summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/expr_use_visitor.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/expr_use_visitor.rs')
-rw-r--r--compiler/rustc_typeck/src/expr_use_visitor.rs914
1 files changed, 914 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/expr_use_visitor.rs b/compiler/rustc_typeck/src/expr_use_visitor.rs
new file mode 100644
index 000000000..74a5b6e42
--- /dev/null
+++ b/compiler/rustc_typeck/src/expr_use_visitor.rs
@@ -0,0 +1,914 @@
+//! A different sort of visitor for walking fn bodies. Unlike the
+//! normal visitor, which just walks the entire body in one shot, the
+//! `ExprUseVisitor` determines how expressions are being used.
+
+use std::slice::from_ref;
+
+use hir::def::DefKind;
+use hir::Expr;
+// Export these here so that Clippy can use them.
+pub use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection};
+
+use rustc_data_structures::fx::FxIndexMap;
+use rustc_hir as hir;
+use rustc_hir::def::Res;
+use rustc_hir::def_id::LocalDefId;
+use rustc_hir::PatKind;
+use rustc_index::vec::Idx;
+use rustc_infer::infer::InferCtxt;
+use rustc_middle::hir::place::ProjectionKind;
+use rustc_middle::mir::FakeReadCause;
+use rustc_middle::ty::{self, adjustment, AdtKind, Ty, TyCtxt};
+use rustc_target::abi::VariantIdx;
+use ty::BorrowKind::ImmBorrow;
+
+use crate::mem_categorization as mc;
+
+/// This trait defines the callbacks you can expect to receive when
+/// employing the ExprUseVisitor.
+pub trait Delegate<'tcx> {
+ /// The value found at `place` is moved, depending
+ /// on `mode`. Where `diag_expr_id` is the id used for diagnostics for `place`.
+ ///
+ /// Use of a `Copy` type in a ByValue context is considered a use
+ /// by `ImmBorrow` and `borrow` is called instead. This is because
+ /// a shared borrow is the "minimum access" that would be needed
+ /// to perform a copy.
+ ///
+ ///
+ /// The parameter `diag_expr_id` indicates the HIR id that ought to be used for
+ /// diagnostics. Around pattern matching such as `let pat = expr`, the diagnostic
+ /// id will be the id of the expression `expr` but the place itself will have
+ /// the id of the binding in the pattern `pat`.
+ fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId);
+
+ /// The value found at `place` is being borrowed with kind `bk`.
+ /// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
+ fn borrow(
+ &mut self,
+ place_with_id: &PlaceWithHirId<'tcx>,
+ diag_expr_id: hir::HirId,
+ bk: ty::BorrowKind,
+ );
+
+ /// The value found at `place` is being copied.
+ /// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
+ fn copy(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
+ // In most cases, copying data from `x` is equivalent to doing `*&x`, so by default
+ // we treat a copy of `x` as a borrow of `x`.
+ self.borrow(place_with_id, diag_expr_id, ty::BorrowKind::ImmBorrow)
+ }
+
+ /// The path at `assignee_place` is being assigned to.
+ /// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
+ fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId);
+
+ /// The path at `binding_place` is a binding that is being initialized.
+ ///
+ /// This covers cases such as `let x = 42;`
+ fn bind(&mut self, binding_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
+ // Bindings can normally be treated as a regular assignment, so by default we
+ // forward this to the mutate callback.
+ self.mutate(binding_place, diag_expr_id)
+ }
+
+ /// The `place` should be a fake read because of specified `cause`.
+ fn fake_read(
+ &mut self,
+ place_with_id: &PlaceWithHirId<'tcx>,
+ cause: FakeReadCause,
+ diag_expr_id: hir::HirId,
+ );
+}
+
+#[derive(Copy, Clone, PartialEq, Debug)]
+enum ConsumeMode {
+ /// reference to x where x has a type that copies
+ Copy,
+ /// reference to x where x has a type that moves
+ Move,
+}
+
+#[derive(Copy, Clone, PartialEq, Debug)]
+pub enum MutateMode {
+ Init,
+ /// Example: `x = y`
+ JustWrite,
+ /// Example: `x += y`
+ WriteAndRead,
+}
+
+/// The ExprUseVisitor type
+///
+/// This is the code that actually walks the tree.
