ }
+ _ => {}
+ }
+
+ intravisit::walk_expr(self, expr);
+ }
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ /// Analysis starting point.
+ #[instrument(skip(self, body), level = "debug")]
+ fn analyze_closure(
+ &self,
+ closure_hir_id: hir::HirId,
+ span: Span,
+ body_id: hir::BodyId,
+ body: &'tcx hir::Body<'tcx>,
+ capture_clause: hir::CaptureBy,
+ ) {
+ // Extract the type of the closure.
+ let ty = self.node_ty(closure_hir_id);
+ let (closure_def_id, substs) = match *ty.kind() {
+ ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs)),
+ ty::Generator(def_id, substs, _) => (def_id, UpvarSubsts::Generator(substs)),
+ ty::Error(_) => {
+ // #51714: skip analysis when we have already encountered type errors
+ return;
+ }
+ _ => {
+ span_bug!(
+ span,
+ "type of closure expr {:?} is not a closure {:?}",
+ closure_hir_id,
+ ty
+ );
+ }
+ };
+ let closure_def_id = closure_def_id.expect_local();
+
+ let infer_kind = if let UpvarSubsts::Closure(closure_substs) = substs {
+ self.closure_kind(closure_substs).is_none().then_some(closure_substs)
+ } else {
+ None
+ };
+
+ assert_eq!(self.tcx.hir().body_owner_def_id(body.id()), closure_def_id);
+ let mut delegate = InferBorrowKind {
+ fcx: self,
+ closure_def_id,
+ capture_information: Default::default(),
+ fake_reads: Default::default(),
+ };
+ euv::ExprUseVisitor::new(
+ &mut delegate,
+ &self.infcx,
+ closure_def_id,
+ self.param_env,
+ &self.typeck_results.borrow(),
+ )
+ .consume_body(body);
+
+ debug!(
+ "For closure={:?}, capture_information={:#?}",
+ closure_def_id, delegate.capture_information
+ );
+
+ self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
+
+ let (capture_information, closure_kind, origin) = self
+ .process_collected_capture_information(capture_clause, delegate.capture_information);
+
+ self.compute_min_captures(closure_def_id, capture_information, span);
+
+ let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(closure_def_id);
+
+ if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
+ self.perform_2229_migration_anaysis(closure_def_id, body_id, capture_clause, span);
+ }
+
+ let after_feature_tys = self.final_upvar_tys(closure_def_id);
+
+ // We now fake capture information for all variables that are mentioned within the closure
+ // We do this after handling migrations so that min_captures computes before
+ if !enable_precise_capture(self.tcx, span) {
+ let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
+
+ if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
+ for var_hir_id in upvars.keys() {
+ let place = self.place_for_root_variable(closure_def_id, *var_hir_id);
+
+ debug!("seed place {:?}", place);
+
+ let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
+ let fake_info = ty::CaptureInfo {
+ capture_kind_expr_id: None,
+ path_expr_id: None,
+ capture_kind,
+ };
+
+ capture_information.push((place, fake_info));
+ }
+ }
+
+ // This will update the min captures based on this new fake information.
+ self.compute_min_captures(closure_def_id, capture_information, span);
+ }
+
+ let before_feature_tys = self.final_upvar_tys(closure_def_id);
+
+ if let Some(closure_substs) = infer_kind {
+ // Unify the (as yet unbound) type variable in the closure
+ // substs with the kind we inferred.
+ let closure_kind_ty = closure_substs.as_closure().kind_ty();
+ self.demand_eqtype(span, closure_kind.to_ty(self.tcx), closure_kind_ty);
+
+ // If we have an origin, store it.
+ if let Some(origin) = origin {
+ let origin = if enable_precise_capture(self.tcx, span) {
+ (origin.0, origin.1)
+ } else {
+ (origin.0, Place { projections: vec![], ..origin.1 })
+ };
+
+ self.typeck_results
+ .borrow_mut()
+ .closure_kind_origins_mut()
+ .insert(closure_hir_id, origin);
+ }
+ }
+
+ self.log_closure_min_capture_info(closure_def_id, span);
+
+ // Now that we've analyzed the closure, we know how each
+ // variable is borrowed, and we know what traits the closure
+ // implements (Fn vs FnMut etc). We now have some updates to do
+ // with that information.
+ //
+ // Note that no closure type C may have an upvar of type C
+ // (though it may reference itself via a trait object). This
+ // results from the desugaring of closures to a struct like
+ // `Foo<..., UV0...UVn>`. If one of those upvars referenced
+ // C, then the type would have infinite size (and the
+ // inference algorithm will reject it).
+
+ // Equate the type variables for the upvars with the actual types.
+ let final_upvar_tys = self.final_upvar_tys(closure_def_id);
+ debug!(
+ "analyze_closure: id={:?} substs={:?} final_upvar_tys={:?}",
+ closure_hir_id, substs, final_upvar_tys
+ );
+
+ // Build a tuple (U0..Un) of the final upvar types U0..Un
+ // and unify the upvar tuple type in the closure with it:
+ let final_tupled_upvars_type = self.tcx.mk_tup(final_upvar_tys.iter());
+ self.demand_suptype(span, substs.tupled_upvars_ty(), final_tupled_upvars_type);
+
+ let fake_reads = delegate
+ .fake_reads
+ .into_iter()
+ .map(|(place, cause, hir_id)| (place, cause, hir_id))
+ .collect();
+ self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
+
+ if self.tcx.sess.opts.unstable_opts.profile_closures {
+ self.typeck_results.borrow_mut().closure_size_eval.insert(
+ closure_def_id,
+ ClosureSizeProfileData {
+ before_feature_tys: self.tcx.mk_tup(before_feature_tys.into_iter()),
+ after_feature_tys: self.tcx.mk_tup(after_feature_tys.into_iter()),
+ },
+ );
+ }
+
+ // If we are also inferred the closure kind here,
+ // process any deferred resolutions.
+ let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
+ for deferred_call_resolution in deferred_call_resolutions {
+ deferred_call_resolution.resolve(self);
+ }
+ }
+
+ // Returns a list of `Ty`s for each upvar.
+ fn final_upvar_tys(&self, closure_id: LocalDefId) -> Vec<Ty<'tcx>> {
+ self.typeck_results
+ .borrow()
+ .closure_min_captures_flattened(closure_id)
+ .map(|captured_place| {
+ let upvar_ty = captured_place.place.ty();
+ let capture = captured_place.info.capture_kind;
+
+ debug!(
+ "final_upvar_tys: place={:?} upvar_ty={:?} capture={:?}, mutability={:?}",
+ captured_place.place, upvar_ty, capture, captured_place.mutability,
+ );
+
+ apply_capture_kind_on_capture_ty(self.tcx, upvar_ty, capture, captured_place.region)
+ })
+ .collect()
+ }
+
+ /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
+ /// and that the path can be captured with required capture kind (depending on use in closure,
+ /// move closure etc.)
+ ///
+ /// Returns the set of of adjusted information along with the inferred closure kind and span
+ /// associated with the closure kind inference.
+ ///
+ /// Note that we *always* infer a minimal kind, even if
+ /// we don't always *use* that in the final result (i.e., sometimes
+ /// we've taken the closure kind from the expectations instead, and
+ /// for generators we don't even implement the closure traits
+ /// really).
+ ///
+ /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
+ /// contains a `Some()` with the `Place` that caused us to do so.
+ fn process_collected_capture_information(
+ &self,
+ capture_clause: hir::CaptureBy,
+ capture_information: InferredCaptureInformation<'tcx>,
+ ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
+ let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
+ let mut origin: Option<(Span, Place<'tcx>)> = None;
+
+ let processed = capture_information
+ .into_iter()
+ .map(|(place, mut capture_info)| {
+ // Apply rules for safety before inferring closure kind
+ let (place, capture_kind) =
+ restrict_capture_precision(place, capture_info.capture_kind);
+
+ let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
+
+ let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
+ self.tcx.hir().span(usage_expr)
+ } else {
+ unreachable!()
+ };
+
+ let updated = match capture_kind {
+ ty::UpvarCapture::ByValue => match closure_kind {
+ ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
+ (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
+ }
+ // If closure is already FnOnce, don't update
+ ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
+ },
+
+ ty::UpvarCapture::ByRef(
+ ty::BorrowKind::MutBorrow | ty::BorrowKind::UniqueImmBorrow,
+ ) => {
+ match closure_kind {
+ ty::ClosureKind::Fn => {
+ (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
+ }
+ // Don't update the origin
+ ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
+ (closure_kind, origin.take())
+ }
+ }
+ }
+
+ _ => (closure_kind, origin.take()),
+ };
+
+ closure_kind = updated.0;
+ origin = updated.1;
+
+ let (place, capture_kind) = match capture_clause {
+ hir::CaptureBy::Value => adjust_for_move_closure(place, capture_kind),
+ hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
+ };
+
+ // This restriction needs to be applied after we have handled adjustments for `move`
+ // closures. We want to make sure any adjustment that might make us move the place into
+ // the closure gets handled.
