summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/collections/btree/node.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/src/collections/btree/node.rs')
-rw-r--r--library/alloc/src/collections/btree/node.rs1753
1 files changed, 1753 insertions, 0 deletions
diff --git a/library/alloc/src/collections/btree/node.rs b/library/alloc/src/collections/btree/node.rs
new file mode 100644
index 000000000..d831161bc
--- /dev/null
+++ b/library/alloc/src/collections/btree/node.rs
@@ -0,0 +1,1753 @@
+// This is an attempt at an implementation following the ideal
+//
+// ```
+// struct BTreeMap<K, V> {
+// height: usize,
+// root: Option<Box<Node<K, V, height>>>
+// }
+//
+// struct Node<K, V, height: usize> {
+// keys: [K; 2 * B - 1],
+// vals: [V; 2 * B - 1],
+// edges: [if height > 0 { Box<Node<K, V, height - 1>> } else { () }; 2 * B],
+// parent: Option<(NonNull<Node<K, V, height + 1>>, u16)>,
+// len: u16,
+// }
+// ```
+//
+// Since Rust doesn't actually have dependent types and polymorphic recursion,
+// we make do with lots of unsafety.
+
+// A major goal of this module is to avoid complexity by treating the tree as a generic (if
+// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
+// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
+// even what underfull means. However, we do rely on a few invariants:
+//
+// - Trees must have uniform depth/height. This means that every path down to a leaf from a
+// given node has exactly the same length.
+// - A node of length `n` has `n` keys, `n` values, and `n + 1` edges.
+// This implies that even an empty node has at least one edge.
+// For a leaf node, "having an edge" only means we can identify a position in the node,
+// since leaf edges are empty and need no data representation. In an internal node,
+// an edge both identifies a position and contains a pointer to a child node.
+
+use core::marker::PhantomData;
+use core::mem::{self, MaybeUninit};
+use core::ptr::{self, NonNull};
+use core::slice::SliceIndex;
+
+use crate::alloc::{Allocator, Layout};
+use crate::boxed::Box;
+
+const B: usize = 6;
+pub const CAPACITY: usize = 2 * B - 1;
+pub const MIN_LEN_AFTER_SPLIT: usize = B - 1;
+const KV_IDX_CENTER: usize = B - 1;
+const EDGE_IDX_LEFT_OF_CENTER: usize = B - 1;
+const EDGE_IDX_RIGHT_OF_CENTER: usize = B;
+
+/// The underlying representation of leaf nodes and part of the representation of internal nodes.
+struct LeafNode<K, V> {
+ /// We want to be covariant in `K` and `V`.
+ parent: Option<NonNull<InternalNode<K, V>>>,
+
+ /// This node's index into the parent node's `edges` array.
+ /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
+ /// This is only guaranteed to be initialized when `parent` is non-null.
+ parent_idx: MaybeUninit<u16>,
+
+ /// The number of keys and values this node stores.
+ len: u16,
+
+ /// The arrays storing the actual data of the node. Only the first `len` elements of each
+ /// array are initialized and valid.
+ keys: [MaybeUninit<K>; CAPACITY],
+ vals: [MaybeUninit<V>; CAPACITY],
+}
+
+impl<K, V> LeafNode<K, V> {
+ /// Initializes a new `LeafNode` in-place.
+ unsafe fn init(this: *mut Self) {
+ // As a general policy, we leave fields uninitialized if they can be, as this should
+ // be both slightly faster and easier to track in Valgrind.
+ unsafe {
+ // parent_idx, keys, and vals are all MaybeUninit
+ ptr::addr_of_mut!((*this).parent).write(None);
+ ptr::addr_of_mut!((*this).len).write(0);
+ }
+ }
+
+ /// Creates a new boxed `LeafNode`.
+ fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
+ unsafe {
+ let mut leaf = Box::new_uninit_in(alloc);
+ LeafNode::init(leaf.as_mut_ptr());
+ leaf.assume_init()
+ }
+ }
+}
+
+/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
+/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
+/// `InternalNode` can be directly cast to a pointer to the underlying `LeafNode` portion of the
+/// node, allowing code to act on leaf and internal nodes generically without having to even check
+/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
+#[repr(C)]
+// gdb_providers.py uses this type name for introspection.
+struct InternalNode<K, V> {
+ data: LeafNode<K, V>,
+
+ /// The pointers to the children of this node. `len + 1` of these are considered
+ /// initialized and valid, except that near the end, while the tree is held
+ /// through borrow type `Dying`, some of these pointers are dangling.
+ edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B],
+}
+
+impl<K, V> InternalNode<K, V> {
+ /// Creates a new boxed `InternalNode`.
+ ///
+ /// # Safety
+ /// An invariant of internal nodes is that they have at least one
+ /// initialized and valid edge. This function does not set up
+ /// such an edge.
+ unsafe fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
+ unsafe {
+ let mut node = Box::<Self, _>::new_uninit_in(alloc);
+ // We only need to initialize the data; the edges are MaybeUninit.
+ LeafNode::init(ptr::addr_of_mut!((*node.as_mut_ptr()).data));
+ node.assume_init()
+ }
+ }
+}
+
+/// A managed, non-null pointer to a node. This is either an owned pointer to
+/// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`.
+///
+/// However, `BoxedNode` contains no information as to which of the two types
+/// of nodes it actually contains, and, partially due to this lack of information,
+/// is not a separate type and has no destructor.
+type BoxedNode<K, V> = NonNull<LeafNode<K, V>>;
+
+// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
+// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
+// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
+// However, whenever a public type wraps `NodeRef`, make sure that it has the
+// correct variance.
+///
+/// A reference to a node.
+///
+/// This type has a number of parameters that controls how it acts:
+/// - `BorrowType`: A dummy type that describes the kind of borrow and carries a lifetime.
+/// - When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`.
+/// - When this is `ValMut<'a>`, the `NodeRef` acts roughly like `&'a Node`
+/// with respect to keys and tree structure, but also allows many
+/// mutable references to values throughout the tree to coexist.
+/// - When this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
+/// although insert methods allow a mutable pointer to a value to coexist.
+/// - When this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`,
+/// but does not have a destructor, and must be cleaned up manually.
+/// - When this is `Dying`, the `NodeRef` still acts roughly like `Box<Node>`,
+/// but has methods to destroy the tree bit by bit, and ordinary methods,
+/// while not marked as unsafe to call, can invoke UB if called incorrectly.
+/// Since any `NodeRef` allows navigating through the tree, `BorrowType`
+/// effectively applies to the entire tree, not just to the node itself.
+/// - `K` and `V`: These are the types of keys and values stored in the nodes.
+/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
+/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
+/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
+/// `NodeRef` could be pointing to either type of node.
+/// `Type` is named `NodeType` when used outside `NodeRef`.
+///
+/// Both `BorrowType` and `NodeType` restrict what methods we implement, to
+/// exploit static type safety. There are limitations in the way we can apply
+/// such restrictions:
+/// - For each type parameter, we can only define a method either generically
+/// or for one particular type. For example, we cannot define a method like
+/// `into_kv` generically for all `BorrowType`, or once for all types that
+/// carry a lifetime, because we want it to return `&'a` references.
+/// Therefore, we define it only for the least powerful type `Immut<'a>`.
+/// - We cannot get implicit coercion from say `Mut<'a>` to `Immut<'a>`.
+/// Therefore, we have to explicitly call `reborrow` on a more powerful
+/// `NodeRef` in order to reach a method like `into_kv`.
+///
+/// All methods on `NodeRef` that return some kind of reference, either:
+/// - Take `self` by value, and return the lifetime carried by `BorrowType`.
+/// Sometimes, to invoke such a method, we need to call `reborrow_mut`.
+/// - Take `self` by reference, and (implicitly) return that reference's
+/// lifetime, instead of the lifetime carried by `BorrowType`. That way,
+/// the borrow checker guarantees that the `NodeRef` remains borrowed as long
+/// as the returned reference is used.
+/// The methods supporting insert bend this rule by returning a raw pointer,
+/// i.e., a reference without any lifetime.
