summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/collect.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/collect.rs')
-rw-r--r--compiler/rustc_typeck/src/collect.rs3361
1 files changed, 3361 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/collect.rs b/compiler/rustc_typeck/src/collect.rs
new file mode 100644
index 000000000..99996e80c
--- /dev/null
+++ b/compiler/rustc_typeck/src/collect.rs
@@ -0,0 +1,3361 @@
+//! "Collection" is the process of determining the type and other external
+//! details of each item in Rust. Collection is specifically concerned
+//! with *inter-procedural* things -- for example, for a function
+//! definition, collection will figure out the type and signature of the
+//! function, but it will not visit the *body* of the function in any way,
+//! nor examine type annotations on local variables (that's the job of
+//! type *checking*).
+//!
+//! Collecting is ultimately defined by a bundle of queries that
+//! inquire after various facts about the items in the crate (e.g.,
+//! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
+//! for the full set.
+//!
+//! At present, however, we do run collection across all items in the
+//! crate as a kind of pass. This should eventually be factored away.
+
+use crate::astconv::AstConv;
+use crate::bounds::Bounds;
+use crate::check::intrinsic::intrinsic_operation_unsafety;
+use crate::constrained_generic_params as cgp;
+use crate::errors;
+use crate::middle::resolve_lifetime as rl;
+use rustc_ast as ast;
+use rustc_ast::{MetaItemKind, NestedMetaItem};
+use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
+use rustc_data_structures::captures::Captures;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
+use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind};
+use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::weak_lang_items;
+use rustc_hir::{GenericParamKind, HirId, Node};
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
+use rustc_middle::mir::mono::Linkage;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::util::Discr;
+use rustc_middle::ty::util::IntTypeExt;
+use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
+use rustc_middle::ty::{ReprOptions, ToPredicate};
+use rustc_session::lint;
+use rustc_session::parse::feature_err;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::spec::{abi, SanitizerSet};
+use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
+use std::iter;
+
+mod item_bounds;
+mod type_of;
+
+#[derive(Debug)]
+struct OnlySelfBounds(bool);
+
+///////////////////////////////////////////////////////////////////////////
+// Main entry point
+
+fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+ tcx.hir().visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
+}
+
+pub fn provide(providers: &mut Providers) {
+ *providers = Providers {
+ opt_const_param_of: type_of::opt_const_param_of,
+ type_of: type_of::type_of,
+ item_bounds: item_bounds::item_bounds,
+ explicit_item_bounds: item_bounds::explicit_item_bounds,
+ generics_of,
+ predicates_of,
+ predicates_defined_on,
+ explicit_predicates_of,
+ super_predicates_of,
+ super_predicates_that_define_assoc_type,
+ trait_explicit_predicates_and_bounds,
+ type_param_predicates,
+ trait_def,
+ adt_def,
+ fn_sig,
+ impl_trait_ref,
+ impl_polarity,
+ is_foreign_item,
+ generator_kind,
+ codegen_fn_attrs,
+ asm_target_features,
+ collect_mod_item_types,
+ should_inherit_track_caller,
+ ..*providers
+ };
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+/// Context specific to some particular item. This is what implements
+/// `AstConv`. It has information about the predicates that are defined
+/// on the trait. Unfortunately, this predicate information is
+/// available in various different forms at various points in the
+/// process. So we can't just store a pointer to e.g., the AST or the
+/// parsed ty form, we have to be more flexible. To this end, the
+/// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
+/// `get_type_parameter_bounds` requests, drawing the information from
+/// the AST (`hir::Generics`), recursively.
+pub struct ItemCtxt<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ item_def_id: DefId,
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+#[derive(Default)]
+pub(crate) struct HirPlaceholderCollector(pub(crate) Vec<Span>);
+
+impl<'v> Visitor<'v> for HirPlaceholderCollector {
+ fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
+ if let hir::TyKind::Infer = t.kind {
+ self.0.push(t.span);
+ }
+ intravisit::walk_ty(self, t)
+ }
+ fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
+ match generic_arg {
+ hir::GenericArg::Infer(inf) => {
+ self.0.push(inf.span);
+ intravisit::walk_inf(self, inf);
+ }
+ hir::GenericArg::Type(t) => self.visit_ty(t),
+ _ => {}
+ }
+ }
+ fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
+ if let &hir::ArrayLen::Infer(_, span) = length {
+ self.0.push(span);
+ }
+ intravisit::walk_array_len(self, length)
+ }
+}
+
+struct CollectItemTypesVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+}
+
+/// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
+/// and suggest adding type parameters in the appropriate place, taking into consideration any and
+/// all already existing generic type parameters to avoid suggesting a name that is already in use.
+pub(crate) fn placeholder_type_error<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: Option<&hir::Generics<'_>>,
+ placeholder_types: Vec<Span>,
+ suggest: bool,
+ hir_ty: Option<&hir::Ty<'_>>,
+ kind: &'static str,
+) {
+ if placeholder_types.is_empty() {
+ return;
+ }
+
+ placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
+ .emit();
+}
+
+pub(crate) fn placeholder_type_error_diag<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: Option<&hir::Generics<'_>>,
+ placeholder_types: Vec<Span>,
+ additional_spans: Vec<Span>,
+ suggest: bool,
+ hir_ty: Option<&hir::Ty<'_>>,
+ kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ if placeholder_types.is_empty() {
+ return bad_placeholder(tcx, additional_spans, kind);
+ }
+
+ let params = generics.map(|g| g.params).unwrap_or_default();
+ let type_name = params.next_type_param_name(None);
+ let mut sugg: Vec<_> =
+ placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
+
+ if let Some(generics) = generics {
+ if let Some(arg) = params.iter().find(|arg| {
+ matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
+ }) {
+ // Account for `_` already present in cases like `struct S<_>(_);` and suggest
+ // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
+ sugg.push((arg.span, (*type_name).to_string()));
+ } else if let Some(span) = generics.span_for_param_suggestion() {
+ // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
+ sugg.push((span, format!(", {}", type_name)));
+ } else {
+ sugg.push((generics.span, format!("<{}>", type_name)));
+ }
+ }
+
+ let mut err =
+ bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
+
+ // Suggest, but only if it is not a function in const or static
+ if suggest {
+ let mut is_fn = false;
+ let mut is_const_or_static = false;
+
+ if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
+ is_fn = true;
+
+ // Check if parent is const or static
+ let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
+ let parent_node = tcx.hir().get(parent_id);
+
+ is_const_or_static = matches!(
+ parent_node,
+ Node::Item(&hir::Item {
+ kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
+ ..
+ }) | Node::TraitItem(&hir::TraitItem {
+ kind: hir::TraitItemKind::Const(..),
+ ..
+ }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
+ );
+ }
+
+ // if function is wrapped around a const or static,
+ // then don't show the suggestion
+ if !(is_fn && is_const_or_static) {
+ err.multipart_suggestion(
+ "use type parameters instead",
+ sugg,
+ Applicability::HasPlaceholders,
+ );
+ }
+ }
+
+ err
+}
+
+fn reject_placeholder_type_signatures_in_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &'tcx hir::Item<'tcx>,
+) {
+ let (generics, suggest) = match &item.kind {
+ hir::ItemKind::Union(_, generics)
+ | hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::TraitAlias(generics, _)
+ | hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { generics, .. })
+ | hir::ItemKind::Struct(_, generics) => (generics, true),
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
+ | hir::ItemKind::TyAlias(_, generics) => (generics, false),
+ // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
+ _ => return,
+ };
+
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_item(item);
+
+ placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
+}
+
+impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
+ type NestedFilter = nested_filter::OnlyBodies;
+
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ convert_item(self.tcx, item.item_id());
+ reject_placeholder_type_signatures_in_item(self.tcx, item);
+ intravisit::walk_item(self, item);
+ }
+
+ fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+ for param in generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {}
+ hir::GenericParamKind::Type { default: Some(_), .. } => {
+ let def_id = self.tcx.hir().local_def_id(param.hir_id);
+ self.tcx.ensure().type_of(def_id);
+ }
+ hir::GenericParamKind::Type { .. } => {}
+ hir::GenericParamKind::Const { default, .. } => {
+ let def_id = self.tcx.hir().local_def_id(param.hir_id);
+ self.tcx.ensure().type_of(def_id);
+ if let Some(default) = default {
+ let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
+ // need to store default and type of default
+ self.tcx.ensure().type_of(default_def_id);
+ self.tcx.ensure().const_param_default(def_id);
+ }
+ }
+ }
+ }
+ intravisit::walk_generics(self, generics);
+ }
+
+ fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+ if let hir::ExprKind::Closure { .. } = expr.kind {
+ let def_id = self.tcx.hir().local_def_id(expr.hir_id);
+ self.tcx.ensure().generics_of(def_id);
+ // We do not call `type_of` for closures here as that
+ // depends on typecheck and would therefore hide
+ // any further errors in case one typeck fails.
+ }
+ intravisit::walk_expr(self, expr);
+ }
+
+ fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
+ convert_trait_item(self.tcx, trait_item.trait_item_id());
+ intravisit::walk_trait_item(self, trait_item);
+ }
+
+ fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
+ convert_impl_item(self.tcx, impl_item.impl_item_id());
+ intravisit::walk_impl_item(self, impl_item);
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Utility types and common code for the above passes.
+
+fn bad_placeholder<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mut spans: Vec<Span>,
+ kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
+
+ spans.sort();
+ let mut err = struct_span_err!(
+ tcx.sess,
+ spans.clone(),
+ E0121,
+ "the placeholder `_` is not allowed within types on item signatures for {}",
+ kind
+ );
+ for span in spans {
+ err.span_label(span, "not allowed in type signatures");
+ }
+ err
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+ pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
+ ItemCtxt { tcx, item_def_id }
+ }
+
+ pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
+ }
+
+ pub fn hir_id(&self) -> hir::HirId {
+ self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
+ }
+
+ pub fn node(&self) -> hir::Node<'tcx> {
+ self.tcx.hir().get(self.hir_id())
+ }
+}
+
+impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn item_def_id(&self) -> Option<DefId> {
+ Some(self.item_def_id)
+ }
+
+ fn get_type_parameter_bounds(
+ &self,
+ span: Span,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> ty::GenericPredicates<'tcx> {
+ self.tcx.at(span).type_param_predicates((
+ self.item_def_id,
+ def_id.expect_local(),
+ assoc_name,
+ ))
+ }
+
+ fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
+ None
+ }
+
+ fn allow_ty_infer(&self) -> bool {
+ false
+ }
+
+ fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
+ self.tcx().ty_error_with_message(span, "bad placeholder type")
+ }
+
+ fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
+ let ty = self.tcx.fold_regions(ty, |r, _| match *r {
+ ty::ReErased => self.tcx.lifetimes.re_static,
+ _ => r,
+ });
+ self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
+ }
+
+ fn projected_ty_from_poly_trait_ref(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx> {
+ if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
+ let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
+ self,
+ self.tcx,
+ span,
+ item_def_id,
+ item_segment,
+ trait_ref.substs,
+ );
+ self.tcx().mk_projection(item_def_id, item_substs)
+ } else {
+ // There are no late-bound regions; we can just ignore the binder.