+ let (place, capture_kind) =
+ restrict_precision_for_drop_types(self, place, capture_kind, usage_span);
+
+ capture_info.capture_kind = capture_kind;
+ (place, capture_info)
+ })
+ .collect();
+
+ (processed, closure_kind, origin)
+ }
+
+ /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
+ /// Places (and corresponding capture kind) that we need to keep track of to support all
+ /// the required captured paths.
+ ///
+ ///
+ /// Note: If this function is called multiple times for the same closure, it will update
+ /// the existing min_capture map that is stored in TypeckResults.
+ ///
+ /// Eg:
+ /// ```
+ /// #[derive(Debug)]
+ /// struct Point { x: i32, y: i32 }
+ ///
+ /// let s = String::from("s"); // hir_id_s
+ /// let mut p = Point { x: 2, y: -2 }; // his_id_p
+ /// let c = || {
+ /// println!("{s:?}"); // L1
+ /// p.x += 10; // L2
+ /// println!("{}" , p.y); // L3
+ /// println!("{p:?}"); // L4
+ /// drop(s); // L5
+ /// };
+ /// ```
+ /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
+ /// the lines L1..5 respectively.
+ ///
+ /// InferBorrowKind results in a structure like this:
+ ///
+ /// ```ignore (illustrative)
+ /// {
+ /// Place(base: hir_id_s, projections: [], ....) -> {
+ /// capture_kind_expr: hir_id_L5,
+ /// path_expr_id: hir_id_L5,
+ /// capture_kind: ByValue
+ /// },
+ /// Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
+ /// capture_kind_expr: hir_id_L2,
+ /// path_expr_id: hir_id_L2,
+ /// capture_kind: ByValue
+ /// },
+ /// Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
+ /// capture_kind_expr: hir_id_L3,
+ /// path_expr_id: hir_id_L3,
+ /// capture_kind: ByValue
+ /// },
+ /// Place(base: hir_id_p, projections: [], ...) -> {
+ /// capture_kind_expr: hir_id_L4,
+ /// path_expr_id: hir_id_L4,
+ /// capture_kind: ByValue
+ /// },
+ /// }
+ /// ```
+ ///
+ /// After the min capture analysis, we get:
+ /// ```ignore (illustrative)
+ /// {
+ /// hir_id_s -> [
+ /// Place(base: hir_id_s, projections: [], ....) -> {
+ /// capture_kind_expr: hir_id_L5,
+ /// path_expr_id: hir_id_L5,
+ /// capture_kind: ByValue
+ /// },
+ /// ],
+ /// hir_id_p -> [
+ /// Place(base: hir_id_p, projections: [], ...) -> {
+ /// capture_kind_expr: hir_id_L2,
+ /// path_expr_id: hir_id_L4,
+ /// capture_kind: ByValue
+ /// },
+ /// ],
+ /// }
+ /// ```
+ fn compute_min_captures(
+ &self,
+ closure_def_id: LocalDefId,
+ capture_information: InferredCaptureInformation<'tcx>,
+ closure_span: Span,
+ ) {
+ if capture_information.is_empty() {
+ return;
+ }
+
+ let mut typeck_results = self.typeck_results.borrow_mut();
+
+ let mut root_var_min_capture_list =
+ typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
+
+ for (mut place, capture_info) in capture_information.into_iter() {
+ let var_hir_id = match place.base {
+ PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
+ base => bug!("Expected upvar, found={:?}", base),
+ };
+
+ let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
+ let mutability = self.determine_capture_mutability(&typeck_results, &place);
+ let min_cap_list = vec![ty::CapturedPlace {
+ place,
+ info: capture_info,
+ mutability,
+ region: None,
+ }];
+ root_var_min_capture_list.insert(var_hir_id, min_cap_list);
+ continue;
+ };
+
+ // Go through each entry in the current list of min_captures
+ // - if ancestor is found, update it's capture kind to account for current place's
+ // capture information.
+ //
+ // - if descendant is found, remove it from the list, and update the current place's
+ // capture information to account for the descendant's capture kind.
+ //
+ // We can never be in a case where the list contains both an ancestor and a descendant
+ // Also there can only be ancestor but in case of descendants there might be
+ // multiple.
+
+ let mut descendant_found = false;
+ let mut updated_capture_info = capture_info;
+ min_cap_list.retain(|possible_descendant| {
+ match determine_place_ancestry_relation(&place, &possible_descendant.place) {
+ // current place is ancestor of possible_descendant
+ PlaceAncestryRelation::Ancestor => {
+ descendant_found = true;
+
+ let mut possible_descendant = possible_descendant.clone();
+ let backup_path_expr_id = updated_capture_info.path_expr_id;
+
+ // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
+ // possible change in capture mode.
+ truncate_place_to_len_and_update_capture_kind(
+ &mut possible_descendant.place,
+ &mut possible_descendant.info.capture_kind,
+ place.projections.len(),
+ );
+
+ updated_capture_info =
+ determine_capture_info(updated_capture_info, possible_descendant.info);
+
+ // we need to keep the ancestor's `path_expr_id`
+ updated_capture_info.path_expr_id = backup_path_expr_id;
+ false
+ }
+
+ _ => true,
+ }
+ });
+
+ let mut ancestor_found = false;
+ if !descendant_found {
+ for possible_ancestor in min_cap_list.iter_mut() {
+ match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
+ PlaceAncestryRelation::SamePlace => {
+ ancestor_found = true;
+ possible_ancestor.info = determine_capture_info(
+ possible_ancestor.info,
+ updated_capture_info,
+ );
+
+ // Only one related place will be in the list.
+ break;
+ }
+ // current place is descendant of possible_ancestor
+ PlaceAncestryRelation::Descendant => {
+ ancestor_found = true;
+ let backup_path_expr_id = possible_ancestor.info.path_expr_id;
+
+ // Truncate the descendant (current place) to be same as the ancestor to handle any
+ // possible change in capture mode.
+ truncate_place_to_len_and_update_capture_kind(
+ &mut place,
+ &mut updated_capture_info.capture_kind,
+ possible_ancestor.place.projections.len(),
+ );
+
+ possible_ancestor.info = determine_capture_info(
+ possible_ancestor.info,
+ updated_capture_info,
+ );
+
+ // we need to keep the ancestor's `path_expr_id`
+ possible_ancestor.info.path_expr_id = backup_path_expr_id;
+
+ // Only one related place will be in the list.
+ break;
+ }
+ _ => {}
+ }
+ }
+ }
+
+ // Only need to insert when we don't have an ancestor in the existing min capture list
+ if !ancestor_found {
+ let mutability = self.determine_capture_mutability(&typeck_results, &place);
+ let captured_place = ty::CapturedPlace {
+ place,
+ info: updated_capture_info,
+ mutability,
+ region: None,
+ };
+ min_cap_list.push(captured_place);
+ }
+ }
+
+ // For each capture that is determined to be captured by ref, add region info.
+ for (_, captures) in &mut root_var_min_capture_list {
+ for capture in captures {
+ match capture.info.capture_kind {
+ ty::UpvarCapture::ByRef(_) => {
+ let PlaceBase::Upvar(upvar_id) = capture.place.base else { bug!("expected upvar") };
+ let origin = UpvarRegion(upvar_id, closure_span);
+ let upvar_region = self.next_region_var(origin);
+ capture.region = Some(upvar_region);
+ }
+ _ => (),
+ }
+ }
+ }
+
+ debug!(
+ "For closure={:?}, min_captures before sorting={:?}",
+ closure_def_id, root_var_min_capture_list
+ );
+
+ // Now that we have the minimized list of captures, sort the captures by field id.