+pub struct NodeRef<BorrowType, K, V, Type> {
+ /// The number of levels that the node and the level of leaves are apart, a
+ /// constant of the node that cannot be entirely described by `Type`, and that
+ /// the node itself does not store. We only need to store the height of the root
+ /// node, and derive every other node's height from it.
+ /// Must be zero if `Type` is `Leaf` and non-zero if `Type` is `Internal`.
+ height: usize,
+ /// The pointer to the leaf or internal node. The definition of `InternalNode`
+ /// ensures that the pointer is valid either way.
+ node: NonNull<LeafNode<K, V>>,
+ _marker: PhantomData<(BorrowType, Type)>,
+}
+
+/// The root node of an owned tree.
+///
+/// Note that this does not have a destructor, and must be cleaned up manually.
+pub type Root<K, V> = NodeRef<marker::Owned, K, V, marker::LeafOrInternal>;
+
+impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {}
+impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {}
+
+unsafe impl<'a, K: Sync + 'a, V: Sync + 'a, Type> Send for NodeRef<marker::Immut<'a>, K, V, Type> {}
+unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send for NodeRef<marker::Mut<'a>, K, V, Type> {}
+unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send for NodeRef<marker::ValMut<'a>, K, V, Type> {}
+unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {}
+unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Dying, K, V, Type> {}
+
+impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
+ pub fn new_leaf<A: Allocator + Clone>(alloc: A) -> Self {
+ Self::from_new_leaf(LeafNode::new(alloc))
+ }
+
+ fn from_new_leaf<A: Allocator + Clone>(leaf: Box<LeafNode<K, V>, A>) -> Self {
+ NodeRef { height: 0, node: NonNull::from(Box::leak(leaf)), _marker: PhantomData }
+ }
+}
+
+impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> {
+ fn new_internal<A: Allocator + Clone>(child: Root<K, V>, alloc: A) -> Self {
+ let mut new_node = unsafe { InternalNode::new(alloc) };
+ new_node.edges[0].write(child.node);
+ unsafe { NodeRef::from_new_internal(new_node, child.height + 1) }
+ }
+
+ /// # Safety
+ /// `height` must not be zero.
+ unsafe fn from_new_internal<A: Allocator + Clone>(
+ internal: Box<InternalNode<K, V>, A>,
+ height: usize,
+ ) -> Self {
+ debug_assert!(height > 0);
+ let node = NonNull::from(Box::leak(internal)).cast();
+ let mut this = NodeRef { height, node, _marker: PhantomData };
+ this.borrow_mut().correct_all_childrens_parent_links();
+ this
+ }
+}
+
+impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
+ /// Unpack a node reference that was packed as `NodeRef::parent`.
+ fn from_internal(node: NonNull<InternalNode<K, V>>, height: usize) -> Self {
+ debug_assert!(height > 0);
+ NodeRef { height, node: node.cast(), _marker: PhantomData }
+ }
+}
+
+impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
+ /// Exposes the data of an internal node.
+ ///
+ /// Returns a raw ptr to avoid invalidating other references to this node.
+ fn as_internal_ptr(this: &Self) -> *mut InternalNode<K, V> {
+ // SAFETY: the static node type is `Internal`.
+ this.node.as_ptr() as *mut InternalNode<K, V>
+ }
+}
+
+impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ /// Borrows exclusive access to the data of an internal node.
+ fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
+ let ptr = Self::as_internal_ptr(self);
+ unsafe { &mut *ptr }
+ }
+}
+
+impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
+ /// Finds the length of the node. This is the number of keys or values.
+ /// The number of edges is `len() + 1`.
+ /// Note that, despite being safe, calling this function can have the side effect
+ /// of invalidating mutable references that unsafe code has created.
+ pub fn len(&self) -> usize {
+ // Crucially, we only access the `len` field here. If BorrowType is marker::ValMut,
+ // there might be outstanding mutable references to values that we must not invalidate.
+ unsafe { usize::from((*Self::as_leaf_ptr(self)).len) }
+ }
+
+ /// Returns the number of levels that the node and leaves are apart. Zero
+ /// height means the node is a leaf itself. If you picture trees with the
+ /// root on top, the number says at which elevation the node appears.
+ /// If you picture trees with leaves on top, the number says how high
+ /// the tree extends above the node.
+ pub fn height(&self) -> usize {
+ self.height
+ }
+
+ /// Temporarily takes out another, immutable reference to the same node.
+ pub fn reborrow(&self) -> NodeRef<marker::Immut<'_>, K, V, Type> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Exposes the leaf portion of any leaf or internal node.
+ ///
+ /// Returns a raw ptr to avoid invalidating other references to this node.
+ fn as_leaf_ptr(this: &Self) -> *mut LeafNode<K, V> {
+ // The node must be valid for at least the LeafNode portion.
+ // This is not a reference in the NodeRef type because we don't know if
+ // it should be unique or shared.
+ this.node.as_ptr()
+ }
+}
+
+impl<BorrowType: marker::BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
+ /// Finds the parent of the current node. Returns `Ok(handle)` if the current
+ /// node actually has a parent, where `handle` points to the edge of the parent
+ /// that points to the current node. Returns `Err(self)` if the current node has
+ /// no parent, giving back the original `NodeRef`.
+ ///
+ /// The method name assumes you picture trees with the root node on top.
+ ///
+ /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
+ /// both, upon success, do nothing.
+ pub fn ascend(
+ self,
+ ) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
+ assert!(BorrowType::PERMITS_TRAVERSAL);
+ // We need to use raw pointers to nodes because, if BorrowType is marker::ValMut,
+ // there might be outstanding mutable references to values that we must not invalidate.
+ let leaf_ptr: *const _ = Self::as_leaf_ptr(&self);
+ unsafe { (*leaf_ptr).parent }
+ .as_ref()
+ .map(|parent| Handle {
+ node: NodeRef::from_internal(*parent, self.height + 1),
+ idx: unsafe { usize::from((*leaf_ptr).parent_idx.assume_init()) },
+ _marker: PhantomData,
+ })
+ .ok_or(self)
+ }
+
+ pub fn first_edge(self) -> Handle<Self, marker::Edge> {
+ unsafe { Handle::new_edge(self, 0) }
+ }
+
+ pub fn last_edge(self) -> Handle<Self, marker::Edge> {
+ let len = self.len();
+ unsafe { Handle::new_edge(self, len) }
+ }
+
+ /// Note that `self` must be nonempty.
+ pub fn first_kv(self) -> Handle<Self, marker::KV> {
+ let len = self.len();
+ assert!(len > 0);
+ unsafe { Handle::new_kv(self, 0) }
+ }
+
+ /// Note that `self` must be nonempty.
+ pub fn last_kv(self) -> Handle<Self, marker::KV> {
+ let len = self.len();
+ assert!(len > 0);
+ unsafe { Handle::new_kv(self, len - 1) }
+ }
+}
+
+impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
+ /// Could be a public implementation of PartialEq, but only used in this module.
+ fn eq(&self, other: &Self) -> bool {
+ let Self { node, height, _marker } = self;
+ if node.eq(&other.node) {
+ debug_assert_eq!(*height, other.height);
+ true
+ } else {
+ false
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
+ /// Exposes the leaf portion of any leaf or internal node in an immutable tree.
+ fn into_leaf(self) -> &'a LeafNode<K, V> {
+ let ptr = Self::as_leaf_ptr(&self);
+ // SAFETY: there can be no mutable references into this tree borrowed as `Immut`.
+ unsafe { &*ptr }
+ }
+
+ /// Borrows a view into the keys stored in the node.
+ pub fn keys(&self) -> &[K] {
+ let leaf = self.into_leaf();
+ unsafe {
+ MaybeUninit::slice_assume_init_ref(leaf.keys.get_unchecked(..usize::from(leaf.len)))
+ }
+ }
+}
+
+impl<K, V> NodeRef<marker::Dying, K, V, marker::LeafOrInternal> {
+ /// Similar to `ascend`, gets a reference to a node's parent node, but also
+ /// deallocates the current node in the process. This is unsafe because the
+ /// current node will still be accessible despite being deallocated.
