summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/writeback.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/check/writeback.rs')
-rw-r--r--compiler/rustc_typeck/src/check/writeback.rs783
1 files changed, 783 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/check/writeback.rs b/compiler/rustc_typeck/src/check/writeback.rs
new file mode 100644
index 000000000..f549807c3
--- /dev/null
+++ b/compiler/rustc_typeck/src/check/writeback.rs
@@ -0,0 +1,783 @@
+// Type resolution: the phase that finds all the types in the AST with
+// unresolved type variables and replaces "ty_var" types with their
+// substitutions.
+
+use crate::check::FnCtxt;
+
+use hir::def_id::LocalDefId;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir as hir;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
+use rustc_infer::infer::InferCtxt;
+use rustc_middle::hir::place::Place as HirPlace;
+use rustc_middle::mir::FakeReadCause;
+use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast};
+use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
+use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable};
+use rustc_middle::ty::{self, ClosureSizeProfileData, Ty, TyCtxt};
+use rustc_span::symbol::sym;
+use rustc_span::Span;
+
+use std::mem;
+use std::ops::ControlFlow;
+
+///////////////////////////////////////////////////////////////////////////
+// Entry point
+
+// During type inference, partially inferred types are
+// represented using Type variables (ty::Infer). These don't appear in
+// the final TypeckResults since all of the types should have been
+// inferred once typeck is done.
+// When type inference is running however, having to update the typeck
+// typeck results every time a new type is inferred would be unreasonably slow,
+// so instead all of the replacement happens at the end in
+// resolve_type_vars_in_body, which creates a new TypeTables which
+// doesn't contain any inference types.
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub fn resolve_type_vars_in_body(
+ &self,
+ body: &'tcx hir::Body<'tcx>,
+ ) -> &'tcx ty::TypeckResults<'tcx> {
+ let item_id = self.tcx.hir().body_owner(body.id());
+ let item_def_id = self.tcx.hir().local_def_id(item_id);
+
+ // This attribute causes us to dump some writeback information
+ // in the form of errors, which is used for unit tests.
+ let rustc_dump_user_substs =
+ self.tcx.has_attr(item_def_id.to_def_id(), sym::rustc_dump_user_substs);
+
+ let mut wbcx = WritebackCx::new(self, body, rustc_dump_user_substs);
+ for param in body.params {
+ wbcx.visit_node_id(param.pat.span, param.hir_id);
+ }
+ // Type only exists for constants and statics, not functions.
+ match self.tcx.hir().body_owner_kind(item_def_id) {
+ hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) => {
+ wbcx.visit_node_id(body.value.span, item_id);
+ }
+ hir::BodyOwnerKind::Closure | hir::BodyOwnerKind::Fn => (),
+ }
+ wbcx.visit_body(body);
+ wbcx.visit_min_capture_map();
+ wbcx.eval_closure_size();
+ wbcx.visit_fake_reads_map();
+ wbcx.visit_closures();
+ wbcx.visit_liberated_fn_sigs();
+ wbcx.visit_fru_field_types();
+ wbcx.visit_opaque_types();
+ wbcx.visit_coercion_casts();
+ wbcx.visit_user_provided_tys();
+ wbcx.visit_user_provided_sigs();
+ wbcx.visit_generator_interior_types();
+
+ wbcx.typeck_results.rvalue_scopes =
+ mem::take(&mut self.typeck_results.borrow_mut().rvalue_scopes);
+
+ let used_trait_imports =
+ mem::take(&mut self.typeck_results.borrow_mut().used_trait_imports);
+ debug!("used_trait_imports({:?}) = {:?}", item_def_id, used_trait_imports);
+ wbcx.typeck_results.used_trait_imports = used_trait_imports;
+
+ wbcx.typeck_results.treat_byte_string_as_slice =
+ mem::take(&mut self.typeck_results.borrow_mut().treat_byte_string_as_slice);
+
+ if self.is_tainted_by_errors() {
+ // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
+ wbcx.typeck_results.tainted_by_errors =
+ Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
+ }
+
+ debug!("writeback: typeck results for {:?} are {:#?}", item_def_id, wbcx.typeck_results);
+
+ self.tcx.arena.alloc(wbcx.typeck_results)
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// The Writeback context. This visitor walks the HIR, checking the
+// fn-specific typeck results to find references to types or regions. It
+// resolves those regions to remove inference variables and writes the
+// final result back into the master typeck results in the tcx. Here and
+// there, it applies a few ad-hoc checks that were not convenient to
+// do elsewhere.
