summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/wfcheck.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/wfcheck.rs')
-rw-r--r--compiler/rustc_typeck/src/check/wfcheck.rs1973
1 files changed, 1973 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/wfcheck.rs b/compiler/rustc_typeck/src/check/wfcheck.rs
new file mode 100644
index 000000000..d0334cd0d
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/wfcheck.rs
@@ -0,0 +1,1973 @@
+use crate::check::regionck::OutlivesEnvironmentExt;
+use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
+use rustc_ast as ast;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::ItemKind;
+use rustc_infer::infer::outlives::env::{OutlivesEnvironment, RegionBoundPairs};
+use rustc_infer::infer::outlives::obligations::TypeOutlives;
+use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
+use rustc_infer::traits::Normalized;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts, Subst};
+use rustc_middle::ty::trait_def::TraitSpecializationKind;
+use rustc_middle::ty::{
+ self, AdtKind, DefIdTree, GenericParamDefKind, ToPredicate, Ty, TyCtxt, TypeFoldable,
+ TypeSuperVisitable, TypeVisitable, TypeVisitor,
+};
+use rustc_session::parse::feature_err;
+use rustc_span::symbol::{sym, Ident, Symbol};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_trait_selection::autoderef::Autoderef;
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
+use rustc_trait_selection::traits::query::normalize::AtExt;
+use rustc_trait_selection::traits::query::NoSolution;
+use rustc_trait_selection::traits::{
+ self, ObligationCause, ObligationCauseCode, ObligationCtxt, WellFormedLoc,
+};
+
+use std::cell::LazyCell;
+use std::convert::TryInto;
+use std::iter;
+use std::ops::{ControlFlow, Deref};
+
+pub(super) struct WfCheckingCtxt<'a, 'tcx> {
+ pub(super) ocx: ObligationCtxt<'a, 'tcx>,
+ span: Span,
+ body_id: hir::HirId,
+ param_env: ty::ParamEnv<'tcx>,
+}
+impl<'a, 'tcx> Deref for WfCheckingCtxt<'a, 'tcx> {
+ type Target = ObligationCtxt<'a, 'tcx>;
+ fn deref(&self) -> &Self::Target {
+ &self.ocx
+ }
+}
+
+impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.ocx.infcx.tcx
+ }
+
+ fn normalize<T>(&self, span: Span, loc: Option<WellFormedLoc>, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ self.ocx.normalize(
+ ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(loc)),
+ self.param_env,
+ value,
+ )
+ }
+
+ fn register_wf_obligation(
+ &self,
+ span: Span,
+ loc: Option<WellFormedLoc>,
+ arg: ty::GenericArg<'tcx>,
+ ) {
+ let cause =
+ traits::ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(loc));
+ self.ocx.register_obligation(traits::Obligation::new(
+ cause,
+ self.param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(self.tcx()),
+ ));
+ }
+}
+
+pub(super) fn enter_wf_checking_ctxt<'tcx, F>(
+ tcx: TyCtxt<'tcx>,
+ span: Span,
+ body_def_id: LocalDefId,
+ f: F,
+) where
+ F: for<'a> FnOnce(&WfCheckingCtxt<'a, 'tcx>) -> FxHashSet<Ty<'tcx>>,
+{
+ let param_env = tcx.param_env(body_def_id);
+ let body_id = tcx.hir().local_def_id_to_hir_id(body_def_id);
+ tcx.infer_ctxt().enter(|ref infcx| {
+ let ocx = ObligationCtxt::new(infcx);
+ let mut wfcx = WfCheckingCtxt { ocx, span, body_id, param_env };
+
+ if !tcx.features().trivial_bounds {
+ wfcx.check_false_global_bounds()
+ }
+ let wf_tys = f(&mut wfcx);
+ let errors = wfcx.select_all_or_error();
+ if !errors.is_empty() {
+ infcx.report_fulfillment_errors(&errors, None, false);
+ return;
+ }
+
+ let mut outlives_environment = OutlivesEnvironment::new(param_env);
+ outlives_environment.add_implied_bounds(infcx, wf_tys, body_id);
+ infcx.check_region_obligations_and_report_errors(body_def_id, &outlives_environment);
+ })
+}
+
+fn check_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+ let node = tcx.hir().expect_owner(def_id);
+ match node {
+ hir::OwnerNode::Crate(_) => {}
+ hir::OwnerNode::Item(item) => check_item(tcx, item),
+ hir::OwnerNode::TraitItem(item) => check_trait_item(tcx, item),
+ hir::OwnerNode::ImplItem(item) => check_impl_item(tcx, item),
+ hir::OwnerNode::ForeignItem(item) => check_foreign_item(tcx, item),
+ }
+
+ if let Some(generics) = node.generics() {
+ for param in generics.params {
+ check_param_wf(tcx, param)
+ }
+ }
+}
+
+/// Checks that the field types (in a struct def'n) or argument types (in an enum def'n) are
+/// well-formed, meaning that they do not require any constraints not declared in the struct
+/// definition itself. For example, this definition would be illegal:
+///
+/// ```rust
+/// struct Ref<'a, T> { x: &'a T }
+/// ```
+///
+/// because the type did not declare that `T:'a`.
+///
+/// We do this check as a pre-pass before checking fn bodies because if these constraints are
+/// not included it frequently leads to confusing errors in fn bodies. So it's better to check
+/// the types first.
+#[instrument(skip(tcx), level = "debug")]
+fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
+ let def_id = item.def_id;
+
+ debug!(
+ ?item.def_id,
+ item.name = ? tcx.def_path_str(def_id.to_def_id())
+ );
+
+ match item.kind {
+ // Right now we check that every default trait implementation
+ // has an implementation of itself. Basically, a case like:
+ //
+ // impl Trait for T {}
+ //
+ // has a requirement of `T: Trait` which was required for default
+ // method implementations. Although this could be improved now that
+ // there's a better infrastructure in place for this, it's being left
+ // for a follow-up work.
+ //
+ // Since there's such a requirement, we need to check *just* positive
+ // implementations, otherwise things like:
+ //
+ // impl !Send for T {}
+ //
+ // won't be allowed unless there's an *explicit* implementation of `Send`
+ // for `T`
+ hir::ItemKind::Impl(ref impl_) => {
+ let is_auto = tcx
+ .impl_trait_ref(item.def_id)
+ .map_or(false, |trait_ref| tcx.trait_is_auto(trait_ref.def_id));
+ if let (hir::Defaultness::Default { .. }, true) = (impl_.defaultness, is_auto) {
+ let sp = impl_.of_trait.as_ref().map_or(item.span, |t| t.path.span);
+ let mut err =
+ tcx.sess.struct_span_err(sp, "impls of auto traits cannot be default");
+ err.span_labels(impl_.defaultness_span, "default because of this");
+ err.span_label(sp, "auto trait");
+ err.emit();
+ }
+ // We match on both `ty::ImplPolarity` and `ast::ImplPolarity` just to get the `!` span.
+ match (tcx.impl_polarity(def_id), impl_.polarity) {
+ (ty::ImplPolarity::Positive, _) => {
+ check_impl(tcx, item, impl_.self_ty, &impl_.of_trait, impl_.constness);
+ }
+ (ty::ImplPolarity::Negative, ast::ImplPolarity::Negative(span)) => {
+ // FIXME(#27579): what amount of WF checking do we need for neg impls?
+ if let hir::Defaultness::Default { .. } = impl_.defaultness {
+ let mut spans = vec![span];
+ spans.extend(impl_.defaultness_span);
+ struct_span_err!(
+ tcx.sess,
+ spans,
+ E0750,
+ "negative impls cannot be default impls"
+ )
+ .emit();
+ }
+ }
+ (ty::ImplPolarity::Reservation, _) => {
+ // FIXME: what amount of WF checking do we need for reservation impls?
+ }
+ _ => unreachable!(),
+ }
+ }
+ hir::ItemKind::Fn(ref sig, ..) => {
+ check_item_fn(tcx, item.def_id, item.ident, item.span, sig.decl);
+ }
+ hir::ItemKind::Static(ty, ..) => {
+ check_item_type(tcx, item.def_id, ty.span, false);
+ }
+ hir::ItemKind::Const(ty, ..) => {
+ check_item_type(tcx, item.def_id, ty.span, false);
+ }
+ hir::ItemKind::Struct(ref struct_def, ref ast_generics) => {
+ check_type_defn(tcx, item, false, |wfcx| vec![wfcx.non_enum_variant(struct_def)]);
+
+ check_variances_for_type_defn(tcx, item, ast_generics);
+ }
+ hir::ItemKind::Union(ref struct_def, ref ast_generics) => {
+ check_type_defn(tcx, item, true, |wfcx| vec![wfcx.non_enum_variant(struct_def)]);
+
+ check_variances_for_type_defn(tcx, item, ast_generics);
+ }
+ hir::ItemKind::Enum(ref enum_def, ref ast_generics) => {
+ check_type_defn(tcx, item, true, |wfcx| wfcx.enum_variants(enum_def));
+
+ check_variances_for_type_defn(tcx, item, ast_generics);
+ }
+ hir::ItemKind::Trait(..) => {
+ check_trait(tcx, item);
+ }
+ hir::ItemKind::TraitAlias(..) => {
+ check_trait(tcx, item);
+ }
+ // `ForeignItem`s are handled separately.