+ // This causes the closure to capture the upvars in the same order as the fields are
+ // declared which is also the drop order. Thus, in situations where we capture all the
+ // fields of some type, the observable drop order will remain the same as it previously
+ // was even though we're dropping each capture individually.
+ // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
+ // `src/test/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
+ for (_, captures) in &mut root_var_min_capture_list {
+ captures.sort_by(|capture1, capture2| {
+ for (p1, p2) in capture1.place.projections.iter().zip(&capture2.place.projections) {
+ // We do not need to look at the `Projection.ty` fields here because at each
+ // step of the iteration, the projections will either be the same and therefore
+ // the types must be as well or the current projection will be different and
+ // we will return the result of comparing the field indexes.
+ match (p1.kind, p2.kind) {
+ // Paths are the same, continue to next loop.
+ (ProjectionKind::Deref, ProjectionKind::Deref) => {}
+ (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _))
+ if i1 == i2 => {}
+
+ // Fields are different, compare them.
+ (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
+ return i1.cmp(&i2);
+ }
+
+ // We should have either a pair of `Deref`s or a pair of `Field`s.
+ // Anything else is a bug.
+ (
+ l @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
+ r @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
+ ) => bug!(
+ "ProjectionKinds Deref and Field were mismatched: ({:?}, {:?})",
+ l,
+ r
+ ),
+ (
+ l @ (ProjectionKind::Index
+ | ProjectionKind::Subslice
+ | ProjectionKind::Deref
+ | ProjectionKind::Field(..)),
+ r @ (ProjectionKind::Index
+ | ProjectionKind::Subslice
+ | ProjectionKind::Deref
+ | ProjectionKind::Field(..)),
+ ) => bug!(
+ "ProjectionKinds Index or Subslice were unexpected: ({:?}, {:?})",
+ l,
+ r
+ ),
+ }
+ }
+
+ unreachable!(
+ "we captured two identical projections: capture1 = {:?}, capture2 = {:?}",
+ capture1, capture2
+ );
+ });
+ }
+
+ debug!(
+ "For closure={:?}, min_captures after sorting={:#?}",
+ closure_def_id, root_var_min_capture_list
+ );
+ typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
+ }
+
+ /// Perform the migration analysis for RFC 2229, and emit lint
+ /// `disjoint_capture_drop_reorder` if needed.
+ fn perform_2229_migration_anaysis(
+ &self,
+ closure_def_id: LocalDefId,
+ body_id: hir::BodyId,
+ capture_clause: hir::CaptureBy,
+ span: Span,
+ ) {
+ let (need_migrations, reasons) = self.compute_2229_migrations(
+ closure_def_id,
+ span,
+ capture_clause,
+ self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
+ );
+
+ if !need_migrations.is_empty() {
+ let (migration_string, migrated_variables_concat) =
+ migration_suggestion_for_2229(self.tcx, &need_migrations);
+
+ let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(closure_def_id);
+ let closure_head_span = self.tcx.def_span(closure_def_id);
+ self.tcx.struct_span_lint_hir(
+ lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
+ closure_hir_id,
+ closure_head_span,
+ |lint| {
+ let mut diagnostics_builder = lint.build(
+ &reasons.migration_message(),
+ );
+ for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
+ // Labels all the usage of the captured variable and why they are responsible
+ // for migration being needed
+ for lint_note in diagnostics_info.iter() {
+ match &lint_note.captures_info {
+ UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
+ let cause_span = self.tcx.hir().span(*capture_expr_id);
+ diagnostics_builder.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
+ self.tcx.hir().name(*var_hir_id),
+ captured_name,
+ ));
+ }
+ UpvarMigrationInfo::CapturingNothing { use_span } => {
+ diagnostics_builder.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
+ self.tcx.hir().name(*var_hir_id),
+ ));
+ }
+
+ _ => { }
+ }
+
+ // Add a label pointing to where a captured variable affected by drop order
+ // is dropped
+ if lint_note.reason.drop_order {
+ let drop_location_span = drop_location_span(self.tcx, closure_hir_id);
+
+ match &lint_note.captures_info {
+ UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
+ diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
+ self.tcx.hir().name(*var_hir_id),
+ captured_name,
+ ));
+ }
+ UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
+ diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
+ v = self.tcx.hir().name(*var_hir_id),
+ ));
+ }
+ }
+ }
+
+ // Add a label explaining why a closure no longer implements a trait
+ for &missing_trait in &lint_note.reason.auto_traits {
+ // not capturing something anymore cannot cause a trait to fail to be implemented:
+ match &lint_note.captures_info {
+ UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
+ let var_name = self.tcx.hir().name(*var_hir_id);
+ diagnostics_builder.span_label(closure_head_span, format!("\
+ in Rust 2018, this closure implements {missing_trait} \
+ as `{var_name}` implements {missing_trait}, but in Rust 2021, \
+ this closure will no longer implement {missing_trait} \
+ because `{var_name}` is not fully captured \
+ and `{captured_name}` does not implement {missing_trait}"));
+ }
+
+ // Cannot happen: if we don't capture a variable, we impl strictly more traits
+ UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
+ }
+ }
+ }
+ }
+ diagnostics_builder.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
+
+ let diagnostic_msg = format!(
+ "add a dummy let to cause {} to be fully captured",
+ migrated_variables_concat
+ );
+
+ let closure_span = self.tcx.hir().span_with_body(closure_hir_id);
+ let mut closure_body_span = {
+ // If the body was entirely expanded from a macro
+ // invocation, i.e. the body is not contained inside the
+ // closure span, then we walk up the expansion until we
+ // find the span before the expansion.
+ let s = self.tcx.hir().span_with_body(body_id.hir_id);
+ s.find_ancestor_inside(closure_span).unwrap_or(s)
+ };
+
+ if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
+ if s.starts_with('$') {
+ // Looks like a macro fragment. Try to find the real block.
+ if let Some(hir::Node::Expr(&hir::Expr {
+ kind: hir::ExprKind::Block(block, ..), ..
+ })) = self.tcx.hir().find(body_id.hir_id) {
+ // If the body is a block (with `{..}`), we use the span of that block.
+ // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
+ // Since we know it's a block, we know we can insert the `let _ = ..` without
+ // breaking the macro syntax.
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
+ closure_body_span = block.span;
+ s = snippet;
+ }
+ }
+ }
+
+ let mut lines = s.lines();
+ let line1 = lines.next().unwrap_or_default();
+
+ if line1.trim_end() == "{" {
+ // This is a multi-line closure with just a `{` on the first line,
+ // so we put the `let` on its own line.
+ // We take the indentation from the next non-empty line.
+ let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
+ let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
+ diagnostics_builder.span_suggestion(
+ closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
+ &diagnostic_msg,
+ format!("\n{indent}{migration_string};"),
+ Applicability::MachineApplicable,
+ );
+ } else if line1.starts_with('{') {
+ // This is a closure with its body wrapped in
+ // braces, but with more than just the opening
+ // brace on the first line. We put the `let`
+ // directly after the `{`.
+ diagnostics_builder.span_suggestion(
+ closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
+ &diagnostic_msg,
+ format!(" {migration_string};"),
+ Applicability::MachineApplicable,
+ );
+ } else {
+ // This is a closure without braces around the body.
+ // We add braces to add the `let` before the body.
+ diagnostics_builder.multipart_suggestion(
+ &diagnostic_msg,
+ vec![
+ (closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
+ (closure_body_span.shrink_to_hi(), " }".to_string()),
+ ],
+ Applicability::MachineApplicable
+ );
+ }
+ } else {
+ diagnostics_builder.span_suggestion(
+ closure_span,
+ &diagnostic_msg,
+ migration_string,
+ Applicability::HasPlaceholders
+ );
+ }
+
+ diagnostics_builder.emit();
+ },
+ );
+ }
+ }
+
+ /// Combines all the reasons for 2229 migrations
+ fn compute_2229_migrations_reasons(
+ &self,
+ auto_trait_reasons: FxHashSet<&'static str>,
+ drop_order: bool,
+ ) -> MigrationWarningReason {
+ let mut reasons = MigrationWarningReason::default();
+
+ reasons.auto_traits.extend(auto_trait_reasons);
+ reasons.drop_order = drop_order;
+
+ // `auto_trait_reasons` are in hashset order, so sort them to put the
+ // diagnostics we emit later in a cross-platform-consistent order.