+ pub unsafe fn deallocate_and_ascend<A: Allocator + Clone>(
+ self,
+ alloc: A,
+ ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::Internal>, marker::Edge>> {
+ let height = self.height;
+ let node = self.node;
+ let ret = self.ascend().ok();
+ unsafe {
+ alloc.deallocate(
+ node.cast(),
+ if height > 0 {
+ Layout::new::<InternalNode<K, V>>()
+ } else {
+ Layout::new::<LeafNode<K, V>>()
+ },
+ );
+ }
+ ret
+ }
+}
+
+impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
+ /// Temporarily takes out another mutable reference to the same node. Beware, as
+ /// this method is very dangerous, doubly so since it might not immediately appear
+ /// dangerous.
+ ///
+ /// Because mutable pointers can roam anywhere around the tree, the returned
+ /// pointer can easily be used to make the original pointer dangling, out of
+ /// bounds, or invalid under stacked borrow rules.
+ // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef`
+ // that restricts the use of navigation methods on reborrowed pointers,
+ // preventing this unsafety.
+ unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Borrows exclusive access to the leaf portion of a leaf or internal node.
+ fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> {
+ let ptr = Self::as_leaf_ptr(self);
+ // SAFETY: we have exclusive access to the entire node.
+ unsafe { &mut *ptr }
+ }
+
+ /// Offers exclusive access to the leaf portion of a leaf or internal node.
+ fn into_leaf_mut(mut self) -> &'a mut LeafNode<K, V> {
+ let ptr = Self::as_leaf_ptr(&mut self);
+ // SAFETY: we have exclusive access to the entire node.
+ unsafe { &mut *ptr }
+ }
+}
+
+impl<K, V, Type> NodeRef<marker::Dying, K, V, Type> {
+ /// Borrows exclusive access to the leaf portion of a dying leaf or internal node.
+ fn as_leaf_dying(&mut self) -> &mut LeafNode<K, V> {
+ let ptr = Self::as_leaf_ptr(self);
+ // SAFETY: we have exclusive access to the entire node.
+ unsafe { &mut *ptr }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
+ /// Borrows exclusive access to an element of the key storage area.
+ ///
+ /// # Safety
+ /// `index` is in bounds of 0..CAPACITY
+ unsafe fn key_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
+ where
+ I: SliceIndex<[MaybeUninit<K>], Output = Output>,
+ {
+ // SAFETY: the caller will not be able to call further methods on self
+ // until the key slice reference is dropped, as we have unique access
+ // for the lifetime of the borrow.
+ unsafe { self.as_leaf_mut().keys.as_mut_slice().get_unchecked_mut(index) }
+ }
+
+ /// Borrows exclusive access to an element or slice of the node's value storage area.
+ ///
+ /// # Safety
+ /// `index` is in bounds of 0..CAPACITY
+ unsafe fn val_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
+ where
+ I: SliceIndex<[MaybeUninit<V>], Output = Output>,
+ {
+ // SAFETY: the caller will not be able to call further methods on self
+ // until the value slice reference is dropped, as we have unique access
+ // for the lifetime of the borrow.
+ unsafe { self.as_leaf_mut().vals.as_mut_slice().get_unchecked_mut(index) }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ /// Borrows exclusive access to an element or slice of the node's storage area for edge contents.
+ ///
+ /// # Safety
+ /// `index` is in bounds of 0..CAPACITY + 1
+ unsafe fn edge_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
+ where
+ I: SliceIndex<[MaybeUninit<BoxedNode<K, V>>], Output = Output>,
+ {
+ // SAFETY: the caller will not be able to call further methods on self
+ // until the edge slice reference is dropped, as we have unique access
+ // for the lifetime of the borrow.
+ unsafe { self.as_internal_mut().edges.as_mut_slice().get_unchecked_mut(index) }
+ }
+}
+
+impl<'a, K, V, Type> NodeRef<marker::ValMut<'a>, K, V, Type> {
+ /// # Safety
+ /// - The node has more than `idx` initialized elements.
+ unsafe fn into_key_val_mut_at(mut self, idx: usize) -> (&'a K, &'a mut V) {
+ // We only create a reference to the one element we are interested in,
+ // to avoid aliasing with outstanding references to other elements,
+ // in particular, those returned to the caller in earlier iterations.
+ let leaf = Self::as_leaf_ptr(&mut self);
+ let keys = unsafe { ptr::addr_of!((*leaf).keys) };
+ let vals = unsafe { ptr::addr_of_mut!((*leaf).vals) };
+ // We must coerce to unsized array pointers because of Rust issue #74679.
+ let keys: *const [_] = keys;
+ let vals: *mut [_] = vals;
+ let key = unsafe { (&*keys.get_unchecked(idx)).assume_init_ref() };
+ let val = unsafe { (&mut *vals.get_unchecked_mut(idx)).assume_init_mut() };
+ (key, val)
+ }
+}
+
+impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
+ /// Borrows exclusive access to the length of the node.
+ pub fn len_mut(&mut self) -> &mut u16 {
+ &mut self.as_leaf_mut().len
+ }
+}
+
+impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ /// # Safety
+ /// Every item returned by `range` is a valid edge index for the node.
+ unsafe fn correct_childrens_parent_links<R: Iterator<Item = usize>>(&mut self, range: R) {
+ for i in range {
+ debug_assert!(i <= self.len());
+ unsafe { Handle::new_edge(self.reborrow_mut(), i) }.correct_parent_link();
+ }
+ }
+
+ fn correct_all_childrens_parent_links(&mut self) {
+ let len = self.len();
+ unsafe { self.correct_childrens_parent_links(0..=len) };
+ }
+}
+
+impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ /// Sets the node's link to its parent edge,
+ /// without invalidating other references to the node.
+ fn set_parent_link(&mut self, parent: NonNull<InternalNode<K, V>>, parent_idx: usize) {
+ let leaf = Self::as_leaf_ptr(self);
+ unsafe { (*leaf).parent = Some(parent) };
+ unsafe { (*leaf).parent_idx.write(parent_idx as u16) };
+ }
+}
+
+impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
+ /// Clears the root's link to its parent edge.
+ fn clear_parent_link(&mut self) {
+ let mut root_node = self.borrow_mut();
+ let leaf = root_node.as_leaf_mut();
+ leaf.parent = None;
+ }
+}
+
+impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
+ /// Returns a new owned tree, with its own root node that is initially empty.
+ pub fn new<A: Allocator + Clone>(alloc: A) -> Self {
+ NodeRef::new_leaf(alloc).forget_type()
+ }
+
+ /// Adds a new internal node with a single edge pointing to the previous root node,
+ /// make that new node the root node, and return it. This increases the height by 1
+ /// and is the opposite of `pop_internal_level`.
+ pub fn push_internal_level<A: Allocator + Clone>(
+ &mut self,
+ alloc: A,
+ ) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
+ super::mem::take_mut(self, |old_root| NodeRef::new_internal(old_root, alloc).forget_type());
+
+ // `self.borrow_mut()`, except that we just forgot we're internal now:
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Removes the internal root node, using its first child as the new root node.
+ /// As it is intended only to be called when the root node has only one child,
+ /// no cleanup is done on any of the keys, values and other children.
+ /// This decreases the height by 1 and is the opposite of `push_internal_level`.
+ ///
+ /// Requires exclusive access to the `NodeRef` object but not to the root node;
+ /// it will not invalidate other handles or references to the root node.
+ ///
+ /// Panics if there is no internal level, i.e., if the root node is a leaf.
+ pub fn pop_internal_level<A: Allocator + Clone>(&mut self, alloc: A) {
+ assert!(self.height > 0);
+
+ let top = self.node;
+
+ // SAFETY: we asserted to be internal.
+ let internal_self = unsafe { self.borrow_mut().cast_to_internal_unchecked() };
+ // SAFETY: we borrowed `self` exclusively and its borrow type is exclusive.
+ let internal_node = unsafe { &mut *NodeRef::as_internal_ptr(&internal_self) };
+ // SAFETY: the first edge is always initialized.