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0212,
+ "cannot use the associated type of a trait \
+ with uninferred generic parameters"
+ );
+
+ match self.node() {
+ hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
+ let item =
+ self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
+ match &item.kind {
+ hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::Struct(_, generics)
+ | hir::ItemKind::Union(_, generics) => {
+ let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
+ let (lt_sp, sugg) = match generics.params {
+ [] => (generics.span, format!("<{}>", lt_name)),
+ [bound, ..] => {
+ (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
+ }
+ };
+ let suggestions = vec![
+ (lt_sp, sugg),
+ (
+ span.with_hi(item_segment.ident.span.lo()),
+ format!(
+ "{}::",
+ // Replace the existing lifetimes with a new named lifetime.
+ self.tcx.replace_late_bound_regions_uncached(
+ poly_trait_ref,
+ |_| {
+ self.tcx.mk_region(ty::ReEarlyBound(
+ ty::EarlyBoundRegion {
+ def_id: item_def_id,
+ index: 0,
+ name: Symbol::intern(&lt_name),
+ },
+ ))
+ }
+ ),
+ ),
+ ),
+ ];
+ err.multipart_suggestion(
+ "use a fully qualified path with explicit lifetimes",
+ suggestions,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ }
+ }
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
+ ..
+ }) => {}
+ hir::Node::Item(_)
+ | hir::Node::ForeignItem(_)
+ | hir::Node::TraitItem(_)
+ | hir::Node::ImplItem(_) => {
+ err.span_suggestion_verbose(
+ span.with_hi(item_segment.ident.span.lo()),
+ "use a fully qualified path with inferred lifetimes",
+ format!(
+ "{}::",
+ // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
+ self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
+ ),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ }
+ err.emit();
+ self.tcx().ty_error()
+ }
+ }
+
+ fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
+ // Types in item signatures are not normalized to avoid undue dependencies.
+ ty
+ }
+
+ fn set_tainted_by_errors(&self) {
+ // There's no obvious place to track this, so just let it go.
+ }
+
+ fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
+ // There's no place to record types from signatures?
+ }
+}
+
+/// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
+fn get_new_lifetime_name<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ generics: &hir::Generics<'tcx>,
+) -> String {
+ let existing_lifetimes = tcx
+ .collect_referenced_late_bound_regions(&poly_trait_ref)
+ .into_iter()
+ .filter_map(|lt| {
+ if let ty::BoundRegionKind::BrNamed(_, name) = lt {
+ Some(name.as_str().to_string())
+ } else {
+ None
+ }
+ })
+ .chain(generics.params.iter().filter_map(|param| {
+ if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
+ Some(param.name.ident().as_str().to_string())
+ } else {
+ None
+ }
+ }))
+ .collect::<FxHashSet<String>>();
+
+ let a_to_z_repeat_n = |n| {
+ (b'a'..=b'z').map(move |c| {
+ let mut s = '\''.to_string();
+ s.extend(std::iter::repeat(char::from(c)).take(n));
+ s
+ })
+ };
+
+ // If all single char lifetime names are present, we wrap around and double the chars.
+ (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
+}
+
+/// Returns the predicates defined on `item_def_id` of the form
+/// `X: Foo` where `X` is the type parameter `def_id`.
+fn type_param_predicates(
+ tcx: TyCtxt<'_>,
+ (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
+) -> ty::GenericPredicates<'_> {
+ use rustc_hir::*;
+
+ // In the AST, bounds can derive from two places. Either
+ // written inline like `<T: Foo>` or in a where-clause like
+ // `where T: Foo`.
+
+ let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let param_owner = tcx.hir().ty_param_owner(def_id);
+ let generics = tcx.generics_of(param_owner);
+ let index = generics.param_def_id_to_index[&def_id.to_def_id()];
+ let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
+
+ // Don't look for bounds where the type parameter isn't in scope.
+ let parent = if item_def_id == param_owner.to_def_id() {
+ None
+ } else {
+ tcx.generics_of(item_def_id).parent
+ };
+
+ let mut result = parent
+ .map(|parent| {
+ let icx = ItemCtxt::new(tcx, parent);
+ icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
+ })
+ .unwrap_or_default();
+ let mut extend = None;
+
+ let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
+ let ast_generics = match tcx.hir().get(item_hir_id) {
+ Node::TraitItem(item) => &item.generics,
+
+ Node::ImplItem(item) => &item.generics,
+
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Fn(.., ref generics, _)
+ | ItemKind::Impl(hir::Impl { ref generics, .. })
+ | ItemKind::TyAlias(_, ref generics)
+ | ItemKind::OpaqueTy(OpaqueTy {
+ ref generics,
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ })
+ | ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics) => generics,
+ ItemKind::Trait(_, _, ref generics, ..) => {
+ // Implied `Self: Trait` and supertrait bounds.
+ if param_id == item_hir_id {
+ let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
+ extend =
+ Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
+ }
+ generics
+ }
+ _ => return result,
+ }
+ }
+
+ Node::ForeignItem(item) => match item.kind {
+ ForeignItemKind::Fn(_, _, ref generics) => generics,
+ _ => return result,
+ },
+
+ _ => return result,
+ };
+
+ let icx = ItemCtxt::new(tcx, item_def_id);
+ let extra_predicates = extend.into_iter().chain(
+ icx.type_parameter_bounds_in_generics(
+ ast_generics,
+ param_id,
+ ty,
+ OnlySelfBounds(true),
+ Some(assoc_name),
+ )
+ .into_iter()
+ .filter(|(predicate, _)| match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
+ _ => false,
+ }),
+ );
+ result.predicates =
+ tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
+ result
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+ /// Finds bounds from `hir::Generics`. This requires scanning through the
+ /// AST. We do this to avoid having to convert *all* the bounds, which
+ /// would create artificial cycles. Instead, we can only convert the
+ /// bounds for a type parameter `X` if `X::Foo` is used.
+ #[instrument(level = "trace", skip(self, ast_generics))]
+ fn type_parameter_bounds_in_generics(
+ &self,
+ ast_generics: &'tcx hir::Generics<'tcx>,
+ param_id: hir::HirId,
+ ty: Ty<'tcx>,
+ only_self_bounds: OnlySelfBounds,
+ assoc_name: Option<Ident>,
+ ) -> Vec<(ty::Predicate<'tcx>, Span)> {
+ let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
+ debug!(?param_def_id);
+ ast_generics
+ .predicates
+ .iter()
+ .filter_map(|wp| match *wp {
+ hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
+ _ => None,
+ })
+ .flat_map(|bp| {
+ let bt = if bp.is_param_bound(param_def_id) {
+ Some(ty)
+ } else if !only_self_bounds.0 {
+ Some(self.to_ty(bp.bounded_ty))
+ } else {
+ None
+ };
+ let bvars = self.tcx.late_bound_vars(bp.bounded_ty.hir_id);
+
+ bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
+ |(_, b, _)| match assoc_name {
+ Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
+ None => true,
+ },
+ )
+ })
+ .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
+ .collect()
+ }
+
+ fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
+ debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
+
+ match b {
+ hir::GenericBound::Trait(poly_trait_ref, _) => {
+ let trait_ref = &poly_trait_ref.trait_ref;
+ if let Some(trait_did) = trait_ref.trait_def_id() {
+ self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
+ } else {
+ false
+ }
+ }
+ _ => false,
+ }
+ }
+}
+
+fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
+ let it = tcx.hir().item(item_id);
+ debug!("convert: item {} with id {}", it.ident, it.hir_id());
+ let def_id = item_id.def_id;
+
+ match it.kind {
+ // These don't define types.
+ hir::ItemKind::ExternCrate(_)
+ | hir::ItemKind::Use(..)
+ | hir::ItemKind::Macro(..)
+ | hir::ItemKind::Mod(_)
+ | hir::ItemKind::GlobalAsm(_) => {}
+ hir::ItemKind::ForeignMod { items, .. } => {
+ for item in items {
+ let item = tcx.hir().foreign_item(item.id);
+ tcx.ensure().generics_of(item.def_id);
+ tcx.ensure().type_of(item.def_id);
+ tcx.ensure().predicates_of(item.def_id);
+ match item.kind {
+ hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
+ hir::ForeignItemKind::Static(..) => {
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_foreign_item(item);
+ placeholder_type_error(
+ tcx,
+ None,
+ visitor.0,
+ false,
+ None,
+ "static variable",
+ );
+ }
+ _ => (),
+ }
+ }
+ }
+ hir::ItemKind::Enum(ref enum_definition, _) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
+ }
+ hir::ItemKind::Impl { .. } => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().impl_trait_ref(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::Trait(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().trait_def(def_id);
+ tcx.at(it.span).super_predicates_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::TraitAlias(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.at(it.span).super_predicates_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+
+ for f in struct_def.fields() {
+ let def_id = tcx.hir().local_def_id(f.hir_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+
+ if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
+ convert_variant_ctor(tcx, ctor_hir_id);
+ }
+ }
+
+ // Desugared from `impl Trait`, so visited by the function's return type.
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
+ ..
+ }) => {}
+
+ // Don't call `type_of` on opaque types, since that depends on type
+ // checking function bodies. `check_item_type` ensures that it's called
+ // instead.
+ hir::ItemKind::OpaqueTy(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ tcx.ensure().explicit_item_bounds(def_id);
+ }
+ hir::ItemKind::TyAlias(..)
+ | hir::ItemKind::Static(..)
+ | hir::ItemKind::Const(..)
+ | hir::ItemKind::Fn(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ match it.kind {
+ hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
+ hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
+ hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
+ if !is_suggestable_infer_ty(ty) {
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_item(it);
+ placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
+ }
+ }
+ _ => (),
+ }
+ }
+ }
+}
+
+fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
+ let trait_item = tcx.hir().trait_item(trait_item_id);
+ tcx.ensure().generics_of(trait_item_id.def_id);
+
+ match trait_item.kind {
+ hir::TraitItemKind::Fn(..) => {
+ tcx.ensure().type_of(trait_item_id.def_id);
+ tcx.ensure().fn_sig(trait_item_id.def_id);
+ }
+
+ hir::TraitItemKind::Const(.., Some(_)) => {
+ tcx.ensure().type_of(trait_item_id.def_id);
+ }
+
+ hir::TraitItemKind::Const(..) => {
+ tcx.ensure().type_of(trait_item_id.def_id);
+ // Account for `const C: _;`.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+ placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
+ }
+
+ hir::TraitItemKind::Type(_, Some(_)) => {
+ tcx.ensure().item_bounds(trait_item_id.def_id);
+ tcx.ensure().type_of(trait_item_id.def_id);
+ // Account for `type T = _;`.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+
+ hir::TraitItemKind::Type(_, None) => {
+ tcx.ensure().item_bounds(trait_item_id.def_id);
+ // #74612: Visit and try to find bad placeholders
+ // even if there is no concrete type.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+ };
+
+ tcx.ensure().predicates_of(trait_item_id.def_id);
+}
+
+fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
+ let def_id = impl_item_id.def_id;
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ let impl_item = tcx.hir().impl_item(impl_item_id);
+ match impl_item.kind {
+ hir::ImplItemKind::Fn(..) => {
+ tcx.ensure().fn_sig(def_id);
+ }
+ hir::ImplItemKind::TyAlias(_) => {
+ // Account for `type T = _;`
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_impl_item(impl_item);
+
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+ hir::ImplItemKind::Const(..) => {}
+ }
+}
+
+fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
+ let def_id = tcx.hir().local_def_id(ctor_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+}
+
+fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
+ let def = tcx.adt_def(def_id);
+ let repr_type = def.repr().discr_type();
+ let initial = repr_type.initial_discriminant(tcx);
+ let mut prev_discr = None::<Discr<'_>>;
+
+ // fill the discriminant values and field types
+ for variant in variants {
+ let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
+ prev_discr = Some(
+ if let Some(ref e) = variant.disr_expr {
+ let expr_did = tcx.hir().local_def_id(e.hir_id);
+ def.eval_explicit_discr(tcx, expr_did.to_def_id())
+ } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
+ Some(discr)
+ } else {
+ struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
+ .span_label(
+ variant.span,
+ format!("overflowed on value after {}", prev_discr.unwrap()),
+ )
+ .note(&format!(
+ "explicitly set `{} = {}` if that is desired outcome",
+ variant.ident, wrapped_discr
+ ))
+ .emit();
+ None
+ }
+ .unwrap_or(wrapped_discr),
+ );
+
+ for f in variant.data.fields() {
+ let def_id = tcx.hir().local_def_id(f.hir_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+
+ // Convert the ctor, if any. This also registers the variant as
+ // an item.