+ reasons.auto_traits.sort_unstable();
+
+ reasons
+ }
+
+ /// Figures out the list of root variables (and their types) that aren't completely
+ /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
+ /// differ between the root variable and the captured paths.
+ ///
+ /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
+ /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
+ fn compute_2229_migrations_for_trait(
+ &self,
+ min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
+ var_hir_id: hir::HirId,
+ closure_clause: hir::CaptureBy,
+ ) -> Option<FxHashMap<UpvarMigrationInfo, FxHashSet<&'static str>>> {
+ let auto_traits_def_id = vec![
+ self.tcx.lang_items().clone_trait(),
+ self.tcx.lang_items().sync_trait(),
+ self.tcx.get_diagnostic_item(sym::Send),
+ self.tcx.lang_items().unpin_trait(),
+ self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
+ self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
+ ];
+ const AUTO_TRAITS: [&str; 6] =
+ ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
+
+ let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
+
+ let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
+
+ let ty = match closure_clause {
+ hir::CaptureBy::Value => ty, // For move closure the capture kind should be by value
+ hir::CaptureBy::Ref => {
+ // For non move closure the capture kind is the max capture kind of all captures
+ // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
+ let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
+ for capture in root_var_min_capture_list.iter() {
+ max_capture_info = determine_capture_info(max_capture_info, capture.info);
+ }
+
+ apply_capture_kind_on_capture_ty(
+ self.tcx,
+ ty,
+ max_capture_info.capture_kind,
+ Some(self.tcx.lifetimes.re_erased),
+ )
+ }
+ };
+
+ let mut obligations_should_hold = Vec::new();
+ // Checks if a root variable implements any of the auto traits
+ for check_trait in auto_traits_def_id.iter() {
+ obligations_should_hold.push(
+ check_trait
+ .map(|check_trait| {
+ self.infcx
+ .type_implements_trait(
+ check_trait,
+ ty,
+ self.tcx.mk_substs_trait(ty, &[]),
+ self.param_env,
+ )
+ .must_apply_modulo_regions()
+ })
+ .unwrap_or(false),
+ );
+ }
+
+ let mut problematic_captures = FxHashMap::default();
+ // Check whether captured fields also implement the trait
+ for capture in root_var_min_capture_list.iter() {
+ let ty = apply_capture_kind_on_capture_ty(
+ self.tcx,
+ capture.place.ty(),
+ capture.info.capture_kind,
+ Some(self.tcx.lifetimes.re_erased),
+ );
+
+ // Checks if a capture implements any of the auto traits
+ let mut obligations_holds_for_capture = Vec::new();
+ for check_trait in auto_traits_def_id.iter() {
+ obligations_holds_for_capture.push(
+ check_trait
+ .map(|check_trait| {
+ self.infcx
+ .type_implements_trait(
+ check_trait,
+ ty,
+ self.tcx.mk_substs_trait(ty, &[]),
+ self.param_env,
+ )
+ .must_apply_modulo_regions()
+ })
+ .unwrap_or(false),
+ );
+ }
+
+ let mut capture_problems = FxHashSet::default();
+
+ // Checks if for any of the auto traits, one or more trait is implemented
+ // by the root variable but not by the capture
+ for (idx, _) in obligations_should_hold.iter().enumerate() {
+ if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
+ capture_problems.insert(AUTO_TRAITS[idx]);
+ }
+ }
+
+ if !capture_problems.is_empty() {
+ problematic_captures.insert(
+ UpvarMigrationInfo::CapturingPrecise {
+ source_expr: capture.info.path_expr_id,
+ var_name: capture.to_string(self.tcx),
+ },
+ capture_problems,
+ );
+ }
+ }
+ if !problematic_captures.is_empty() {
+ return Some(problematic_captures);
+ }
+ None
+ }
+
+ /// Figures out the list of root variables (and their types) that aren't completely
+ /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
+ /// some path starting at that root variable **might** be affected.
+ ///
+ /// The output list would include a root variable if:
+ /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
+ /// enabled, **and**
+ /// - It wasn't completely captured by the closure, **and**
+ /// - One of the paths starting at this root variable, that is not captured needs Drop.
+ ///
+ /// This function only returns a HashSet of CapturesInfo for significant drops. If there
+ /// are no significant drops than None is returned
+ #[instrument(level = "debug", skip(self))]
+ fn compute_2229_migrations_for_drop(
+ &self,
+ closure_def_id: LocalDefId,
+ closure_span: Span,
+ min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
+ closure_clause: hir::CaptureBy,
+ var_hir_id: hir::HirId,
+ ) -> Option<FxHashSet<UpvarMigrationInfo>> {
+ let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
+
+ if !ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id)) {
+ debug!("does not have significant drop");
+ return None;
+ }
+
+ let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
+ // The upvar is mentioned within the closure but no path starting from it is
+ // used. This occurs when you have (e.g.)
+ //
+ // ```
+ // let x = move || {
+ // let _ = y;
+ // });
+ // ```
+ debug!("no path starting from it is used");
+
+
+ match closure_clause {
+ // Only migrate if closure is a move closure
+ hir::CaptureBy::Value => {
+ let mut diagnostics_info = FxHashSet::default();
+ let upvars = self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
+ let upvar = upvars[&var_hir_id];
+ diagnostics_info.insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
+ return Some(diagnostics_info);
+ }
+ hir::CaptureBy::Ref => {}
+ }
+
+ return None;
+ };
+ debug!(?root_var_min_capture_list);
+
+ let mut projections_list = Vec::new();
+ let mut diagnostics_info = FxHashSet::default();
+
+ for captured_place in root_var_min_capture_list.iter() {
+ match captured_place.info.capture_kind {
+ // Only care about captures that are moved into the closure
+ ty::UpvarCapture::ByValue => {
+ projections_list.push(captured_place.place.projections.as_slice());
+ diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
+ source_expr: captured_place.info.path_expr_id,
+ var_name: captured_place.to_string(self.tcx),
+ });
+ }
+ ty::UpvarCapture::ByRef(..) => {}
+ }
+ }
+
+ debug!(?projections_list);
+ debug!(?diagnostics_info);
+
+ let is_moved = !projections_list.is_empty();
+ debug!(?is_moved);
+
+ let is_not_completely_captured =
+ root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
+ debug!(?is_not_completely_captured);
+
+ if is_moved
+ && is_not_completely_captured
+ && self.has_significant_drop_outside_of_captures(
+ closure_def_id,
+ closure_span,
+ ty,
+ projections_list,
+ )
+ {
+ return Some(diagnostics_info);
+ }
+
+ None
+ }
+
+ /// Figures out the list of root variables (and their types) that aren't completely
+ /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
+ /// order of some path starting at that root variable **might** be affected or auto-traits
+ /// differ between the root variable and the captured paths.
+ ///
+ /// The output list would include a root variable if:
+ /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
+ /// enabled, **and**
+ /// - It wasn't completely captured by the closure, **and**
+ /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
+ /// - One of the paths captured does not implement all the auto-traits its root variable
+ /// implements.
