summaryrefslogtreecommitdiffstats
path: root/library/alloc/src/collections/vec_deque/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/alloc/src/collections/vec_deque/mod.rs')
-rw-r--r--library/alloc/src/collections/vec_deque/mod.rs3137
1 files changed, 3137 insertions, 0 deletions
diff --git a/library/alloc/src/collections/vec_deque/mod.rs b/library/alloc/src/collections/vec_deque/mod.rs
new file mode 100644
index 000000000..4d895d837
--- /dev/null
+++ b/library/alloc/src/collections/vec_deque/mod.rs
@@ -0,0 +1,3137 @@
+//! A double-ended queue (deque) implemented with a growable ring buffer.
+//!
+//! This queue has *O*(1) amortized inserts and removals from both ends of the
+//! container. It also has *O*(1) indexing like a vector. The contained elements
+//! are not required to be copyable, and the queue will be sendable if the
+//! contained type is sendable.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use core::cmp::{self, Ordering};
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::iter::{repeat_with, FromIterator};
+use core::marker::PhantomData;
+use core::mem::{self, ManuallyDrop, MaybeUninit};
+use core::ops::{Index, IndexMut, Range, RangeBounds};
+use core::ptr::{self, NonNull};
+use core::slice;
+
+use crate::alloc::{Allocator, Global};
+use crate::collections::TryReserveError;
+use crate::collections::TryReserveErrorKind;
+use crate::raw_vec::RawVec;
+use crate::vec::Vec;
+
+#[macro_use]
+mod macros;
+
+#[stable(feature = "drain", since = "1.6.0")]
+pub use self::drain::Drain;
+
+mod drain;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use self::iter_mut::IterMut;
+
+mod iter_mut;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use self::into_iter::IntoIter;
+
+mod into_iter;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use self::iter::Iter;
+
+mod iter;
+
+use self::pair_slices::PairSlices;
+
+mod pair_slices;
+
+use self::ring_slices::RingSlices;
+
+mod ring_slices;
+
+use self::spec_extend::SpecExtend;
+
+mod spec_extend;
+
+#[cfg(test)]
+mod tests;
+
+const INITIAL_CAPACITY: usize = 7; // 2^3 - 1
+const MINIMUM_CAPACITY: usize = 1; // 2 - 1
+
+const MAXIMUM_ZST_CAPACITY: usize = 1 << (usize::BITS - 1); // Largest possible power of two
+
+/// A double-ended queue implemented with a growable ring buffer.
+///
+/// The "default" usage of this type as a queue is to use [`push_back`] to add to
+/// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`]
+/// push onto the back in this manner, and iterating over `VecDeque` goes front
+/// to back.
+///
+/// A `VecDeque` with a known list of items can be initialized from an array:
+///
+/// ```
+/// use std::collections::VecDeque;
+///
+/// let deq = VecDeque::from([-1, 0, 1]);
+/// ```
+///
+/// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous
+/// in memory. If you want to access the elements as a single slice, such as for
+/// efficient sorting, you can use [`make_contiguous`]. It rotates the `VecDeque`
+/// so that its elements do not wrap, and returns a mutable slice to the
+/// now-contiguous element sequence.
+///
+/// [`push_back`]: VecDeque::push_back
+/// [`pop_front`]: VecDeque::pop_front
+/// [`extend`]: VecDeque::extend
+/// [`append`]: VecDeque::append
+/// [`make_contiguous`]: VecDeque::make_contiguous
+#[cfg_attr(not(test), rustc_diagnostic_item = "VecDeque")]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_insignificant_dtor]
+pub struct VecDeque<
+ T,
+ #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
+> {
+ // tail and head are pointers into the buffer. Tail always points
+ // to the first element that could be read, Head always points
+ // to where data should be written.
+ // If tail == head the buffer is empty. The length of the ringbuffer
+ // is defined as the distance between the two.