+ if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
+ convert_variant_ctor(tcx, ctor_hir_id);
+ }
+ }
+}
+
+fn convert_variant(
+ tcx: TyCtxt<'_>,
+ variant_did: Option<LocalDefId>,
+ ctor_did: Option<LocalDefId>,
+ ident: Ident,
+ discr: ty::VariantDiscr,
+ def: &hir::VariantData<'_>,
+ adt_kind: ty::AdtKind,
+ parent_did: LocalDefId,
+) -> ty::VariantDef {
+ let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
+ let fields = def
+ .fields()
+ .iter()
+ .map(|f| {
+ let fid = tcx.hir().local_def_id(f.hir_id);
+ let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
+ if let Some(prev_span) = dup_span {
+ tcx.sess.emit_err(errors::FieldAlreadyDeclared {
+ field_name: f.ident,
+ span: f.span,
+ prev_span,
+ });
+ } else {
+ seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
+ }
+
+ ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
+ })
+ .collect();
+ let recovered = match def {
+ hir::VariantData::Struct(_, r) => *r,
+ _ => false,
+ };
+ ty::VariantDef::new(
+ ident.name,
+ variant_did.map(LocalDefId::to_def_id),
+ ctor_did.map(LocalDefId::to_def_id),
+ discr,
+ fields,
+ CtorKind::from_hir(def),
+ adt_kind,
+ parent_did.to_def_id(),
+ recovered,
+ adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
+ || variant_did.map_or(false, |variant_did| {
+ tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
+ }),
+ )
+}
+
+fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
+ use rustc_hir::*;
+
+ let def_id = def_id.expect_local();
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let Node::Item(item) = tcx.hir().get(hir_id) else {
+ bug!();
+ };
+
+ let repr = ReprOptions::new(tcx, def_id.to_def_id());
+ let (kind, variants) = match item.kind {
+ ItemKind::Enum(ref def, _) => {
+ let mut distance_from_explicit = 0;
+ let variants = def
+ .variants
+ .iter()
+ .map(|v| {
+ let variant_did = Some(tcx.hir().local_def_id(v.id));
+ let ctor_did =
+ v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let discr = if let Some(ref e) = v.disr_expr {
+ distance_from_explicit = 0;
+ ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
+ } else {
+ ty::VariantDiscr::Relative(distance_from_explicit)
+ };
+ distance_from_explicit += 1;
+
+ convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ v.ident,
+ discr,
+ &v.data,
+ AdtKind::Enum,
+ def_id,
+ )
+ })
+ .collect();
+
+ (AdtKind::Enum, variants)
+ }
+ ItemKind::Struct(ref def, _) => {
+ let variant_did = None::<LocalDefId>;
+ let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let variants = std::iter::once(convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ item.ident,
+ ty::VariantDiscr::Relative(0),
+ def,
+ AdtKind::Struct,
+ def_id,
+ ))
+ .collect();
+
+ (AdtKind::Struct, variants)
+ }
+ ItemKind::Union(ref def, _) => {
+ let variant_did = None;
+ let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let variants = std::iter::once(convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ item.ident,
+ ty::VariantDiscr::Relative(0),
+ def,
+ AdtKind::Union,
+ def_id,
+ ))
+ .collect();
+
+ (AdtKind::Union, variants)
+ }
+ _ => bug!(),
+ };
+ tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
+ debug!("super_predicates(trait_def_id={:?})", trait_def_id);
+ tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+fn super_predicates_that_define_assoc_type(
+ tcx: TyCtxt<'_>,
+ (trait_def_id, assoc_name): (DefId, Option<Ident>),
+) -> ty::GenericPredicates<'_> {
+ debug!(
+ "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
+ trait_def_id, assoc_name
+ );
+ if trait_def_id.is_local() {
+ debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
+ let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
+
+ let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
+ bug!("trait_node_id {} is not an item", trait_hir_id);
+ };
+
+ let (generics, bounds) = match item.kind {
+ hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
+ hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
+ _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
+ };
+
+ let icx = ItemCtxt::new(tcx, trait_def_id);
+
+ // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
+ let self_param_ty = tcx.types.self_param;
+ let superbounds1 = if let Some(assoc_name) = assoc_name {
+ <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
+ &icx,
+ self_param_ty,
+ bounds,
+ assoc_name,
+ )
+ } else {
+ <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
+ };
+
+ let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
+
+ // Convert any explicit superbounds in the where-clause,
+ // e.g., `trait Foo where Self: Bar`.
+ // In the case of trait aliases, however, we include all bounds in the where-clause,
+ // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
+ // as one of its "superpredicates".
+ let is_trait_alias = tcx.is_trait_alias(trait_def_id);
+ let superbounds2 = icx.type_parameter_bounds_in_generics(
+ generics,
+ item.hir_id(),
+ self_param_ty,
+ OnlySelfBounds(!is_trait_alias),
+ assoc_name,
+ );
+
+ // Combine the two lists to form the complete set of superbounds:
+ let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
+ debug!(?superbounds);
+
+ // Now require that immediate supertraits are converted,
+ // which will, in turn, reach indirect supertraits.
+ if assoc_name.is_none() {
+ // Now require that immediate supertraits are converted,
+ // which will, in turn, reach indirect supertraits.
+ for &(pred, span) in superbounds {
+ debug!("superbound: {:?}", pred);
+ if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
+ tcx.at(span).super_predicates_of(bound.def_id());
+ }
+ }
+ }
+
+ ty::GenericPredicates { parent: None, predicates: superbounds }
+ } else {
+ // if `assoc_name` is None, then the query should've been redirected to an
+ // external provider
+ assert!(assoc_name.is_some());
+ tcx.super_predicates_of(trait_def_id)
+ }
+}
+
+fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
+ let item = tcx.hir().expect_item(def_id.expect_local());
+
+ let (is_auto, unsafety, items) = match item.kind {
+ hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
+ (is_auto == hir::IsAuto::Yes, unsafety, items)
+ }
+ hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
+ _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
+ };
+
+ let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
+ if paren_sugar && !tcx.features().unboxed_closures {
+ tcx.sess
+ .struct_span_err(
+ item.span,
+ "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
+ which traits can use parenthetical notation",
+ )
+ .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
+ .emit();
+ }
+
+ let is_marker = tcx.has_attr(def_id, sym::marker);
+ let skip_array_during_method_dispatch =
+ tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
+ let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
+ ty::trait_def::TraitSpecializationKind::Marker
+ } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
+ ty::trait_def::TraitSpecializationKind::AlwaysApplicable
+ } else {
+ ty::trait_def::TraitSpecializationKind::None
+ };
+ let must_implement_one_of = tcx
+ .get_attr(def_id, sym::rustc_must_implement_one_of)
+ // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
+ // and that they are all identifiers
+ .and_then(|attr| match attr.meta_item_list() {
+ Some(items) if items.len() < 2 => {
+ tcx.sess
+ .struct_span_err(
+ attr.span,
+ "the `#[rustc_must_implement_one_of]` attribute must be \
+ used with at least 2 args",
+ )
+ .emit();
+
+ None
+ }
+ Some(items) => items
+ .into_iter()
+ .map(|item| item.ident().ok_or(item.span()))
+ .collect::<Result<Box<[_]>, _>>()
+ .map_err(|span| {
+ tcx.sess
+ .struct_span_err(span, "must be a name of an associated function")
+ .emit();
+ })
+ .ok()
+ .zip(Some(attr.span)),
+ // Error is reported by `rustc_attr!`
+ None => None,
+ })
+ // Check that all arguments of `#[rustc_must_implement_one_of]` reference
+ // functions in the trait with default implementations
+ .and_then(|(list, attr_span)| {
+ let errors = list.iter().filter_map(|ident| {
+ let item = items.iter().find(|item| item.ident == *ident);
+
+ match item {
+ Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
+ if !tcx.impl_defaultness(item.id.def_id).has_value() {
+ tcx.sess
+ .struct_span_err(
+ item.span,
+ "This function doesn't have a default implementation",
+ )
+ .span_note(attr_span, "required by this annotation")
+ .emit();
+
+ return Some(());
+ }
+
+ return None;
+ }
+ Some(item) => {
+ tcx.sess
+ .struct_span_err(item.span, "Not a function")
+ .span_note(attr_span, "required by this annotation")
+ .note(
+ "All `#[rustc_must_implement_one_of]` arguments \
+ must be associated function names",
+ )
+ .emit();
+ }
+ None => {
+ tcx.sess
+ .struct_span_err(ident.span, "Function not found in this trait")
+ .emit();
+ }
+ }
+
+ Some(())
+ });
+
+ (errors.count() == 0).then_some(list)
+ })
+ // Check for duplicates
+ .and_then(|list| {
+ let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
+ let mut no_dups = true;
+
+ for ident in &*list {
+ if let Some(dup) = set.insert(ident.name, ident.span) {
+ tcx.sess
+ .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
+ .note(
+ "All `#[rustc_must_implement_one_of]` arguments \
+ must be unique",
+ )
+ .emit();
+
+ no_dups = false;
+ }
+ }
+
+ no_dups.then_some(list)
+ });
+
+ ty::TraitDef::new(
+ def_id,
+ unsafety,
+ paren_sugar,
+ is_auto,
+ is_marker,
+ skip_array_during_method_dispatch,
+ spec_kind,
+ must_implement_one_of,
+ )
+}
+
+fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
+ struct LateBoundRegionsDetector<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ outer_index: ty::DebruijnIndex,
+ has_late_bound_regions: Option<Span>,
+ }
+
+ impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
+ fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+ match ty.kind {
+ hir::TyKind::BareFn(..) => {
+ self.outer_index.shift_in(1);
+ intravisit::walk_ty(self, ty);
+ self.outer_index.shift_out(1);
+ }
+ _ => intravisit::walk_ty(self, ty),
+ }
+ }
+
+ fn visit_poly_trait_ref(
+ &mut self,
+ tr: &'tcx hir::PolyTraitRef<'tcx>,
+ m: hir::TraitBoundModifier,
+ ) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+ self.outer_index.shift_in(1);
+ intravisit::walk_poly_trait_ref(self, tr, m);
+ self.outer_index.shift_out(1);
+ }
+
+ fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+
+ match self.tcx.named_region(lt.hir_id) {
+ Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
+ Some(rl::Region::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {}
+ Some(rl::Region::LateBound(..) | rl::Region::Free(..)) | None => {
+ self.has_late_bound_regions = Some(lt.span);
+ }
+ }
+ }
+ }
+
+ fn has_late_bound_regions<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: &'tcx hir::Generics<'tcx>,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ ) -> Option<Span> {
+ let mut visitor = LateBoundRegionsDetector {
+ tcx,
+ outer_index: ty::INNERMOST,
+ has_late_bound_regions: None,
+ };
+ for param in generics.params {
+ if let GenericParamKind::Lifetime { .. } = param.kind {
+ if tcx.is_late_bound(param.hir_id) {
+ return Some(param.span);
+ }
+ }
+ }
+ visitor.visit_fn_decl(decl);
+ visitor.has_late_bound_regions
+ }
+
+ match node {
+ Node::TraitItem(item) => match item.kind {
+ hir::TraitItemKind::Fn(ref sig, _) => {
+ has_late_bound_regions(tcx, &item.generics, sig.decl)
+ }
+ _ => None,
+ },
+ Node::ImplItem(item) => match item.kind {
+ hir::ImplItemKind::Fn(ref sig, _) => {
+ has_late_bound_regions(tcx, &item.generics, sig.decl)
+ }
+ _ => None,
+ },
+ Node::ForeignItem(item) => match item.kind {
+ hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
+ has_late_bound_regions(tcx, generics, fn_decl)
+ }
+ _ => None,
+ },
+ Node::Item(item) => match item.kind {
+ hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
+ has_late_bound_regions(tcx, generics, sig.decl)
+ }
+ _ => None,
+ },
+ _ => None,
+ }
+}
+
+struct AnonConstInParamTyDetector {
+ in_param_ty: bool,
+ found_anon_const_in_param_ty: bool,
+ ct: HirId,
+}
+
+impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
+ fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
+ if let GenericParamKind::Const { ty, default: _ } = p.kind {
+ let prev = self.in_param_ty;
+ self.in_param_ty = true;
+ self.visit_ty(ty);
+ self.in_param_ty = prev;
+ }
+ }
+
+ fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
+ if self.in_param_ty && self.ct == c.hir_id {
+ self.found_anon_const_in_param_ty = true;
+ } else {
+ intravisit::walk_anon_const(self, c)
+ }
+ }
+}
+
+fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
+ use rustc_hir::*;
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+
+ let node = tcx.hir().get(hir_id);
+ let parent_def_id = match node {
+ Node::ImplItem(_)
+ | Node::TraitItem(_)
+ | Node::Variant(_)
+ | Node::Ctor(..)
