summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/impl_wf_check.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/impl_wf_check.rs')
-rw-r--r--compiler/rustc_typeck/src/impl_wf_check.rs228
1 files changed, 228 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/impl_wf_check.rs b/compiler/rustc_typeck/src/impl_wf_check.rs
new file mode 100644
index 000000000..9fee1eaae
--- /dev/null
+++ b/compiler/rustc_typeck/src/impl_wf_check.rs
@@ -0,0 +1,228 @@
+//! This pass enforces various "well-formedness constraints" on impls.
+//! Logically, it is part of wfcheck -- but we do it early so that we
+//! can stop compilation afterwards, since part of the trait matching
+//! infrastructure gets very grumpy if these conditions don't hold. In
+//! particular, if there are type parameters that are not part of the
+//! impl, then coherence will report strange inference ambiguity
+//! errors; if impls have duplicate items, we get misleading
+//! specialization errors. These things can (and probably should) be
+//! fixed, but for the moment it's easier to do these checks early.
+
+use crate::constrained_generic_params as cgp;
+use min_specialization::check_min_specialization;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::struct_span_err;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::LocalDefId;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
+use rustc_span::{Span, Symbol};
+
+use std::collections::hash_map::Entry::{Occupied, Vacant};
+
+mod min_specialization;
+
+/// Checks that all the type/lifetime parameters on an impl also
+/// appear in the trait ref or self type (or are constrained by a
+/// where-clause). These rules are needed to ensure that, given a
+/// trait ref like `<T as Trait<U>>`, we can derive the values of all
+/// parameters on the impl (which is needed to make specialization
+/// possible).
+///
+/// However, in the case of lifetimes, we only enforce these rules if
+/// the lifetime parameter is used in an associated type. This is a
+/// concession to backwards compatibility; see comment at the end of
+/// the fn for details.
+///
+/// Example:
+///
+/// ```rust,ignore (pseudo-Rust)
+/// impl<T> Trait<Foo> for Bar { ... }
+/// // ^ T does not appear in `Foo` or `Bar`, error!
+///
+/// impl<T> Trait<Foo<T>> for Bar { ... }
+/// // ^ T appears in `Foo<T>`, ok.
+///
+/// impl<T> Trait<Foo> for Bar where Bar: Iterator<Item = T> { ... }
+/// // ^ T is bound to `<Bar as Iterator>::Item`, ok.
+///
+/// impl<'a> Trait<Foo> for Bar { }
+/// // ^ 'a is unused, but for back-compat we allow it
+///
+/// impl<'a> Trait<Foo> for Bar { type X = &'a i32; }
+/// // ^ 'a is unused and appears in assoc type, error
+/// ```
+fn check_mod_impl_wf(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+ let min_specialization = tcx.features().min_specialization;
+ let module = tcx.hir_module_items(module_def_id);
+ for id in module.items() {
+ if matches!(tcx.def_kind(id.def_id), DefKind::Impl) {
+ enforce_impl_params_are_constrained(tcx, id.def_id);
+ enforce_impl_items_are_distinct(tcx, id.def_id);
+ if min_specialization {
+ check_min_specialization(tcx, id.def_id);
+ }
+ }
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ *providers = Providers { check_mod_impl_wf, ..*providers };
+}
+
+fn enforce_impl_params_are_constrained(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
+ // Every lifetime used in an associated type must be constrained.
+ let impl_self_ty = tcx.type_of(impl_def_id);
+ if impl_self_ty.references_error() {
+ // Don't complain about unconstrained type params when self ty isn't known due to errors.
+ // (#36836)
+ tcx.sess.delay_span_bug(
+ tcx.def_span(impl_def_id),
+ &format!(
+ "potentially unconstrained type parameters weren't evaluated: {:?}",
+ impl_self_ty,
+ ),
+ );
+ return;
+ }
+ let impl_generics = tcx.generics_of(impl_def_id);
+ let impl_predicates = tcx.predicates_of(impl_def_id);
+ let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
+
+ let mut input_parameters = cgp::parameters_for_impl(impl_self_ty, impl_trait_ref);
+ cgp::identify_constrained_generic_params(
+ tcx,
+ impl_predicates,
+ impl_trait_ref,
+ &mut input_parameters,
+ );
+
+ // Disallow unconstrained lifetimes, but only if they appear in assoc types.
