summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/outlives/implicit_infer.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_typeck/src/outlives/implicit_infer.rs')
-rw-r--r--compiler/rustc_typeck/src/outlives/implicit_infer.rs300
1 files changed, 300 insertions, 0 deletions
diff --git a/compiler/rustc_typeck/src/outlives/implicit_infer.rs b/compiler/rustc_typeck/src/outlives/implicit_infer.rs
new file mode 100644
index 000000000..3b779280e
--- /dev/null
+++ b/compiler/rustc_typeck/src/outlives/implicit_infer.rs
@@ -0,0 +1,300 @@
+use rustc_data_structures::fx::FxHashMap;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind, Subst};
+use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt};
+use rustc_span::Span;
+
+use super::explicit::ExplicitPredicatesMap;
+use super::utils::*;
+
+/// Infer predicates for the items in the crate.
+///
+/// `global_inferred_outlives`: this is initially the empty map that
+/// was generated by walking the items in the crate. This will
+/// now be filled with inferred predicates.
+pub(super) fn infer_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+) -> FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'tcx>>> {
+ debug!("infer_predicates");
+
+ let mut explicit_map = ExplicitPredicatesMap::new();
+
+ let mut global_inferred_outlives = FxHashMap::default();
+
+ // If new predicates were added then we need to re-calculate
+ // all crates since there could be new implied predicates.
+ 'outer: loop {
+ let mut predicates_added = false;
+
+ // Visit all the crates and infer predicates
+ for id in tcx.hir().items() {
+ let item_did = id.def_id;
+
+ debug!("InferVisitor::visit_item(item={:?})", item_did);
+
+ let mut item_required_predicates = RequiredPredicates::default();
+ match tcx.def_kind(item_did) {
+ DefKind::Union | DefKind::Enum | DefKind::Struct => {
+ let adt_def = tcx.adt_def(item_did.to_def_id());
+
+ // Iterate over all fields in item_did
+ for field_def in adt_def.all_fields() {
+ // Calculating the predicate requirements necessary
+ // for item_did.
+ //
+ // For field of type &'a T (reference) or Adt
+ // (struct/enum/union) there will be outlive
+ // requirements for adt_def.
+ let field_ty = tcx.type_of(field_def.did);
+ let field_span = tcx.def_span(field_def.did);
+ insert_required_predicates_to_be_wf(
+ tcx,
+ field_ty,
+ field_span,
+ &global_inferred_outlives,
+ &mut item_required_predicates,
+ &mut explicit_map,
+ );
+ }
+ }
+
+ _ => {}
+ };
+
+ // If new predicates were added (`local_predicate_map` has more
+ // predicates than the `global_inferred_outlives`), the new predicates
+ // might result in implied predicates for their parent types.
+ // Therefore mark `predicates_added` as true and which will ensure
+ // we walk the crates again and re-calculate predicates for all
+ // items.
+ let item_predicates_len: usize =
+ global_inferred_outlives.get(&item_did.to_def_id()).map_or(0, |p| p.0.len());
+ if item_required_predicates.len() > item_predicates_len {
+ predicates_added = true;
+ global_inferred_outlives
+ .insert(item_did.to_def_id(), ty::EarlyBinder(item_required_predicates));
+ }
+ }
+
+ if !predicates_added {
+ break 'outer;
+ }
+ }
+
+ global_inferred_outlives
+}
+
+fn insert_required_predicates_to_be_wf<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ field_ty: Ty<'tcx>,
+ field_span: Span,
+ global_inferred_outlives: &FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'tcx>>>,
+ required_predicates: &mut RequiredPredicates<'tcx>,
+ explicit_map: &mut ExplicitPredicatesMap<'tcx>,
+) {
+ for arg in field_ty.walk() {
+ let ty = match arg.unpack() {
+ GenericArgKind::Type(ty) => ty,
+
+ // No predicates from lifetimes or constants, except potentially
+ // constants' types, but `walk` will get to them as well.
+ GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => continue,
+ };
+
+ match *ty.kind() {
+ // The field is of type &'a T which means that we will have
+ // a predicate requirement of T: 'a (T outlives 'a).
+ //
+ // We also want to calculate potential predicates for the T
+ ty::Ref(region, rty, _) => {
+ debug!("Ref");
+ insert_outlives_predicate(tcx, rty.into(), region, field_span, required_predicates);
+ }
+
+ // For each Adt (struct/enum/union) type `Foo<'a, T>`, we
+ // can load the current set of inferred and explicit
+ // predicates from `global_inferred_outlives` and filter the
+ // ones that are TypeOutlives.
+ ty::Adt(def, substs) => {
+ // First check the inferred predicates
+ //
+ // Example 1:
+ //
+ // struct Foo<'a, T> {
+ // field1: Bar<'a, T>
+ // }
+ //
+ // struct Bar<'b, U> {
+ // field2: &'b U
+ // }
+ //
+ // Here, when processing the type of `field1`, we would
+ // request the set of implicit predicates computed for `Bar`
+ // thus far. This will initially come back empty, but in next
+ // round we will get `U: 'b`. We then apply the substitution
+ // `['b => 'a, U => T]` and thus get the requirement that `T:
+ // 'a` holds for `Foo`.