+ | Node::Field(_) => {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ Some(parent_id.to_def_id())
+ }
+ // FIXME(#43408) always enable this once `lazy_normalization` is
+ // stable enough and does not need a feature gate anymore.
+ Node::AnonConst(_) => {
+ let parent_def_id = tcx.hir().get_parent_item(hir_id);
+
+ let mut in_param_ty = false;
+ for (_parent, node) in tcx.hir().parent_iter(hir_id) {
+ if let Some(generics) = node.generics() {
+ let mut visitor = AnonConstInParamTyDetector {
+ in_param_ty: false,
+ found_anon_const_in_param_ty: false,
+ ct: hir_id,
+ };
+
+ visitor.visit_generics(generics);
+ in_param_ty = visitor.found_anon_const_in_param_ty;
+ break;
+ }
+ }
+
+ if in_param_ty {
+ // We do not allow generic parameters in anon consts if we are inside
+ // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
+ None
+ } else if tcx.lazy_normalization() {
+ if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
+ // If the def_id we are calling generics_of on is an anon ct default i.e:
+ //
+ // struct Foo<const N: usize = { .. }>;
+ // ^^^ ^ ^^^^^^ def id of this anon const
+ // ^ ^ param_id
+ // ^ parent_def_id
+ //
+ // then we only want to return generics for params to the left of `N`. If we don't do that we
+ // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
+ //
+ // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
+ // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
+ // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
+ //
+ // We fix this by having this function return the parent's generics ourselves and truncating the
+ // generics to only include non-forward declared params (with the exception of the `Self` ty)
+ //
+ // For the above code example that means we want `substs: []`
+ // For the following struct def we want `substs: [N#0]` when generics_of is called on
+ // the def id of the `{ N + 1 }` anon const
+ // struct Foo<const N: usize, const M: usize = { N + 1 }>;
+ //
+ // This has some implications for how we get the predicates available to the anon const
+ // see `explicit_predicates_of` for more information on this
+ let generics = tcx.generics_of(parent_def_id.to_def_id());
+ let param_def = tcx.hir().local_def_id(param_id).to_def_id();
+ let param_def_idx = generics.param_def_id_to_index[&param_def];
+ // In the above example this would be .params[..N#0]
+ let params = generics.params[..param_def_idx as usize].to_owned();
+ let param_def_id_to_index =
+ params.iter().map(|param| (param.def_id, param.index)).collect();
+
+ return ty::Generics {
+ // we set the parent of these generics to be our parent's parent so that we
+ // dont end up with substs: [N, M, N] for the const default on a struct like this:
+ // struct Foo<const N: usize, const M: usize = { ... }>;
+ parent: generics.parent,
+ parent_count: generics.parent_count,
+ params,
+ param_def_id_to_index,
+ has_self: generics.has_self,
+ has_late_bound_regions: generics.has_late_bound_regions,
+ };
+ }
+
+ // HACK(eddyb) this provides the correct generics when
+ // `feature(generic_const_expressions)` is enabled, so that const expressions
+ // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
+ //
+ // Note that we do not supply the parent generics when using
+ // `min_const_generics`.
+ Some(parent_def_id.to_def_id())
+ } else {
+ let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+ match parent_node {
+ // HACK(eddyb) this provides the correct generics for repeat
+ // expressions' count (i.e. `N` in `[x; N]`), and explicit
+ // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
+ // as they shouldn't be able to cause query cycle errors.
+ Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
+ if constant.hir_id() == hir_id =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ Node::Variant(Variant { disr_expr: Some(ref constant), .. })
+ if constant.hir_id == hir_id =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
+ Some(tcx.typeck_root_def_id(def_id))
+ }
+ // Exclude `GlobalAsm` here which cannot have generics.
+ Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
+ if asm.operands.iter().any(|(op, _op_sp)| match op {
+ hir::InlineAsmOperand::Const { anon_const }
+ | hir::InlineAsmOperand::SymFn { anon_const } => {
+ anon_const.hir_id == hir_id
+ }
+ _ => false,
+ }) =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ _ => None,
+ }
+ }
+ }
+ Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+ Some(tcx.typeck_root_def_id(def_id))
+ }
+ Node::Item(item) => match item.kind {
+ ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin:
+ hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
+ ..
+ }) => Some(fn_def_id.to_def_id()),
+ ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ assert_ne!(parent_id, CRATE_DEF_ID);
+ debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
+ // Opaque types are always nested within another item, and
+ // inherit the generics of the item.
+ Some(parent_id.to_def_id())
+ }
+ _ => None,
+ },
+ _ => None,
+ };
+
+ let no_generics = hir::Generics::empty();
+ let ast_generics = node.generics().unwrap_or(&no_generics);
+ let (opt_self, allow_defaults) = match node {
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Trait(..) | ItemKind::TraitAlias(..) => {
+ // Add in the self type parameter.
+ //
+ // Something of a hack: use the node id for the trait, also as
+ // the node id for the Self type parameter.
+ let opt_self = Some(ty::GenericParamDef {
+ index: 0,
+ name: kw::SelfUpper,
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type {
+ has_default: false,
+ object_lifetime_default: rl::Set1::Empty,
+ synthetic: false,
+ },
+ });
+
+ (opt_self, true)
+ }
+ ItemKind::TyAlias(..)
+ | ItemKind::Enum(..)
+ | ItemKind::Struct(..)
+ | ItemKind::OpaqueTy(..)
+ | ItemKind::Union(..) => (None, true),
+ _ => (None, false),
+ }
+ }
+ _ => (None, false),
+ };
+
+ let has_self = opt_self.is_some();
+ let mut parent_has_self = false;
+ let mut own_start = has_self as u32;
+ let parent_count = parent_def_id.map_or(0, |def_id| {
+ let generics = tcx.generics_of(def_id);
+ assert!(!has_self);
+ parent_has_self = generics.has_self;
+ own_start = generics.count() as u32;
+ generics.parent_count + generics.params.len()
+ });
+
+ let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
+
+ if let Some(opt_self) = opt_self {
+ params.push(opt_self);
+ }
+
+ let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
+ params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
+ name: param.name.ident().name,
+ index: own_start + i as u32,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind: ty::GenericParamDefKind::Lifetime,
+ }));
+
+ let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id.owner);
+
+ // Now create the real type and const parameters.
+ let type_start = own_start - has_self as u32 + params.len() as u32;
+ let mut i = 0;
+
+ params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => None,
+ GenericParamKind::Type { ref default, synthetic, .. } => {
+ if !allow_defaults && default.is_some() {
+ if !tcx.features().default_type_parameter_fallback {
+ tcx.struct_span_lint_hir(
+ lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
+ param.hir_id,
+ param.span,
+ |lint| {
+ lint.build(
+ "defaults for type parameters are only allowed in \
+ `struct`, `enum`, `type`, or `trait` definitions",
+ )
+ .emit();
+ },
+ );
+ }
+ }
+
+ let kind = ty::GenericParamDefKind::Type {
+ has_default: default.is_some(),
+ object_lifetime_default: object_lifetime_defaults
+ .as_ref()
+ .map_or(rl::Set1::Empty, |o| o[i]),
+ synthetic,
+ };
+
+ let param_def = ty::GenericParamDef {
+ index: type_start + i as u32,
+ name: param.name.ident().name,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind,
+ };
+ i += 1;
+ Some(param_def)
+ }
+ GenericParamKind::Const { default, .. } => {
+ if !allow_defaults && default.is_some() {
+ tcx.sess.span_err(
+ param.span,
+ "defaults for const parameters are only allowed in \
+ `struct`, `enum`, `type`, or `trait` definitions",
+ );
+ }
+
+ let param_def = ty::GenericParamDef {
+ index: type_start + i as u32,
+ name: param.name.ident().name,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
+ };
+ i += 1;
+ Some(param_def)
+ }
+ }));
+
+ // provide junk type parameter defs - the only place that
+ // cares about anything but the length is instantiation,
+ // and we don't do that for closures.
+ if let Node::Expr(&hir::Expr {
+ kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }),
+ ..
+ }) = node
+ {
+ let dummy_args = if gen.is_some() {
+ &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
+ } else {
+ &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
+ };
+
+ params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
+ index: type_start + i as u32,
+ name: Symbol::intern(arg),
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type {
+ has_default: false,
+ object_lifetime_default: rl::Set1::Empty,
+ synthetic: false,
+ },
+ }));
+ }
+
+ // provide junk type parameter defs for const blocks.