+pub struct ExprUseVisitor<'a, 'tcx> {
+ mc: mc::MemCategorizationContext<'a, 'tcx>,
+ body_owner: LocalDefId,
+ delegate: &'a mut dyn Delegate<'tcx>,
+}
+
+/// If the MC results in an error, it's because the type check
+/// failed (or will fail, when the error is uncovered and reported
+/// during writeback). In this case, we just ignore this part of the
+/// code.
+///
+/// Note that this macro appears similar to try!(), but, unlike try!(),
+/// it does not propagate the error.
+macro_rules! return_if_err {
+ ($inp: expr) => {
+ match $inp {
+ Ok(v) => v,
+ Err(()) => {
+ debug!("mc reported err");
+ return;
+ }
+ }
+ };
+}
+
+impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
+ /// Creates the ExprUseVisitor, configuring it with the various options provided:
+ ///
+ /// - `delegate` -- who receives the callbacks
+ /// - `param_env` --- parameter environment for trait lookups (esp. pertaining to `Copy`)
+ /// - `typeck_results` --- typeck results for the code being analyzed
+ pub fn new(
+ delegate: &'a mut (dyn Delegate<'tcx> + 'a),
+ infcx: &'a InferCtxt<'a, 'tcx>,
+ body_owner: LocalDefId,
+ param_env: ty::ParamEnv<'tcx>,
+ typeck_results: &'a ty::TypeckResults<'tcx>,
+ ) -> Self {
+ ExprUseVisitor {
+ mc: mc::MemCategorizationContext::new(infcx, param_env, body_owner, typeck_results),
+ body_owner,
+ delegate,
+ }
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ pub fn consume_body(&mut self, body: &hir::Body<'_>) {
+ for param in body.params {
+ let param_ty = return_if_err!(self.mc.pat_ty_adjusted(param.pat));
+ debug!("consume_body: param_ty = {:?}", param_ty);
+
+ let param_place = self.mc.cat_rvalue(param.hir_id, param.pat.span, param_ty);
+
+ self.walk_irrefutable_pat(&param_place, param.pat);
+ }
+
+ self.consume_expr(&body.value);
+ }
+
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.mc.tcx()
+ }
+
+ fn delegate_consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
+ delegate_consume(&self.mc, self.delegate, place_with_id, diag_expr_id)
+ }
+
+ fn consume_exprs(&mut self, exprs: &[hir::Expr<'_>]) {
+ for expr in exprs {
+ self.consume_expr(expr);
+ }
+ }
+
+ pub fn consume_expr(&mut self, expr: &hir::Expr<'_>) {
+ debug!("consume_expr(expr={:?})", expr);
+
+ let place_with_id = return_if_err!(self.mc.cat_expr(expr));
+ self.delegate_consume(&place_with_id, place_with_id.hir_id);
+ self.walk_expr(expr);
+ }
+
+ fn mutate_expr(&mut self, expr: &hir::Expr<'_>) {
+ let place_with_id = return_if_err!(self.mc.cat_expr(expr));
+ self.delegate.mutate(&place_with_id, place_with_id.hir_id);
+ self.walk_expr(expr);
+ }
+
+ fn borrow_expr(&mut self, expr: &hir::Expr<'_>, bk: ty::BorrowKind) {
+ debug!("borrow_expr(expr={:?}, bk={:?})", expr, bk);
+
+ let place_with_id = return_if_err!(self.mc.cat_expr(expr));
+ self.delegate.borrow(&place_with_id, place_with_id.hir_id, bk);
+
+ self.walk_expr(expr)
+ }
+
+ fn select_from_expr(&mut self, expr: &hir::Expr<'_>) {
+ self.walk_expr(expr)
+ }
+
+ pub fn walk_expr(&mut self, expr: &hir::Expr<'_>) {
+ debug!("walk_expr(expr={:?})", expr);
+
+ self.walk_adjustment(expr);
+
+ match expr.kind {
+ hir::ExprKind::Path(_) => {}
+
+ hir::ExprKind::Type(subexpr, _) => self.walk_expr(subexpr),
+
+ hir::ExprKind::Unary(hir::UnOp::Deref, base) => {
+ // *base
+ self.select_from_expr(base);
+ }
+
+ hir::ExprKind::Field(base, _) => {
+ // base.f
+ self.select_from_expr(base);
+ }
+
+ hir::ExprKind::Index(lhs, rhs) => {
+ // lhs[rhs]
+ self.select_from_expr(lhs);
+ self.consume_expr(rhs);
+ }
+
+ hir::ExprKind::Call(callee, args) => {
+ // callee(args)
+ self.consume_expr(callee);