+ self.node = unsafe { internal_node.edges[0].assume_init_read() };
+ self.height -= 1;
+ self.clear_parent_link();
+
+ unsafe {
+ alloc.deallocate(top.cast(), Layout::new::<InternalNode<K, V>>());
+ }
+ }
+}
+
+impl<K, V, Type> NodeRef<marker::Owned, K, V, Type> {
+ /// Mutably borrows the owned root node. Unlike `reborrow_mut`, this is safe
+ /// because the return value cannot be used to destroy the root, and there
+ /// cannot be other references to the tree.
+ pub fn borrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Slightly mutably borrows the owned root node.
+ pub fn borrow_valmut(&mut self) -> NodeRef<marker::ValMut<'_>, K, V, Type> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Irreversibly transitions to a reference that permits traversal and offers
+ /// destructive methods and little else.
+ pub fn into_dying(self) -> NodeRef<marker::Dying, K, V, Type> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
+ /// Adds a key-value pair to the end of the node, and returns
+ /// the mutable reference of the inserted value.
+ pub fn push(&mut self, key: K, val: V) -> &mut V {
+ let len = self.len_mut();
+ let idx = usize::from(*len);
+ assert!(idx < CAPACITY);
+ *len += 1;
+ unsafe {
+ self.key_area_mut(idx).write(key);
+ self.val_area_mut(idx).write(val)
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ /// Adds a key-value pair, and an edge to go to the right of that pair,
+ /// to the end of the node.
+ pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
+ assert!(edge.height == self.height - 1);
+
+ let len = self.len_mut();
+ let idx = usize::from(*len);
+ assert!(idx < CAPACITY);
+ *len += 1;
+ unsafe {
+ self.key_area_mut(idx).write(key);
+ self.val_area_mut(idx).write(val);
+ self.edge_area_mut(idx + 1).write(edge.node);
+ Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
+ }
+ }
+}
+
+impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Leaf> {
+ /// Removes any static information asserting that this node is a `Leaf` node.
+ pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+}
+
+impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
+ /// Removes any static information asserting that this node is an `Internal` node.
+ pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+}
+
+impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
+ /// Checks whether a node is an `Internal` node or a `Leaf` node.
+ pub fn force(
+ self,
+ ) -> ForceResult<
+ NodeRef<BorrowType, K, V, marker::Leaf>,
+ NodeRef<BorrowType, K, V, marker::Internal>,
+ > {
+ if self.height == 0 {
+ ForceResult::Leaf(NodeRef {
+ height: self.height,
+ node: self.node,
+ _marker: PhantomData,
+ })
+ } else {
+ ForceResult::Internal(NodeRef {
+ height: self.height,
+ node: self.node,
+ _marker: PhantomData,
+ })
+ }
+ }
+}
+
+impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ /// Unsafely asserts to the compiler the static information that this node is a `Leaf`.
+ unsafe fn cast_to_leaf_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
+ debug_assert!(self.height == 0);
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+
+ /// Unsafely asserts to the compiler the static information that this node is an `Internal`.
+ unsafe fn cast_to_internal_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ debug_assert!(self.height > 0);
+ NodeRef { height: self.height, node: self.node, _marker: PhantomData }
+ }
+}
+
+/// A reference to a specific key-value pair or edge within a node. The `Node` parameter
+/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key-value
+/// pair) or `Edge` (signifying a handle on an edge).
+///
+/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
+/// a child node, these represent the spaces where child pointers would go between the key-value
+/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
+/// to the left of the node, one between the two pairs, and one at the right of the node.
+pub struct Handle<Node, Type> {
+ node: Node,
+ idx: usize,
+ _marker: PhantomData<Type>,
+}
+
+impl<Node: Copy, Type> Copy for Handle<Node, Type> {}
+// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
+// `Clone`able is when it is an immutable reference and therefore `Copy`.
+impl<Node: Copy, Type> Clone for Handle<Node, Type> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+impl<Node, Type> Handle<Node, Type> {
+ /// Retrieves the node that contains the edge or key-value pair this handle points to.
+ pub fn into_node(self) -> Node {
+ self.node
+ }
+
+ /// Returns the position of this handle in the node.
+ pub fn idx(&self) -> usize {
+ self.idx
+ }
+}
+
+impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
+ /// Creates a new handle to a key-value pair in `node`.
+ /// Unsafe because the caller must ensure that `idx < node.len()`.
+ pub unsafe fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
+ debug_assert!(idx < node.len());
+
+ Handle { node, idx, _marker: PhantomData }
+ }
+
+ pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
+ unsafe { Handle::new_edge(self.node, self.idx) }
+ }
+
+ pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
+ unsafe { Handle::new_edge(self.node, self.idx + 1) }
+ }
+}
+
+impl<BorrowType, K, V, NodeType, HandleType> PartialEq
+ for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
+{
+ fn eq(&self, other: &Self) -> bool {
+ let Self { node, idx, _marker } = self;
+ node.eq(&other.node) && *idx == other.idx
+ }
+}
+
+impl<BorrowType, K, V, NodeType, HandleType>
+ Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
+{
+ /// Temporarily takes out another immutable handle on the same location.
+ pub fn reborrow(&self) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> {
+ // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
+ Handle { node: self.node.reborrow(), idx: self.idx, _marker: PhantomData }
+ }
+}
+
+impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
+ /// Temporarily takes out another mutable handle on the same location. Beware, as
+ /// this method is very dangerous, doubly so since it might not immediately appear
+ /// dangerous.
+ ///
+ /// For details, see `NodeRef::reborrow_mut`.
+ pub unsafe fn reborrow_mut(
+ &mut self,
+ ) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> {
+ // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
+ Handle { node: unsafe { self.node.reborrow_mut() }, idx: self.idx, _marker: PhantomData }
+ }
+}
+
+impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
+ /// Creates a new handle to an edge in `node`.
+ /// Unsafe because the caller must ensure that `idx <= node.len()`.
+ pub unsafe fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
+ debug_assert!(idx <= node.len());
+
+ Handle { node, idx, _marker: PhantomData }
+ }
+
+ pub fn left_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
+ if self.idx > 0 {
+ Ok(unsafe { Handle::new_kv(self.node, self.idx - 1) })
+ } else {
+ Err(self)
+ }
+ }
+
+ pub fn right_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
+ if self.idx < self.node.len() {
+ Ok(unsafe { Handle::new_kv(self.node, self.idx) })
+ } else {
+ Err(self)
+ }
+ }
+}
+
+pub enum LeftOrRight<T> {
+ Left(T),
+ Right(T),
+}
+
+/// Given an edge index where we want to insert into a node filled to capacity,
+/// computes a sensible KV index of a split point and where to perform the insertion.
+/// The goal of the split point is for its key and value to end up in a parent node;
+/// the keys, values and edges to the left of the split point become the left child;
+/// the keys, values and edges to the right of the split point become the right child.
+fn splitpoint(edge_idx: usize) -> (usize, LeftOrRight<usize>) {
+ debug_assert!(edge_idx <= CAPACITY);
+ // Rust issue #74834 tries to explain these symmetric rules.
+ match edge_idx {
+ 0..EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER - 1, LeftOrRight::Left(edge_idx)),
+ EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Left(edge_idx)),
+ EDGE_IDX_RIGHT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Right(0)),
+ _ => (KV_IDX_CENTER + 1, LeftOrRight::Right(edge_idx - (KV_IDX_CENTER + 1 + 1))),
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
+ /// Inserts a new key-value pair between the key-value pairs to the right and left of
+ /// this edge. This method assumes that there is enough space in the node for the new
+ /// pair to fit.
+ ///
+ /// The returned pointer points to the inserted value.
+ fn insert_fit(&mut self, key: K, val: V) -> *mut V {
+ debug_assert!(self.node.len() < CAPACITY);
+ let new_len = self.node.len() + 1;
+
+ unsafe {
+ slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
+ slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
+ *self.node.len_mut() = new_len as u16;
+
+ self.node.val_area_mut(self.idx).assume_init_mut()
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
+ /// Inserts a new key-value pair between the key-value pairs to the right and left of
+ /// this edge. This method splits the node if there isn't enough room.