+
+struct WritebackCx<'cx, 'tcx> {
+ fcx: &'cx FnCtxt<'cx, 'tcx>,
+
+ typeck_results: ty::TypeckResults<'tcx>,
+
+ body: &'tcx hir::Body<'tcx>,
+
+ rustc_dump_user_substs: bool,
+}
+
+impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
+ fn new(
+ fcx: &'cx FnCtxt<'cx, 'tcx>,
+ body: &'tcx hir::Body<'tcx>,
+ rustc_dump_user_substs: bool,
+ ) -> WritebackCx<'cx, 'tcx> {
+ let owner = body.id().hir_id.owner;
+
+ WritebackCx {
+ fcx,
+ typeck_results: ty::TypeckResults::new(owner),
+ body,
+ rustc_dump_user_substs,
+ }
+ }
+
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.fcx.tcx
+ }
+
+ fn write_ty_to_typeck_results(&mut self, hir_id: hir::HirId, ty: Ty<'tcx>) {
+ debug!("write_ty_to_typeck_results({:?}, {:?})", hir_id, ty);
+ assert!(!ty.needs_infer() && !ty.has_placeholders() && !ty.has_free_regions());
+ self.typeck_results.node_types_mut().insert(hir_id, ty);
+ }
+
+ // Hacky hack: During type-checking, we treat *all* operators
+ // as potentially overloaded. But then, during writeback, if
+ // we observe that something like `a+b` is (known to be)
+ // operating on scalars, we clear the overload.
+ fn fix_scalar_builtin_expr(&mut self, e: &hir::Expr<'_>) {
+ match e.kind {
+ hir::ExprKind::Unary(hir::UnOp::Neg | hir::UnOp::Not, inner) => {
+ let inner_ty = self.fcx.node_ty(inner.hir_id);
+ let inner_ty = self.fcx.resolve_vars_if_possible(inner_ty);
+
+ if inner_ty.is_scalar() {
+ let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+ typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+ typeck_results.node_substs_mut().remove(e.hir_id);
+ }
+ }
+ hir::ExprKind::Binary(ref op, lhs, rhs) | hir::ExprKind::AssignOp(ref op, lhs, rhs) => {
+ let lhs_ty = self.fcx.node_ty(lhs.hir_id);
+ let lhs_ty = self.fcx.resolve_vars_if_possible(lhs_ty);
+
+ let rhs_ty = self.fcx.node_ty(rhs.hir_id);
+ let rhs_ty = self.fcx.resolve_vars_if_possible(rhs_ty);
+
+ if lhs_ty.is_scalar() && rhs_ty.is_scalar() {
+ let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+ typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+ typeck_results.node_substs_mut().remove(e.hir_id);
+
+ match e.kind {
+ hir::ExprKind::Binary(..) => {
+ if !op.node.is_by_value() {
+ let mut adjustments = typeck_results.adjustments_mut();
+ if let Some(a) = adjustments.get_mut(lhs.hir_id) {
+ a.pop();
+ }
+ if let Some(a) = adjustments.get_mut(rhs.hir_id) {
+ a.pop();
+ }
+ }
+ }
+ hir::ExprKind::AssignOp(..)
+ if let Some(a) = typeck_results.adjustments_mut().get_mut(lhs.hir_id) =>
+ {
+ a.pop();
+ }
+ _ => {}
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+
+ // Similar to operators, indexing is always assumed to be overloaded
+ // Here, correct cases where an indexing expression can be simplified
+ // to use builtin indexing because the index type is known to be
+ // usize-ish
+ fn fix_index_builtin_expr(&mut self, e: &hir::Expr<'_>) {
+ if let hir::ExprKind::Index(ref base, ref index) = e.kind {
+ let mut typeck_results = self.fcx.typeck_results.borrow_mut();
+
+ // All valid indexing looks like this; might encounter non-valid indexes at this point.