+ self.consume_exprs(args);
+ }
+
+ hir::ExprKind::MethodCall(.., args, _) => {
+ // callee.m(args)
+ self.consume_exprs(args);
+ }
+
+ hir::ExprKind::Struct(_, fields, ref opt_with) => {
+ self.walk_struct_expr(fields, opt_with);
+ }
+
+ hir::ExprKind::Tup(exprs) => {
+ self.consume_exprs(exprs);
+ }
+
+ hir::ExprKind::If(ref cond_expr, ref then_expr, ref opt_else_expr) => {
+ self.consume_expr(cond_expr);
+ self.consume_expr(then_expr);
+ if let Some(ref else_expr) = *opt_else_expr {
+ self.consume_expr(else_expr);
+ }
+ }
+
+ hir::ExprKind::Let(hir::Let { pat, init, .. }) => {
+ self.walk_local(init, pat, None, |t| t.borrow_expr(init, ty::ImmBorrow))
+ }
+
+ hir::ExprKind::Match(ref discr, arms, _) => {
+ let discr_place = return_if_err!(self.mc.cat_expr(discr));
+ self.maybe_read_scrutinee(
+ discr,
+ discr_place.clone(),
+ arms.iter().map(|arm| arm.pat),
+ );
+
+ // treatment of the discriminant is handled while walking the arms.
+ for arm in arms {
+ self.walk_arm(&discr_place, arm);
+ }
+ }
+
+ hir::ExprKind::Array(exprs) => {
+ self.consume_exprs(exprs);
+ }
+
+ hir::ExprKind::AddrOf(_, m, ref base) => {
+ // &base
+ // make sure that the thing we are pointing out stays valid
+ // for the lifetime `scope_r` of the resulting ptr:
+ let bk = ty::BorrowKind::from_mutbl(m);
+ self.borrow_expr(base, bk);
+ }
+
+ hir::ExprKind::InlineAsm(asm) => {
+ for (op, _op_sp) in asm.operands {
+ match op {
+ hir::InlineAsmOperand::In { expr, .. } => self.consume_expr(expr),
+ hir::InlineAsmOperand::Out { expr: Some(expr), .. }
+ | hir::InlineAsmOperand::InOut { expr, .. } => {
+ self.mutate_expr(expr);
+ }
+ hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
+ self.consume_expr(in_expr);
+ if let Some(out_expr) = out_expr {
+ self.mutate_expr(out_expr);
+ }
+ }
+ hir::InlineAsmOperand::Out { expr: None, .. }
+ | hir::InlineAsmOperand::Const { .. }
+ | hir::InlineAsmOperand::SymFn { .. }
+ | hir::InlineAsmOperand::SymStatic { .. } => {}
+ }
+ }
+ }
+
+ hir::ExprKind::Continue(..)
+ | hir::ExprKind::Lit(..)
+ | hir::ExprKind::ConstBlock(..)
+ | hir::ExprKind::Err => {}
+
+ hir::ExprKind::Loop(blk, ..) => {
+ self.walk_block(blk);
+ }
+
+ hir::ExprKind::Unary(_, lhs) => {
+ self.consume_expr(lhs);
+ }
+
+ hir::ExprKind::Binary(_, lhs, rhs) => {
+ self.consume_expr(lhs);
+ self.consume_expr(rhs);
+ }
+
+ hir::ExprKind::Block(blk, _) => {
+ self.walk_block(blk);
+ }
+
+ hir::ExprKind::Break(_, ref opt_expr) | hir::ExprKind::Ret(ref opt_expr) => {
+ if let Some(expr) = *opt_expr {
+ self.consume_expr(expr);
+ }
+ }
+
+ hir::ExprKind::Assign(lhs, rhs, _) => {
+ self.mutate_expr(lhs);
+ self.consume_expr(rhs);
+ }
+
+ hir::ExprKind::Cast(base, _) => {
+ self.consume_expr(base);
+ }
+
+ hir::ExprKind::DropTemps(expr) => {
+ self.consume_expr(expr);
+ }
+
+ hir::ExprKind::AssignOp(_, lhs, rhs) => {
+ if self.mc.typeck_results.is_method_call(expr) {
+ self.consume_expr(lhs);
+ } else {
+ self.mutate_expr(lhs);
+ }
+ self.consume_expr(rhs);
+ }
+
+ hir::ExprKind::Repeat(base, _) => {
+ self.consume_expr(base);
+ }
+
+ hir::ExprKind::Closure { .. } => {
+ self.walk_captures(expr);
+ }
+
+ hir::ExprKind::Box(ref base) => {
+ self.consume_expr(base);
+ }
+
+ hir::ExprKind::Yield(value, _) => {
+ self.consume_expr(value);
+ }
+ }
+ }
+
+ fn walk_stmt(&mut self, stmt: &hir::Stmt<'_>) {
+ match stmt.kind {
+ hir::StmtKind::Local(hir::Local { pat, init: Some(expr), els, .. }) => {
+ self.walk_local(expr, pat, *els, |_| {})
+ }
+
+ hir::StmtKind::Local(_) => {}
+
+ hir::StmtKind::Item(_) => {
+ // We don't visit nested items in this visitor,
+ // only the fn body we were given.