+ ///
+ /// The returned pointer points to the inserted value.
+ fn insert<A: Allocator + Clone>(
+ mut self,
+ key: K,
+ val: V,
+ alloc: A,
+ ) -> (Option<SplitResult<'a, K, V, marker::Leaf>>, *mut V) {
+ if self.node.len() < CAPACITY {
+ let val_ptr = self.insert_fit(key, val);
+ (None, val_ptr)
+ } else {
+ let (middle_kv_idx, insertion) = splitpoint(self.idx);
+ let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
+ let mut result = middle.split(alloc);
+ let mut insertion_edge = match insertion {
+ LeftOrRight::Left(insert_idx) => unsafe {
+ Handle::new_edge(result.left.reborrow_mut(), insert_idx)
+ },
+ LeftOrRight::Right(insert_idx) => unsafe {
+ Handle::new_edge(result.right.borrow_mut(), insert_idx)
+ },
+ };
+ let val_ptr = insertion_edge.insert_fit(key, val);
+ (Some(result), val_ptr)
+ }
+ }
+}
+
+impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
+ /// Fixes the parent pointer and index in the child node that this edge
+ /// links to. This is useful when the ordering of edges has been changed,
+ fn correct_parent_link(self) {
+ // Create backpointer without invalidating other references to the node.
+ let ptr = unsafe { NonNull::new_unchecked(NodeRef::as_internal_ptr(&self.node)) };
+ let idx = self.idx;
+ let mut child = self.descend();
+ child.set_parent_link(ptr, idx);
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
+ /// Inserts a new key-value pair and an edge that will go to the right of that new pair
+ /// between this edge and the key-value pair to the right of this edge. This method assumes
+ /// that there is enough space in the node for the new pair to fit.
+ fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) {
+ debug_assert!(self.node.len() < CAPACITY);
+ debug_assert!(edge.height == self.node.height - 1);
+ let new_len = self.node.len() + 1;
+
+ unsafe {
+ slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
+ slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
+ slice_insert(self.node.edge_area_mut(..new_len + 1), self.idx + 1, edge.node);
+ *self.node.len_mut() = new_len as u16;
+
+ self.node.correct_childrens_parent_links(self.idx + 1..new_len + 1);
+ }
+ }
+
+ /// Inserts a new key-value pair and an edge that will go to the right of that new pair
+ /// between this edge and the key-value pair to the right of this edge. This method splits
+ /// the node if there isn't enough room.
+ fn insert<A: Allocator + Clone>(
+ mut self,
+ key: K,
+ val: V,
+ edge: Root<K, V>,
+ alloc: A,
+ ) -> Option<SplitResult<'a, K, V, marker::Internal>> {
+ assert!(edge.height == self.node.height - 1);
+
+ if self.node.len() < CAPACITY {
+ self.insert_fit(key, val, edge);
+ None
+ } else {
+ let (middle_kv_idx, insertion) = splitpoint(self.idx);
+ let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
+ let mut result = middle.split(alloc);
+ let mut insertion_edge = match insertion {
+ LeftOrRight::Left(insert_idx) => unsafe {
+ Handle::new_edge(result.left.reborrow_mut(), insert_idx)
+ },
+ LeftOrRight::Right(insert_idx) => unsafe {
+ Handle::new_edge(result.right.borrow_mut(), insert_idx)
+ },
+ };
+ insertion_edge.insert_fit(key, val, edge);
+ Some(result)
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
+ /// Inserts a new key-value pair between the key-value pairs to the right and left of
+ /// this edge. This method splits the node if there isn't enough room, and tries to
+ /// insert the split off portion into the parent node recursively, until the root is reached.
+ ///
+ /// If the returned result is some `SplitResult`, the `left` field will be the root node.
+ /// The returned pointer points to the inserted value, which in the case of `SplitResult`
+ /// is in the `left` or `right` tree.
+ pub fn insert_recursing<A: Allocator + Clone>(
+ self,
+ key: K,
+ value: V,
+ alloc: A,
+ ) -> (Option<SplitResult<'a, K, V, marker::LeafOrInternal>>, *mut V) {
+ let (mut split, val_ptr) = match self.insert(key, value, alloc.clone()) {
+ (None, val_ptr) => return (None, val_ptr),
+ (Some(split), val_ptr) => (split.forget_node_type(), val_ptr),
+ };
+
+ loop {
+ split = match split.left.ascend() {
+ Ok(parent) => {
+ match parent.insert(split.kv.0, split.kv.1, split.right, alloc.clone()) {
+ None => return (None, val_ptr),
+ Some(split) => split.forget_node_type(),
+ }
+ }
+ Err(root) => return (Some(SplitResult { left: root, ..split }), val_ptr),
+ };
+ }
+ }
+}
+
+impl<BorrowType: marker::BorrowType, K, V>
+ Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>
+{
+ /// Finds the node pointed to by this edge.
+ ///
+ /// The method name assumes you picture trees with the root node on top.
+ ///
+ /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
+ /// both, upon success, do nothing.
+ pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
+ assert!(BorrowType::PERMITS_TRAVERSAL);
+ // We need to use raw pointers to nodes because, if BorrowType is
+ // marker::ValMut, there might be outstanding mutable references to
+ // values that we must not invalidate. There's no worry accessing the
+ // height field because that value is copied. Beware that, once the
+ // node pointer is dereferenced, we access the edges array with a
+ // reference (Rust issue #73987) and invalidate any other references
+ // to or inside the array, should any be around.
+ let parent_ptr = NodeRef::as_internal_ptr(&self.node);
+ let node = unsafe { (*parent_ptr).edges.get_unchecked(self.idx).assume_init_read() };
+ NodeRef { node, height: self.node.height - 1, _marker: PhantomData }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> {
+ pub fn into_kv(self) -> (&'a K, &'a V) {
+ debug_assert!(self.idx < self.node.len());
+ let leaf = self.node.into_leaf();
+ let k = unsafe { leaf.keys.get_unchecked(self.idx).assume_init_ref() };
+ let v = unsafe { leaf.vals.get_unchecked(self.idx).assume_init_ref() };
+ (k, v)
+ }
+}
+
+impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
+ pub fn key_mut(&mut self) -> &mut K {
+ unsafe { self.node.key_area_mut(self.idx).assume_init_mut() }
+ }
+
+ pub fn into_val_mut(self) -> &'a mut V {
+ debug_assert!(self.idx < self.node.len());
+ let leaf = self.node.into_leaf_mut();
+ unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() }
+ }
+}
+
+impl<'a, K, V, NodeType> Handle<NodeRef<marker::ValMut<'a>, K, V, NodeType>, marker::KV> {
+ pub fn into_kv_valmut(self) -> (&'a K, &'a mut V) {
+ unsafe { self.node.into_key_val_mut_at(self.idx) }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
+ pub fn kv_mut(&mut self) -> (&mut K, &mut V) {
+ debug_assert!(self.idx < self.node.len());
+ // We cannot call separate key and value methods, because calling the second one
+ // invalidates the reference returned by the first.
+ unsafe {
+ let leaf = self.node.as_leaf_mut();
+ let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_mut();
+ let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_mut();
+ (key, val)
+ }
+ }
+
+ /// Replaces the key and value that the KV handle refers to.
+ pub fn replace_kv(&mut self, k: K, v: V) -> (K, V) {
+ let (key, val) = self.kv_mut();
+ (mem::replace(key, k), mem::replace(val, v))
+ }
+}
+
+impl<K, V, NodeType> Handle<NodeRef<marker::Dying, K, V, NodeType>, marker::KV> {
+ /// Extracts the key and value that the KV handle refers to.
+ /// # Safety
+ /// The node that the handle refers to must not yet have been deallocated.
+ pub unsafe fn into_key_val(mut self) -> (K, V) {
+ debug_assert!(self.idx < self.node.len());
+ let leaf = self.node.as_leaf_dying();
+ unsafe {
+ let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_read();
+ let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_read();
+ (key, val)
+ }
+ }
+
+ /// Drops the key and value that the KV handle refers to.