+ let base_ty = typeck_results
+ .expr_ty_adjusted_opt(base)
+ .map(|t| self.fcx.resolve_vars_if_possible(t).kind());
+ if base_ty.is_none() {
+ // When encountering `return [0][0]` outside of a `fn` body we can encounter a base
+ // that isn't in the type table. We assume more relevant errors have already been
+ // emitted, so we delay an ICE if none have. (#64638)
+ self.tcx().sess.delay_span_bug(e.span, &format!("bad base: `{:?}`", base));
+ }
+ if let Some(ty::Ref(_, base_ty, _)) = base_ty {
+ let index_ty = typeck_results.expr_ty_adjusted_opt(index).unwrap_or_else(|| {
+ // When encountering `return [0][0]` outside of a `fn` body we would attempt
+ // to access an nonexistent index. We assume that more relevant errors will
+ // already have been emitted, so we only gate on this with an ICE if no
+ // error has been emitted. (#64638)
+ self.fcx.tcx.ty_error_with_message(
+ e.span,
+ &format!("bad index {:?} for base: `{:?}`", index, base),
+ )
+ });
+ let index_ty = self.fcx.resolve_vars_if_possible(index_ty);
+
+ if base_ty.builtin_index().is_some() && index_ty == self.fcx.tcx.types.usize {
+ // Remove the method call record
+ typeck_results.type_dependent_defs_mut().remove(e.hir_id);
+ typeck_results.node_substs_mut().remove(e.hir_id);
+
+ if let Some(a) = typeck_results.adjustments_mut().get_mut(base.hir_id) {
+ // Discard the need for a mutable borrow
+
+ // Extra adjustment made when indexing causes a drop
+ // of size information - we need to get rid of it
+ // Since this is "after" the other adjustment to be
+ // discarded, we do an extra `pop()`
+ if let Some(Adjustment {
+ kind: Adjust::Pointer(PointerCast::Unsize), ..
+ }) = a.pop()
+ {
+ // So the borrow discard actually happens here
+ a.pop();
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Impl of Visitor for Resolver
+//
+// This is the master code which walks the AST. It delegates most of
+// the heavy lifting to the generic visit and resolve functions
+// below. In general, a function is made into a `visitor` if it must
+// traffic in node-ids or update typeck results in the type context etc.
+
+impl<'cx, 'tcx> Visitor<'tcx> for WritebackCx<'cx, 'tcx> {
+ fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
+ self.fix_scalar_builtin_expr(e);
+ self.fix_index_builtin_expr(e);
+
+ match e.kind {
+ hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
+ let body = self.fcx.tcx.hir().body(body);
+ for param in body.params {
+ self.visit_node_id(e.span, param.hir_id);
+ }
+
+ self.visit_body(body);
+ }
+ hir::ExprKind::Struct(_, fields, _) => {
+ for field in fields {
+ self.visit_field_id(field.hir_id);
+ }
+ }
+ hir::ExprKind::Field(..) => {
+ self.visit_field_id(e.hir_id);
+ }
+ hir::ExprKind::ConstBlock(anon_const) => {
+ self.visit_node_id(e.span, anon_const.hir_id);
+
+ let body = self.tcx().hir().body(anon_const.body);
+ self.visit_body(body);
+ }
+ _ => {}
+ }
+
+ self.visit_node_id(e.span, e.hir_id);
+ intravisit::walk_expr(self, e);
+ }
+
+ fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
+ self.visit_node_id(b.span, b.hir_id);
+ intravisit::walk_block(self, b);
+ }
+
+ fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
+ match p.kind {
+ hir::PatKind::Binding(..) => {
+ let typeck_results = self.fcx.typeck_results.borrow();
+ if let Some(bm) =
+ typeck_results.extract_binding_mode(self.tcx().sess, p.hir_id, p.span)
+ {
+ self.typeck_results.pat_binding_modes_mut().insert(p.hir_id, bm);
+ }
+ }
+ hir::PatKind::Struct(_, fields, _) => {
+ for field in fields {
+ self.visit_field_id(field.hir_id);
+ }
+ }
+ _ => {}
+ };
+
+ self.visit_pat_adjustments(p.span, p.hir_id);
+
+ self.visit_node_id(p.span, p.hir_id);
+ intravisit::walk_pat(self, p);
+ }
+
+ fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) {
+ intravisit::walk_local(self, l);
+ let var_ty = self.fcx.local_ty(l.span, l.hir_id).decl_ty;
+ let var_ty = self.resolve(var_ty, &l.span);
+ self.write_ty_to_typeck_results(l.hir_id, var_ty);
+ }
+
+ fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
+ intravisit::walk_ty(self, hir_ty);
+ let ty = self.fcx.node_ty(hir_ty.hir_id);
+ let ty = self.resolve(ty, &hir_ty.span);
+ self.write_ty_to_typeck_results(hir_ty.hir_id, ty);
+ }
+
+ fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
+ intravisit::walk_inf(self, inf);
+ // Ignore cases where the inference is a const.