+ tail: usize,
+ head: usize,
+ buf: RawVec<T, A>,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Clone, A: Allocator + Clone> Clone for VecDeque<T, A> {
+ fn clone(&self) -> Self {
+ let mut deq = Self::with_capacity_in(self.len(), self.allocator().clone());
+ deq.extend(self.iter().cloned());
+ deq
+ }
+
+ fn clone_from(&mut self, other: &Self) {
+ self.truncate(other.len());
+
+ let mut iter = PairSlices::from(self, other);
+ while let Some((dst, src)) = iter.next() {
+ dst.clone_from_slice(&src);
+ }
+
+ if iter.has_remainder() {
+ for remainder in iter.remainder() {
+ self.extend(remainder.iter().cloned());
+ }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T, A: Allocator> Drop for VecDeque<T, A> {
+ fn drop(&mut self) {
+ /// Runs the destructor for all items in the slice when it gets dropped (normally or
+ /// during unwinding).
+ struct Dropper<'a, T>(&'a mut [T]);
+
+ impl<'a, T> Drop for Dropper<'a, T> {
+ fn drop(&mut self) {
+ unsafe {
+ ptr::drop_in_place(self.0);
+ }
+ }
+ }
+
+ let (front, back) = self.as_mut_slices();
+ unsafe {
+ let _back_dropper = Dropper(back);
+ // use drop for [T]
+ ptr::drop_in_place(front);
+ }
+ // RawVec handles deallocation
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> Default for VecDeque<T> {
+ /// Creates an empty deque.
+ #[inline]
+ fn default() -> VecDeque<T> {
+ VecDeque::new()
+ }
+}
+
+impl<T, A: Allocator> VecDeque<T, A> {
+ /// Marginally more convenient
+ #[inline]
+ fn ptr(&self) -> *mut T {
+ self.buf.ptr()
+ }
+
+ /// Marginally more convenient
+ #[inline]
+ fn cap(&self) -> usize {
+ if mem::size_of::<T>() == 0 {
+ // For zero sized types, we are always at maximum capacity
+ MAXIMUM_ZST_CAPACITY
+ } else {
+ self.buf.capacity()
+ }
+ }
+
+ /// Turn ptr into a slice, since the elements of the backing buffer may be uninitialized,
+ /// we will return a slice of [`MaybeUninit<T>`].
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[inline]
+ unsafe fn buffer_as_slice(&self) -> &[MaybeUninit<T>] {
+ unsafe { slice::from_raw_parts(self.ptr() as *mut MaybeUninit<T>, self.cap()) }
+ }
+
+ /// Turn ptr into a mut slice, since the elements of the backing buffer may be uninitialized,
+ /// we will return a slice of [`MaybeUninit<T>`].
+ ///
+ /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
+ /// incorrect usage of this method.
+ ///
+ /// [zeroed]: mem::MaybeUninit::zeroed
+ #[inline]
+ unsafe fn buffer_as_mut_slice(&mut self) -> &mut [MaybeUninit<T>] {
+ unsafe { slice::from_raw_parts_mut(self.ptr() as *mut MaybeUninit<T>, self.cap()) }
+ }
+
+ /// Moves an element out of the buffer
+ #[inline]
+ unsafe fn buffer_read(&mut self, off: usize) -> T {
+ unsafe { ptr::read(self.ptr().add(off)) }
+ }
+
+ /// Writes an element into the buffer, moving it.
+ #[inline]
+ unsafe fn buffer_write(&mut self, off: usize, value: T) {
+ unsafe {
+ ptr::write(self.ptr().add(off), value);
+ }
+ }
+
+ /// Returns `true` if the buffer is at full capacity.
+ #[inline]
+ fn is_full(&self) -> bool {
+ self.cap() - self.len() == 1
+ }
+
+ /// Returns the index in the underlying buffer for a given logical element
+ /// index.