+ }
+
+ hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
+ self.consume_expr(expr);
+ }
+ }
+ }
+
+ fn maybe_read_scrutinee<'t>(
+ &mut self,
+ discr: &Expr<'_>,
+ discr_place: PlaceWithHirId<'tcx>,
+ pats: impl Iterator<Item = &'t hir::Pat<'t>>,
+ ) {
+ // Matching should not always be considered a use of the place, hence
+ // discr does not necessarily need to be borrowed.
+ // We only want to borrow discr if the pattern contain something other
+ // than wildcards.
+ let ExprUseVisitor { ref mc, body_owner: _, delegate: _ } = *self;
+ let mut needs_to_be_read = false;
+ for pat in pats {
+ return_if_err!(mc.cat_pattern(discr_place.clone(), pat, |place, pat| {
+ match &pat.kind {
+ PatKind::Binding(.., opt_sub_pat) => {
+ // If the opt_sub_pat is None, than the binding does not count as
+ // a wildcard for the purpose of borrowing discr.
+ if opt_sub_pat.is_none() {
+ needs_to_be_read = true;
+ }
+ }
+ PatKind::Path(qpath) => {
+ // A `Path` pattern is just a name like `Foo`. This is either a
+ // named constant or else it refers to an ADT variant
+
+ let res = self.mc.typeck_results.qpath_res(qpath, pat.hir_id);
+ match res {
+ Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) => {
+ // Named constants have to be equated with the value
+ // being matched, so that's a read of the value being matched.
+ //
+ // FIXME: We don't actually reads for ZSTs.
+ needs_to_be_read = true;
+ }
+ _ => {
+ // Otherwise, this is a struct/enum variant, and so it's
+ // only a read if we need to read the discriminant.
+ needs_to_be_read |= is_multivariant_adt(place.place.ty());
+ }
+ }
+ }
+ PatKind::TupleStruct(..) | PatKind::Struct(..) | PatKind::Tuple(..) => {
+ // For `Foo(..)`, `Foo { ... }` and `(...)` patterns, check if we are matching
+ // against a multivariant enum or struct. In that case, we have to read
+ // the discriminant. Otherwise this kind of pattern doesn't actually
+ // read anything (we'll get invoked for the `...`, which may indeed
+ // perform some reads).
+
+ let place_ty = place.place.ty();
+ needs_to_be_read |= is_multivariant_adt(place_ty);
+ }
+ PatKind::Lit(_) | PatKind::Range(..) => {
+ // If the PatKind is a Lit or a Range then we want
+ // to borrow discr.
+ needs_to_be_read = true;
+ }
+ PatKind::Or(_)
+ | PatKind::Box(_)
+ | PatKind::Slice(..)
+ | PatKind::Ref(..)
+ | PatKind::Wild => {
+ // If the PatKind is Or, Box, Slice or Ref, the decision is made later
+ // as these patterns contains subpatterns
+ // If the PatKind is Wild, the decision is made based on the other patterns being
+ // examined
+ }
+ }
+ }));
+ }
+
+ if needs_to_be_read {
+ self.borrow_expr(discr, ty::ImmBorrow);
+ } else {
+ let closure_def_id = match discr_place.place.base {
+ PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
+ _ => None,
+ };
+
+ self.delegate.fake_read(
+ &discr_place,
+ FakeReadCause::ForMatchedPlace(closure_def_id),
+ discr_place.hir_id,
+ );
+
+ // We always want to walk the discriminant. We want to make sure, for instance,
+ // that the discriminant has been initialized.