+ ///
+ /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
+ /// containing the reason why root variables whose HirId is contained in the vector should
+ /// be captured
+ #[instrument(level = "debug", skip(self))]
+ fn compute_2229_migrations(
+ &self,
+ closure_def_id: LocalDefId,
+ closure_span: Span,
+ closure_clause: hir::CaptureBy,
+ min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
+ ) -> (Vec<NeededMigration>, MigrationWarningReason) {
+ let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
+ return (Vec::new(), MigrationWarningReason::default());
+ };
+
+ let mut need_migrations = Vec::new();
+ let mut auto_trait_migration_reasons = FxHashSet::default();
+ let mut drop_migration_needed = false;
+
+ // Perform auto-trait analysis
+ for (&var_hir_id, _) in upvars.iter() {
+ let mut diagnostics_info = Vec::new();
+
+ let auto_trait_diagnostic = if let Some(diagnostics_info) =
+ self.compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
+ {
+ diagnostics_info
+ } else {
+ FxHashMap::default()
+ };
+
+ let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
+ .compute_2229_migrations_for_drop(
+ closure_def_id,
+ closure_span,
+ min_captures,
+ closure_clause,
+ var_hir_id,
+ ) {
+ drop_migration_needed = true;
+ diagnostics_info
+ } else {
+ FxHashSet::default()
+ };
+
+ // Combine all the captures responsible for needing migrations into one HashSet
+ let mut capture_diagnostic = drop_reorder_diagnostic.clone();
+ for key in auto_trait_diagnostic.keys() {
+ capture_diagnostic.insert(key.clone());
+ }
+
+ let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
+ capture_diagnostic.sort();
+ for captures_info in capture_diagnostic {
+ // Get the auto trait reasons of why migration is needed because of that capture, if there are any
+ let capture_trait_reasons =
+ if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
+ reasons.clone()
+ } else {
+ FxHashSet::default()
+ };
+
+ // Check if migration is needed because of drop reorder as a result of that capture
+ let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
+
+ // Combine all the reasons of why the root variable should be captured as a result of
+ // auto trait implementation issues
+ auto_trait_migration_reasons.extend(capture_trait_reasons.clone());
+
+ diagnostics_info.push(MigrationLintNote {
+ captures_info,
+ reason: self.compute_2229_migrations_reasons(
+ capture_trait_reasons,
+ capture_drop_reorder_reason,
+ ),
+ });
+ }
+
+ if !diagnostics_info.is_empty() {
+ need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
+ }
+ }
+ (
+ need_migrations,
+ self.compute_2229_migrations_reasons(
+ auto_trait_migration_reasons,
+ drop_migration_needed,
+ ),
+ )
+ }
+
+ /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
+ /// of a root variable and a list of captured paths starting at this root variable (expressed
+ /// using list of `Projection` slices), it returns true if there is a path that is not
+ /// captured starting at this root variable that implements Drop.
+ ///
+ /// The way this function works is at a given call it looks at type `base_path_ty` of some base
+ /// path say P and then list of projection slices which represent the different captures moved
+ /// into the closure starting off of P.
+ ///
+ /// This will make more sense with an example:
+ ///
+ /// ```rust
+ /// #![feature(capture_disjoint_fields)]
+ ///
+ /// struct FancyInteger(i32); // This implements Drop
+ ///
+ /// struct Point { x: FancyInteger, y: FancyInteger }
+ /// struct Color;
+ ///
+ /// struct Wrapper { p: Point, c: Color }
+ ///
+ /// fn f(w: Wrapper) {
+ /// let c = || {
+ /// // Closure captures w.p.x and w.c by move.
+ /// };
+ ///
+ /// c();
+ /// }
+ /// ```
+ ///
+ /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
+ /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
+ /// therefore Drop ordering would change and we want this function to return true.
+ ///
+ /// Call stack to figure out if we need to migrate for `w` would look as follows:
+ ///
+ /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
+ /// `w[c]`.
+ /// Notation:
+ /// - Ty(place): Type of place
+ /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
+ /// respectively.
+ /// ```ignore (illustrative)
+ /// (Ty(w), [ &[p, x], &[c] ])
+ /// // |
+ /// // ----------------------------
+ /// // | |
+ /// // v v
+ /// (Ty(w.p), [ &[x] ]) (Ty(w.c), [ &[] ]) // I(1)
+ /// // | |
+ /// // v v
+ /// (Ty(w.p), [ &[x] ]) false
+ /// // |
+ /// // |
+ /// // -------------------------------
+ /// // | |
+ /// // v v
+ /// (Ty((w.p).x), [ &[] ]) (Ty((w.p).y), []) // IMP 2
+ /// // | |
+ /// // v v
+ /// false NeedsSignificantDrop(Ty(w.p.y))
+ /// // |
+ /// // v
+ /// true
+ /// ```
+ ///
+ /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
+ /// This implies that the `w.c` is completely captured by the closure.
+ /// Since drop for this path will be called when the closure is
+ /// dropped we don't need to migrate for it.
+ ///
+ /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
+ /// path wasn't captured by the closure. Also note that even
+ /// though we didn't capture this path, the function visits it,
+ /// which is kind of the point of this function. We then return
+ /// if the type of `w.p.y` implements Drop, which in this case is
+ /// true.
+ ///
+ /// Consider another example:
+ ///
+ /// ```ignore (pseudo-rust)
+ /// struct X;
+ /// impl Drop for X {}
+ ///
+ /// struct Y(X);
+ /// impl Drop for Y {}
+ ///
+ /// fn foo() {
+ /// let y = Y(X);
+ /// let c = || move(y.0);
+ /// }
+ /// ```
+ ///
+ /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
+ /// return true, because even though all paths starting at `y` are captured, `y` itself
+ /// implements Drop which will be affected since `y` isn't completely captured.
+ fn has_significant_drop_outside_of_captures(
+ &self,
+ closure_def_id: LocalDefId,
+ closure_span: Span,
+ base_path_ty: Ty<'tcx>,
+ captured_by_move_projs: Vec<&[Projection<'tcx>]>,
+ ) -> bool {
+ let needs_drop =
+ |ty: Ty<'tcx>| ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id));
+
+ let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
+ let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
+ let ty_params = self.tcx.mk_substs_trait(base_path_ty, &[]);
+ self.infcx
+ .type_implements_trait(
+ drop_trait,
+ ty,
+ ty_params,
+ self.tcx.param_env(closure_def_id),
+ )
+ .must_apply_modulo_regions()
+ };
+
+ let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
+
+ // If there is a case where no projection is applied on top of current place
+ // then there must be exactly one capture corresponding to such a case. Note that this
+ // represents the case of the path being completely captured by the variable.
+ //
+ // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
+ // capture `a.b.c`, because that violates min capture.
+ let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
+
+ assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
+
+ if is_completely_captured {
+ // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
+ // when the closure is dropped.
+ return false;
+ }
+
+ if captured_by_move_projs.is_empty() {
+ return needs_drop(base_path_ty);
+ }
+
+ if is_drop_defined_for_ty {
+ // If drop is implemented for this type then we need it to be fully captured,
+ // and we know it is not completely captured because of the previous checks.
+
+ // Note that this is a bug in the user code that will be reported by the
+ // borrow checker, since we can't move out of drop types.
+
+ // The bug exists in the user's code pre-migration, and we don't migrate here.
+ return false;
+ }
+
+ match base_path_ty.kind() {
+ // Observations:
+ // - `captured_by_move_projs` is not empty. Therefore we can call
+ // `captured_by_move_projs.first().unwrap()` safely.
+ // - All entries in `captured_by_move_projs` have at least one projection.
+ // Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
+
+ // We don't capture derefs in case of move captures, which would have be applied to
+ // access any further paths.
+ ty::Adt(def, _) if def.is_box() => unreachable!(),
+ ty::Ref(..) => unreachable!(),
+ ty::RawPtr(..) => unreachable!(),
+
+ ty::Adt(def, substs) => {
+ // Multi-variant enums are captured in entirety,
+ // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
+ assert_eq!(def.variants().len(), 1);
+
+ // Only Field projections can be applied to a non-box Adt.
+ assert!(
+ captured_by_move_projs.iter().all(|projs| matches!(
+ projs.first().unwrap().kind,
+ ProjectionKind::Field(..)
+ ))
+ );
+ def.variants().get(VariantIdx::new(0)).unwrap().fields.iter().enumerate().any(
+ |(i, field)| {
+ let paths_using_field = captured_by_move_projs
+ .iter()
+ .filter_map(|projs| {
+ if let ProjectionKind::Field(field_idx, _) =
+ projs.first().unwrap().kind
+ {
+ if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
+ } else {
+ unreachable!();
+ }
+ })
+ .collect();
+
+ let after_field_ty = field.ty(self.tcx, substs);
+ self.has_significant_drop_outside_of_captures(
+ closure_def_id,
+ closure_span,
+ after_field_ty,
+ paths_using_field,
+ )
+ },
+ )
+ }
+
+ ty::Tuple(fields) => {
+ // Only Field projections can be applied to a tuple.
+ assert!(
+ captured_by_move_projs.iter().all(|projs| matches!(
+ projs.first().unwrap().kind,
+ ProjectionKind::Field(..)
+ ))
+ );
+
+ fields.iter().enumerate().any(|(i, element_ty)| {
+ let paths_using_field = captured_by_move_projs
+ .iter()
+ .filter_map(|projs| {
+ if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
+ {
+ if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
+ } else {
+ unreachable!();
+ }
+ })
+ .collect();
+
+ self.has_significant_drop_outside_of_captures(
+ closure_def_id,
+ closure_span,
+ element_ty,
+ paths_using_field,
+ )
+ })
+ }
+
+ // Anything else would be completely captured and therefore handled already.