+ if let Node::AnonConst(_) = node {
+ let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+ if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
+ params.push(ty::GenericParamDef {
+ index: type_start,
+ name: Symbol::intern("<const_ty>"),
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type {
+ has_default: false,
+ object_lifetime_default: rl::Set1::Empty,
+ synthetic: false,
+ },
+ });
+ }
+ }
+
+ let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
+
+ ty::Generics {
+ parent: parent_def_id,
+ parent_count,
+ params,
+ param_def_id_to_index,
+ has_self: has_self || parent_has_self,
+ has_late_bound_regions: has_late_bound_regions(tcx, node),
+ }
+}
+
+fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
+ generic_args.iter().any(|arg| match arg {
+ hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
+ hir::GenericArg::Infer(_) => true,
+ _ => false,
+ })
+}
+
+/// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
+/// use inference to provide suggestions for the appropriate type if possible.
+fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
+ debug!(?ty);
+ use hir::TyKind::*;
+ match &ty.kind {
+ Infer => true,
+ Slice(ty) => is_suggestable_infer_ty(ty),
+ Array(ty, length) => {
+ is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
+ }
+ Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
+ Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
+ OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
+ Path(hir::QPath::TypeRelative(ty, segment)) => {
+ is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
+ }
+ Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
+ ty_opt.map_or(false, is_suggestable_infer_ty)
+ || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
+ }
+ _ => false,
+ }
+}
+
+pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
+ if let hir::FnRetTy::Return(ty) = output {
+ if is_suggestable_infer_ty(ty) {
+ return Some(&*ty);
+ }
+ }
+ None
+}
+
+fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
+ use rustc_hir::Node::*;
+ use rustc_hir::*;
+
+ let def_id = def_id.expect_local();
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+ let icx = ItemCtxt::new(tcx, def_id.to_def_id());
+
+ match tcx.hir().get(hir_id) {
+ TraitItem(hir::TraitItem {
+ kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
+ generics,
+ ..
+ })
+ | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
+ infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+ }
+
+ ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
+ // Do not try to inference the return type for a impl method coming from a trait
+ if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
+ tcx.hir().get(tcx.hir().get_parent_node(hir_id))
+ && i.of_trait.is_some()
+ {
+ <dyn AstConv<'_>>::ty_of_fn(
+ &icx,
+ hir_id,
+ sig.header.unsafety,
+ sig.header.abi,
+ sig.decl,
+ Some(generics),
+ None,
+ )
+ } else {
+ infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+ }
+ }
+
+ TraitItem(hir::TraitItem {
+ kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
+ generics,
+ ..
+ }) => <dyn AstConv<'_>>::ty_of_fn(
+ &icx,
+ hir_id,
+ header.unsafety,
+ header.abi,
+ decl,
+ Some(generics),
+ None,
+ ),
+
+ ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
+ let abi = tcx.hir().get_foreign_abi(hir_id);
+ compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
+ }
+
+ Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
+ let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
+ let inputs =
+ data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
+ ty::Binder::dummy(tcx.mk_fn_sig(
+ inputs,
+ ty,
+ false,
+ hir::Unsafety::Normal,
+ abi::Abi::Rust,
+ ))
+ }
+
+ Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+ // Closure signatures are not like other function
+ // signatures and cannot be accessed through `fn_sig`. For
+ // example, a closure signature excludes the `self`
+ // argument. In any case they are embedded within the
+ // closure type as part of the `ClosureSubsts`.
+ //
+ // To get the signature of a closure, you should use the
+ // `sig` method on the `ClosureSubsts`:
+ //
+ // substs.as_closure().sig(def_id, tcx)
+ bug!(
+ "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
+ );
+ }
+
+ x => {
+ bug!("unexpected sort of node in fn_sig(): {:?}", x);
+ }
+ }
+}
+
+fn infer_return_ty_for_fn_sig<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sig: &hir::FnSig<'_>,
+ generics: &hir::Generics<'_>,
+ def_id: LocalDefId,
+ icx: &ItemCtxt<'tcx>,
+) -> ty::PolyFnSig<'tcx> {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+ match get_infer_ret_ty(&sig.decl.output) {
+ Some(ty) => {
+ let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
+ // Typeck doesn't expect erased regions to be returned from `type_of`.
+ let fn_sig = tcx.fold_regions(fn_sig, |r, _| match *r {
+ ty::ReErased => tcx.lifetimes.re_static,
+ _ => r,
+ });
+ let fn_sig = ty::Binder::dummy(fn_sig);
+
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_ty(ty);
+ let mut diag = bad_placeholder(tcx, visitor.0, "return type");
+ let ret_ty = fn_sig.skip_binder().output();
+ if ret_ty.is_suggestable(tcx, false) {
+ diag.span_suggestion(
+ ty.span,
+ "replace with the correct return type",
+ ret_ty,
+ Applicability::MachineApplicable,
+ );
+ } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
+ let fn_sig = ret_ty.fn_sig(tcx);
+ if fn_sig
+ .skip_binder()
+ .inputs_and_output
+ .iter()
+ .all(|t| t.is_suggestable(tcx, false))
+ {
+ diag.span_suggestion(
+ ty.span,
+ "replace with the correct return type",
+ fn_sig,
+ Applicability::MachineApplicable,
+ );
+ }
+ } else if ret_ty.is_closure() {
+ // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
+ // to prevent the user from getting a papercut while trying to use the unique closure
+ // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
+ diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
+ diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
+ }
+ diag.emit();
+
+ fn_sig
+ }
+ None => <dyn AstConv<'_>>::ty_of_fn(
+ icx,
+ hir_id,
+ sig.header.unsafety,
+ sig.header.abi,
+ sig.decl,
+ Some(generics),
+ None,
+ ),
+ }
+}
+
+fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
+ let icx = ItemCtxt::new(tcx, def_id);
+ match tcx.hir().expect_item(def_id.expect_local()).kind {
+ hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
+ let selfty = tcx.type_of(def_id);
+ <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
+ }),
+ _ => bug!(),
+ }
+}
+
+fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
+ let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
+ let item = tcx.hir().expect_item(def_id.expect_local());
+ match &item.kind {
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Negative(span),
+ of_trait,
+ ..
+ }) => {
+ if is_rustc_reservation {
+ let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
+ tcx.sess.span_err(span, "reservation impls can't be negative");
+ }
+ ty::ImplPolarity::Negative
+ }
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Positive,
+ of_trait: None,
+ ..
+ }) => {
+ if is_rustc_reservation {
+ tcx.sess.span_err(item.span, "reservation impls can't be inherent");
+ }
+ ty::ImplPolarity::Positive
+ }
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Positive,
+ of_trait: Some(_),
+ ..
+ }) => {
+ if is_rustc_reservation {
+ ty::ImplPolarity::Reservation
+ } else {
+ ty::ImplPolarity::Positive
+ }
+ }
+ item => bug!("impl_polarity: {:?} not an impl", item),
+ }
+}
+
+/// Returns the early-bound lifetimes declared in this generics
+/// listing. For anything other than fns/methods, this is just all
+/// the lifetimes that are declared. For fns or methods, we have to
+/// screen out those that do not appear in any where-clauses etc using
+/// `resolve_lifetime::early_bound_lifetimes`.
+fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
+ tcx: TyCtxt<'tcx>,
+ generics: &'a hir::Generics<'a>,
+) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
+ generics.params.iter().filter(move |param| match param.kind {
+ GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
+ _ => false,
+ })
+}
+
+/// Returns a list of type predicates for the definition with ID `def_id`, including inferred
+/// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
+/// inferred constraints concerning which regions outlive other regions.
+fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ debug!("predicates_defined_on({:?})", def_id);
+ let mut result = tcx.explicit_predicates_of(def_id);
+ debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
+ let inferred_outlives = tcx.inferred_outlives_of(def_id);
+ if !inferred_outlives.is_empty() {
+ debug!(
+ "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
+ def_id, inferred_outlives,
+ );
+ if result.predicates.is_empty() {
+ result.predicates = inferred_outlives;
+ } else {
+ result.predicates = tcx
+ .arena
+ .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
+ }
+ }
+
+ debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
+ result
+}
+
+/// Returns a list of all type predicates (explicit and implicit) for the definition with
+/// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
+/// `Self: Trait` predicates for traits.
+fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ let mut result = tcx.predicates_defined_on(def_id);
+
+ if tcx.is_trait(def_id) {
+ // For traits, add `Self: Trait` predicate. This is
+ // not part of the predicates that a user writes, but it
+ // is something that one must prove in order to invoke a
+ // method or project an associated type.
+ //
+ // In the chalk setup, this predicate is not part of the
+ // "predicates" for a trait item. But it is useful in
+ // rustc because if you directly (e.g.) invoke a trait
+ // method like `Trait::method(...)`, you must naturally
+ // prove that the trait applies to the types that were
+ // used, and adding the predicate into this list ensures
+ // that this is done.
+ //
+ // We use a DUMMY_SP here as a way to signal trait bounds that come
+ // from the trait itself that *shouldn't* be shown as the source of
+ // an obligation and instead be skipped. Otherwise we'd use
+ // `tcx.def_span(def_id);`
+
+ let constness = if tcx.has_attr(def_id, sym::const_trait) {
+ ty::BoundConstness::ConstIfConst
+ } else {
+ ty::BoundConstness::NotConst
+ };
+
+ let span = rustc_span::DUMMY_SP;
+ result.predicates =
+ tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
+ ty::TraitRef::identity(tcx, def_id).with_constness(constness).to_predicate(tcx),
+ span,
+ ))));
+ }
+ debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
+ result
+}
+
+/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
+/// N.B., this does not include any implied/inferred constraints.
+fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ use rustc_hir::*;
+
+ debug!("explicit_predicates_of(def_id={:?})", def_id);
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ let node = tcx.hir().get(hir_id);
+
+ let mut is_trait = None;
+ let mut is_default_impl_trait = None;
+
+ let icx = ItemCtxt::new(tcx, def_id);
+
+ const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
+
+ // We use an `IndexSet` to preserves order of insertion.
+ // Preserving the order of insertion is important here so as not to break UI tests.
+ let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
+
+ let ast_generics = match node {
+ Node::TraitItem(item) => item.generics,
+
+ Node::ImplItem(item) => item.generics,
+
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Impl(ref impl_) => {
+ if impl_.defaultness.is_default() {
+ is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
+ }
+ &impl_.generics
+ }
+ ItemKind::Fn(.., ref generics, _)
+ | ItemKind::TyAlias(_, ref generics)
+ | ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics) => *generics,
+
+ ItemKind::Trait(_, _, ref generics, ..) => {
+ is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+ *generics
+ }
+ ItemKind::TraitAlias(ref generics, _) => {
+ is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+ *generics
+ }
+ ItemKind::OpaqueTy(OpaqueTy {
+ origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
+ ..
+ }) => {
+ // return-position impl trait
+ //
+ // We don't inherit predicates from the parent here:
+ // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
+ // then the return type is `f::<'static, T>::{{opaque}}`.
+ //
+ // If we inherited the predicates of `f` then we would
+ // require that `T: 'static` to show that the return
+ // type is well-formed.