+ /// # Safety
+ /// The node that the handle refers to must not yet have been deallocated.
+ #[inline]
+ pub unsafe fn drop_key_val(mut self) {
+ debug_assert!(self.idx < self.node.len());
+ let leaf = self.node.as_leaf_dying();
+ unsafe {
+ leaf.keys.get_unchecked_mut(self.idx).assume_init_drop();
+ leaf.vals.get_unchecked_mut(self.idx).assume_init_drop();
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
+ /// Helps implementations of `split` for a particular `NodeType`,
+ /// by taking care of leaf data.
+ fn split_leaf_data(&mut self, new_node: &mut LeafNode<K, V>) -> (K, V) {
+ debug_assert!(self.idx < self.node.len());
+ let old_len = self.node.len();
+ let new_len = old_len - self.idx - 1;
+ new_node.len = new_len as u16;
+ unsafe {
+ let k = self.node.key_area_mut(self.idx).assume_init_read();
+ let v = self.node.val_area_mut(self.idx).assume_init_read();
+
+ move_to_slice(
+ self.node.key_area_mut(self.idx + 1..old_len),
+ &mut new_node.keys[..new_len],
+ );
+ move_to_slice(
+ self.node.val_area_mut(self.idx + 1..old_len),
+ &mut new_node.vals[..new_len],
+ );
+
+ *self.node.len_mut() = self.idx as u16;
+ (k, v)
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
+ /// Splits the underlying node into three parts:
+ ///
+ /// - The node is truncated to only contain the key-value pairs to the left of
+ /// this handle.
+ /// - The key and value pointed to by this handle are extracted.
+ /// - All the key-value pairs to the right of this handle are put into a newly
+ /// allocated node.
+ pub fn split<A: Allocator + Clone>(mut self, alloc: A) -> SplitResult<'a, K, V, marker::Leaf> {
+ let mut new_node = LeafNode::new(alloc);
+
+ let kv = self.split_leaf_data(&mut new_node);
+
+ let right = NodeRef::from_new_leaf(new_node);
+ SplitResult { left: self.node, kv, right }
+ }
+
+ /// Removes the key-value pair pointed to by this handle and returns it, along with the edge
+ /// that the key-value pair collapsed into.
+ pub fn remove(
+ mut self,
+ ) -> ((K, V), Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) {
+ let old_len = self.node.len();
+ unsafe {
+ let k = slice_remove(self.node.key_area_mut(..old_len), self.idx);
+ let v = slice_remove(self.node.val_area_mut(..old_len), self.idx);
+ *self.node.len_mut() = (old_len - 1) as u16;
+ ((k, v), self.left_edge())
+ }
+ }
+}
+
+impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
+ /// Splits the underlying node into three parts:
+ ///
+ /// - The node is truncated to only contain the edges and key-value pairs to the
+ /// left of this handle.
+ /// - The key and value pointed to by this handle are extracted.
+ /// - All the edges and key-value pairs to the right of this handle are put into
+ /// a newly allocated node.
+ pub fn split<A: Allocator + Clone>(
+ mut self,
+ alloc: A,
+ ) -> SplitResult<'a, K, V, marker::Internal> {
+ let old_len = self.node.len();
+ unsafe {
+ let mut new_node = InternalNode::new(alloc);
+ let kv = self.split_leaf_data(&mut new_node.data);
+ let new_len = usize::from(new_node.data.len);
+ move_to_slice(
+ self.node.edge_area_mut(self.idx + 1..old_len + 1),
+ &mut new_node.edges[..new_len + 1],
+ );
+
+ let height = self.node.height;
+ let right = NodeRef::from_new_internal(new_node, height);
+
+ SplitResult { left: self.node, kv, right }
+ }
+ }
+}
+
+/// Represents a session for evaluating and performing a balancing operation
+/// around an internal key-value pair.
+pub struct BalancingContext<'a, K, V> {
+ parent: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV>,
+ left_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
+ right_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
+}
+
+impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
+ pub fn consider_for_balancing(self) -> BalancingContext<'a, K, V> {
+ let self1 = unsafe { ptr::read(&self) };
+ let self2 = unsafe { ptr::read(&self) };
+ BalancingContext {
+ parent: self,
+ left_child: self1.left_edge().descend(),
+ right_child: self2.right_edge().descend(),
+ }
+ }
+}
+
+impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ /// Chooses a balancing context involving the node as a child, thus between
+ /// the KV immediately to the left or to the right in the parent node.
+ /// Returns an `Err` if there is no parent.
+ /// Panics if the parent is empty.
+ ///
+ /// Prefers the left side, to be optimal if the given node is somehow
+ /// underfull, meaning here only that it has fewer elements than its left
+ /// sibling and than its right sibling, if they exist. In that case,
+ /// merging with the left sibling is faster, since we only need to move
+ /// the node's N elements, instead of shifting them to the right and moving
+ /// more than N elements in front. Stealing from the left sibling is also
+ /// typically faster, since we only need to shift the node's N elements to
+ /// the right, instead of shifting at least N of the sibling's elements to
+ /// the left.
+ pub fn choose_parent_kv(self) -> Result<LeftOrRight<BalancingContext<'a, K, V>>, Self> {
+ match unsafe { ptr::read(&self) }.ascend() {
+ Ok(parent_edge) => match parent_edge.left_kv() {
+ Ok(left_parent_kv) => Ok(LeftOrRight::Left(BalancingContext {
+ parent: unsafe { ptr::read(&left_parent_kv) },
+ left_child: left_parent_kv.left_edge().descend(),
+ right_child: self,
+ })),
+ Err(parent_edge) => match parent_edge.right_kv() {
+ Ok(right_parent_kv) => Ok(LeftOrRight::Right(BalancingContext {
+ parent: unsafe { ptr::read(&right_parent_kv) },
+ left_child: self,
+ right_child: right_parent_kv.right_edge().descend(),
+ })),
+ Err(_) => unreachable!("empty internal node"),
+ },
+ },
+ Err(root) => Err(root),
+ }
+ }
+}
+
+impl<'a, K, V> BalancingContext<'a, K, V> {
+ pub fn left_child_len(&self) -> usize {
+ self.left_child.len()
+ }
+
+ pub fn right_child_len(&self) -> usize {
+ self.right_child.len()
+ }
+
+ pub fn into_left_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ self.left_child
+ }
+
+ pub fn into_right_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ self.right_child
+ }
+
+ /// Returns whether merging is possible, i.e., whether there is enough room
+ /// in a node to combine the central KV with both adjacent child nodes.
+ pub fn can_merge(&self) -> bool {
+ self.left_child.len() + 1 + self.right_child.len() <= CAPACITY
+ }
+}
+
+impl<'a, K: 'a, V: 'a> BalancingContext<'a, K, V> {
+ /// Performs a merge and lets a closure decide what to return.
+ fn do_merge<
+ F: FnOnce(
+ NodeRef<marker::Mut<'a>, K, V, marker::Internal>,
+ NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
+ ) -> R,
+ R,
+ A: Allocator,
+ >(
+ self,
+ result: F,
+ alloc: A,
+ ) -> R {
+ let Handle { node: mut parent_node, idx: parent_idx, _marker } = self.parent;
+ let old_parent_len = parent_node.len();
+ let mut left_node = self.left_child;
+ let old_left_len = left_node.len();
+ let mut right_node = self.right_child;
+ let right_len = right_node.len();
+ let new_left_len = old_left_len + 1 + right_len;
+
+ assert!(new_left_len <= CAPACITY);
+
+ unsafe {
+ *left_node.len_mut() = new_left_len as u16;
+
+ let parent_key = slice_remove(parent_node.key_area_mut(..old_parent_len), parent_idx);
+ left_node.key_area_mut(old_left_len).write(parent_key);
+ move_to_slice(
+ right_node.key_area_mut(..right_len),
+ left_node.key_area_mut(old_left_len + 1..new_left_len),
+ );
+
+ let parent_val = slice_remove(parent_node.val_area_mut(..old_parent_len), parent_idx);
+ left_node.val_area_mut(old_left_len).write(parent_val);
+ move_to_slice(
+ right_node.val_area_mut(..right_len),
+ left_node.val_area_mut(old_left_len + 1..new_left_len),
+ );
+
+ slice_remove(&mut parent_node.edge_area_mut(..old_parent_len + 1), parent_idx + 1);
+ parent_node.correct_childrens_parent_links(parent_idx + 1..old_parent_len);
+ *parent_node.len_mut() -= 1;
+
+ if parent_node.height > 1 {
+ // SAFETY: the height of the nodes being merged is one below the height
+ // of the node of this edge, thus above zero, so they are internal.