+ let lifetimes_in_associated_types: FxHashSet<_> = tcx
+ .associated_item_def_ids(impl_def_id)
+ .iter()
+ .flat_map(|def_id| {
+ let item = tcx.associated_item(def_id);
+ match item.kind {
+ ty::AssocKind::Type => {
+ if item.defaultness(tcx).has_value() {
+ cgp::parameters_for(&tcx.type_of(def_id), true)
+ } else {
+ Vec::new()
+ }
+ }
+ ty::AssocKind::Fn | ty::AssocKind::Const => Vec::new(),
+ }
+ })
+ .collect();
+
+ for param in &impl_generics.params {
+ match param.kind {
+ // Disallow ANY unconstrained type parameters.
+ ty::GenericParamDefKind::Type { .. } => {
+ let param_ty = ty::ParamTy::for_def(param);
+ if !input_parameters.contains(&cgp::Parameter::from(param_ty)) {
+ report_unused_parameter(tcx, tcx.def_span(param.def_id), "type", param_ty.name);
+ }
+ }
+ ty::GenericParamDefKind::Lifetime => {
+ let param_lt = cgp::Parameter::from(param.to_early_bound_region_data());
+ if lifetimes_in_associated_types.contains(&param_lt) && // (*)
+ !input_parameters.contains(&param_lt)
+ {
+ report_unused_parameter(
+ tcx,
+ tcx.def_span(param.def_id),
+ "lifetime",
+ param.name,
+ );
+ }
+ }
+ ty::GenericParamDefKind::Const { .. } => {
+ let param_ct = ty::ParamConst::for_def(param);
+ if !input_parameters.contains(&cgp::Parameter::from(param_ct)) {
+ report_unused_parameter(
+ tcx,
+ tcx.def_span(param.def_id),
+ "const",
+ param_ct.name,
+ );
+ }
+ }
+ }
+ }
+
+ // (*) This is a horrible concession to reality. I think it'd be
+ // better to just ban unconstrained lifetimes outright, but in
+ // practice people do non-hygienic macros like:
+ //
+ // ```
+ // macro_rules! __impl_slice_eq1 {
+ // ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
+ // impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
+ // ....
+ // }
+ // }
+ // }
+ // ```
+ //
+ // In a concession to backwards compatibility, we continue to
+ // permit those, so long as the lifetimes aren't used in
+ // associated types. I believe this is sound, because lifetimes
+ // used elsewhere are not projected back out.
+}
+
+fn report_unused_parameter(tcx: TyCtxt<'_>, span: Span, kind: &str, name: Symbol) {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0207,
+ "the {} parameter `{}` is not constrained by the \
+ impl trait, self type, or predicates",
+ kind,
+ name
+ );
+ err.span_label(span, format!("unconstrained {} parameter", kind));
+ if kind == "const" {
+ err.note(
+ "expressions using a const parameter must map each value to a distinct output value",
+ );
+ err.note(
+ "proving the result of expressions other than the parameter are unique is not supported",
+ );
+ }
+ err.emit();
+}
+
+/// Enforce that we do not have two items in an impl with the same name.
+fn enforce_impl_items_are_distinct(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
+ let mut seen_type_items = FxHashMap::default();
+ let mut seen_value_items = FxHashMap::default();
+ for &impl_item_ref in tcx.associated_item_def_ids(impl_def_id) {
+ let impl_item = tcx.associated_item(impl_item_ref);
+ let seen_items = match impl_item.kind {
+ ty::AssocKind::Type => &mut seen_type_items,
+ _ => &mut seen_value_items,
+ };
+ let span = tcx.def_span(impl_item_ref);
+ let ident = impl_item.ident(tcx);
+ match seen_items.entry(ident.normalize_to_macros_2_0()) {
+ Occupied(entry) => {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0201,
+ "duplicate definitions with name `{}`:",
+ ident
+ );
+ err.span_label(*entry.get(), format!("previous definition of `{}` here", ident));
+ err.span_label(span, "duplicate definition");
+ err.emit();
+ }
+ Vacant(entry) => {
+ entry.insert(span);
+ }
+ }
+ }
+}