+ //
+ // The only way to have something with this opaque type
+ // is from the return type of the containing function,
+ // which will ensure that the function's predicates
+ // hold.
+ return ty::GenericPredicates { parent: None, predicates: &[] };
+ }
+ ItemKind::OpaqueTy(OpaqueTy {
+ ref generics,
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ }) => {
+ // type-alias impl trait
+ generics
+ }
+
+ _ => NO_GENERICS,
+ }
+ }
+
+ Node::ForeignItem(item) => match item.kind {
+ ForeignItemKind::Static(..) => NO_GENERICS,
+ ForeignItemKind::Fn(_, _, ref generics) => *generics,
+ ForeignItemKind::Type => NO_GENERICS,
+ },
+
+ _ => NO_GENERICS,
+ };
+
+ let generics = tcx.generics_of(def_id);
+ let parent_count = generics.parent_count as u32;
+ let has_own_self = generics.has_self && parent_count == 0;
+
+ // Below we'll consider the bounds on the type parameters (including `Self`)
+ // and the explicit where-clauses, but to get the full set of predicates
+ // on a trait we need to add in the supertrait bounds and bounds found on
+ // associated types.
+ if let Some(_trait_ref) = is_trait {
+ predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
+ }
+
+ // In default impls, we can assume that the self type implements
+ // the trait. So in:
+ //
+ // default impl Foo for Bar { .. }
+ //
+ // we add a default where clause `Foo: Bar`. We do a similar thing for traits
+ // (see below). Recall that a default impl is not itself an impl, but rather a
+ // set of defaults that can be incorporated into another impl.
+ if let Some(trait_ref) = is_default_impl_trait {
+ predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
+ }
+
+ // Collect the region predicates that were declared inline as
+ // well. In the case of parameters declared on a fn or method, we
+ // have to be careful to only iterate over early-bound regions.
+ let mut index = parent_count
+ + has_own_self as u32
+ + early_bound_lifetimes_from_generics(tcx, ast_generics).count() as u32;
+
+ // Collect the predicates that were written inline by the user on each
+ // type parameter (e.g., `<T: Foo>`).
+ for param in ast_generics.params {
+ match param.kind {
+ // We already dealt with early bound lifetimes above.
+ GenericParamKind::Lifetime { .. } => (),
+ GenericParamKind::Type { .. } => {
+ let name = param.name.ident().name;
+ let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
+ index += 1;
+
+ let mut bounds = Bounds::default();
+ // Params are implicitly sized unless a `?Sized` bound is found
+ <dyn AstConv<'_>>::add_implicitly_sized(
+ &icx,
+ &mut bounds,
+ &[],
+ Some((param.hir_id, ast_generics.predicates)),
+ param.span,
+ );
+ predicates.extend(bounds.predicates(tcx, param_ty));
+ }
+ GenericParamKind::Const { .. } => {
+ // Bounds on const parameters are currently not possible.
+ index += 1;
+ }
+ }
+ }
+
+ // Add in the bounds that appear in the where-clause.
+ for predicate in ast_generics.predicates {
+ match predicate {
+ hir::WherePredicate::BoundPredicate(bound_pred) => {
+ let ty = icx.to_ty(bound_pred.bounded_ty);
+ let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
+
+ // Keep the type around in a dummy predicate, in case of no bounds.
+ // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
+ // is still checked for WF.
+ if bound_pred.bounds.is_empty() {
+ if let ty::Param(_) = ty.kind() {
+ // This is a `where T:`, which can be in the HIR from the
+ // transformation that moves `?Sized` to `T`'s declaration.
+ // We can skip the predicate because type parameters are
+ // trivially WF, but also we *should*, to avoid exposing
+ // users who never wrote `where Type:,` themselves, to
+ // compiler/tooling bugs from not handling WF predicates.
+ } else {
+ let span = bound_pred.bounded_ty.span;
+ let predicate = ty::Binder::bind_with_vars(
+ ty::PredicateKind::WellFormed(ty.into()),
+ bound_vars,
+ );
+ predicates.insert((predicate.to_predicate(tcx), span));
+ }
+ }
+
+ let mut bounds = Bounds::default();
+ <dyn AstConv<'_>>::add_bounds(
+ &icx,
+ ty,
+ bound_pred.bounds.iter(),
+ &mut bounds,
+ bound_vars,
+ );
+ predicates.extend(bounds.predicates(tcx, ty));
+ }
+
+ hir::WherePredicate::RegionPredicate(region_pred) => {
+ let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
+ predicates.extend(region_pred.bounds.iter().map(|bound| {
+ let (r2, span) = match bound {
+ hir::GenericBound::Outlives(lt) => {
+ (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
+ }
+ _ => bug!(),
+ };
+ let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
+ ty::OutlivesPredicate(r1, r2),
+ ))
+ .to_predicate(icx.tcx);
+
+ (pred, span)
+ }))
+ }
+
+ hir::WherePredicate::EqPredicate(..) => {
+ // FIXME(#20041)
+ }
+ }
+ }
+
+ if tcx.features().generic_const_exprs {
+ predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
+ }
+
+ let mut predicates: Vec<_> = predicates.into_iter().collect();
+
+ // Subtle: before we store the predicates into the tcx, we
+ // sort them so that predicates like `T: Foo<Item=U>` come
+ // before uses of `U`. This avoids false ambiguity errors
+ // in trait checking. See `setup_constraining_predicates`
+ // for details.
+ if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
+ let self_ty = tcx.type_of(def_id);
+ let trait_ref = tcx.impl_trait_ref(def_id);
+ cgp::setup_constraining_predicates(
+ tcx,
+ &mut predicates,
+ trait_ref,
+ &mut cgp::parameters_for_impl(self_ty, trait_ref),
+ );
+ }
+
+ let result = ty::GenericPredicates {
+ parent: generics.parent,
+ predicates: tcx.arena.alloc_from_iter(predicates),
+ };
+ debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
+ result
+}
+
+fn const_evaluatable_predicates_of<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
+ struct ConstCollector<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
+ }
+
+ impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
+ fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
+ let def_id = self.tcx.hir().local_def_id(c.hir_id);
+ let ct = ty::Const::from_anon_const(self.tcx, def_id);
+ if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
+ assert_eq!(uv.promoted, None);
+ let span = self.tcx.hir().span(c.hir_id);
+ self.preds.insert((
+ ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv.shrink()))
+ .to_predicate(self.tcx),
+ span,
+ ));
+ }
+ }
+
+ fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
+ // Do not look into const param defaults,
+ // these get checked when they are actually instantiated.
+ //
+ // We do not want the following to error:
+ //
+ // struct Foo<const N: usize, const M: usize = { N + 1 }>;
+ // struct Bar<const N: usize>(Foo<N, 3>);
+ }
+ }
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let node = tcx.hir().get(hir_id);
+
+ let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
+ if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
+ if let Some(of_trait) = &impl_.of_trait {
+ debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
+ collector.visit_trait_ref(of_trait);
+ }
+
+ debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
+ collector.visit_ty(impl_.self_ty);
+ }
+
+ if let Some(generics) = node.generics() {
+ debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
+ collector.visit_generics(generics);
+ }
+
+ if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
+ debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
+ collector.visit_fn_decl(fn_sig.decl);
+ }
+ debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
+
+ collector.preds
+}
+
+fn trait_explicit_predicates_and_bounds(
+ tcx: TyCtxt<'_>,
+ def_id: LocalDefId,
+) -> ty::GenericPredicates<'_> {
+ assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
+ gather_explicit_predicates_of(tcx, def_id.to_def_id())
+}
+
+fn explicit_predicates_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::GenericPredicates<'tcx> {
+ let def_kind = tcx.def_kind(def_id);
+ if let DefKind::Trait = def_kind {
+ // Remove bounds on associated types from the predicates, they will be
+ // returned by `explicit_item_bounds`.
+ let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
+ let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
+
+ let is_assoc_item_ty = |ty: Ty<'tcx>| {
+ // For a predicate from a where clause to become a bound on an
+ // associated type:
+ // * It must use the identity substs of the item.
+ // * Since any generic parameters on the item are not in scope,
+ // this means that the item is not a GAT, and its identity
+ // substs are the same as the trait's.
+ // * It must be an associated type for this trait (*not* a
+ // supertrait).
+ if let ty::Projection(projection) = ty.kind() {
+ projection.substs == trait_identity_substs
+ && tcx.associated_item(projection.item_def_id).container_id(tcx) == def_id
+ } else {
+ false
+ }
+ };
+
+ let predicates: Vec<_> = predicates_and_bounds
+ .predicates
+ .iter()
+ .copied()
+ .filter(|(pred, _)| match pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
+ ty::PredicateKind::Projection(proj) => {
+ !is_assoc_item_ty(proj.projection_ty.self_ty())
+ }
+ ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
+ _ => true,
+ })
+ .collect();
+ if predicates.len() == predicates_and_bounds.predicates.len() {
+ predicates_and_bounds
+ } else {
+ ty::GenericPredicates {
+ parent: predicates_and_bounds.parent,
+ predicates: tcx.arena.alloc_slice(&predicates),
+ }
+ }
+ } else {
+ if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
+ // In `generics_of` we set the generics' parent to be our parent's parent which means that
+ // we lose out on the predicates of our actual parent if we dont return those predicates here.
+ // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
+ //
+ // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
+ // ^^^ ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
+ // ^^^ explicit_predicates_of on
+ // parent item we dont have set as the
+ // parent of generics returned by `generics_of`
+ //
+ // In the above code we want the anon const to have predicates in its param env for `T: Trait`
+ let item_def_id = tcx.hir().get_parent_item(hir_id);
+ // In the above code example we would be calling `explicit_predicates_of(Foo)` here
+ return tcx.explicit_predicates_of(item_def_id);
+ }
+ }
+ gather_explicit_predicates_of(tcx, def_id)
+ }
+}
+
+/// Converts a specific `GenericBound` from the AST into a set of
+/// predicates that apply to the self type. A vector is returned
+/// because this can be anywhere from zero predicates (`T: ?Sized` adds no
+/// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
+/// and `<T as Bar>::X == i32`).