+ hir::ItemKind::ForeignMod { .. } => {}
+ _ => {}
+ }
+}
+
+fn check_foreign_item(tcx: TyCtxt<'_>, item: &hir::ForeignItem<'_>) {
+ let def_id = item.def_id;
+
+ debug!(
+ ?item.def_id,
+ item.name = ? tcx.def_path_str(def_id.to_def_id())
+ );
+
+ match item.kind {
+ hir::ForeignItemKind::Fn(decl, ..) => {
+ check_item_fn(tcx, item.def_id, item.ident, item.span, decl)
+ }
+ hir::ForeignItemKind::Static(ty, ..) => check_item_type(tcx, item.def_id, ty.span, true),
+ hir::ForeignItemKind::Type => (),
+ }
+}
+
+fn check_trait_item(tcx: TyCtxt<'_>, trait_item: &hir::TraitItem<'_>) {
+ let def_id = trait_item.def_id;
+
+ let (method_sig, span) = match trait_item.kind {
+ hir::TraitItemKind::Fn(ref sig, _) => (Some(sig), trait_item.span),
+ hir::TraitItemKind::Type(_bounds, Some(ty)) => (None, ty.span),
+ _ => (None, trait_item.span),
+ };
+ check_object_unsafe_self_trait_by_name(tcx, trait_item);
+ check_associated_item(tcx, trait_item.def_id, span, method_sig);
+
+ let encl_trait_def_id = tcx.local_parent(def_id);
+ let encl_trait = tcx.hir().expect_item(encl_trait_def_id);
+ let encl_trait_def_id = encl_trait.def_id.to_def_id();
+ let fn_lang_item_name = if Some(encl_trait_def_id) == tcx.lang_items().fn_trait() {
+ Some("fn")
+ } else if Some(encl_trait_def_id) == tcx.lang_items().fn_mut_trait() {
+ Some("fn_mut")
+ } else {
+ None
+ };
+
+ if let (Some(fn_lang_item_name), "call") =
+ (fn_lang_item_name, trait_item.ident.name.to_ident_string().as_str())
+ {
+ // We are looking at the `call` function of the `fn` or `fn_mut` lang item.
+ // Do some rudimentary sanity checking to avoid an ICE later (issue #83471).
+ if let Some(hir::FnSig { decl, span, .. }) = method_sig {
+ if let [self_ty, _] = decl.inputs {
+ if !matches!(self_ty.kind, hir::TyKind::Rptr(_, _)) {
+ tcx.sess
+ .struct_span_err(
+ self_ty.span,
+ &format!(
+ "first argument of `call` in `{fn_lang_item_name}` lang item must be a reference",
+ ),
+ )
+ .emit();
+ }
+ } else {
+ tcx.sess
+ .struct_span_err(
+ *span,
+ &format!(
+ "`call` function in `{fn_lang_item_name}` lang item takes exactly two arguments",
+ ),
+ )
+ .emit();
+ }
+ } else {
+ tcx.sess
+ .struct_span_err(
+ trait_item.span,
+ &format!(
+ "`call` trait item in `{fn_lang_item_name}` lang item must be a function",
+ ),
+ )
+ .emit();
+ }
+ }
+}
+
+/// Require that the user writes where clauses on GATs for the implicit
+/// outlives bounds involving trait parameters in trait functions and
+/// lifetimes passed as GAT substs. See `self-outlives-lint` test.
+///
+/// We use the following trait as an example throughout this function:
+/// ```rust,ignore (this code fails due to this lint)
+/// trait IntoIter {
+/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
+/// type Item<'a>;
+/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
+/// }
+/// ```
+fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRef]) {
+ // Associates every GAT's def_id to a list of possibly missing bounds detected by this lint.
+ let mut required_bounds_by_item = FxHashMap::default();
+
+ // Loop over all GATs together, because if this lint suggests adding a where-clause bound
+ // to one GAT, it might then require us to an additional bound on another GAT.
+ // In our `IntoIter` example, we discover a missing `Self: 'a` bound on `Iter<'a>`, which
+ // then in a second loop adds a `Self: 'a` bound to `Item` due to the relationship between
+ // those GATs.
+ loop {
+ let mut should_continue = false;
+ for gat_item in associated_items {
+ let gat_def_id = gat_item.id.def_id;
+ let gat_item = tcx.associated_item(gat_def_id);
+ // If this item is not an assoc ty, or has no substs, then it's not a GAT
+ if gat_item.kind != ty::AssocKind::Type {
+ continue;
+ }
+ let gat_generics = tcx.generics_of(gat_def_id);
+ // FIXME(jackh726): we can also warn in the more general case
+ if gat_generics.params.is_empty() {
+ continue;
+ }
+
+ // Gather the bounds with which all other items inside of this trait constrain the GAT.
+ // This is calculated by taking the intersection of the bounds that each item
+ // constrains the GAT with individually.
+ let mut new_required_bounds: Option<FxHashSet<ty::Predicate<'_>>> = None;
+ for item in associated_items {
+ let item_def_id = item.id.def_id;
+ // Skip our own GAT, since it does not constrain itself at all.
+ if item_def_id == gat_def_id {
+ continue;
+ }
+
+ let item_hir_id = item.id.hir_id();
+ let param_env = tcx.param_env(item_def_id);
+
+ let item_required_bounds = match item.kind {
+ // In our example, this corresponds to `into_iter` method
+ hir::AssocItemKind::Fn { .. } => {
+ // For methods, we check the function signature's return type for any GATs
+ // to constrain. In the `into_iter` case, we see that the return type
+ // `Self::Iter<'a>` is a GAT we want to gather any potential missing bounds from.
+ let sig: ty::FnSig<'_> = tcx.liberate_late_bound_regions(
+ item_def_id.to_def_id(),
+ tcx.fn_sig(item_def_id),
+ );
+ gather_gat_bounds(
+ tcx,
+ param_env,
+ item_hir_id,
+ sig.output(),
+ // We also assume that all of the function signature's parameter types
+ // are well formed.
+ &sig.inputs().iter().copied().collect(),
+ gat_def_id,
+ gat_generics,
+ )
+ }
+ // In our example, this corresponds to the `Iter` and `Item` associated types
+ hir::AssocItemKind::Type => {
+ // If our associated item is a GAT with missing bounds, add them to
+ // the param-env here. This allows this GAT to propagate missing bounds
+ // to other GATs.
+ let param_env = augment_param_env(
+ tcx,
+ param_env,
+ required_bounds_by_item.get(&item_def_id),
+ );
+ gather_gat_bounds(
+ tcx,
+ param_env,
+ item_hir_id,
+ tcx.explicit_item_bounds(item_def_id)
+ .iter()
+ .copied()
+ .collect::<Vec<_>>(),
+ &FxHashSet::default(),
+ gat_def_id,
+ gat_generics,
+ )
+ }
+ hir::AssocItemKind::Const => None,
+ };
+
+ if let Some(item_required_bounds) = item_required_bounds {
+ // Take the intersection of the required bounds for this GAT, and
+ // the item_required_bounds which are the ones implied by just
+ // this item alone.
+ // This is why we use an Option<_>, since we need to distinguish
+ // the empty set of bounds from the _uninitialized_ set of bounds.
+ if let Some(new_required_bounds) = &mut new_required_bounds {
+ new_required_bounds.retain(|b| item_required_bounds.contains(b));
+ } else {
+ new_required_bounds = Some(item_required_bounds);
+ }
+ }
+ }
+
+ if let Some(new_required_bounds) = new_required_bounds {
+ let required_bounds = required_bounds_by_item.entry(gat_def_id).or_default();
+ if new_required_bounds.into_iter().any(|p| required_bounds.insert(p)) {
+ // Iterate until our required_bounds no longer change
+ // Since they changed here, we should continue the loop
+ should_continue = true;
+ }
+ }
+ }
+ // We know that this loop will eventually halt, since we only set `should_continue` if the
+ // `required_bounds` for this item grows. Since we are not creating any new region or type
+ // variables, the set of all region and type bounds that we could ever insert are limited
+ // by the number of unique types and regions we observe in a given item.