+ _ => unreachable!(),
+ }
+ }
+
+ fn init_capture_kind_for_place(
+ &self,
+ place: &Place<'tcx>,
+ capture_clause: hir::CaptureBy,
+ ) -> ty::UpvarCapture {
+ match capture_clause {
+ // In case of a move closure if the data is accessed through a reference we
+ // want to capture by ref to allow precise capture using reborrows.
+ //
+ // If the data will be moved out of this place, then the place will be truncated
+ // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
+ // the closure.
+ hir::CaptureBy::Value if !place.deref_tys().any(Ty::is_ref) => {
+ ty::UpvarCapture::ByValue
+ }
+ hir::CaptureBy::Value | hir::CaptureBy::Ref => ty::UpvarCapture::ByRef(ty::ImmBorrow),
+ }
+ }
+
+ fn place_for_root_variable(
+ &self,
+ closure_def_id: LocalDefId,
+ var_hir_id: hir::HirId,
+ ) -> Place<'tcx> {
+ let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
+
+ Place {
+ base_ty: self.node_ty(var_hir_id),
+ base: PlaceBase::Upvar(upvar_id),
+ projections: Default::default(),
+ }
+ }
+
+ fn should_log_capture_analysis(&self, closure_def_id: LocalDefId) -> bool {
+ self.tcx.has_attr(closure_def_id.to_def_id(), sym::rustc_capture_analysis)
+ }
+
+ fn log_capture_analysis_first_pass(
+ &self,
+ closure_def_id: LocalDefId,
+ capture_information: &InferredCaptureInformation<'tcx>,
+ closure_span: Span,
+ ) {
+ if self.should_log_capture_analysis(closure_def_id) {
+ let mut diag =
+ self.tcx.sess.struct_span_err(closure_span, "First Pass analysis includes:");
+ for (place, capture_info) in capture_information {
+ let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
+ let output_str = format!("Capturing {capture_str}");
+
+ let span =
+ capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
+ diag.span_note(span, &output_str);
+ }
+ diag.emit();
+ }
+ }
+
+ fn log_closure_min_capture_info(&self, closure_def_id: LocalDefId, closure_span: Span) {
+ if self.should_log_capture_analysis(closure_def_id) {
+ if let Some(min_captures) =
+ self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
+ {
+ let mut diag =
+ self.tcx.sess.struct_span_err(closure_span, "Min Capture analysis includes:");
+
+ for (_, min_captures_for_var) in min_captures {
+ for capture in min_captures_for_var {
+ let place = &capture.place;
+ let capture_info = &capture.info;
+
+ let capture_str =
+ construct_capture_info_string(self.tcx, place, capture_info);
+ let output_str = format!("Min Capture {capture_str}");
+
+ if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
+ let path_span = capture_info
+ .path_expr_id
+ .map_or(closure_span, |e| self.tcx.hir().span(e));
+ let capture_kind_span = capture_info
+ .capture_kind_expr_id
+ .map_or(closure_span, |e| self.tcx.hir().span(e));
+
+ let mut multi_span: MultiSpan =
+ MultiSpan::from_spans(vec![path_span, capture_kind_span]);
+
+ let capture_kind_label =
+ construct_capture_kind_reason_string(self.tcx, place, capture_info);
+ let path_label = construct_path_string(self.tcx, place);
+
+ multi_span.push_span_label(path_span, path_label);
+ multi_span.push_span_label(capture_kind_span, capture_kind_label);
+
+ diag.span_note(multi_span, &output_str);
+ } else {
+ let span = capture_info
+ .path_expr_id
+ .map_or(closure_span, |e| self.tcx.hir().span(e));
+
+ diag.span_note(span, &output_str);
+ };
+ }
+ }
+ diag.emit();
+ }
+ }
+ }
+
+ /// A captured place is mutable if
+ /// 1. Projections don't include a Deref of an immut-borrow, **and**
+ /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
+ fn determine_capture_mutability(
+ &self,
+ typeck_results: &'a TypeckResults<'tcx>,
+ place: &Place<'tcx>,
+ ) -> hir::Mutability {
+ let var_hir_id = match place.base {
+ PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
+ _ => unreachable!(),
+ };
+
+ let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
+
+ let mut is_mutbl = match bm {
+ ty::BindByValue(mutability) => mutability,
+ ty::BindByReference(_) => hir::Mutability::Not,
+ };
+
+ for pointer_ty in place.deref_tys() {
+ match pointer_ty.kind() {
+ // We don't capture derefs of raw ptrs
+ ty::RawPtr(_) => unreachable!(),
+
+ // Dereferencing a mut-ref allows us to mut the Place if we don't deref
+ // an immut-ref after on top of this.
+ ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
+
+ // The place isn't mutable once we dereference an immutable reference.
+ ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
+
+ // Dereferencing a box doesn't change mutability
+ ty::Adt(def, ..) if def.is_box() => {}
+
+ unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
+ }
+ }
+
+ is_mutbl
+ }
+}
+
+/// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
+/// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
+fn restrict_repr_packed_field_ref_capture<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ mut place: Place<'tcx>,
+ mut curr_borrow_kind: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let pos = place.projections.iter().enumerate().position(|(i, p)| {
+ let ty = place.ty_before_projection(i);
+
+ // Return true for fields of packed structs, unless those fields have alignment 1.
+ match p.kind {
+ ProjectionKind::Field(..) => match ty.kind() {
+ ty::Adt(def, _) if def.repr().packed() => {
+ // We erase regions here because they cannot be hashed
+ match tcx.layout_of(param_env.and(tcx.erase_regions(p.ty))) {
+ Ok(layout) if layout.align.abi.bytes() == 1 => {
+ // if the alignment is 1, the type can't be further
+ // disaligned.
+ debug!(
+ "restrict_repr_packed_field_ref_capture: ({:?}) - align = 1",
+ place
+ );
+ false
+ }
+ _ => {
+ debug!("restrict_repr_packed_field_ref_capture: ({:?}) - true", place);
+ true
+ }
+ }
+ }
+
+ _ => false,
+ },
+ _ => false,
+ }
+ });
+
+ if let Some(pos) = pos {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
+ }
+
+ (place, curr_borrow_kind)
+}
+
+/// Returns a Ty that applies the specified capture kind on the provided capture Ty
+fn apply_capture_kind_on_capture_ty<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ capture_kind: UpvarCapture,
+ region: Option<ty::Region<'tcx>>,
+) -> Ty<'tcx> {
+ match capture_kind {
+ ty::UpvarCapture::ByValue => ty,
+ ty::UpvarCapture::ByRef(kind) => {
+ tcx.mk_ref(region.unwrap(), ty::TypeAndMut { ty: ty, mutbl: kind.to_mutbl_lossy() })
+ }
+ }
+}
+
+/// Returns the Span of where the value with the provided HirId would be dropped
+fn drop_location_span<'tcx>(tcx: TyCtxt<'tcx>, hir_id: hir::HirId) -> Span {
+ let owner_id = tcx.hir().get_enclosing_scope(hir_id).unwrap();
+
+ let owner_node = tcx.hir().get(owner_id);
+ let owner_span = match owner_node {
+ hir::Node::Item(item) => match item.kind {
+ hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
+ _ => {
+ bug!("Drop location span error: need to handle more ItemKind '{:?}'", item.kind);
+ }
+ },
+ hir::Node::Block(block) => tcx.hir().span(block.hir_id),
+ hir::Node::TraitItem(item) => tcx.hir().span(item.hir_id()),
+ hir::Node::ImplItem(item) => tcx.hir().span(item.hir_id()),
+ _ => {
+ bug!("Drop location span error: need to handle more Node '{:?}'", owner_node);
+ }
+ };
+ tcx.sess.source_map().end_point(owner_span)
+}
+
+struct InferBorrowKind<'a, 'tcx> {
+ fcx: &'a FnCtxt<'a, 'tcx>,
+
+ // The def-id of the closure whose kind and upvar accesses are being inferred.