+fn predicates_from_bound<'tcx>(
+ astconv: &dyn AstConv<'tcx>,
+ param_ty: Ty<'tcx>,
+ bound: &'tcx hir::GenericBound<'tcx>,
+ bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
+) -> Vec<(ty::Predicate<'tcx>, Span)> {
+ let mut bounds = Bounds::default();
+ astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
+ bounds.predicates(astconv.tcx(), param_ty).collect()
+}
+
+fn compute_sig_of_foreign_fn_decl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ abi: abi::Abi,
+) -> ty::PolyFnSig<'tcx> {
+ let unsafety = if abi == abi::Abi::RustIntrinsic {
+ intrinsic_operation_unsafety(tcx.item_name(def_id))
+ } else {
+ hir::Unsafety::Unsafe
+ };
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ let fty = <dyn AstConv<'_>>::ty_of_fn(
+ &ItemCtxt::new(tcx, def_id),
+ hir_id,
+ unsafety,
+ abi,
+ decl,
+ None,
+ None,
+ );
+
+ // Feature gate SIMD types in FFI, since I am not sure that the
+ // ABIs are handled at all correctly. -huonw
+ if abi != abi::Abi::RustIntrinsic
+ && abi != abi::Abi::PlatformIntrinsic
+ && !tcx.features().simd_ffi
+ {
+ let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
+ if ty.is_simd() {
+ let snip = tcx
+ .sess
+ .source_map()
+ .span_to_snippet(ast_ty.span)
+ .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
+ tcx.sess
+ .struct_span_err(
+ ast_ty.span,
+ &format!(
+ "use of SIMD type{} in FFI is highly experimental and \
+ may result in invalid code",
+ snip
+ ),
+ )
+ .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
+ .emit();
+ }
+ };
+ for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
+ check(input, *ty)
+ }
+ if let hir::FnRetTy::Return(ref ty) = decl.output {
+ check(ty, fty.output().skip_binder())
+ }
+ }
+
+ fty
+}
+
+fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ match tcx.hir().get_if_local(def_id) {
+ Some(Node::ForeignItem(..)) => true,
+ Some(_) => false,
+ _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
+ }
+}
+
+fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
+ match tcx.hir().get_if_local(def_id) {
+ Some(Node::Expr(&rustc_hir::Expr {
+ kind: rustc_hir::ExprKind::Closure(&rustc_hir::Closure { body, .. }),
+ ..
+ })) => tcx.hir().body(body).generator_kind(),
+ Some(_) => None,
+ _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
+ }
+}
+
+fn from_target_feature(
+ tcx: TyCtxt<'_>,
+ attr: &ast::Attribute,
+ supported_target_features: &FxHashMap<String, Option<Symbol>>,
+ target_features: &mut Vec<Symbol>,
+) {
+ let Some(list) = attr.meta_item_list() else { return };
+ let bad_item = |span| {
+ let msg = "malformed `target_feature` attribute input";
+ let code = "enable = \"..\"";
+ tcx.sess
+ .struct_span_err(span, msg)
+ .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
+ .emit();
+ };
+ let rust_features = tcx.features();
+ for item in list {
+ // Only `enable = ...` is accepted in the meta-item list.
+ if !item.has_name(sym::enable) {
+ bad_item(item.span());
+ continue;
+ }
+
+ // Must be of the form `enable = "..."` (a string).
+ let Some(value) = item.value_str() else {
+ bad_item(item.span());
+ continue;
+ };
+
+ // We allow comma separation to enable multiple features.
+ target_features.extend(value.as_str().split(',').filter_map(|feature| {
+ let Some(feature_gate) = supported_target_features.get(feature) else {
+ let msg =
+ format!("the feature named `{}` is not valid for this target", feature);
+ let mut err = tcx.sess.struct_span_err(item.span(), &msg);
+ err.span_label(
+ item.span(),
+ format!("`{}` is not valid for this target", feature),
+ );
+ if let Some(stripped) = feature.strip_prefix('+') {
+ let valid = supported_target_features.contains_key(stripped);
+ if valid {
+ err.help("consider removing the leading `+` in the feature name");
+ }
+ }
+ err.emit();
+ return None;
+ };
+
+ // Only allow features whose feature gates have been enabled.
+ let allowed = match feature_gate.as_ref().copied() {
+ Some(sym::arm_target_feature) => rust_features.arm_target_feature,
+ Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
+ Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
+ Some(sym::mips_target_feature) => rust_features.mips_target_feature,
+ Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
+ Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
+ Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
+ Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
+ Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
+ Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
+ Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
+ Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
+ Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
+ Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
+ Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
+ Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
+ Some(name) => bug!("unknown target feature gate {}", name),
+ None => true,
+ };
+ if !allowed {
+ feature_err(
+ &tcx.sess.parse_sess,
+ feature_gate.unwrap(),
+ item.span(),
+ &format!("the target feature `{}` is currently unstable", feature),
+ )
+ .emit();
+ }
+ Some(Symbol::intern(feature))
+ }));
+ }
+}
+
+fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
+ use rustc_middle::mir::mono::Linkage::*;
+
+ // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
+ // applicable to variable declarations and may not really make sense for
+ // Rust code in the first place but allow them anyway and trust that the
+ // user knows what they're doing. Who knows, unanticipated use cases may pop
+ // up in the future.
+ //
+ // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
+ // and don't have to be, LLVM treats them as no-ops.
+ match name {
+ "appending" => Appending,
+ "available_externally" => AvailableExternally,
+ "common" => Common,
+ "extern_weak" => ExternalWeak,
+ "external" => External,
+ "internal" => Internal,
+ "linkonce" => LinkOnceAny,
+ "linkonce_odr" => LinkOnceODR,
+ "private" => Private,
+ "weak" => WeakAny,
+ "weak_odr" => WeakODR,
+ _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
+ }
+}
+
+fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
+ if cfg!(debug_assertions) {
+ let def_kind = tcx.def_kind(did);
+ assert!(
+ def_kind.has_codegen_attrs(),
+ "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
+ );
+ }
+
+ let did = did.expect_local();
+ let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
+ let mut codegen_fn_attrs = CodegenFnAttrs::new();
+ if tcx.should_inherit_track_caller(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+ }
+
+ // The panic_no_unwind function called by TerminatorKind::Abort will never
+ // unwind. If the panic handler that it invokes unwind then it will simply
+ // call the panic handler again.
+ if Some(did.to_def_id()) == tcx.lang_items().panic_no_unwind() {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+ }
+
+ let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
+
+ let mut inline_span = None;
+ let mut link_ordinal_span = None;
+ let mut no_sanitize_span = None;
+ for attr in attrs.iter() {
+ if attr.has_name(sym::cold) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
+ } else if attr.has_name(sym::rustc_allocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
+ } else if attr.has_name(sym::ffi_returns_twice) {
+ if tcx.is_foreign_item(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
+ } else {
+ // `#[ffi_returns_twice]` is only allowed `extern fn`s.
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0724,
+ "`#[ffi_returns_twice]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::ffi_pure) {
+ if tcx.is_foreign_item(did) {
+ if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
+ // `#[ffi_const]` functions cannot be `#[ffi_pure]`
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0757,
+ "`#[ffi_const]` function cannot be `#[ffi_pure]`"
+ )
+ .emit();
+ } else {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
+ }
+ } else {
+ // `#[ffi_pure]` is only allowed on foreign functions
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0755,
+ "`#[ffi_pure]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::ffi_const) {
+ if tcx.is_foreign_item(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
+ } else {
+ // `#[ffi_const]` is only allowed on foreign functions
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0756,
+ "`#[ffi_const]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::rustc_allocator_nounwind) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+ } else if attr.has_name(sym::rustc_reallocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR;
+ } else if attr.has_name(sym::rustc_deallocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR;
+ } else if attr.has_name(sym::rustc_allocator_zeroed) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED;
+ } else if attr.has_name(sym::naked) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
+ } else if attr.has_name(sym::no_mangle) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+ } else if attr.has_name(sym::no_coverage) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
+ } else if attr.has_name(sym::rustc_std_internal_symbol) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+ } else if attr.has_name(sym::used) {
+ let inner = attr.meta_item_list();
+ match inner.as_deref() {
+ Some([item]) if item.has_name(sym::linker) => {
+ if !tcx.features().used_with_arg {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::used_with_arg,
+ attr.span,
+ "`#[used(linker)]` is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
+ }
+ Some([item]) if item.has_name(sym::compiler) => {
+ if !tcx.features().used_with_arg {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::used_with_arg,
+ attr.span,
+ "`#[used(compiler)]` is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
+ }
+ Some(_) => {
+ tcx.sess
+ .struct_span_err(
+ attr.span,
+ "expected `used`, `used(compiler)` or `used(linker)`",
+ )
+ .emit();
+ }
+ None => {
+ // Unfortunately, unconditionally using `llvm.used` causes
+ // issues in handling `.init_array` with the gold linker,
+ // but using `llvm.compiler.used` caused a nontrival amount
+ // of unintentional ecosystem breakage -- particularly on
+ // Mach-O targets.
+ //
+ // As a result, we emit `llvm.compiler.used` only on ELF
+ // targets. This is somewhat ad-hoc, but actually follows
+ // our pre-LLVM 13 behavior (prior to the ecosystem
+ // breakage), and seems to match `clang`'s behavior as well
+ // (both before and after LLVM 13), possibly because they
+ // have similar compatibility concerns to us. See
+ // https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
+ // and following comments for some discussion of this, as
+ // well as the comments in `rustc_codegen_llvm` where these
+ // flags are handled.
+ //
+ // Anyway, to be clear: this is still up in the air
+ // somewhat, and is subject to change in the future (which
+ // is a good thing, because this would ideally be a bit
+ // more firmed up).
+ let is_like_elf = !(tcx.sess.target.is_like_osx
+ || tcx.sess.target.is_like_windows
+ || tcx.sess.target.is_like_wasm);
+ codegen_fn_attrs.flags |= if is_like_elf {
+ CodegenFnAttrFlags::USED
+ } else {
+ CodegenFnAttrFlags::USED_LINKER
+ };
+ }
+ }
+ } else if attr.has_name(sym::cmse_nonsecure_entry) {
+ if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0776,
+ "`#[cmse_nonsecure_entry]` requires C ABI"
+ )
+ .emit();
+ }
+ if !tcx.sess.target.llvm_target.contains("thumbv8m") {
+ struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
+ } else if attr.has_name(sym::thread_local) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
+ } else if attr.has_name(sym::track_caller) {
+ if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
+ struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
+ .emit();
+ }
+ if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::closure_track_caller,
+ attr.span,
+ "`#[track_caller]` on closures is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+ } else if attr.has_name(sym::export_name) {
+ if let Some(s) = attr.value_str() {
+ if s.as_str().contains('\0') {
+ // `#[export_name = ...]` will be converted to a null-terminated string,
+ // so it may not contain any null characters.
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0648,
+ "`export_name` may not contain null characters"
+ )
+ .emit();
+ }
+ codegen_fn_attrs.export_name = Some(s);
+ }
+ } else if attr.has_name(sym::target_feature) {
+ if !tcx.is_closure(did.to_def_id())
+ && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
+ {
+ if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
+ // The `#[target_feature]` attribute is allowed on
+ // WebAssembly targets on all functions, including safe
+ // ones. Other targets require that `#[target_feature]` is
+ // only applied to unsafe functions (pending the
+ // `target_feature_11` feature) because on most targets
+ // execution of instructions that are not supported is
+ // considered undefined behavior. For WebAssembly which is a
+ // 100% safe target at execution time it's not possible to
+ // execute undefined instructions, and even if a future
+ // feature was added in some form for this it would be a
+ // deterministic trap. There is no undefined behavior when
+ // executing WebAssembly so `#[target_feature]` is allowed
+ // on safe functions (but again, only for WebAssembly)
+ //
+ // Note that this is also allowed if `actually_rustdoc` so
+ // if a target is documenting some wasm-specific code then
+ // it's not spuriously denied.