+ if let Some(ty) = self.fcx.node_ty_opt(inf.hir_id) {
+ let ty = self.resolve(ty, &inf.span);
+ self.write_ty_to_typeck_results(inf.hir_id, ty);
+ }
+ }
+}
+
+impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
+ fn eval_closure_size(&mut self) {
+ let mut res: FxHashMap<LocalDefId, ClosureSizeProfileData<'tcx>> = Default::default();
+ for (&closure_def_id, data) in self.fcx.typeck_results.borrow().closure_size_eval.iter() {
+ let closure_hir_id = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);
+
+ let data = self.resolve(*data, &closure_hir_id);
+
+ res.insert(closure_def_id, data);
+ }
+
+ self.typeck_results.closure_size_eval = res;
+ }
+ fn visit_min_capture_map(&mut self) {
+ let mut min_captures_wb = ty::MinCaptureInformationMap::with_capacity_and_hasher(
+ self.fcx.typeck_results.borrow().closure_min_captures.len(),
+ Default::default(),
+ );
+ for (&closure_def_id, root_min_captures) in
+ self.fcx.typeck_results.borrow().closure_min_captures.iter()
+ {
+ let mut root_var_map_wb = ty::RootVariableMinCaptureList::with_capacity_and_hasher(
+ root_min_captures.len(),
+ Default::default(),
+ );
+ for (var_hir_id, min_list) in root_min_captures.iter() {
+ let min_list_wb = min_list
+ .iter()
+ .map(|captured_place| {
+ let locatable = captured_place.info.path_expr_id.unwrap_or_else(|| {
+ self.tcx().hir().local_def_id_to_hir_id(closure_def_id)
+ });
+
+ self.resolve(captured_place.clone(), &locatable)
+ })
+ .collect();
+ root_var_map_wb.insert(*var_hir_id, min_list_wb);
+ }
+ min_captures_wb.insert(closure_def_id, root_var_map_wb);
+ }
+
+ self.typeck_results.closure_min_captures = min_captures_wb;
+ }
+
+ fn visit_fake_reads_map(&mut self) {
+ let mut resolved_closure_fake_reads: FxHashMap<
+ LocalDefId,
+ Vec<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>,
+ > = Default::default();
+ for (&closure_def_id, fake_reads) in
+ self.fcx.typeck_results.borrow().closure_fake_reads.iter()
+ {
+ let mut resolved_fake_reads = Vec::<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>::new();
+ for (place, cause, hir_id) in fake_reads.iter() {
+ let locatable = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);
+
+ let resolved_fake_read = self.resolve(place.clone(), &locatable);
+ resolved_fake_reads.push((resolved_fake_read, *cause, *hir_id));
+ }
+ resolved_closure_fake_reads.insert(closure_def_id, resolved_fake_reads);
+ }
+ self.typeck_results.closure_fake_reads = resolved_closure_fake_reads;
+ }
+
+ fn visit_closures(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+ let common_hir_owner = fcx_typeck_results.hir_owner;
+
+ for (id, origin) in fcx_typeck_results.closure_kind_origins().iter() {
+ let hir_id = hir::HirId { owner: common_hir_owner, local_id: *id };
+ let place_span = origin.0;
+ let place = self.resolve(origin.1.clone(), &place_span);
+ self.typeck_results.closure_kind_origins_mut().insert(hir_id, (place_span, place));
+ }
+ }
+
+ fn visit_coercion_casts(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ let fcx_coercion_casts = fcx_typeck_results.coercion_casts();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+
+ for local_id in fcx_coercion_casts {
+ self.typeck_results.set_coercion_cast(*local_id);
+ }
+ }
+