+ let mut left_node = left_node.reborrow_mut().cast_to_internal_unchecked();
+ let mut right_node = right_node.cast_to_internal_unchecked();
+ move_to_slice(
+ right_node.edge_area_mut(..right_len + 1),
+ left_node.edge_area_mut(old_left_len + 1..new_left_len + 1),
+ );
+
+ left_node.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);
+
+ alloc.deallocate(right_node.node.cast(), Layout::new::<InternalNode<K, V>>());
+ } else {
+ alloc.deallocate(right_node.node.cast(), Layout::new::<LeafNode<K, V>>());
+ }
+ }
+ result(parent_node, left_node)
+ }
+
+ /// Merges the parent's key-value pair and both adjacent child nodes into
+ /// the left child node and returns the shrunk parent node.
+ ///
+ /// Panics unless we `.can_merge()`.
+ pub fn merge_tracking_parent<A: Allocator + Clone>(
+ self,
+ alloc: A,
+ ) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
+ self.do_merge(|parent, _child| parent, alloc)
+ }
+
+ /// Merges the parent's key-value pair and both adjacent child nodes into
+ /// the left child node and returns that child node.
+ ///
+ /// Panics unless we `.can_merge()`.
+ pub fn merge_tracking_child<A: Allocator + Clone>(
+ self,
+ alloc: A,
+ ) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
+ self.do_merge(|_parent, child| child, alloc)
+ }
+
+ /// Merges the parent's key-value pair and both adjacent child nodes into
+ /// the left child node and returns the edge handle in that child node
+ /// where the tracked child edge ended up,
+ ///
+ /// Panics unless we `.can_merge()`.
+ pub fn merge_tracking_child_edge<A: Allocator + Clone>(
+ self,
+ track_edge_idx: LeftOrRight<usize>,
+ alloc: A,
+ ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
+ let old_left_len = self.left_child.len();
+ let right_len = self.right_child.len();
+ assert!(match track_edge_idx {
+ LeftOrRight::Left(idx) => idx <= old_left_len,
+ LeftOrRight::Right(idx) => idx <= right_len,
+ });
+ let child = self.merge_tracking_child(alloc);
+ let new_idx = match track_edge_idx {
+ LeftOrRight::Left(idx) => idx,
+ LeftOrRight::Right(idx) => old_left_len + 1 + idx,
+ };
+ unsafe { Handle::new_edge(child, new_idx) }
+ }
+
+ /// Removes a key-value pair from the left child and places it in the key-value storage
+ /// of the parent, while pushing the old parent key-value pair into the right child.
+ /// Returns a handle to the edge in the right child corresponding to where the original
+ /// edge specified by `track_right_edge_idx` ended up.
+ pub fn steal_left(
+ mut self,
+ track_right_edge_idx: usize,
+ ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
+ self.bulk_steal_left(1);
+ unsafe { Handle::new_edge(self.right_child, 1 + track_right_edge_idx) }
+ }
+
+ /// Removes a key-value pair from the right child and places it in the key-value storage
+ /// of the parent, while pushing the old parent key-value pair onto the left child.
+ /// Returns a handle to the edge in the left child specified by `track_left_edge_idx`,
+ /// which didn't move.
+ pub fn steal_right(
+ mut self,
+ track_left_edge_idx: usize,
+ ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
+ self.bulk_steal_right(1);
+ unsafe { Handle::new_edge(self.left_child, track_left_edge_idx) }
+ }
+
+ /// This does stealing similar to `steal_left` but steals multiple elements at once.
+ pub fn bulk_steal_left(&mut self, count: usize) {
+ assert!(count > 0);
+ unsafe {
+ let left_node = &mut self.left_child;
+ let old_left_len = left_node.len();
+ let right_node = &mut self.right_child;
+ let old_right_len = right_node.len();
+
+ // Make sure that we may steal safely.
+ assert!(old_right_len + count <= CAPACITY);
+ assert!(old_left_len >= count);
+
+ let new_left_len = old_left_len - count;
+ let new_right_len = old_right_len + count;
+ *left_node.len_mut() = new_left_len as u16;
+ *right_node.len_mut() = new_right_len as u16;
+
+ // Move leaf data.
+ {
+ // Make room for stolen elements in the right child.
+ slice_shr(right_node.key_area_mut(..new_right_len), count);
+ slice_shr(right_node.val_area_mut(..new_right_len), count);
+
+ // Move elements from the left child to the right one.
+ move_to_slice(
+ left_node.key_area_mut(new_left_len + 1..old_left_len),
+ right_node.key_area_mut(..count - 1),
+ );
+ move_to_slice(
+ left_node.val_area_mut(new_left_len + 1..old_left_len),
+ right_node.val_area_mut(..count - 1),
+ );
+
+ // Move the left-most stolen pair to the parent.
+ let k = left_node.key_area_mut(new_left_len).assume_init_read();
+ let v = left_node.val_area_mut(new_left_len).assume_init_read();
+ let (k, v) = self.parent.replace_kv(k, v);
+
+ // Move parent's key-value pair to the right child.
+ right_node.key_area_mut(count - 1).write(k);
+ right_node.val_area_mut(count - 1).write(v);
+ }
+
+ match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
+ (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
+ // Make room for stolen edges.
+ slice_shr(right.edge_area_mut(..new_right_len + 1), count);
+
+ // Steal edges.
+ move_to_slice(
+ left.edge_area_mut(new_left_len + 1..old_left_len + 1),
+ right.edge_area_mut(..count),
+ );
+
+ right.correct_childrens_parent_links(0..new_right_len + 1);
+ }
+ (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
+ _ => unreachable!(),
+ }
+ }
+ }
+
+ /// The symmetric clone of `bulk_steal_left`.
+ pub fn bulk_steal_right(&mut self, count: usize) {
+ assert!(count > 0);
+ unsafe {
+ let left_node = &mut self.left_child;
+ let old_left_len = left_node.len();
+ let right_node = &mut self.right_child;
+ let old_right_len = right_node.len();
+
+ // Make sure that we may steal safely.
+ assert!(old_left_len + count <= CAPACITY);
+ assert!(old_right_len >= count);
+
+ let new_left_len = old_left_len + count;
+ let new_right_len = old_right_len - count;
+ *left_node.len_mut() = new_left_len as u16;
+ *right_node.len_mut() = new_right_len as u16;
+
+ // Move leaf data.
+ {
+ // Move the right-most stolen pair to the parent.
+ let k = right_node.key_area_mut(count - 1).assume_init_read();
+ let v = right_node.val_area_mut(count - 1).assume_init_read();
+ let (k, v) = self.parent.replace_kv(k, v);
+
+ // Move parent's key-value pair to the left child.
+ left_node.key_area_mut(old_left_len).write(k);
+ left_node.val_area_mut(old_left_len).write(v);
+
+ // Move elements from the right child to the left one.
+ move_to_slice(
+ right_node.key_area_mut(..count - 1),
+ left_node.key_area_mut(old_left_len + 1..new_left_len),
+ );
+ move_to_slice(
+ right_node.val_area_mut(..count - 1),
+ left_node.val_area_mut(old_left_len + 1..new_left_len),
+ );
+
+ // Fill gap where stolen elements used to be.
+ slice_shl(right_node.key_area_mut(..old_right_len), count);
+ slice_shl(right_node.val_area_mut(..old_right_len), count);
+ }
+
+ match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
+ (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
+ // Steal edges.