+ if !should_continue {
+ break;
+ }
+ }
+
+ for (gat_def_id, required_bounds) in required_bounds_by_item {
+ let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id);
+ debug!(?required_bounds);
+ let param_env = tcx.param_env(gat_def_id);
+ let gat_hir = gat_item_hir.hir_id();
+
+ let mut unsatisfied_bounds: Vec<_> = required_bounds
+ .into_iter()
+ .filter(|clause| match clause.kind().skip_binder() {
+ ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => {
+ !region_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
+ }
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
+ !ty_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
+ }
+ _ => bug!("Unexpected PredicateKind"),
+ })
+ .map(|clause| clause.to_string())
+ .collect();
+
+ // We sort so that order is predictable
+ unsatisfied_bounds.sort();
+
+ if !unsatisfied_bounds.is_empty() {
+ let plural = pluralize!(unsatisfied_bounds.len());
+ let mut err = tcx.sess.struct_span_err(
+ gat_item_hir.span,
+ &format!("missing required bound{} on `{}`", plural, gat_item_hir.ident),
+ );
+
+ let suggestion = format!(
+ "{} {}",
+ gat_item_hir.generics.add_where_or_trailing_comma(),
+ unsatisfied_bounds.join(", "),
+ );
+ err.span_suggestion(
+ gat_item_hir.generics.tail_span_for_predicate_suggestion(),
+ &format!("add the required where clause{plural}"),
+ suggestion,
+ Applicability::MachineApplicable,
+ );
+
+ let bound =
+ if unsatisfied_bounds.len() > 1 { "these bounds are" } else { "this bound is" };
+ err.note(&format!(
+ "{} currently required to ensure that impls have maximum flexibility",
+ bound
+ ));
+ err.note(
+ "we are soliciting feedback, see issue #87479 \
+ <https://github.com/rust-lang/rust/issues/87479> \
+ for more information",
+ );
+
+ err.emit();
+ }
+ }
+}
+
+/// Add a new set of predicates to the caller_bounds of an existing param_env.
+fn augment_param_env<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ new_predicates: Option<&FxHashSet<ty::Predicate<'tcx>>>,
+) -> ty::ParamEnv<'tcx> {
+ let Some(new_predicates) = new_predicates else {
+ return param_env;
+ };
+
+ if new_predicates.is_empty() {
+ return param_env;
+ }
+
+ let bounds =
+ tcx.mk_predicates(param_env.caller_bounds().iter().chain(new_predicates.iter().cloned()));
+ // FIXME(compiler-errors): Perhaps there is a case where we need to normalize this
+ // i.e. traits::normalize_param_env_or_error
+ ty::ParamEnv::new(bounds, param_env.reveal(), param_env.constness())
+}
+
+/// We use the following trait as an example throughout this function.
+/// Specifically, let's assume that `to_check` here is the return type
+/// of `into_iter`, and the GAT we are checking this for is `Iter`.
+/// ```rust,ignore (this code fails due to this lint)
+/// trait IntoIter {
+/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
+/// type Item<'a>;
+/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
+/// }
+/// ```
+fn gather_gat_bounds<'tcx, T: TypeFoldable<'tcx>>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ item_hir: hir::HirId,
+ to_check: T,
+ wf_tys: &FxHashSet<Ty<'tcx>>,
+ gat_def_id: LocalDefId,
+ gat_generics: &'tcx ty::Generics,
+) -> Option<FxHashSet<ty::Predicate<'tcx>>> {
+ // The bounds we that we would require from `to_check`
+ let mut bounds = FxHashSet::default();
+
+ let (regions, types) = GATSubstCollector::visit(gat_def_id.to_def_id(), to_check);
+
+ // If both regions and types are empty, then this GAT isn't in the
+ // set of types we are checking, and we shouldn't try to do clause analysis
+ // (particularly, doing so would end up with an empty set of clauses,
+ // since the current method would require none, and we take the
+ // intersection of requirements of all methods)
+ if types.is_empty() && regions.is_empty() {
+ return None;
+ }
+
+ for (region_a, region_a_idx) in &regions {
+ // Ignore `'static` lifetimes for the purpose of this lint: it's
+ // because we know it outlives everything and so doesn't give meaningful
+ // clues
+ if let ty::ReStatic = **region_a {
+ continue;
+ }
+ // For each region argument (e.g., `'a` in our example), check for a
+ // relationship to the type arguments (e.g., `Self`). If there is an
+ // outlives relationship (`Self: 'a`), then we want to ensure that is
+ // reflected in a where clause on the GAT itself.
+ for (ty, ty_idx) in &types {
+ // In our example, requires that `Self: 'a`
+ if ty_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *ty, *region_a) {
+ debug!(?ty_idx, ?region_a_idx);
+ debug!("required clause: {ty} must outlive {region_a}");
+ // Translate into the generic parameters of the GAT. In
+ // our example, the type was `Self`, which will also be
+ // `Self` in the GAT.
+ let ty_param = gat_generics.param_at(*ty_idx, tcx);
+ let ty_param = tcx
+ .mk_ty(ty::Param(ty::ParamTy { index: ty_param.index, name: ty_param.name }));
+ // Same for the region. In our example, 'a corresponds
+ // to the 'me parameter.
+ let region_param = gat_generics.param_at(*region_a_idx, tcx);
+ let region_param =
+ tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
+ def_id: region_param.def_id,
+ index: region_param.index,
+ name: region_param.name,
+ }));
+ // The predicate we expect to see. (In our example,
+ // `Self: 'me`.)
+ let clause =
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_param, region_param));
+ let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
+ bounds.insert(clause);
+ }
+ }
+
+ // For each region argument (e.g., `'a` in our example), also check for a
+ // relationship to the other region arguments. If there is an outlives
+ // relationship, then we want to ensure that is reflected in the where clause
+ // on the GAT itself.
+ for (region_b, region_b_idx) in &regions {
+ // Again, skip `'static` because it outlives everything. Also, we trivially
+ // know that a region outlives itself.
+ if ty::ReStatic == **region_b || region_a == region_b {
+ continue;
+ }
+ if region_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *region_a, *region_b) {
+ debug!(?region_a_idx, ?region_b_idx);
+ debug!("required clause: {region_a} must outlive {region_b}");
+ // Translate into the generic parameters of the GAT.
+ let region_a_param = gat_generics.param_at(*region_a_idx, tcx);
+ let region_a_param =
+ tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
+ def_id: region_a_param.def_id,
+ index: region_a_param.index,
+ name: region_a_param.name,
+ }));
+ // Same for the region.
+ let region_b_param = gat_generics.param_at(*region_b_idx, tcx);
+ let region_b_param =
+ tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
+ def_id: region_b_param.def_id,
+ index: region_b_param.index,
+ name: region_b_param.name,
+ }));
+ // The predicate we expect to see.
+ let clause = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
+ region_a_param,
+ region_b_param,
+ ));
+ let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
+ bounds.insert(clause);
+ }
+ }
+ }
+
+ Some(bounds)
+}
+
+/// Given a known `param_env` and a set of well formed types, can we prove that
+/// `ty` outlives `region`.
+fn ty_known_to_outlive<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ id: hir::HirId,
+ param_env: ty::ParamEnv<'tcx>,
+ wf_tys: &FxHashSet<Ty<'tcx>>,
+ ty: Ty<'tcx>,
+ region: ty::Region<'tcx>,
+) -> bool {
+ resolve_regions_with_wf_tys(tcx, id, param_env, &wf_tys, |infcx, region_bound_pairs| {
+ let origin = infer::RelateParamBound(DUMMY_SP, ty, None);
+ let outlives = &mut TypeOutlives::new(infcx, tcx, region_bound_pairs, None, param_env);
+ outlives.type_must_outlive(origin, ty, region);
+ })
+}
+
+/// Given a known `param_env` and a set of well formed types, can we prove that
+/// `region_a` outlives `region_b`
+fn region_known_to_outlive<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ id: hir::HirId,
+ param_env: ty::ParamEnv<'tcx>,
+ wf_tys: &FxHashSet<Ty<'tcx>>,
+ region_a: ty::Region<'tcx>,
+ region_b: ty::Region<'tcx>,
+) -> bool {
+ resolve_regions_with_wf_tys(tcx, id, param_env, &wf_tys, |mut infcx, _| {
+ use rustc_infer::infer::outlives::obligations::TypeOutlivesDelegate;
+ let origin = infer::RelateRegionParamBound(DUMMY_SP);
+ // `region_a: region_b` -> `region_b <= region_a`
+ infcx.push_sub_region_constraint(origin, region_b, region_a);
+ })
+}
+
+/// Given a known `param_env` and a set of well formed types, set up an
+/// `InferCtxt`, call the passed function (to e.g. set up region constraints
+/// to be tested), then resolve region and return errors
+fn resolve_regions_with_wf_tys<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ id: hir::HirId,
+ param_env: ty::ParamEnv<'tcx>,
+ wf_tys: &FxHashSet<Ty<'tcx>>,
+ add_constraints: impl for<'a> FnOnce(&'a InferCtxt<'a, 'tcx>, &'a RegionBoundPairs<'tcx>),
+) -> bool {
+ // Unfortunately, we have to use a new `InferCtxt` each call, because
+ // region constraints get added and solved there and we need to test each
+ // call individually.
+ tcx.infer_ctxt().enter(|infcx| {
+ let mut outlives_environment = OutlivesEnvironment::new(param_env);
+ outlives_environment.add_implied_bounds(&infcx, wf_tys.clone(), id);
+ let region_bound_pairs = outlives_environment.region_bound_pairs();
+
+ add_constraints(&infcx, region_bound_pairs);
+
+ let errors = infcx.resolve_regions(&outlives_environment);
+
+ debug!(?errors, "errors");
+
+ // If we were able to prove that the type outlives the region without
+ // an error, it must be because of the implied or explicit bounds...
+ errors.is_empty()
+ })
+}
+
+/// TypeVisitor that looks for uses of GATs like
+/// `<P0 as Trait<P1..Pn>>::GAT<Pn..Pm>` and adds the arguments `P0..Pm` into
+/// the two vectors, `regions` and `types` (depending on their kind). For each
+/// parameter `Pi` also track the index `i`.