+ fn visit_user_provided_tys(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+ let common_hir_owner = fcx_typeck_results.hir_owner;
+
+ let mut errors_buffer = Vec::new();
+ for (&local_id, c_ty) in fcx_typeck_results.user_provided_types().iter() {
+ let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+
+ if cfg!(debug_assertions) && c_ty.needs_infer() {
+ span_bug!(
+ hir_id.to_span(self.fcx.tcx),
+ "writeback: `{:?}` has inference variables",
+ c_ty
+ );
+ };
+
+ self.typeck_results.user_provided_types_mut().insert(hir_id, *c_ty);
+
+ if let ty::UserType::TypeOf(_, user_substs) = c_ty.value {
+ if self.rustc_dump_user_substs {
+ // This is a unit-testing mechanism.
+ let span = self.tcx().hir().span(hir_id);
+ // We need to buffer the errors in order to guarantee a consistent
+ // order when emitting them.
+ let err = self
+ .tcx()
+ .sess
+ .struct_span_err(span, &format!("user substs: {:?}", user_substs));
+ err.buffer(&mut errors_buffer);
+ }
+ }
+ }
+
+ if !errors_buffer.is_empty() {
+ errors_buffer.sort_by_key(|diag| diag.span.primary_span());
+ for mut diag in errors_buffer.drain(..) {
+ self.tcx().sess.diagnostic().emit_diagnostic(&mut diag);
+ }
+ }
+ }
+
+ fn visit_user_provided_sigs(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+
+ for (&def_id, c_sig) in fcx_typeck_results.user_provided_sigs.iter() {
+ if cfg!(debug_assertions) && c_sig.needs_infer() {
+ span_bug!(
+ self.fcx.tcx.hir().span_if_local(def_id).unwrap(),
+ "writeback: `{:?}` has inference variables",
+ c_sig
+ );
+ };
+
+ self.typeck_results.user_provided_sigs.insert(def_id, *c_sig);
+ }
+ }
+
+ fn visit_generator_interior_types(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+ self.typeck_results.generator_interior_types =
+ fcx_typeck_results.generator_interior_types.clone();
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn visit_opaque_types(&mut self) {
+ let opaque_types =
+ self.fcx.infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+ for (opaque_type_key, decl) in opaque_types {
+ let hidden_type = match decl.origin {
+ hir::OpaqueTyOrigin::FnReturn(_) | hir::OpaqueTyOrigin::AsyncFn(_) => {
+ let ty = self.resolve(decl.hidden_type.ty, &decl.hidden_type.span);
+ struct RecursionChecker {
+ def_id: LocalDefId,
+ }
+ impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker {
+ type BreakTy = ();
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let ty::Opaque(def_id, _) = *t.kind() {
+ if def_id == self.def_id.to_def_id() {
+ return ControlFlow::Break(());
+ }
+ }
+ t.super_visit_with(self)
+ }
+ }
+ if ty
+ .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id })
+ .is_break()
+ {
+ return;
+ }
+ Some(ty)
+ }
+ hir::OpaqueTyOrigin::TyAlias => None,
+ };
+ self.typeck_results.concrete_opaque_types.insert(opaque_type_key.def_id, hidden_type);
+ }
+ }
+
+ fn visit_field_id(&mut self, hir_id: hir::HirId) {
+ if let Some(index) = self.fcx.typeck_results.borrow_mut().field_indices_mut().remove(hir_id)
+ {
+ self.typeck_results.field_indices_mut().insert(hir_id, index);
+ }
+ }
+
+ #[instrument(skip(self, span), level = "debug")]
+ fn visit_node_id(&mut self, span: Span, hir_id: hir::HirId) {
+ // Export associated path extensions and method resolutions.