+ self.walk_expr(discr);
+ }
+ }
+
+ fn walk_local<F>(
+ &mut self,
+ expr: &hir::Expr<'_>,
+ pat: &hir::Pat<'_>,
+ els: Option<&hir::Block<'_>>,
+ mut f: F,
+ ) where
+ F: FnMut(&mut Self),
+ {
+ self.walk_expr(expr);
+ let expr_place = return_if_err!(self.mc.cat_expr(expr));
+ f(self);
+ if let Some(els) = els {
+ // borrowing because we need to test the descriminant
+ self.maybe_read_scrutinee(expr, expr_place.clone(), from_ref(pat).iter());
+ self.walk_block(els)
+ }
+ self.walk_irrefutable_pat(&expr_place, &pat);
+ }
+
+ /// Indicates that the value of `blk` will be consumed, meaning either copied or moved
+ /// depending on its type.
+ fn walk_block(&mut self, blk: &hir::Block<'_>) {
+ debug!("walk_block(blk.hir_id={})", blk.hir_id);
+
+ for stmt in blk.stmts {
+ self.walk_stmt(stmt);
+ }
+
+ if let Some(ref tail_expr) = blk.expr {
+ self.consume_expr(tail_expr);
+ }
+ }
+
+ fn walk_struct_expr<'hir>(
+ &mut self,
+ fields: &[hir::ExprField<'_>],
+ opt_with: &Option<&'hir hir::Expr<'_>>,
+ ) {
+ // Consume the expressions supplying values for each field.
+ for field in fields {
+ self.consume_expr(field.expr);
+ }
+
+ let with_expr = match *opt_with {
+ Some(w) => &*w,
+ None => {
+ return;
+ }
+ };
+
+ let with_place = return_if_err!(self.mc.cat_expr(with_expr));
+
+ // Select just those fields of the `with`
+ // expression that will actually be used
+ match with_place.place.ty().kind() {
+ ty::Adt(adt, substs) if adt.is_struct() => {
+ // Consume those fields of the with expression that are needed.
+ for (f_index, with_field) in adt.non_enum_variant().fields.iter().enumerate() {
+ let is_mentioned = fields.iter().any(|f| {
+ self.tcx().field_index(f.hir_id, self.mc.typeck_results) == f_index
+ });
+ if !is_mentioned {
+ let field_place = self.mc.cat_projection(
+ &*with_expr,
+ with_place.clone(),
+ with_field.ty(self.tcx(), substs),
+ ProjectionKind::Field(f_index as u32, VariantIdx::new(0)),
+ );
+ self.delegate_consume(&field_place, field_place.hir_id);
+ }
+ }
+ }
+ _ => {
+ // the base expression should always evaluate to a
+ // struct; however, when EUV is run during typeck, it
+ // may not. This will generate an error earlier in typeck,
+ // so we can just ignore it.
+ if !self.tcx().sess.has_errors().is_some() {
+ span_bug!(with_expr.span, "with expression doesn't evaluate to a struct");
+ }
+ }
+ }
+
+ // walk the with expression so that complex expressions
+ // are properly handled.
+ self.walk_expr(with_expr);
+ }
+
+ /// Invoke the appropriate delegate calls for anything that gets
+ /// consumed or borrowed as part of the automatic adjustment
+ /// process.
+ fn walk_adjustment(&mut self, expr: &hir::Expr<'_>) {
+ let adjustments = self.mc.typeck_results.expr_adjustments(expr);
+ let mut place_with_id = return_if_err!(self.mc.cat_expr_unadjusted(expr));
+ for adjustment in adjustments {
+ debug!("walk_adjustment expr={:?} adj={:?}", expr, adjustment);
+ match adjustment.kind {
+ adjustment::Adjust::NeverToAny | adjustment::Adjust::Pointer(_) => {
+ // Creating a closure/fn-pointer or unsizing consumes
+ // the input and stores it into the resulting rvalue.