+struct GATSubstCollector<'tcx> {
+ gat: DefId,
+ // Which region appears and which parameter index its substituted for
+ regions: FxHashSet<(ty::Region<'tcx>, usize)>,
+ // Which params appears and which parameter index its substituted for
+ types: FxHashSet<(Ty<'tcx>, usize)>,
+}
+
+impl<'tcx> GATSubstCollector<'tcx> {
+ fn visit<T: TypeFoldable<'tcx>>(
+ gat: DefId,
+ t: T,
+ ) -> (FxHashSet<(ty::Region<'tcx>, usize)>, FxHashSet<(Ty<'tcx>, usize)>) {
+ let mut visitor =
+ GATSubstCollector { gat, regions: FxHashSet::default(), types: FxHashSet::default() };
+ t.visit_with(&mut visitor);
+ (visitor.regions, visitor.types)
+ }
+}
+
+impl<'tcx> TypeVisitor<'tcx> for GATSubstCollector<'tcx> {
+ type BreakTy = !;
+
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ match t.kind() {
+ ty::Projection(p) if p.item_def_id == self.gat => {
+ for (idx, subst) in p.substs.iter().enumerate() {
+ match subst.unpack() {
+ GenericArgKind::Lifetime(lt) if !lt.is_late_bound() => {
+ self.regions.insert((lt, idx));
+ }
+ GenericArgKind::Type(t) => {
+ self.types.insert((t, idx));
+ }
+ _ => {}
+ }
+ }
+ }
+ _ => {}
+ }
+ t.super_visit_with(self)
+ }
+}
+
+fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
+ match ty.kind {
+ hir::TyKind::TraitObject([trait_ref], ..) => match trait_ref.trait_ref.path.segments {
+ [s] => s.res.and_then(|r| r.opt_def_id()) == Some(trait_def_id.to_def_id()),
+ _ => false,
+ },
+ _ => false,
+ }
+}
+
+/// Detect when an object unsafe trait is referring to itself in one of its associated items.
+/// When this is done, suggest using `Self` instead.
+fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem<'_>) {
+ let (trait_name, trait_def_id) =
+ match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(item.hir_id())) {
+ hir::Node::Item(item) => match item.kind {
+ hir::ItemKind::Trait(..) => (item.ident, item.def_id),
+ _ => return,
+ },
+ _ => return,
+ };
+ let mut trait_should_be_self = vec![];
+ match &item.kind {
+ hir::TraitItemKind::Const(ty, _) | hir::TraitItemKind::Type(_, Some(ty))
+ if could_be_self(trait_def_id, ty) =>
+ {
+ trait_should_be_self.push(ty.span)
+ }
+ hir::TraitItemKind::Fn(sig, _) => {
+ for ty in sig.decl.inputs {
+ if could_be_self(trait_def_id, ty) {
+ trait_should_be_self.push(ty.span);
+ }
+ }
+ match sig.decl.output {
+ hir::FnRetTy::Return(ty) if could_be_self(trait_def_id, ty) => {
+ trait_should_be_self.push(ty.span);
+ }
+ _ => {}
+ }
+ }
+ _ => {}
+ }
+ if !trait_should_be_self.is_empty() {
+ if tcx.object_safety_violations(trait_def_id).is_empty() {
+ return;
+ }
+ let sugg = trait_should_be_self.iter().map(|span| (*span, "Self".to_string())).collect();
+ tcx.sess
+ .struct_span_err(
+ trait_should_be_self,
+ "associated item referring to unboxed trait object for its own trait",
+ )
+ .span_label(trait_name.span, "in this trait")
+ .multipart_suggestion(
+ "you might have meant to use `Self` to refer to the implementing type",
+ sugg,
+ Applicability::MachineApplicable,
+ )
+ .emit();
+ }
+}
+
+fn check_impl_item(tcx: TyCtxt<'_>, impl_item: &hir::ImplItem<'_>) {
+ let def_id = impl_item.def_id;
+
+ let (method_sig, span) = match impl_item.kind {
+ hir::ImplItemKind::Fn(ref sig, _) => (Some(sig), impl_item.span),
+ // Constrain binding and overflow error spans to `<Ty>` in `type foo = <Ty>`.
+ hir::ImplItemKind::TyAlias(ty) if ty.span != DUMMY_SP => (None, ty.span),
+ _ => (None, impl_item.span),
+ };
+
+ check_associated_item(tcx, def_id, span, method_sig);
+}
+
+fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) {
+ match param.kind {
+ // We currently only check wf of const params here.
+ hir::GenericParamKind::Lifetime { .. } | hir::GenericParamKind::Type { .. } => (),
+
+ // Const parameters are well formed if their type is structural match.
+ hir::GenericParamKind::Const { ty: hir_ty, default: _ } => {
+ let ty = tcx.type_of(tcx.hir().local_def_id(param.hir_id));
+
+ if tcx.features().adt_const_params {
+ if let Some(non_structural_match_ty) =
+ traits::search_for_adt_const_param_violation(param.span, tcx, ty)
+ {
+ // We use the same error code in both branches, because this is really the same
+ // issue: we just special-case the message for type parameters to make it
+ // clearer.
+ match non_structural_match_ty.kind() {
+ ty::Param(_) => {
+ // Const parameters may not have type parameters as their types,
+ // because we cannot be sure that the type parameter derives `PartialEq`
+ // and `Eq` (just implementing them is not enough for `structural_match`).
+ struct_span_err!(
+ tcx.sess,
+ hir_ty.span,
+ E0741,
+ "`{ty}` is not guaranteed to `#[derive(PartialEq, Eq)]`, so may not be \
+ used as the type of a const parameter",
+ )
+ .span_label(
+ hir_ty.span,
+ format!("`{ty}` may not derive both `PartialEq` and `Eq`"),
+ )
+ .note(
+ "it is not currently possible to use a type parameter as the type of a \
+ const parameter",
+ )
+ .emit();
+ }
+ ty::Float(_) => {
+ struct_span_err!(
+ tcx.sess,
+ hir_ty.span,
+ E0741,
+ "`{ty}` is forbidden as the type of a const generic parameter",
+ )
+ .note("floats do not derive `Eq` or `Ord`, which are required for const parameters")
+ .emit();
+ }
+ ty::FnPtr(_) => {
+ struct_span_err!(
+ tcx.sess,
+ hir_ty.span,
+ E0741,
+ "using function pointers as const generic parameters is forbidden",
+ )
+ .emit();
+ }
+ ty::RawPtr(_) => {
+ struct_span_err!(
+ tcx.sess,
+ hir_ty.span,
+ E0741,
+ "using raw pointers as const generic parameters is forbidden",
+ )
+ .emit();
+ }
+ _ => {
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ hir_ty.span,
+ E0741,
+ "`{}` must be annotated with `#[derive(PartialEq, Eq)]` to be used as \
+ the type of a const parameter",
+ non_structural_match_ty,
+ );
+
+ if ty == non_structural_match_ty {
+ diag.span_label(
+ hir_ty.span,
+ format!("`{ty}` doesn't derive both `PartialEq` and `Eq`"),
+ );
+ }
+
+ diag.emit();
+ }
+ }
+ }
+ } else {
+ let err_ty_str;
+ let mut is_ptr = true;
+
+ let err = match ty.kind() {
+ ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Error(_) => None,
+ ty::FnPtr(_) => Some("function pointers"),
+ ty::RawPtr(_) => Some("raw pointers"),
+ _ => {
+ is_ptr = false;
+ err_ty_str = format!("`{ty}`");
+ Some(err_ty_str.as_str())
+ }
+ };
+
+ if let Some(unsupported_type) = err {
+ if is_ptr {
+ tcx.sess.span_err(
+ hir_ty.span,
+ &format!(
+ "using {unsupported_type} as const generic parameters is forbidden",
+ ),
+ );
+ } else {
+ let mut err = tcx.sess.struct_span_err(
+ hir_ty.span,
+ &format!(
+ "{unsupported_type} is forbidden as the type of a const generic parameter",
+ ),
+ );
+ err.note("the only supported types are integers, `bool` and `char`");
+ if tcx.sess.is_nightly_build() {
+ err.help(
+ "more complex types are supported with `#![feature(adt_const_params)]`",
+ );
+ }
+ err.emit();
+ }
+ }
+ }
+ }
+ }
+}
+
+#[tracing::instrument(level = "debug", skip(tcx, span, sig_if_method))]
+fn check_associated_item(
+ tcx: TyCtxt<'_>,
+ item_id: LocalDefId,
+ span: Span,
+ sig_if_method: Option<&hir::FnSig<'_>>,
+) {
+ let loc = Some(WellFormedLoc::Ty(item_id));
+ enter_wf_checking_ctxt(tcx, span, item_id, |wfcx| {
+ let item = tcx.associated_item(item_id);
+
+ let (mut implied_bounds, self_ty) = match item.container {
+ ty::TraitContainer => (FxHashSet::default(), tcx.types.self_param),
+ ty::ImplContainer => {
+ let def_id = item.container_id(tcx);
+ (
+ impl_implied_bounds(tcx, wfcx.param_env, def_id.expect_local(), span),
+ tcx.type_of(def_id),
+ )
+ }
+ };
+
+ match item.kind {
+ ty::AssocKind::Const => {
+ let ty = tcx.type_of(item.def_id);
+ let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
+ wfcx.register_wf_obligation(span, loc, ty.into());
+ }
+ ty::AssocKind::Fn => {
+ let sig = tcx.fn_sig(item.def_id);
+ let hir_sig = sig_if_method.expect("bad signature for method");
+ check_fn_or_method(
+ wfcx,
+ item.ident(tcx).span,
+ sig,
+ hir_sig.decl,
+ item.def_id.expect_local(),
+ &mut implied_bounds,
+ );
+ check_method_receiver(wfcx, hir_sig, item, self_ty);
+ }
+ ty::AssocKind::Type => {
+ if let ty::AssocItemContainer::TraitContainer = item.container {
+ check_associated_type_bounds(wfcx, item, span)
+ }
+ if item.defaultness(tcx).has_value() {
+ let ty = tcx.type_of(item.def_id);
+ let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
+ wfcx.register_wf_obligation(span, loc, ty.into());
+ }
+ }
+ }
+
+ implied_bounds
+ })
+}
+
+fn item_adt_kind(kind: &ItemKind<'_>) -> Option<AdtKind> {
+ match kind {
+ ItemKind::Struct(..) => Some(AdtKind::Struct),
+ ItemKind::Union(..) => Some(AdtKind::Union),
+ ItemKind::Enum(..) => Some(AdtKind::Enum),
+ _ => None,
+ }
+}
+
+/// In a type definition, we check that to ensure that the types of the fields are well-formed.