+ debug!("Adt");
+ if let Some(unsubstituted_predicates) = global_inferred_outlives.get(&def.did()) {
+ for (unsubstituted_predicate, &span) in &unsubstituted_predicates.0 {
+ // `unsubstituted_predicate` is `U: 'b` in the
+ // example above. So apply the substitution to
+ // get `T: 'a` (or `predicate`):
+ let predicate = unsubstituted_predicates
+ .rebind(*unsubstituted_predicate)
+ .subst(tcx, substs);
+ insert_outlives_predicate(
+ tcx,
+ predicate.0,
+ predicate.1,
+ span,
+ required_predicates,
+ );
+ }
+ }
+
+ // Check if the type has any explicit predicates that need
+ // to be added to `required_predicates`
+ // let _: () = substs.region_at(0);
+ check_explicit_predicates(
+ tcx,
+ def.did(),
+ substs,
+ required_predicates,
+ explicit_map,
+ None,
+ );
+ }
+
+ ty::Dynamic(obj, ..) => {
+ // This corresponds to `dyn Trait<..>`. In this case, we should
+ // use the explicit predicates as well.
+
+ debug!("Dynamic");
+ debug!("field_ty = {}", &field_ty);
+ debug!("ty in field = {}", &ty);
+ if let Some(ex_trait_ref) = obj.principal() {
+ // Here, we are passing the type `usize` as a
+ // placeholder value with the function
+ // `with_self_ty`, since there is no concrete type
+ // `Self` for a `dyn Trait` at this
+ // stage. Therefore when checking explicit
+ // predicates in `check_explicit_predicates` we
+ // need to ignore checking the explicit_map for
+ // Self type.
+ let substs =
+ ex_trait_ref.with_self_ty(tcx, tcx.types.usize).skip_binder().substs;
+ check_explicit_predicates(
+ tcx,
+ ex_trait_ref.skip_binder().def_id,
+ substs,
+ required_predicates,
+ explicit_map,
+ Some(tcx.types.self_param),
+ );
+ }
+ }
+
+ ty::Projection(obj) => {
+ // This corresponds to `<T as Foo<'a>>::Bar`. In this case, we should use the
+ // explicit predicates as well.
+ debug!("Projection");
+ check_explicit_predicates(
+ tcx,
+ tcx.parent(obj.item_def_id),
+ obj.substs,
+ required_predicates,
+ explicit_map,
+ None,
+ );
+ }
+
+ _ => {}
+ }
+ }
+}
+
+/// We also have to check the explicit predicates
+/// declared on the type.
+/// ```ignore (illustrative)
+/// struct Foo<'a, T> {
+/// field1: Bar<T>
+/// }
+///
+/// struct Bar<U> where U: 'static, U: Foo {
+/// ...
+/// }
+/// ```
+/// Here, we should fetch the explicit predicates, which
+/// will give us `U: 'static` and `U: Foo`. The latter we
+/// can ignore, but we will want to process `U: 'static`,
+/// applying the substitution as above.
+fn check_explicit_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ substs: &[GenericArg<'tcx>],
+ required_predicates: &mut RequiredPredicates<'tcx>,
+ explicit_map: &mut ExplicitPredicatesMap<'tcx>,
+ ignored_self_ty: Option<Ty<'tcx>>,
+) {
+ debug!(
+ "check_explicit_predicates(def_id={:?}, \
+ substs={:?}, \
+ explicit_map={:?}, \
+ required_predicates={:?}, \
+ ignored_self_ty={:?})",
+ def_id, substs, explicit_map, required_predicates, ignored_self_ty,
+ );
+ let explicit_predicates = explicit_map.explicit_predicates_of(tcx, def_id);
+
+ for (outlives_predicate, &span) in &explicit_predicates.0 {
+ debug!("outlives_predicate = {:?}", &outlives_predicate);
+
+ // Careful: If we are inferring the effects of a `dyn Trait<..>`
+ // type, then when we look up the predicates for `Trait`,
+ // we may find some that reference `Self`. e.g., perhaps the
+ // definition of `Trait` was:
+ //
+ // ```
+ // trait Trait<'a, T> where Self: 'a { .. }
+ // ```
+ //
+ // we want to ignore such predicates here, because
+ // there is no type parameter for them to affect. Consider
+ // a struct containing `dyn Trait`:
+ //
+ // ```
+ // struct MyStruct<'x, X> { field: Box<dyn Trait<'x, X>> }
+ // ```
+ //
+ // The `where Self: 'a` predicate refers to the *existential, hidden type*
+ // that is represented by the `dyn Trait`, not to the `X` type parameter
+ // (or any other generic parameter) declared on `MyStruct`.
+ //
+ // Note that we do this check for self **before** applying `substs`. In the
+ // case that `substs` come from a `dyn Trait` type, our caller will have
+ // included `Self = usize` as the value for `Self`. If we were
+ // to apply the substs, and not filter this predicate, we might then falsely
+ // conclude that e.g., `X: 'x` was a reasonable inferred requirement.
+ //
+ // Another similar case is where we have an inferred
+ // requirement like `<Self as Trait>::Foo: 'b`. We presently
+ // ignore such requirements as well (cc #54467)-- though
+ // conceivably it might be better if we could extract the `Foo
+ // = X` binding from the object type (there must be such a
+ // binding) and thus infer an outlives requirement that `X:
+ // 'b`.
+ if let Some(self_ty) = ignored_self_ty
+ && let GenericArgKind::Type(ty) = outlives_predicate.0.unpack()
+ && ty.walk().any(|arg| arg == self_ty.into())
+ {
+ debug!("skipping self ty = {:?}", &ty);
+ continue;
+ }
+
+ let predicate = explicit_predicates.rebind(*outlives_predicate).subst(tcx, substs);
+ debug!("predicate = {:?}", &predicate);
+ insert_outlives_predicate(tcx, predicate.0, predicate.1, span, required_predicates);
+ }
+}