+ self.delegate_consume(&place_with_id, place_with_id.hir_id);
+ }
+
+ adjustment::Adjust::Deref(None) => {}
+
+ // Autoderefs for overloaded Deref calls in fact reference
+ // their receiver. That is, if we have `(*x)` where `x`
+ // is of type `Rc<T>`, then this in fact is equivalent to
+ // `x.deref()`. Since `deref()` is declared with `&self`,
+ // this is an autoref of `x`.
+ adjustment::Adjust::Deref(Some(ref deref)) => {
+ let bk = ty::BorrowKind::from_mutbl(deref.mutbl);
+ self.delegate.borrow(&place_with_id, place_with_id.hir_id, bk);
+ }
+
+ adjustment::Adjust::Borrow(ref autoref) => {
+ self.walk_autoref(expr, &place_with_id, autoref);
+ }
+ }
+ place_with_id =
+ return_if_err!(self.mc.cat_expr_adjusted(expr, place_with_id, adjustment));
+ }
+ }
+
+ /// Walks the autoref `autoref` applied to the autoderef'd
+ /// `expr`. `base_place` is the mem-categorized form of `expr`
+ /// after all relevant autoderefs have occurred.
+ fn walk_autoref(
+ &mut self,
+ expr: &hir::Expr<'_>,
+ base_place: &PlaceWithHirId<'tcx>,
+ autoref: &adjustment::AutoBorrow<'tcx>,
+ ) {
+ debug!(
+ "walk_autoref(expr.hir_id={} base_place={:?} autoref={:?})",
+ expr.hir_id, base_place, autoref
+ );
+
+ match *autoref {
+ adjustment::AutoBorrow::Ref(_, m) => {
+ self.delegate.borrow(
+ base_place,
+ base_place.hir_id,
+ ty::BorrowKind::from_mutbl(m.into()),
+ );
+ }
+
+ adjustment::AutoBorrow::RawPtr(m) => {
+ debug!("walk_autoref: expr.hir_id={} base_place={:?}", expr.hir_id, base_place);
+
+ self.delegate.borrow(base_place, base_place.hir_id, ty::BorrowKind::from_mutbl(m));
+ }
+ }
+ }
+
+ fn walk_arm(&mut self, discr_place: &PlaceWithHirId<'tcx>, arm: &hir::Arm<'_>) {
+ let closure_def_id = match discr_place.place.base {
+ PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
+ _ => None,
+ };
+
+ self.delegate.fake_read(
+ discr_place,
+ FakeReadCause::ForMatchedPlace(closure_def_id),
+ discr_place.hir_id,
+ );
+ self.walk_pat(discr_place, arm.pat, arm.guard.is_some());
+
+ if let Some(hir::Guard::If(e)) = arm.guard {
+ self.consume_expr(e)
+ } else if let Some(hir::Guard::IfLet(ref l)) = arm.guard {
+ self.consume_expr(l.init)
+ }
+
+ self.consume_expr(arm.body);
+ }
+
+ /// Walks a pat that occurs in isolation (i.e., top-level of fn argument or
+ /// let binding, and *not* a match arm or nested pat.)
+ fn walk_irrefutable_pat(&mut self, discr_place: &PlaceWithHirId<'tcx>, pat: &hir::Pat<'_>) {
+ let closure_def_id = match discr_place.place.base {
+ PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
+ _ => None,
+ };
+
+ self.delegate.fake_read(
+ discr_place,
+ FakeReadCause::ForLet(closure_def_id),
+ discr_place.hir_id,
+ );
+ self.walk_pat(discr_place, pat, false);
+ }
+
+ /// The core driver for walking a pattern
+ fn walk_pat(
+ &mut self,
+ discr_place: &PlaceWithHirId<'tcx>,
+ pat: &hir::Pat<'_>,
+ has_guard: bool,
+ ) {
+ debug!("walk_pat(discr_place={:?}, pat={:?}, has_guard={:?})", discr_place, pat, has_guard);
+
+ let tcx = self.tcx();
+ let ExprUseVisitor { ref mc, body_owner: _, ref mut delegate } = *self;
+ return_if_err!(mc.cat_pattern(discr_place.clone(), pat, |place, pat| {
+ if let PatKind::Binding(_, canonical_id, ..) = pat.kind {
+ debug!("walk_pat: binding place={:?} pat={:?}", place, pat);
+ if let Some(bm) =
+ mc.typeck_results.extract_binding_mode(tcx.sess, pat.hir_id, pat.span)
+ {
+ debug!("walk_pat: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);
+
+ // pat_ty: the type of the binding being produced.