+fn check_type_defn<'tcx, F>(
+ tcx: TyCtxt<'tcx>,
+ item: &hir::Item<'tcx>,
+ all_sized: bool,
+ mut lookup_fields: F,
+) where
+ F: FnMut(&WfCheckingCtxt<'_, 'tcx>) -> Vec<AdtVariant<'tcx>>,
+{
+ enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
+ let variants = lookup_fields(wfcx);
+ let packed = tcx.adt_def(item.def_id).repr().packed();
+
+ for variant in &variants {
+ // All field types must be well-formed.
+ for field in &variant.fields {
+ wfcx.register_wf_obligation(
+ field.span,
+ Some(WellFormedLoc::Ty(field.def_id)),
+ field.ty.into(),
+ )
+ }
+
+ // For DST, or when drop needs to copy things around, all
+ // intermediate types must be sized.
+ let needs_drop_copy = || {
+ packed && {
+ let ty = variant.fields.last().unwrap().ty;
+ let ty = tcx.erase_regions(ty);
+ if ty.needs_infer() {
+ tcx.sess
+ .delay_span_bug(item.span, &format!("inference variables in {:?}", ty));
+ // Just treat unresolved type expression as if it needs drop.
+ true
+ } else {
+ ty.needs_drop(tcx, tcx.param_env(item.def_id))
+ }
+ }
+ };
+ // All fields (except for possibly the last) should be sized.
+ let all_sized = all_sized || variant.fields.is_empty() || needs_drop_copy();
+ let unsized_len = if all_sized { 0 } else { 1 };
+ for (idx, field) in
+ variant.fields[..variant.fields.len() - unsized_len].iter().enumerate()
+ {
+ let last = idx == variant.fields.len() - 1;
+ wfcx.register_bound(
+ traits::ObligationCause::new(
+ field.span,
+ wfcx.body_id,
+ traits::FieldSized {
+ adt_kind: match item_adt_kind(&item.kind) {
+ Some(i) => i,
+ None => bug!(),
+ },
+ span: field.span,
+ last,
+ },
+ ),
+ wfcx.param_env,
+ field.ty,
+ tcx.require_lang_item(LangItem::Sized, None),
+ );
+ }
+
+ // Explicit `enum` discriminant values must const-evaluate successfully.
+ if let Some(discr_def_id) = variant.explicit_discr {
+ let discr_substs = InternalSubsts::identity_for_item(tcx, discr_def_id.to_def_id());
+
+ let cause = traits::ObligationCause::new(
+ tcx.def_span(discr_def_id),
+ wfcx.body_id,
+ traits::MiscObligation,
+ );
+ wfcx.register_obligation(traits::Obligation::new(
+ cause,
+ wfcx.param_env,
+ ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(ty::Unevaluated::new(
+ ty::WithOptConstParam::unknown(discr_def_id.to_def_id()),
+ discr_substs,
+ )))
+ .to_predicate(tcx),
+ ));
+ }
+ }
+
+ check_where_clauses(wfcx, item.span, item.def_id);
+
+ // No implied bounds in a struct definition.
+ FxHashSet::default()
+ });
+}
+
+#[instrument(skip(tcx, item))]
+fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
+ debug!(?item.def_id);
+
+ let trait_def = tcx.trait_def(item.def_id);
+ if trait_def.is_marker
+ || matches!(trait_def.specialization_kind, TraitSpecializationKind::Marker)
+ {
+ for associated_def_id in &*tcx.associated_item_def_ids(item.def_id) {
+ struct_span_err!(
+ tcx.sess,
+ tcx.def_span(*associated_def_id),
+ E0714,
+ "marker traits cannot have associated items",
+ )
+ .emit();
+ }
+ }
+
+ enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
+ check_where_clauses(wfcx, item.span, item.def_id);
+
+ FxHashSet::default()
+ });
+
+ // Only check traits, don't check trait aliases
+ if let hir::ItemKind::Trait(_, _, _, _, items) = item.kind {
+ check_gat_where_clauses(tcx, items);
+ }
+}
+
+/// Checks all associated type defaults of trait `trait_def_id`.
+///
+/// Assuming the defaults are used, check that all predicates (bounds on the
+/// assoc type and where clauses on the trait) hold.
+fn check_associated_type_bounds(wfcx: &WfCheckingCtxt<'_, '_>, item: &ty::AssocItem, span: Span) {
+ let bounds = wfcx.tcx().explicit_item_bounds(item.def_id);
+
+ debug!("check_associated_type_bounds: bounds={:?}", bounds);
+ let wf_obligations = bounds.iter().flat_map(|&(bound, bound_span)| {
+ let normalized_bound = wfcx.normalize(span, None, bound);
+ traits::wf::predicate_obligations(
+ wfcx.infcx,
+ wfcx.param_env,
+ wfcx.body_id,
+ normalized_bound,
+ bound_span,
+ )
+ });
+
+ wfcx.register_obligations(wf_obligations);
+}
+
+fn check_item_fn(
+ tcx: TyCtxt<'_>,
+ def_id: LocalDefId,
+ ident: Ident,
+ span: Span,
+ decl: &hir::FnDecl<'_>,
+) {
+ enter_wf_checking_ctxt(tcx, span, def_id, |wfcx| {
+ let sig = tcx.fn_sig(def_id);
+ let mut implied_bounds = FxHashSet::default();
+ check_fn_or_method(wfcx, ident.span, sig, decl, def_id, &mut implied_bounds);
+ implied_bounds
+ })
+}
+
+fn check_item_type(tcx: TyCtxt<'_>, item_id: LocalDefId, ty_span: Span, allow_foreign_ty: bool) {
+ debug!("check_item_type: {:?}", item_id);
+
+ enter_wf_checking_ctxt(tcx, ty_span, item_id, |wfcx| {
+ let ty = tcx.type_of(item_id);
+ let item_ty = wfcx.normalize(ty_span, Some(WellFormedLoc::Ty(item_id)), ty);
+
+ let mut forbid_unsized = true;
+ if allow_foreign_ty {
+ let tail = tcx.struct_tail_erasing_lifetimes(item_ty, wfcx.param_env);
+ if let ty::Foreign(_) = tail.kind() {
+ forbid_unsized = false;
+ }
+ }
+
+ wfcx.register_wf_obligation(ty_span, Some(WellFormedLoc::Ty(item_id)), item_ty.into());
+ if forbid_unsized {
+ wfcx.register_bound(
+ traits::ObligationCause::new(ty_span, wfcx.body_id, traits::WellFormed(None)),
+ wfcx.param_env,
+ item_ty,
+ tcx.require_lang_item(LangItem::Sized, None),
+ );
+ }
+
+ // Ensure that the end result is `Sync` in a non-thread local `static`.
+ let should_check_for_sync = tcx.static_mutability(item_id.to_def_id())
+ == Some(hir::Mutability::Not)
+ && !tcx.is_foreign_item(item_id.to_def_id())
+ && !tcx.is_thread_local_static(item_id.to_def_id());
+
+ if should_check_for_sync {
+ wfcx.register_bound(
+ traits::ObligationCause::new(ty_span, wfcx.body_id, traits::SharedStatic),
+ wfcx.param_env,
+ item_ty,
+ tcx.require_lang_item(LangItem::Sync, Some(ty_span)),
+ );
+ }
+
+ // No implied bounds in a const, etc.