+ closure_def_id: LocalDefId,
+
+ /// For each Place that is captured by the closure, we track the minimal kind of
+ /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
+ ///
+ /// Consider closure where s.str1 is captured via an ImmutableBorrow and
+ /// s.str2 via a MutableBorrow
+ ///
+ /// ```rust,no_run
+ /// struct SomeStruct { str1: String, str2: String };
+ ///
+ /// // Assume that the HirId for the variable definition is `V1`
+ /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") };
+ ///
+ /// let fix_s = |new_s2| {
+ /// // Assume that the HirId for the expression `s.str1` is `E1`
+ /// println!("Updating SomeStruct with str1={0}", s.str1);
+ /// // Assume that the HirId for the expression `*s.str2` is `E2`
+ /// s.str2 = new_s2;
+ /// };
+ /// ```
+ ///
+ /// For closure `fix_s`, (at a high level) the map contains
+ ///
+ /// ```ignore (illustrative)
+ /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
+ /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
+ /// ```
+ capture_information: InferredCaptureInformation<'tcx>,
+ fake_reads: Vec<(Place<'tcx>, FakeReadCause, hir::HirId)>,
+}
+
+impl<'a, 'tcx> euv::Delegate<'tcx> for InferBorrowKind<'a, 'tcx> {
+ fn fake_read(
+ &mut self,
+ place: &PlaceWithHirId<'tcx>,
+ cause: FakeReadCause,
+ diag_expr_id: hir::HirId,
+ ) {
+ let PlaceBase::Upvar(_) = place.place.base else { return };
+
+ // We need to restrict Fake Read precision to avoid fake reading unsafe code,
+ // such as deref of a raw pointer.
+ let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
+
+ let (place, _) = restrict_capture_precision(place.place.clone(), dummy_capture_kind);
+
+ let (place, _) = restrict_repr_packed_field_ref_capture(
+ self.fcx.tcx,
+ self.fcx.param_env,
+ place,
+ dummy_capture_kind,
+ );
+ self.fake_reads.push((place, cause, diag_expr_id));
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
+ let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
+ assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
+
+ self.capture_information.push((
+ place_with_id.place.clone(),
+ ty::CaptureInfo {
+ capture_kind_expr_id: Some(diag_expr_id),
+ path_expr_id: Some(diag_expr_id),
+ capture_kind: ty::UpvarCapture::ByValue,
+ },
+ ));
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn borrow(
+ &mut self,
+ place_with_id: &PlaceWithHirId<'tcx>,
+ diag_expr_id: hir::HirId,
+ bk: ty::BorrowKind,
+ ) {
+ let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
+ assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
+
+ // The region here will get discarded/ignored
+ let capture_kind = ty::UpvarCapture::ByRef(bk);
+
+ // We only want repr packed restriction to be applied to reading references into a packed
+ // struct, and not when the data is being moved. Therefore we call this method here instead
+ // of in `restrict_capture_precision`.
+ let (place, mut capture_kind) = restrict_repr_packed_field_ref_capture(
+ self.fcx.tcx,
+ self.fcx.param_env,
+ place_with_id.place.clone(),
+ capture_kind,
+ );
+
+ // Raw pointers don't inherit mutability
+ if place_with_id.place.deref_tys().any(Ty::is_unsafe_ptr) {
+ capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
+ }
+
+ self.capture_information.push((
+ place,
+ ty::CaptureInfo {
+ capture_kind_expr_id: Some(diag_expr_id),
+ path_expr_id: Some(diag_expr_id),
+ capture_kind,
+ },
+ ));
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
+ self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::MutBorrow);
+ }
+}
+
+/// Rust doesn't permit moving fields out of a type that implements drop
+fn restrict_precision_for_drop_types<'a, 'tcx>(
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ mut place: Place<'tcx>,
+ mut curr_mode: ty::UpvarCapture,
+ span: Span,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty(), span);
+
+ if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
+ for i in 0..place.projections.len() {
+ match place.ty_before_projection(i).kind() {
+ ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
+ break;
+ }
+ _ => {}
+ }
+ }
+ }
+
+ (place, curr_mode)
+}
+
+/// Truncate `place` so that an `unsafe` block isn't required to capture it.
+/// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
+/// them completely.
+/// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
+fn restrict_precision_for_unsafe<'tcx>(
+ mut place: Place<'tcx>,
+ mut curr_mode: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ if place.base_ty.is_unsafe_ptr() {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
+ }
+
+ if place.base_ty.is_union() {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
+ }
+
+ for (i, proj) in place.projections.iter().enumerate() {
+ if proj.ty.is_unsafe_ptr() {
+ // Don't apply any projections on top of an unsafe ptr.
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
+ break;
+ }
+
+ if proj.ty.is_union() {
+ // Don't capture precise fields of a union.
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
+ break;
+ }
+ }
+
+ (place, curr_mode)
+}
+
+/// Truncate projections so that following rules are obeyed by the captured `place`:
+/// - No Index projections are captured, since arrays are captured completely.
+/// - No unsafe block is required to capture `place`
+/// Returns the truncated place and updated capture mode.
+fn restrict_capture_precision<'tcx>(
+ place: Place<'tcx>,
+ curr_mode: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
+
+ if place.projections.is_empty() {
+ // Nothing to do here
+ return (place, curr_mode);
+ }
+
+ for (i, proj) in place.projections.iter().enumerate() {
+ match proj.kind {
+ ProjectionKind::Index => {
+ // Arrays are completely captured, so we drop Index projections
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
+ return (place, curr_mode);
+ }
+ ProjectionKind::Deref => {}
+ ProjectionKind::Field(..) => {} // ignore
+ ProjectionKind::Subslice => {} // We never capture this
+ }
+ }
+
+ (place, curr_mode)
+}
+
+/// Truncate deref of any reference.
+fn adjust_for_move_closure<'tcx>(
+ mut place: Place<'tcx>,
+ mut kind: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
+
+ if let Some(idx) = first_deref {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
+ }
+
+ (place, ty::UpvarCapture::ByValue)
+}
+
+/// Adjust closure capture just that if taking ownership of data, only move data
+/// from enclosing stack frame.
+fn adjust_for_non_move_closure<'tcx>(
+ mut place: Place<'tcx>,
+ mut kind: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let contains_deref =
+ place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
+
+ match kind {
+ ty::UpvarCapture::ByValue => {
+ if let Some(idx) = contains_deref {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
+ }
+ }
+
+ ty::UpvarCapture::ByRef(..) => {}
+ }
+
+ (place, kind)
+}
+
+fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
+ let variable_name = match place.base {
+ PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
+ _ => bug!("Capture_information should only contain upvars"),
+ };
+
+ let mut projections_str = String::new();
+ for (i, item) in place.projections.iter().enumerate() {
+ let proj = match item.kind {
+ ProjectionKind::Field(a, b) => format!("({:?}, {:?})", a, b),
+ ProjectionKind::Deref => String::from("Deref"),
+ ProjectionKind::Index => String::from("Index"),
+ ProjectionKind::Subslice => String::from("Subslice"),
+ };
+ if i != 0 {
+ projections_str.push(',');
+ }
+ projections_str.push_str(proj.as_str());
+ }
+
+ format!("{variable_name}[{projections_str}]")
+}
+
+fn construct_capture_kind_reason_string<'tcx>(
+ tcx: TyCtxt<'_>,
+ place: &Place<'tcx>,
+ capture_info: &ty::CaptureInfo,
+) -> String {
+ let place_str = construct_place_string(tcx, place);
+
+ let capture_kind_str = match capture_info.capture_kind {
+ ty::UpvarCapture::ByValue => "ByValue".into(),
+ ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
+ };
+
+ format!("{place_str} captured as {capture_kind_str} here")
+}
+
+fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
+ let place_str = construct_place_string(tcx, place);
+
+ format!("{place_str} used here")
+}
+
+fn construct_capture_info_string<'tcx>(
+ tcx: TyCtxt<'_>,
+ place: &Place<'tcx>,
+ capture_info: &ty::CaptureInfo,
+) -> String {
+ let place_str = construct_place_string(tcx, place);
+
+ let capture_kind_str = match capture_info.capture_kind {
+ ty::UpvarCapture::ByValue => "ByValue".into(),
+ ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
+ };
+ format!("{place_str} -> {capture_kind_str}")
+}
+
+fn var_name(tcx: TyCtxt<'_>, var_hir_id: hir::HirId) -> Symbol {
+ tcx.hir().name(var_hir_id)
+}
+
+#[instrument(level = "debug", skip(tcx))]
+fn should_do_rust_2021_incompatible_closure_captures_analysis(
+ tcx: TyCtxt<'_>,
+ closure_id: hir::HirId,
+) -> bool {
+ let (level, _) =
+ tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
+
+ !matches!(level, lint::Level::Allow)
+}
+
+/// Return a two string tuple (s1, s2)
+/// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
+/// - s2: Comma separated names of the variables being migrated.