+ let pat_ty = return_if_err!(mc.node_ty(pat.hir_id));
+ debug!("walk_pat: pat_ty={:?}", pat_ty);
+
+ let def = Res::Local(canonical_id);
+ if let Ok(ref binding_place) = mc.cat_res(pat.hir_id, pat.span, pat_ty, def) {
+ delegate.bind(binding_place, binding_place.hir_id);
+ }
+
+ // Subtle: MIR desugaring introduces immutable borrows for each pattern
+ // binding when lowering pattern guards to ensure that the guard does not
+ // modify the scrutinee.
+ if has_guard {
+ delegate.borrow(place, discr_place.hir_id, ImmBorrow);
+ }
+
+ // It is also a borrow or copy/move of the value being matched.
+ // In a cases of pattern like `let pat = upvar`, don't use the span
+ // of the pattern, as this just looks confusing, instead use the span
+ // of the discriminant.
+ match bm {
+ ty::BindByReference(m) => {
+ let bk = ty::BorrowKind::from_mutbl(m);
+ delegate.borrow(place, discr_place.hir_id, bk);
+ }
+ ty::BindByValue(..) => {
+ debug!("walk_pat binding consuming pat");
+ delegate_consume(mc, *delegate, place, discr_place.hir_id);
+ }
+ }
+ }
+ }
+ }));
+ }
+
+ /// Handle the case where the current body contains a closure.
+ ///
+ /// When the current body being handled is a closure, then we must make sure that
+ /// - The parent closure only captures Places from the nested closure that are not local to it.
+ ///
+ /// In the following example the closures `c` only captures `p.x` even though `incr`
+ /// is a capture of the nested closure
+ ///
+ /// ```
+ /// struct P { x: i32 }
+ /// let mut p = P { x: 4 };
+ /// let c = || {
+ /// let incr = 10;
+ /// let nested = || p.x += incr;
+ /// };
+ /// ```
+ ///
+ /// - When reporting the Place back to the Delegate, ensure that the UpvarId uses the enclosing
+ /// closure as the DefId.
+ fn walk_captures(&mut self, closure_expr: &hir::Expr<'_>) {
+ fn upvar_is_local_variable<'tcx>(
+ upvars: Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>>,
+ upvar_id: hir::HirId,
+ body_owner_is_closure: bool,
+ ) -> bool {
+ upvars.map(|upvars| !upvars.contains_key(&upvar_id)).unwrap_or(body_owner_is_closure)
+ }
+
+ debug!("walk_captures({:?})", closure_expr);
+
+ let tcx = self.tcx();
+ let closure_def_id = tcx.hir().local_def_id(closure_expr.hir_id);
+ let upvars = tcx.upvars_mentioned(self.body_owner);
+
+ // For purposes of this function, generator and closures are equivalent.
+ let body_owner_is_closure =
+ matches!(tcx.hir().body_owner_kind(self.body_owner), hir::BodyOwnerKind::Closure,);
+
+ // If we have a nested closure, we want to include the fake reads present in the nested closure.
+ if let Some(fake_reads) = self.mc.typeck_results.closure_fake_reads.get(&closure_def_id) {
+ for (fake_read, cause, hir_id) in fake_reads.iter() {
+ match fake_read.base {
+ PlaceBase::Upvar(upvar_id) => {
+ if upvar_is_local_variable(
+ upvars,
+ upvar_id.var_path.hir_id,
+ body_owner_is_closure,
+ ) {
+ // The nested closure might be fake reading the current (enclosing) closure's local variables.
+ // The only places we want to fake read before creating the parent closure are the ones that
+ // are not local to it/ defined by it.
+ //
+ // ```rust,ignore(cannot-test-this-because-pseudo-code)
+ // let v1 = (0, 1);
+ // let c = || { // fake reads: v1
+ // let v2 = (0, 1);
+ // let e = || { // fake reads: v1, v2
+ // let (_, t1) = v1;
+ // let (_, t2) = v2;
+ // }
+ // }
+ // ```
+ // This check is performed when visiting the body of the outermost closure (`c`) and ensures
+ // that we don't add a fake read of v2 in c.