+ FxHashSet::default()
+ });
+}
+
+#[tracing::instrument(level = "debug", skip(tcx, ast_self_ty, ast_trait_ref))]
+fn check_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &'tcx hir::Item<'tcx>,
+ ast_self_ty: &hir::Ty<'_>,
+ ast_trait_ref: &Option<hir::TraitRef<'_>>,
+ constness: hir::Constness,
+) {
+ enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
+ match *ast_trait_ref {
+ Some(ref ast_trait_ref) => {
+ // `#[rustc_reservation_impl]` impls are not real impls and
+ // therefore don't need to be WF (the trait's `Self: Trait` predicate
+ // won't hold).
+ let trait_ref = tcx.impl_trait_ref(item.def_id).unwrap();
+ let trait_ref = wfcx.normalize(ast_trait_ref.path.span, None, trait_ref);
+ let trait_pred = ty::TraitPredicate {
+ trait_ref,
+ constness: match constness {
+ hir::Constness::Const => ty::BoundConstness::ConstIfConst,
+ hir::Constness::NotConst => ty::BoundConstness::NotConst,
+ },
+ polarity: ty::ImplPolarity::Positive,
+ };
+ let obligations = traits::wf::trait_obligations(
+ wfcx.infcx,
+ wfcx.param_env,
+ wfcx.body_id,
+ &trait_pred,
+ ast_trait_ref.path.span,
+ item,
+ );
+ debug!(?obligations);
+ wfcx.register_obligations(obligations);
+ }
+ None => {
+ let self_ty = tcx.type_of(item.def_id);
+ let self_ty = wfcx.normalize(item.span, None, self_ty);
+ wfcx.register_wf_obligation(
+ ast_self_ty.span,
+ Some(WellFormedLoc::Ty(item.hir_id().expect_owner())),
+ self_ty.into(),
+ );
+ }
+ }
+
+ check_where_clauses(wfcx, item.span, item.def_id);
+
+ impl_implied_bounds(tcx, wfcx.param_env, item.def_id, item.span)
+ });
+}
+
+/// Checks where-clauses and inline bounds that are declared on `def_id`.
+#[instrument(level = "debug", skip(wfcx))]
+fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id: LocalDefId) {
+ let infcx = wfcx.infcx;
+ let tcx = wfcx.tcx();
+
+ let predicates = tcx.bound_predicates_of(def_id.to_def_id());
+ let generics = tcx.generics_of(def_id);
+
+ let is_our_default = |def: &ty::GenericParamDef| match def.kind {
+ GenericParamDefKind::Type { has_default, .. }
+ | GenericParamDefKind::Const { has_default } => {
+ has_default && def.index >= generics.parent_count as u32
+ }
+ GenericParamDefKind::Lifetime => unreachable!(),
+ };
+
+ // Check that concrete defaults are well-formed. See test `type-check-defaults.rs`.
+ // For example, this forbids the declaration:
+ //
+ // struct Foo<T = Vec<[u32]>> { .. }
+ //
+ // Here, the default `Vec<[u32]>` is not WF because `[u32]: Sized` does not hold.
+ for param in &generics.params {
+ match param.kind {
+ GenericParamDefKind::Type { .. } => {
+ if is_our_default(param) {
+ let ty = tcx.type_of(param.def_id);
+ // Ignore dependent defaults -- that is, where the default of one type
+ // parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
+ // be sure if it will error or not as user might always specify the other.
+ if !ty.needs_subst() {
+ wfcx.register_wf_obligation(tcx.def_span(param.def_id), None, ty.into());
+ }
+ }
+ }
+ GenericParamDefKind::Const { .. } => {
+ if is_our_default(param) {
+ // FIXME(const_generics_defaults): This
+ // is incorrect when dealing with unused substs, for example
+ // for `struct Foo<const N: usize, const M: usize = { 1 - 2 }>`
+ // we should eagerly error.
+ let default_ct = tcx.const_param_default(param.def_id);
+ if !default_ct.needs_subst() {
+ wfcx.register_wf_obligation(
+ tcx.def_span(param.def_id),
+ None,
+ default_ct.into(),
+ );
+ }
+ }
+ }
+ // Doesn't have defaults.
+ GenericParamDefKind::Lifetime => {}
+ }
+ }
+
+ // Check that trait predicates are WF when params are substituted by their defaults.
+ // We don't want to overly constrain the predicates that may be written but we want to
+ // catch cases where a default my never be applied such as `struct Foo<T: Copy = String>`.
+ // Therefore we check if a predicate which contains a single type param
+ // with a concrete default is WF with that default substituted.
+ // For more examples see tests `defaults-well-formedness.rs` and `type-check-defaults.rs`.
+ //
+ // First we build the defaulted substitution.
+ let substs = InternalSubsts::for_item(tcx, def_id.to_def_id(), |param, _| {
+ match param.kind {
+ GenericParamDefKind::Lifetime => {
+ // All regions are identity.
+ tcx.mk_param_from_def(param)
+ }
+
+ GenericParamDefKind::Type { .. } => {
+ // If the param has a default, ...
+ if is_our_default(param) {
+ let default_ty = tcx.type_of(param.def_id);
+ // ... and it's not a dependent default, ...
+ if !default_ty.needs_subst() {
+ // ... then substitute it with the default.
+ return default_ty.into();
+ }
+ }
+
+ tcx.mk_param_from_def(param)
+ }
+ GenericParamDefKind::Const { .. } => {
+ // If the param has a default, ...
+ if is_our_default(param) {
+ let default_ct = tcx.const_param_default(param.def_id);
+ // ... and it's not a dependent default, ...
+ if !default_ct.needs_subst() {
+ // ... then substitute it with the default.
+ return default_ct.into();
+ }
+ }
+
+ tcx.mk_param_from_def(param)
+ }
+ }
+ });
+
+ // Now we build the substituted predicates.
+ let default_obligations = predicates
+ .0
+ .predicates
+ .iter()
+ .flat_map(|&(pred, sp)| {
+ #[derive(Default)]
+ struct CountParams {
+ params: FxHashSet<u32>,
+ }
+ impl<'tcx> ty::visit::TypeVisitor<'tcx> for CountParams {
+ type BreakTy = ();
+
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let ty::Param(param) = t.kind() {
+ self.params.insert(param.index);
+ }
+ t.super_visit_with(self)
+ }
+
+ fn visit_region(&mut self, _: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
+ ControlFlow::BREAK
+ }
+
+ fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let ty::ConstKind::Param(param) = c.kind() {
+ self.params.insert(param.index);
+ }
+ c.super_visit_with(self)
+ }
+ }
+ let mut param_count = CountParams::default();
+ let has_region = pred.visit_with(&mut param_count).is_break();
+ let substituted_pred = predicates.rebind(pred).subst(tcx, substs);
+ // Don't check non-defaulted params, dependent defaults (including lifetimes)
+ // or preds with multiple params.
+ if substituted_pred.has_param_types_or_consts()
+ || param_count.params.len() > 1
+ || has_region
+ {
+ None
+ } else if predicates.0.predicates.iter().any(|&(p, _)| p == substituted_pred) {
+ // Avoid duplication of predicates that contain no parameters, for example.
+ None
+ } else {
+ Some((substituted_pred, sp))
+ }
+ })
+ .map(|(pred, sp)| {
+ // Convert each of those into an obligation. So if you have
+ // something like `struct Foo<T: Copy = String>`, we would
+ // take that predicate `T: Copy`, substitute to `String: Copy`
+ // (actually that happens in the previous `flat_map` call),
+ // and then try to prove it (in this case, we'll fail).
+ //
+ // Note the subtle difference from how we handle `predicates`
+ // below: there, we are not trying to prove those predicates
+ // to be *true* but merely *well-formed*.
+ let pred = wfcx.normalize(sp, None, pred);
+ let cause = traits::ObligationCause::new(
+ sp,
+ wfcx.body_id,
+ traits::ItemObligation(def_id.to_def_id()),
+ );
+ traits::Obligation::new(cause, wfcx.param_env, pred)
+ });
+
+ let predicates = predicates.0.instantiate_identity(tcx);
+
+ let predicates = wfcx.normalize(span, None, predicates);
+
+ debug!(?predicates.predicates);
+ assert_eq!(predicates.predicates.len(), predicates.spans.len());
+ let wf_obligations =
+ iter::zip(&predicates.predicates, &predicates.spans).flat_map(|(&p, &sp)| {
+ traits::wf::predicate_obligations(infcx, wfcx.param_env, wfcx.body_id, p, sp)
+ });
+
+ let obligations: Vec<_> = wf_obligations.chain(default_obligations).collect();
+ wfcx.register_obligations(obligations);
+}
+
+#[tracing::instrument(level = "debug", skip(wfcx, span, hir_decl))]
+fn check_fn_or_method<'tcx>(
+ wfcx: &WfCheckingCtxt<'_, 'tcx>,
+ span: Span,
+ sig: ty::PolyFnSig<'tcx>,
+ hir_decl: &hir::FnDecl<'_>,
+ def_id: LocalDefId,
+ implied_bounds: &mut FxHashSet<Ty<'tcx>>,
+) {
+ let tcx = wfcx.tcx();
+ let sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
+
+ // Normalize the input and output types one at a time, using a different
+ // `WellFormedLoc` for each. We cannot call `normalize_associated_types`
+ // on the entire `FnSig`, since this would use the same `WellFormedLoc`
+ // for each type, preventing the HIR wf check from generating
+ // a nice error message.