+ if let Some(def) =
+ self.fcx.typeck_results.borrow_mut().type_dependent_defs_mut().remove(hir_id)
+ {
+ self.typeck_results.type_dependent_defs_mut().insert(hir_id, def);
+ }
+
+ // Resolve any borrowings for the node with id `node_id`
+ self.visit_adjustments(span, hir_id);
+
+ // Resolve the type of the node with id `node_id`
+ let n_ty = self.fcx.node_ty(hir_id);
+ let n_ty = self.resolve(n_ty, &span);
+ self.write_ty_to_typeck_results(hir_id, n_ty);
+ debug!(?n_ty);
+
+ // Resolve any substitutions
+ if let Some(substs) = self.fcx.typeck_results.borrow().node_substs_opt(hir_id) {
+ let substs = self.resolve(substs, &span);
+ debug!("write_substs_to_tcx({:?}, {:?})", hir_id, substs);
+ assert!(!substs.needs_infer() && !substs.has_placeholders());
+ self.typeck_results.node_substs_mut().insert(hir_id, substs);
+ }
+ }
+
+ #[instrument(skip(self, span), level = "debug")]
+ fn visit_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
+ let adjustment = self.fcx.typeck_results.borrow_mut().adjustments_mut().remove(hir_id);
+ match adjustment {
+ None => {
+ debug!("no adjustments for node");
+ }
+
+ Some(adjustment) => {
+ let resolved_adjustment = self.resolve(adjustment, &span);
+ debug!(?resolved_adjustment);
+ self.typeck_results.adjustments_mut().insert(hir_id, resolved_adjustment);
+ }
+ }
+ }
+
+ #[instrument(skip(self, span), level = "debug")]
+ fn visit_pat_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
+ let adjustment = self.fcx.typeck_results.borrow_mut().pat_adjustments_mut().remove(hir_id);
+ match adjustment {
+ None => {
+ debug!("no pat_adjustments for node");
+ }
+
+ Some(adjustment) => {
+ let resolved_adjustment = self.resolve(adjustment, &span);
+ debug!(?resolved_adjustment);
+ self.typeck_results.pat_adjustments_mut().insert(hir_id, resolved_adjustment);
+ }
+ }
+ }
+
+ fn visit_liberated_fn_sigs(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+ let common_hir_owner = fcx_typeck_results.hir_owner;
+
+ for (&local_id, &fn_sig) in fcx_typeck_results.liberated_fn_sigs().iter() {
+ let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+ let fn_sig = self.resolve(fn_sig, &hir_id);
+ self.typeck_results.liberated_fn_sigs_mut().insert(hir_id, fn_sig);
+ }
+ }
+
+ fn visit_fru_field_types(&mut self) {
+ let fcx_typeck_results = self.fcx.typeck_results.borrow();
+ assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
+ let common_hir_owner = fcx_typeck_results.hir_owner;
+
+ for (&local_id, ftys) in fcx_typeck_results.fru_field_types().iter() {
+ let hir_id = hir::HirId { owner: common_hir_owner, local_id };
+ let ftys = self.resolve(ftys.clone(), &hir_id);
+ self.typeck_results.fru_field_types_mut().insert(hir_id, ftys);
+ }
+ }
+
+ fn resolve<T>(&mut self, x: T, span: &dyn Locatable) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ let mut resolver = Resolver::new(self.fcx, span, self.body);
+ let x = x.fold_with(&mut resolver);
+ if cfg!(debug_assertions) && x.needs_infer() {
+ span_bug!(span.to_span(self.fcx.tcx), "writeback: `{:?}` has inference variables", x);
+ }
+
+ // We may have introduced e.g. `ty::Error`, if inference failed, make sure
+ // to mark the `TypeckResults` as tainted in that case, so that downstream
+ // users of the typeck results don't produce extra errors, or worse, ICEs.