+ continue;
+ }
+ }
+ _ => {
+ bug!(
+ "Do not know how to get HirId out of Rvalue and StaticItem {:?}",
+ fake_read.base
+ );
+ }
+ };
+ self.delegate.fake_read(
+ &PlaceWithHirId { place: fake_read.clone(), hir_id: *hir_id },
+ *cause,
+ *hir_id,
+ );
+ }
+ }
+
+ if let Some(min_captures) = self.mc.typeck_results.closure_min_captures.get(&closure_def_id)
+ {
+ for (var_hir_id, min_list) in min_captures.iter() {
+ if upvars.map_or(body_owner_is_closure, |upvars| !upvars.contains_key(var_hir_id)) {
+ // The nested closure might be capturing the current (enclosing) closure's local variables.
+ // We check if the root variable is ever mentioned within the enclosing closure, if not
+ // then for the current body (if it's a closure) these aren't captures, we will ignore them.
+ continue;
+ }
+ for captured_place in min_list {
+ let place = &captured_place.place;
+ let capture_info = captured_place.info;
+
+ let place_base = if body_owner_is_closure {
+ // Mark the place to be captured by the enclosing closure
+ PlaceBase::Upvar(ty::UpvarId::new(*var_hir_id, self.body_owner))
+ } else {
+ // If the body owner isn't a closure then the variable must
+ // be a local variable
+ PlaceBase::Local(*var_hir_id)
+ };
+ let place_with_id = PlaceWithHirId::new(
+ capture_info.path_expr_id.unwrap_or(
+ capture_info.capture_kind_expr_id.unwrap_or(closure_expr.hir_id),
+ ),
+ place.base_ty,
+ place_base,
+ place.projections.clone(),
+ );
+
+ match capture_info.capture_kind {
+ ty::UpvarCapture::ByValue => {
+ self.delegate_consume(&place_with_id, place_with_id.hir_id);
+ }
+ ty::UpvarCapture::ByRef(upvar_borrow) => {
+ self.delegate.borrow(
+ &place_with_id,
+ place_with_id.hir_id,
+ upvar_borrow,
+ );
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+fn copy_or_move<'a, 'tcx>(
+ mc: &mc::MemCategorizationContext<'a, 'tcx>,
+ place_with_id: &PlaceWithHirId<'tcx>,
+) -> ConsumeMode {
+ if !mc.type_is_copy_modulo_regions(
+ place_with_id.place.ty(),
+ mc.tcx().hir().span(place_with_id.hir_id),
+ ) {
+ ConsumeMode::Move
+ } else {
+ ConsumeMode::Copy
+ }
+}
+
+// - If a place is used in a `ByValue` context then move it if it's not a `Copy` type.
+// - If the place that is a `Copy` type consider it an `ImmBorrow`.
+fn delegate_consume<'a, 'tcx>(
+ mc: &mc::MemCategorizationContext<'a, 'tcx>,
+ delegate: &mut (dyn Delegate<'tcx> + 'a),
+ place_with_id: &PlaceWithHirId<'tcx>,
+ diag_expr_id: hir::HirId,
+) {
+ debug!("delegate_consume(place_with_id={:?})", place_with_id);
+
+ let mode = copy_or_move(mc, place_with_id);
+
+ match mode {
+ ConsumeMode::Move => delegate.consume(place_with_id, diag_expr_id),
+ ConsumeMode::Copy => delegate.copy(place_with_id, diag_expr_id),
+ }
+}
+
+fn is_multivariant_adt(ty: Ty<'_>) -> bool {
+ if let ty::Adt(def, _) = ty.kind() {
+ // Note that if a non-exhaustive SingleVariant is defined in another crate, we need
+ // to assume that more cases will be added to the variant in the future. This mean
+ // that we should handle non-exhaustive SingleVariant the same way we would handle
+ // a MultiVariant.
+ // If the variant is not local it must be defined in another crate.
+ let is_non_exhaustive = match def.adt_kind() {
+ AdtKind::Struct | AdtKind::Union => {
+ def.non_enum_variant().is_field_list_non_exhaustive()
+ }
+ AdtKind::Enum => def.is_variant_list_non_exhaustive(),
+ };
+ def.variants().len() > 1 || (!def.did().is_local() && is_non_exhaustive)
+ } else {
+ false
+ }
+}