+fn migration_suggestion_for_2229(
+ tcx: TyCtxt<'_>,
+ need_migrations: &[NeededMigration],
+) -> (String, String) {
+ let need_migrations_variables = need_migrations
+ .iter()
+ .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
+ .collect::<Vec<_>>();
+
+ let migration_ref_concat =
+ need_migrations_variables.iter().map(|v| format!("&{v}")).collect::<Vec<_>>().join(", ");
+
+ let migration_string = if 1 == need_migrations.len() {
+ format!("let _ = {migration_ref_concat}")
+ } else {
+ format!("let _ = ({migration_ref_concat})")
+ };
+
+ let migrated_variables_concat =
+ need_migrations_variables.iter().map(|v| format!("`{v}`")).collect::<Vec<_>>().join(", ");
+
+ (migration_string, migrated_variables_concat)
+}
+
+/// Helper function to determine if we need to escalate CaptureKind from
+/// CaptureInfo A to B and returns the escalated CaptureInfo.
+/// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
+///
+/// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
+/// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
+///
+/// It is the caller's duty to figure out which path_expr_id to use.
+///
+/// If both the CaptureKind and Expression are considered to be equivalent,
+/// then `CaptureInfo` A is preferred. This can be useful in cases where we want to prioritize
+/// expressions reported back to the user as part of diagnostics based on which appears earlier
+/// in the closure. This can be achieved simply by calling
+/// `determine_capture_info(existing_info, current_info)`. This works out because the
+/// expressions that occur earlier in the closure body than the current expression are processed before.
+/// Consider the following example
+/// ```rust,no_run
+/// struct Point { x: i32, y: i32 }
+/// let mut p = Point { x: 10, y: 10 };
+///
+/// let c = || {
+/// p.x += 10;
+/// // ^ E1 ^
+/// // ...
+/// // More code
+/// // ...
+/// p.x += 10; // E2
+/// // ^ E2 ^
+/// };
+/// ```
+/// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
+/// and both have an expression associated, however for diagnostics we prefer reporting
+/// `E1` since it appears earlier in the closure body. When `E2` is being processed we
+/// would've already handled `E1`, and have an existing capture_information for it.
+/// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
+/// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
+fn determine_capture_info(
+ capture_info_a: ty::CaptureInfo,
+ capture_info_b: ty::CaptureInfo,
+) -> ty::CaptureInfo {
+ // If the capture kind is equivalent then, we don't need to escalate and can compare the
+ // expressions.
+ let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
+ (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
+ (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
+ (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
+ };
+
+ if eq_capture_kind {
+ match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
+ (Some(_), _) | (None, None) => capture_info_a,
+ (None, Some(_)) => capture_info_b,
+ }
+ } else {
+ // We select the CaptureKind which ranks higher based the following priority order:
+ // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
+ match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
+ (ty::UpvarCapture::ByValue, _) => capture_info_a,
+ (_, ty::UpvarCapture::ByValue) => capture_info_b,
+ (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
+ match (ref_a, ref_b) {
+ // Take LHS:
+ (ty::UniqueImmBorrow | ty::MutBorrow, ty::ImmBorrow)
+ | (ty::MutBorrow, ty::UniqueImmBorrow) => capture_info_a,
+
+ // Take RHS:
+ (ty::ImmBorrow, ty::UniqueImmBorrow | ty::MutBorrow)
+ | (ty::UniqueImmBorrow, ty::MutBorrow) => capture_info_b,
+
+ (ty::ImmBorrow, ty::ImmBorrow)
+ | (ty::UniqueImmBorrow, ty::UniqueImmBorrow)
+ | (ty::MutBorrow, ty::MutBorrow) => {
+ bug!("Expected unequal capture kinds");
+ }
+ }
+ }
+ }
+ }
+}
+
+/// Truncates `place` to have up to `len` projections.
+/// `curr_mode` is the current required capture kind for the place.
+/// Returns the truncated `place` and the updated required capture kind.
+///
+/// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
+/// contained `Deref` of `&mut`.
+fn truncate_place_to_len_and_update_capture_kind<'tcx>(
+ place: &mut Place<'tcx>,
+ curr_mode: &mut ty::UpvarCapture,
+ len: usize,
+) {
+ let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
+
+ // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
+ // UniqueImmBorrow
+ // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
+ // we don't need to worry about that case here.
+ match curr_mode {
+ ty::UpvarCapture::ByRef(ty::BorrowKind::MutBorrow) => {
+ for i in len..place.projections.len() {
+ if place.projections[i].kind == ProjectionKind::Deref
+ && is_mut_ref(place.ty_before_projection(i))
+ {
+ *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmBorrow);
+ break;
+ }
+ }
+ }
+
+ ty::UpvarCapture::ByRef(..) => {}
+ ty::UpvarCapture::ByValue => {}
+ }
+
+ place.projections.truncate(len);
+}
+
+/// Determines the Ancestry relationship of Place A relative to Place B
+///
+/// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
+/// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
+/// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
+fn determine_place_ancestry_relation<'tcx>(
+ place_a: &Place<'tcx>,
+ place_b: &Place<'tcx>,
+) -> PlaceAncestryRelation {
+ // If Place A and Place B, don't start off from the same root variable, they are divergent.
+ if place_a.base != place_b.base {
+ return PlaceAncestryRelation::Divergent;
+ }
+
+ // Assume of length of projections_a = n
+ let projections_a = &place_a.projections;
+
+ // Assume of length of projections_b = m
+ let projections_b = &place_b.projections;
+
+ let same_initial_projections =
+ iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
+
+ if same_initial_projections {
+ use std::cmp::Ordering;
+
+ // First min(n, m) projections are the same
+ // Select Ancestor/Descendant
+ match projections_b.len().cmp(&projections_a.len()) {
+ Ordering::Greater => PlaceAncestryRelation::Ancestor,
+ Ordering::Equal => PlaceAncestryRelation::SamePlace,
+ Ordering::Less => PlaceAncestryRelation::Descendant,
+ }
+ } else {
+ PlaceAncestryRelation::Divergent
+ }
+}
+
+/// Reduces the precision of the captured place when the precision doesn't yield any benefit from
+/// borrow checking perspective, allowing us to save us on the size of the capture.
+///
+///
+/// Fields that are read through a shared reference will always be read via a shared ref or a copy,
+/// and therefore capturing precise paths yields no benefit. This optimization truncates the
+/// rightmost deref of the capture if the deref is applied to a shared ref.
+///
+/// Reason we only drop the last deref is because of the following edge case:
+///
+/// ```
+/// # struct A { field_of_a: Box<i32> }
+/// # struct B {}
+/// # struct C<'a>(&'a i32);
+/// struct MyStruct<'a> {
+/// a: &'static A,
+/// b: B,
+/// c: C<'a>,
+/// }
+///
+/// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
+/// || drop(&*m.a.field_of_a)
+/// // Here we really do want to capture `*m.a` because that outlives `'static`
+///
+/// // If we capture `m`, then the closure no longer outlives `'static'
+/// // it is constrained to `'a`
+/// }
+/// ```
+fn truncate_capture_for_optimization<'tcx>(
+ mut place: Place<'tcx>,
+ mut curr_mode: ty::UpvarCapture,
+) -> (Place<'tcx>, ty::UpvarCapture) {
+ let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
+
+ // Find the right-most deref (if any). All the projections that come after this
+ // are fields or other "in-place pointer adjustments"; these refer therefore to
+ // data owned by whatever pointer is being dereferenced here.
+ let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
+
+ match idx {
+ // If that pointer is a shared reference, then we don't need those fields.
+ Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
+ truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
+ }
+ None | Some(_) => {}
+ }
+
+ (place, curr_mode)
+}
+
+/// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if
+/// user is using Rust Edition 2021 or higher.
+///
+/// `span` is the span of the closure.
+fn enable_precise_capture(tcx: TyCtxt<'_>, span: Span) -> bool {
+ // We use span here to ensure that if the closure was generated by a macro with a different
+ // edition.
+ tcx.features().capture_disjoint_fields || span.rust_2021()
+}