+ let ty::FnSig { mut inputs_and_output, c_variadic, unsafety, abi } = sig;
+ inputs_and_output = tcx.mk_type_list(inputs_and_output.iter().enumerate().map(|(i, ty)| {
+ wfcx.normalize(
+ span,
+ Some(WellFormedLoc::Param {
+ function: def_id,
+ // Note that the `param_idx` of the output type is
+ // one greater than the index of the last input type.
+ param_idx: i.try_into().unwrap(),
+ }),
+ ty,
+ )
+ }));
+ // Manually call `normalize_associated_types_in` on the other types
+ // in `FnSig`. This ensures that if the types of these fields
+ // ever change to include projections, we will start normalizing
+ // them automatically.
+ let sig = ty::FnSig {
+ inputs_and_output,
+ c_variadic: wfcx.normalize(span, None, c_variadic),
+ unsafety: wfcx.normalize(span, None, unsafety),
+ abi: wfcx.normalize(span, None, abi),
+ };
+
+ for (i, (&input_ty, ty)) in iter::zip(sig.inputs(), hir_decl.inputs).enumerate() {
+ wfcx.register_wf_obligation(
+ ty.span,
+ Some(WellFormedLoc::Param { function: def_id, param_idx: i.try_into().unwrap() }),
+ input_ty.into(),
+ );
+ }
+
+ implied_bounds.extend(sig.inputs());
+
+ wfcx.register_wf_obligation(hir_decl.output.span(), None, sig.output().into());
+
+ // FIXME(#27579) return types should not be implied bounds
+ implied_bounds.insert(sig.output());
+
+ debug!(?implied_bounds);
+
+ check_where_clauses(wfcx, span, def_id);
+}
+
+const HELP_FOR_SELF_TYPE: &str = "consider changing to `self`, `&self`, `&mut self`, `self: Box<Self>`, \
+ `self: Rc<Self>`, `self: Arc<Self>`, or `self: Pin<P>` (where P is one \
+ of the previous types except `Self`)";
+
+#[tracing::instrument(level = "debug", skip(wfcx))]
+fn check_method_receiver<'tcx>(
+ wfcx: &WfCheckingCtxt<'_, 'tcx>,
+ fn_sig: &hir::FnSig<'_>,
+ method: &ty::AssocItem,
+ self_ty: Ty<'tcx>,
+) {
+ let tcx = wfcx.tcx();
+
+ if !method.fn_has_self_parameter {
+ return;
+ }
+
+ let span = fn_sig.decl.inputs[0].span;
+
+ let sig = tcx.fn_sig(method.def_id);
+ let sig = tcx.liberate_late_bound_regions(method.def_id, sig);
+ let sig = wfcx.normalize(span, None, sig);
+
+ debug!("check_method_receiver: sig={:?}", sig);
+
+ let self_ty = wfcx.normalize(span, None, self_ty);
+
+ let receiver_ty = sig.inputs()[0];
+ let receiver_ty = wfcx.normalize(span, None, receiver_ty);
+
+ if tcx.features().arbitrary_self_types {
+ if !receiver_is_valid(wfcx, span, receiver_ty, self_ty, true) {
+ // Report error; `arbitrary_self_types` was enabled.
+ e0307(tcx, span, receiver_ty);
+ }
+ } else {
+ if !receiver_is_valid(wfcx, span, receiver_ty, self_ty, false) {
+ if receiver_is_valid(wfcx, span, receiver_ty, self_ty, true) {
+ // Report error; would have worked with `arbitrary_self_types`.
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::arbitrary_self_types,
+ span,
+ &format!(
+ "`{receiver_ty}` cannot be used as the type of `self` without \
+ the `arbitrary_self_types` feature",
+ ),
+ )
+ .help(HELP_FOR_SELF_TYPE)
+ .emit();
+ } else {
+ // Report error; would not have worked with `arbitrary_self_types`.
+ e0307(tcx, span, receiver_ty);
+ }
+ }
+ }
+}
+
+fn e0307<'tcx>(tcx: TyCtxt<'tcx>, span: Span, receiver_ty: Ty<'_>) {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ span,
+ E0307,
+ "invalid `self` parameter type: {receiver_ty}"
+ )
+ .note("type of `self` must be `Self` or a type that dereferences to it")
+ .help(HELP_FOR_SELF_TYPE)
+ .emit();
+}
+
+/// Returns whether `receiver_ty` would be considered a valid receiver type for `self_ty`. If
+/// `arbitrary_self_types` is enabled, `receiver_ty` must transitively deref to `self_ty`, possibly
+/// through a `*const/mut T` raw pointer. If the feature is not enabled, the requirements are more
+/// strict: `receiver_ty` must implement `Receiver` and directly implement
+/// `Deref<Target = self_ty>`.
+///
+/// N.B., there are cases this function returns `true` but causes an error to be emitted,
+/// particularly when `receiver_ty` derefs to a type that is the same as `self_ty` but has the
+/// wrong lifetime. Be careful of this if you are calling this function speculatively.
+fn receiver_is_valid<'tcx>(
+ wfcx: &WfCheckingCtxt<'_, 'tcx>,
+ span: Span,
+ receiver_ty: Ty<'tcx>,
+ self_ty: Ty<'tcx>,
+ arbitrary_self_types_enabled: bool,
+) -> bool {
+ let infcx = wfcx.infcx;
+ let tcx = wfcx.tcx();
+ let cause =
+ ObligationCause::new(span, wfcx.body_id, traits::ObligationCauseCode::MethodReceiver);
+
+ let can_eq_self = |ty| infcx.can_eq(wfcx.param_env, self_ty, ty).is_ok();
+
+ // `self: Self` is always valid.
+ if can_eq_self(receiver_ty) {
+ if let Err(err) = wfcx.equate_types(&cause, wfcx.param_env, self_ty, receiver_ty) {
+ infcx.report_mismatched_types(&cause, self_ty, receiver_ty, err).emit();
+ }
+ return true;
+ }
+
+ let mut autoderef =
+ Autoderef::new(infcx, wfcx.param_env, wfcx.body_id, span, receiver_ty, span);
+
+ // The `arbitrary_self_types` feature allows raw pointer receivers like `self: *const Self`.
+ if arbitrary_self_types_enabled {
+ autoderef = autoderef.include_raw_pointers();
+ }
+
+ // The first type is `receiver_ty`, which we know its not equal to `self_ty`; skip it.
+ autoderef.next();
+
+ let receiver_trait_def_id = tcx.require_lang_item(LangItem::Receiver, None);
+
+ // Keep dereferencing `receiver_ty` until we get to `self_ty`.
+ loop {
+ if let Some((potential_self_ty, _)) = autoderef.next() {
+ debug!(
+ "receiver_is_valid: potential self type `{:?}` to match `{:?}`",
+ potential_self_ty, self_ty
+ );
+
+ if can_eq_self(potential_self_ty) {
+ wfcx.register_obligations(autoderef.into_obligations());
+
+ if let Err(err) =
+ wfcx.equate_types(&cause, wfcx.param_env, self_ty, potential_self_ty)
+ {
+ infcx.report_mismatched_types(&cause, self_ty, potential_self_ty, err).emit();
+ }
+
+ break;
+ } else {
+ // Without `feature(arbitrary_self_types)`, we require that each step in the
+ // deref chain implement `receiver`
+ if !arbitrary_self_types_enabled
+ && !receiver_is_implemented(
+ wfcx,
+ receiver_trait_def_id,
+ cause.clone(),
+ potential_self_ty,
+ )
+ {
+ return false;
+ }
+ }
+ } else {
+ debug!("receiver_is_valid: type `{:?}` does not deref to `{:?}`", receiver_ty, self_ty);
+ // If the receiver already has errors reported due to it, consider it valid to avoid
+ // unnecessary errors (#58712).
+ return receiver_ty.references_error();
+ }
+ }
+
+ // Without `feature(arbitrary_self_types)`, we require that `receiver_ty` implements `Receiver`.
+ if !arbitrary_self_types_enabled
+ && !receiver_is_implemented(wfcx, receiver_trait_def_id, cause.clone(), receiver_ty)
+ {
+ return false;
+ }
+
+ true
+}
+
+fn receiver_is_implemented<'tcx>(
+ wfcx: &WfCheckingCtxt<'_, 'tcx>,
+ receiver_trait_def_id: DefId,
+ cause: ObligationCause<'tcx>,
+ receiver_ty: Ty<'tcx>,
+) -> bool {
+ let tcx = wfcx.tcx();
+ let trait_ref = ty::Binder::dummy(ty::TraitRef {
+ def_id: receiver_trait_def_id,
+ substs: tcx.mk_substs_trait(receiver_ty, &[]),
+ });
+
+ let obligation =
+ traits::Obligation::new(cause, wfcx.param_env, trait_ref.without_const().to_predicate(tcx));
+
+ if wfcx.infcx.predicate_must_hold_modulo_regions(&obligation) {
+ true
+ } else {
+ debug!(
+ "receiver_is_implemented: type `{:?}` does not implement `Receiver` trait",
+ receiver_ty
+ );
+ false
+ }
+}
+
+fn check_variances_for_type_defn<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &hir::Item<'tcx>,
+ hir_generics: &hir::Generics<'_>,
+) {
+ let ty = tcx.type_of(item.def_id);
+ if tcx.has_error_field(ty) {
+ return;
+ }
+
+ let ty_predicates = tcx.predicates_of(item.def_id);
+ assert_eq!(ty_predicates.parent, None);
+ let variances = tcx.variances_of(item.def_id);
+
+ let mut constrained_parameters: FxHashSet<_> = variances
+ .iter()
+ .enumerate()
+ .filter(|&(_, &variance)| variance != ty::Bivariant)
+ .map(|(index, _)| Parameter(index as u32))
+ .collect();
+
+ identify_constrained_generic_params(tcx, ty_predicates, None, &mut constrained_parameters);
+
+ // Lazily calculated because it is only needed in case of an error.