+ if resolver.replaced_with_error {
+ // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
+ self.typeck_results.tainted_by_errors =
+ Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
+ }
+
+ x
+ }
+}
+
+pub(crate) trait Locatable {
+ fn to_span(&self, tcx: TyCtxt<'_>) -> Span;
+}
+
+impl Locatable for Span {
+ fn to_span(&self, _: TyCtxt<'_>) -> Span {
+ *self
+ }
+}
+
+impl Locatable for hir::HirId {
+ fn to_span(&self, tcx: TyCtxt<'_>) -> Span {
+ tcx.hir().span(*self)
+ }
+}
+
+/// The Resolver. This is the type folding engine that detects
+/// unresolved types and so forth.
+struct Resolver<'cx, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ infcx: &'cx InferCtxt<'cx, 'tcx>,
+ span: &'cx dyn Locatable,
+ body: &'tcx hir::Body<'tcx>,
+
+ /// Set to `true` if any `Ty` or `ty::Const` had to be replaced with an `Error`.
+ replaced_with_error: bool,
+}
+
+impl<'cx, 'tcx> Resolver<'cx, 'tcx> {
+ fn new(
+ fcx: &'cx FnCtxt<'cx, 'tcx>,
+ span: &'cx dyn Locatable,
+ body: &'tcx hir::Body<'tcx>,
+ ) -> Resolver<'cx, 'tcx> {
+ Resolver { tcx: fcx.tcx, infcx: fcx, span, body, replaced_with_error: false }
+ }
+
+ fn report_type_error(&self, t: Ty<'tcx>) {
+ if !self.tcx.sess.has_errors().is_some() {
+ self.infcx
+ .emit_inference_failure_err(
+ Some(self.body.id()),
+ self.span.to_span(self.tcx),
+ t.into(),
+ E0282,
+ false,
+ )
+ .emit();
+ }
+ }
+
+ fn report_const_error(&self, c: ty::Const<'tcx>) {
+ if self.tcx.sess.has_errors().is_none() {
+ self.infcx
+ .emit_inference_failure_err(
+ Some(self.body.id()),
+ self.span.to_span(self.tcx),
+ c.into(),
+ E0282,
+ false,
+ )
+ .emit();
+ }
+ }
+}
+
+struct EraseEarlyRegions<'tcx> {
+ tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> TypeFolder<'tcx> for EraseEarlyRegions<'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ if ty.has_type_flags(ty::TypeFlags::HAS_FREE_REGIONS) {
+ ty.super_fold_with(self)
+ } else {
+ ty
+ }
+ }
+ fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ if r.is_late_bound() { r } else { self.tcx.lifetimes.re_erased }
+ }
+}
+
+impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+ match self.infcx.fully_resolve(t) {
+ Ok(t) => {
+ // Do not anonymize late-bound regions
+ // (e.g. keep `for<'a>` named `for<'a>`).
+ // This allows NLL to generate error messages that
+ // refer to the higher-ranked lifetime names written by the user.
+ EraseEarlyRegions { tcx: self.tcx }.fold_ty(t)
+ }
+ Err(_) => {
+ debug!("Resolver::fold_ty: input type `{:?}` not fully resolvable", t);
+ self.report_type_error(t);
+ self.replaced_with_error = true;
+ self.tcx().ty_error()
+ }
+ }
+ }
+
+ fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+ debug_assert!(!r.is_late_bound(), "Should not be resolving bound region.");
+ self.tcx.lifetimes.re_erased
+ }
+
+ fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
+ match self.infcx.fully_resolve(ct) {
+ Ok(ct) => self.tcx.erase_regions(ct),
+ Err(_) => {
+ debug!("Resolver::fold_const: input const `{:?}` not fully resolvable", ct);
+ self.report_const_error(ct);
+ self.replaced_with_error = true;
+ self.tcx().const_error(ct.ty())
+ }
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// During type check, we store promises with the result of trait
+// lookup rather than the actual results (because the results are not
+// necessarily available immediately). These routines unwind the
+// promises. It is expected that we will have already reported any
+// errors that may be encountered, so if the promises store an error,
+// a dummy result is returned.