+ move_to_slice(
+ right.edge_area_mut(..count),
+ left.edge_area_mut(old_left_len + 1..new_left_len + 1),
+ );
+
+ // Fill gap where stolen edges used to be.
+ slice_shl(right.edge_area_mut(..old_right_len + 1), count);
+
+ left.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);
+ right.correct_childrens_parent_links(0..new_right_len + 1);
+ }
+ (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
+ _ => unreachable!(),
+ }
+ }
+ }
+}
+
+impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
+ pub fn forget_node_type(
+ self,
+ ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
+ unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
+ }
+}
+
+impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
+ pub fn forget_node_type(
+ self,
+ ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
+ unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
+ }
+}
+
+impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::KV> {
+ pub fn forget_node_type(
+ self,
+ ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> {
+ unsafe { Handle::new_kv(self.node.forget_type(), self.idx) }
+ }
+}
+
+impl<BorrowType, K, V, Type> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, Type> {
+ /// Checks whether the underlying node is an `Internal` node or a `Leaf` node.
+ pub fn force(
+ self,
+ ) -> ForceResult<
+ Handle<NodeRef<BorrowType, K, V, marker::Leaf>, Type>,
+ Handle<NodeRef<BorrowType, K, V, marker::Internal>, Type>,
+ > {
+ match self.node.force() {
+ ForceResult::Leaf(node) => {
+ ForceResult::Leaf(Handle { node, idx: self.idx, _marker: PhantomData })
+ }
+ ForceResult::Internal(node) => {
+ ForceResult::Internal(Handle { node, idx: self.idx, _marker: PhantomData })
+ }
+ }
+ }
+}
+
+impl<'a, K, V, Type> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, Type> {
+ /// Unsafely asserts to the compiler the static information that the handle's node is a `Leaf`.
+ pub unsafe fn cast_to_leaf_unchecked(
+ self,
+ ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, Type> {
+ let node = unsafe { self.node.cast_to_leaf_unchecked() };
+ Handle { node, idx: self.idx, _marker: PhantomData }
+ }
+}
+
+impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
+ /// Move the suffix after `self` from one node to another one. `right` must be empty.
+ /// The first edge of `right` remains unchanged.
+ pub fn move_suffix(
+ &mut self,
+ right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
+ ) {
+ unsafe {
+ let new_left_len = self.idx;
+ let mut left_node = self.reborrow_mut().into_node();
+ let old_left_len = left_node.len();
+
+ let new_right_len = old_left_len - new_left_len;
+ let mut right_node = right.reborrow_mut();
+
+ assert!(right_node.len() == 0);
+ assert!(left_node.height == right_node.height);
+
+ if new_right_len > 0 {
+ *left_node.len_mut() = new_left_len as u16;
+ *right_node.len_mut() = new_right_len as u16;
+
+ move_to_slice(
+ left_node.key_area_mut(new_left_len..old_left_len),
+ right_node.key_area_mut(..new_right_len),
+ );
+ move_to_slice(
+ left_node.val_area_mut(new_left_len..old_left_len),
+ right_node.val_area_mut(..new_right_len),
+ );
+ match (left_node.force(), right_node.force()) {
+ (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
+ move_to_slice(
+ left.edge_area_mut(new_left_len + 1..old_left_len + 1),
+ right.edge_area_mut(1..new_right_len + 1),
+ );
+ right.correct_childrens_parent_links(1..new_right_len + 1);
+ }
+ (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
+ _ => unreachable!(),
+ }
+ }
+ }
+ }
+}
+
+pub enum ForceResult<Leaf, Internal> {
+ Leaf(Leaf),
+ Internal(Internal),
+}
+
+/// Result of insertion, when a node needed to expand beyond its capacity.
+pub struct SplitResult<'a, K, V, NodeType> {
+ // Altered node in existing tree with elements and edges that belong to the left of `kv`.
+ pub left: NodeRef<marker::Mut<'a>, K, V, NodeType>,
+ // Some key and value that existed before and were split off, to be inserted elsewhere.
+ pub kv: (K, V),
+ // Owned, unattached, new node with elements and edges that belong to the right of `kv`.
+ pub right: NodeRef<marker::Owned, K, V, NodeType>,
+}
+
+impl<'a, K, V> SplitResult<'a, K, V, marker::Leaf> {
+ pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
+ SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
+ }
+}
+
+impl<'a, K, V> SplitResult<'a, K, V, marker::Internal> {
+ pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
+ SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
+ }
+}
+
+pub mod marker {
+ use core::marker::PhantomData;
+
+ pub enum Leaf {}
+ pub enum Internal {}
+ pub enum LeafOrInternal {}
+
+ pub enum Owned {}
+ pub enum Dying {}
+ pub struct Immut<'a>(PhantomData<&'a ()>);
+ pub struct Mut<'a>(PhantomData<&'a mut ()>);
+ pub struct ValMut<'a>(PhantomData<&'a mut ()>);
+
+ pub trait BorrowType {
+ // Whether node references of this borrow type allow traversing
+ // to other nodes in the tree.
+ const PERMITS_TRAVERSAL: bool = true;
+ }
+ impl BorrowType for Owned {
+ // Traversal isn't needed, it happens using the result of `borrow_mut`.
+ // By disabling traversal, and only creating new references to roots,
+ // we know that every reference of the `Owned` type is to a root node.
+ const PERMITS_TRAVERSAL: bool = false;
+ }
+ impl BorrowType for Dying {}
+ impl<'a> BorrowType for Immut<'a> {}
+ impl<'a> BorrowType for Mut<'a> {}
+ impl<'a> BorrowType for ValMut<'a> {}
+
+ pub enum KV {}
+ pub enum Edge {}
+}
+
+/// Inserts a value into a slice of initialized elements followed by one uninitialized element.
+///
+/// # Safety
+/// The slice has more than `idx` elements.
+unsafe fn slice_insert<T>(slice: &mut [MaybeUninit<T>], idx: usize, val: T) {
+ unsafe {
+ let len = slice.len();
+ debug_assert!(len > idx);
+ let slice_ptr = slice.as_mut_ptr();
+ if len > idx + 1 {
+ ptr::copy(slice_ptr.add(idx), slice_ptr.add(idx + 1), len - idx - 1);
+ }
+ (*slice_ptr.add(idx)).write(val);
+ }
+}
+
+/// Removes and returns a value from a slice of all initialized elements, leaving behind one
+/// trailing uninitialized element.
+///
+/// # Safety
+/// The slice has more than `idx` elements.
+unsafe fn slice_remove<T>(slice: &mut [MaybeUninit<T>], idx: usize) -> T {
+ unsafe {
+ let len = slice.len();
+ debug_assert!(idx < len);
+ let slice_ptr = slice.as_mut_ptr();
+ let ret = (*slice_ptr.add(idx)).assume_init_read();
+ ptr::copy(slice_ptr.add(idx + 1), slice_ptr.add(idx), len - idx - 1);
+ ret
+ }
+}
+
+/// Shifts the elements in a slice `distance` positions to the left.
+///
+/// # Safety
+/// The slice has at least `distance` elements.
+unsafe fn slice_shl<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
+ unsafe {
+ let slice_ptr = slice.as_mut_ptr();
+ ptr::copy(slice_ptr.add(distance), slice_ptr, slice.len() - distance);
+ }
+}
+
+/// Shifts the elements in a slice `distance` positions to the right.
+///
+/// # Safety
+/// The slice has at least `distance` elements.
+unsafe fn slice_shr<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
+ unsafe {
+ let slice_ptr = slice.as_mut_ptr();
+ ptr::copy(slice_ptr, slice_ptr.add(distance), slice.len() - distance);
+ }
+}
+
+/// Moves all values from a slice of initialized elements to a slice
+/// of uninitialized elements, leaving behind `src` as all uninitialized.
+/// Works like `dst.copy_from_slice(src)` but does not require `T` to be `Copy`.
+fn move_to_slice<T>(src: &mut [MaybeUninit<T>], dst: &mut [MaybeUninit<T>]) {
+ assert!(src.len() == dst.len());
+ unsafe {
+ ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
+ }
+}
+
+#[cfg(test)]
+mod tests;