+ let explicitly_bounded_params = LazyCell::new(|| {
+ let icx = crate::collect::ItemCtxt::new(tcx, item.def_id.to_def_id());
+ hir_generics
+ .predicates
+ .iter()
+ .filter_map(|predicate| match predicate {
+ hir::WherePredicate::BoundPredicate(predicate) => {
+ match icx.to_ty(predicate.bounded_ty).kind() {
+ ty::Param(data) => Some(Parameter(data.index)),
+ _ => None,
+ }
+ }
+ _ => None,
+ })
+ .collect::<FxHashSet<_>>()
+ });
+
+ for (index, _) in variances.iter().enumerate() {
+ let parameter = Parameter(index as u32);
+
+ if constrained_parameters.contains(&parameter) {
+ continue;
+ }
+
+ let param = &hir_generics.params[index];
+
+ match param.name {
+ hir::ParamName::Error => {}
+ _ => {
+ let has_explicit_bounds = explicitly_bounded_params.contains(&parameter);
+ report_bivariance(tcx, param, has_explicit_bounds);
+ }
+ }
+ }
+}
+
+fn report_bivariance(
+ tcx: TyCtxt<'_>,
+ param: &rustc_hir::GenericParam<'_>,
+ has_explicit_bounds: bool,
+) -> ErrorGuaranteed {
+ let span = param.span;
+ let param_name = param.name.ident().name;
+ let mut err = error_392(tcx, span, param_name);
+
+ let suggested_marker_id = tcx.lang_items().phantom_data();
+ // Help is available only in presence of lang items.
+ let msg = if let Some(def_id) = suggested_marker_id {
+ format!(
+ "consider removing `{}`, referring to it in a field, or using a marker such as `{}`",
+ param_name,
+ tcx.def_path_str(def_id),
+ )
+ } else {
+ format!("consider removing `{param_name}` or referring to it in a field")
+ };
+ err.help(&msg);
+
+ if matches!(param.kind, hir::GenericParamKind::Type { .. }) && !has_explicit_bounds {
+ err.help(&format!(
+ "if you intended `{0}` to be a const parameter, use `const {0}: usize` instead",
+ param_name
+ ));
+ }
+ err.emit()
+}
+
+impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
+ /// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
+ /// aren't true.
+ fn check_false_global_bounds(&mut self) {
+ let tcx = self.ocx.infcx.tcx;
+ let mut span = self.span;
+ let empty_env = ty::ParamEnv::empty();
+
+ let def_id = tcx.hir().local_def_id(self.body_id);
+ let predicates_with_span = tcx.predicates_of(def_id).predicates.iter().copied();
+ // Check elaborated bounds.
+ let implied_obligations = traits::elaborate_predicates_with_span(tcx, predicates_with_span);
+
+ for obligation in implied_obligations {
+ // We lower empty bounds like `Vec<dyn Copy>:` as
+ // `WellFormed(Vec<dyn Copy>)`, which will later get checked by
+ // regular WF checking
+ if let ty::PredicateKind::WellFormed(..) = obligation.predicate.kind().skip_binder() {
+ continue;
+ }
+ let pred = obligation.predicate;
+ // Match the existing behavior.
+ if pred.is_global() && !pred.has_late_bound_regions() {
+ let pred = self.normalize(span, None, pred);
+ let hir_node = tcx.hir().find(self.body_id);
+
+ // only use the span of the predicate clause (#90869)
+
+ if let Some(hir::Generics { predicates, .. }) =
+ hir_node.and_then(|node| node.generics())
+ {
+ let obligation_span = obligation.cause.span();
+
+ span = predicates
+ .iter()
+ // There seems to be no better way to find out which predicate we are in
+ .find(|pred| pred.span().contains(obligation_span))
+ .map(|pred| pred.span())
+ .unwrap_or(obligation_span);
+ }
+
+ let obligation = traits::Obligation::new(
+ traits::ObligationCause::new(span, self.body_id, traits::TrivialBound),
+ empty_env,
+ pred,
+ );
+ self.ocx.register_obligation(obligation);
+ }
+ }
+ }
+}
+
+fn check_mod_type_wf(tcx: TyCtxt<'_>, module: LocalDefId) {
+ let items = tcx.hir_module_items(module);
+ items.par_items(|item| tcx.ensure().check_well_formed(item.def_id));
+ items.par_impl_items(|item| tcx.ensure().check_well_formed(item.def_id));
+ items.par_trait_items(|item| tcx.ensure().check_well_formed(item.def_id));
+ items.par_foreign_items(|item| tcx.ensure().check_well_formed(item.def_id));
+}
+
+///////////////////////////////////////////////////////////////////////////
+// ADT
+
+// FIXME(eddyb) replace this with getting fields/discriminants through `ty::AdtDef`.
+struct AdtVariant<'tcx> {
+ /// Types of fields in the variant, that must be well-formed.
+ fields: Vec<AdtField<'tcx>>,
+
+ /// Explicit discriminant of this variant (e.g. `A = 123`),
+ /// that must evaluate to a constant value.
+ explicit_discr: Option<LocalDefId>,
+}
+
+struct AdtField<'tcx> {
+ ty: Ty<'tcx>,
+ def_id: LocalDefId,
+ span: Span,
+}
+
+impl<'a, 'tcx> WfCheckingCtxt<'a, 'tcx> {
+ // FIXME(eddyb) replace this with getting fields through `ty::AdtDef`.
+ fn non_enum_variant(&self, struct_def: &hir::VariantData<'_>) -> AdtVariant<'tcx> {
+ let fields = struct_def
+ .fields()
+ .iter()
+ .map(|field| {
+ let def_id = self.tcx().hir().local_def_id(field.hir_id);
+ let field_ty = self.tcx().type_of(def_id);
+ let field_ty = self.normalize(field.ty.span, None, field_ty);
+ debug!("non_enum_variant: type of field {:?} is {:?}", field, field_ty);
+ AdtField { ty: field_ty, span: field.ty.span, def_id }
+ })
+ .collect();
+ AdtVariant { fields, explicit_discr: None }
+ }
+
+ fn enum_variants(&self, enum_def: &hir::EnumDef<'_>) -> Vec<AdtVariant<'tcx>> {
+ enum_def
+ .variants
+ .iter()
+ .map(|variant| AdtVariant {
+ fields: self.non_enum_variant(&variant.data).fields,
+ explicit_discr: variant
+ .disr_expr
+ .map(|explicit_discr| self.tcx().hir().local_def_id(explicit_discr.hir_id)),
+ })
+ .collect()
+ }
+}
+
+pub fn impl_implied_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ impl_def_id: LocalDefId,
+ span: Span,
+) -> FxHashSet<Ty<'tcx>> {
+ // We completely ignore any obligations caused by normalizing the types
+ // we assume to be well formed. Considering that the user of the implied
+ // bounds will also normalize them, we leave it to them to emit errors
+ // which should result in better causes and spans.
+ tcx.infer_ctxt().enter(|infcx| {
+ let cause = ObligationCause::misc(span, tcx.hir().local_def_id_to_hir_id(impl_def_id));
+ match tcx.impl_trait_ref(impl_def_id) {
+ Some(trait_ref) => {
+ // Trait impl: take implied bounds from all types that
+ // appear in the trait reference.
+ match infcx.at(&cause, param_env).normalize(trait_ref) {
+ Ok(Normalized { value, obligations: _ }) => value.substs.types().collect(),
+ Err(NoSolution) => FxHashSet::default(),
+ }
+ }
+
+ None => {
+ // Inherent impl: take implied bounds from the `self` type.
+ let self_ty = tcx.type_of(impl_def_id);
+ match infcx.at(&cause, param_env).normalize(self_ty) {
+ Ok(Normalized { value, obligations: _ }) => FxHashSet::from_iter([value]),
+ Err(NoSolution) => FxHashSet::default(),
+ }
+ }
+ }
+ })
+}
+
+fn error_392(
+ tcx: TyCtxt<'_>,
+ span: Span,
+ param_name: Symbol,
+) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
+ let mut err = struct_span_err!(tcx.sess, span, E0392, "parameter `{param_name}` is never used");
+ err.span_label(span, "unused parameter");
+ err
+}
+
+pub fn provide(providers: &mut Providers) {
+ *providers = Providers { check_mod_type_wf, check_well_formed, ..*providers };
+}