+ } else if !tcx.features().target_feature_11 {
+ let mut err = feature_err(
+ &tcx.sess.parse_sess,
+ sym::target_feature_11,
+ attr.span,
+ "`#[target_feature(..)]` can only be applied to `unsafe` functions",
+ );
+ err.span_label(tcx.def_span(did), "not an `unsafe` function");
+ err.emit();
+ } else {
+ check_target_feature_trait_unsafe(tcx, did, attr.span);
+ }
+ }
+ from_target_feature(
+ tcx,
+ attr,
+ supported_target_features,
+ &mut codegen_fn_attrs.target_features,
+ );
+ } else if attr.has_name(sym::linkage) {
+ if let Some(val) = attr.value_str() {
+ codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
+ }
+ } else if attr.has_name(sym::link_section) {
+ if let Some(val) = attr.value_str() {
+ if val.as_str().bytes().any(|b| b == 0) {
+ let msg = format!(
+ "illegal null byte in link_section \
+ value: `{}`",
+ &val
+ );
+ tcx.sess.span_err(attr.span, &msg);
+ } else {
+ codegen_fn_attrs.link_section = Some(val);
+ }
+ }
+ } else if attr.has_name(sym::link_name) {
+ codegen_fn_attrs.link_name = attr.value_str();
+ } else if attr.has_name(sym::link_ordinal) {
+ link_ordinal_span = Some(attr.span);
+ if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
+ codegen_fn_attrs.link_ordinal = ordinal;
+ }
+ } else if attr.has_name(sym::no_sanitize) {
+ no_sanitize_span = Some(attr.span);
+ if let Some(list) = attr.meta_item_list() {
+ for item in list.iter() {
+ if item.has_name(sym::address) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
+ } else if item.has_name(sym::cfi) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
+ } else if item.has_name(sym::memory) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
+ } else if item.has_name(sym::memtag) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
+ } else if item.has_name(sym::shadow_call_stack) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK;
+ } else if item.has_name(sym::thread) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
+ } else if item.has_name(sym::hwaddress) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
+ } else {
+ tcx.sess
+ .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
+ .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, `shadow-call-stack`, or `thread`")
+ .emit();
+ }
+ }
+ }
+ } else if attr.has_name(sym::instruction_set) {
+ codegen_fn_attrs.instruction_set = match attr.meta_kind() {
+ Some(MetaItemKind::List(ref items)) => match items.as_slice() {
+ [NestedMetaItem::MetaItem(set)] => {
+ let segments =
+ set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
+ match segments.as_slice() {
+ [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
+ if !tcx.sess.target.has_thumb_interworking {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "target does not support `#[instruction_set]`"
+ )
+ .emit();
+ None
+ } else if segments[1] == sym::a32 {
+ Some(InstructionSetAttr::ArmA32)
+ } else if segments[1] == sym::t32 {
+ Some(InstructionSetAttr::ArmT32)
+ } else {
+ unreachable!()
+ }
+ }
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "invalid instruction set specified",
+ )
+ .emit();
+ None
+ }
+ }
+ }
+ [] => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0778,
+ "`#[instruction_set]` requires an argument"
+ )
+ .emit();
+ None
+ }
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "cannot specify more than one instruction set"
+ )
+ .emit();
+ None
+ }
+ },
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0778,
+ "must specify an instruction set"
+ )
+ .emit();
+ None
+ }
+ };
+ } else if attr.has_name(sym::repr) {
+ codegen_fn_attrs.alignment = match attr.meta_item_list() {
+ Some(items) => match items.as_slice() {
+ [item] => match item.name_value_literal() {
+ Some((sym::align, literal)) => {
+ let alignment = rustc_attr::parse_alignment(&literal.kind);
+
+ match alignment {
+ Ok(align) => Some(align),
+ Err(msg) => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0589,
+ "invalid `repr(align)` attribute: {}",
+ msg
+ )
+ .emit();
+
+ None
+ }
+ }
+ }
+ _ => None,
+ },
+ [] => None,
+ _ => None,
+ },
+ None => None,
+ };
+ }
+ }
+
+ codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
+ if !attr.has_name(sym::inline) {
+ return ia;
+ }
+ match attr.meta_kind() {
+ Some(MetaItemKind::Word) => InlineAttr::Hint,
+ Some(MetaItemKind::List(ref items)) => {
+ inline_span = Some(attr.span);
+ if items.len() != 1 {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0534,
+ "expected one argument"
+ )
+ .emit();
+ InlineAttr::None
+ } else if list_contains_name(&items, sym::always) {
+ InlineAttr::Always
+ } else if list_contains_name(&items, sym::never) {
+ InlineAttr::Never
+ } else {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ items[0].span(),
+ E0535,
+ "invalid argument"
+ )
+ .emit();
+
+ InlineAttr::None
+ }
+ }
+ Some(MetaItemKind::NameValue(_)) => ia,
+ None => ia,
+ }
+ });
+
+ codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
+ if !attr.has_name(sym::optimize) {
+ return ia;
+ }
+ let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
+ match attr.meta_kind() {
+ Some(MetaItemKind::Word) => {
+ err(attr.span, "expected one argument");
+ ia
+ }
+ Some(MetaItemKind::List(ref items)) => {
+ inline_span = Some(attr.span);
+ if items.len() != 1 {
+ err(attr.span, "expected one argument");
+ OptimizeAttr::None
+ } else if list_contains_name(&items, sym::size) {
+ OptimizeAttr::Size
+ } else if list_contains_name(&items, sym::speed) {
+ OptimizeAttr::Speed
+ } else {
+ err(items[0].span(), "invalid argument");
+ OptimizeAttr::None
+ }
+ }
+ Some(MetaItemKind::NameValue(_)) => ia,
+ None => ia,
+ }
+ });
+
+ // #73631: closures inherit `#[target_feature]` annotations
+ if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
+ let owner_id = tcx.parent(did.to_def_id());
+ if tcx.def_kind(owner_id).has_codegen_attrs() {
+ codegen_fn_attrs
+ .target_features
+ .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
+ }
+ }
+
+ // If a function uses #[target_feature] it can't be inlined into general
+ // purpose functions as they wouldn't have the right target features
+ // enabled. For that reason we also forbid #[inline(always)] as it can't be
+ // respected.
+ if !codegen_fn_attrs.target_features.is_empty() {
+ if codegen_fn_attrs.inline == InlineAttr::Always {
+ if let Some(span) = inline_span {
+ tcx.sess.span_err(
+ span,
+ "cannot use `#[inline(always)]` with \
+ `#[target_feature]`",
+ );
+ }
+ }
+ }
+
+ if !codegen_fn_attrs.no_sanitize.is_empty() {
+ if codegen_fn_attrs.inline == InlineAttr::Always {
+ if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(did);
+ tcx.struct_span_lint_hir(
+ lint::builtin::INLINE_NO_SANITIZE,
+ hir_id,
+ no_sanitize_span,
+ |lint| {
+ lint.build("`no_sanitize` will have no effect after inlining")
+ .span_note(inline_span, "inlining requested here")
+ .emit();
+ },
+ )
+ }
+ }
+ }
+
+ // Weak lang items have the same semantics as "std internal" symbols in the
+ // sense that they're preserved through all our LTO passes and only
+ // strippable by the linker.
+ //
+ // Additionally weak lang items have predetermined symbol names.
+ if tcx.is_weak_lang_item(did.to_def_id()) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+ }
+ if let Some(name) = weak_lang_items::link_name(attrs) {
+ codegen_fn_attrs.export_name = Some(name);
+ codegen_fn_attrs.link_name = Some(name);
+ }
+ check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
+
+ // Internal symbols to the standard library all have no_mangle semantics in
+ // that they have defined symbol names present in the function name. This
+ // also applies to weak symbols where they all have known symbol names.
+ if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+ }
+
+ // Any linkage to LLVM intrinsics for now forcibly marks them all as never
+ // unwinds since LLVM sometimes can't handle codegen which `invoke`s
+ // intrinsic functions.
+ if let Some(name) = &codegen_fn_attrs.link_name {
+ if name.as_str().starts_with("llvm.") {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+ }
+ }
+
+ codegen_fn_attrs
+}
+
+/// Computes the set of target features used in a function for the purposes of
+/// inline assembly.
+fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
+ let mut target_features = tcx.sess.unstable_target_features.clone();
+ if tcx.def_kind(did).has_codegen_attrs() {
+ let attrs = tcx.codegen_fn_attrs(did);
+ target_features.extend(&attrs.target_features);
+ match attrs.instruction_set {
+ None => {}
+ Some(InstructionSetAttr::ArmA32) => {
+ target_features.remove(&sym::thumb_mode);
+ }
+ Some(InstructionSetAttr::ArmT32) => {
+ target_features.insert(sym::thumb_mode);
+ }
+ }
+ }
+
+ tcx.arena.alloc(target_features)
+}
+
+/// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
+/// applied to the method prototype.
+fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ if let Some(impl_item) = tcx.opt_associated_item(def_id)
+ && let ty::AssocItemContainer::ImplContainer = impl_item.container
+ && let Some(trait_item) = impl_item.trait_item_def_id
+ {
+ return tcx
+ .codegen_fn_attrs(trait_item)
+ .flags
+ .intersects(CodegenFnAttrFlags::TRACK_CALLER);
+ }
+
+ false
+}
+
+fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
+ use rustc_ast::{Lit, LitIntType, LitKind};
+ let meta_item_list = attr.meta_item_list();
+ let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
+ let sole_meta_list = match meta_item_list {
+ Some([item]) => item.literal(),
+ Some(_) => {
+ tcx.sess
+ .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
+ .note("the attribute requires exactly one argument")
+ .emit();
+ return None;
+ }
+ _ => None,
+ };
+ if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
+ // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
+ // the ordinal must fit into 16 bits. Similarly, the Ordinal field in COFFShortExport (defined
+ // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
+ // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
+ //
+ // FIXME: should we allow an ordinal of 0? The MSVC toolchain has inconsistent support for this:
+ // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
+ // a zero ordinal. However, llvm-dlltool is perfectly happy to generate an import library
+ // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
+ // library produced by LLVM with an ordinal of 0, and it generates an .EXE. (I don't know yet
+ // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
+ // about LINK.EXE failing.)
+ if *ordinal <= u16::MAX as u128 {
+ Some(*ordinal as u16)
+ } else {
+ let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
+ tcx.sess
+ .struct_span_err(attr.span, &msg)
+ .note("the value may not exceed `u16::MAX`")
+ .emit();
+ None
+ }
+ } else {
+ tcx.sess
+ .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
+ .note("an unsuffixed integer value, e.g., `1`, is expected")
+ .emit();
+ None
+ }
+}
+
+fn check_link_name_xor_ordinal(
+ tcx: TyCtxt<'_>,
+ codegen_fn_attrs: &CodegenFnAttrs,
+ inline_span: Option<Span>,
+) {
+ if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
+ return;
+ }
+ let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
+ if let Some(span) = inline_span {
+ tcx.sess.span_err(span, msg);
+ } else {
+ tcx.sess.err(msg);
+ }
+}
+
+/// Checks the function annotated with `#[target_feature]` is not a safe
+/// trait method implementation, reporting an error if it is.
+fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(id);
+ let node = tcx.hir().get(hir_id);
+ if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ let parent_item = tcx.hir().expect_item(parent_id);
+ if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
+ tcx.sess
+ .struct_span_err(
+ attr_span,
+ "`#[target_feature(..)]` cannot be applied to safe trait method",
+ )
+ .span_label(attr_span, "cannot be applied to safe trait method")
+ .span_label(tcx.def_span(id), "not an `unsafe` function")
+ .emit();
+ }
+ }
+}