+ #[inline]
+ fn wrap_index(&self, idx: usize) -> usize {
+ wrap_index(idx, self.cap())
+ }
+
+ /// Returns the index in the underlying buffer for a given logical element
+ /// index + addend.
+ #[inline]
+ fn wrap_add(&self, idx: usize, addend: usize) -> usize {
+ wrap_index(idx.wrapping_add(addend), self.cap())
+ }
+
+ /// Returns the index in the underlying buffer for a given logical element
+ /// index - subtrahend.
+ #[inline]
+ fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
+ wrap_index(idx.wrapping_sub(subtrahend), self.cap())
+ }
+
+ /// Copies a contiguous block of memory len long from src to dst
+ #[inline]
+ unsafe fn copy(&self, dst: usize, src: usize, len: usize) {
+ debug_assert!(
+ dst + len <= self.cap(),
+ "cpy dst={} src={} len={} cap={}",
+ dst,
+ src,
+ len,
+ self.cap()
+ );
+ debug_assert!(
+ src + len <= self.cap(),
+ "cpy dst={} src={} len={} cap={}",
+ dst,
+ src,
+ len,
+ self.cap()
+ );
+ unsafe {
+ ptr::copy(self.ptr().add(src), self.ptr().add(dst), len);
+ }
+ }
+
+ /// Copies a contiguous block of memory len long from src to dst
+ #[inline]
+ unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) {
+ debug_assert!(
+ dst + len <= self.cap(),
+ "cno dst={} src={} len={} cap={}",
+ dst,
+ src,
+ len,
+ self.cap()
+ );
+ debug_assert!(
+ src + len <= self.cap(),
+ "cno dst={} src={} len={} cap={}",
+ dst,
+ src,
+ len,
+ self.cap()
+ );
+ unsafe {
+ ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len);
+ }
+ }
+
+ /// Copies a potentially wrapping block of memory len long from src to dest.
+ /// (abs(dst - src) + len) must be no larger than cap() (There must be at
+ /// most one continuous overlapping region between src and dest).
+ unsafe fn wrap_copy(&self, dst: usize, src: usize, len: usize) {
+ #[allow(dead_code)]
+ fn diff(a: usize, b: usize) -> usize {
+ if a <= b { b - a } else { a - b }
+ }
+ debug_assert!(
+ cmp::min(diff(dst, src), self.cap() - diff(dst, src)) + len <= self.cap(),
+ "wrc dst={} src={} len={} cap={}",
+ dst,
+ src,
+ len,
+ self.cap()
+ );
+
+ if src == dst || len == 0 {
+ return;
+ }
+
+ let dst_after_src = self.wrap_sub(dst, src) < len;
+
+ let src_pre_wrap_len = self.cap() - src;
+ let dst_pre_wrap_len = self.cap() - dst;
+ let src_wraps = src_pre_wrap_len < len;
+ let dst_wraps = dst_pre_wrap_len < len;
+
+ match (dst_after_src, src_wraps, dst_wraps) {
+ (_, false, false) => {
+ // src doesn't wrap, dst doesn't wrap
+ //
+ // S . . .
+ // 1 [_ _ A A B B C C _]
+ // 2 [_ _ A A A A B B _]
+ // D . . .
+ //
+ unsafe {
+ self.copy(dst, src, len);
+ }
+ }
+ (false, false, true) => {
+ // dst before src, src doesn't wrap, dst wraps
+ //
+ // S . . .
+ // 1 [A A B B _ _ _ C C]
+ // 2 [A A B B _ _ _ A A]
+ // 3 [B B B B _ _ _ A A]
+ // . . D .
+ //
+ unsafe {
+ self.copy(dst, src, dst_pre_wrap_len);
+ self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
+ }
+ }
+ (true, false, true) => {
+ // src before dst, src doesn't wrap, dst wraps
+ //
+ // S . . .
+ // 1 [C C _ _ _ A A B B]
+ // 2 [B B _ _ _ A A B B]
+ // 3 [B B _ _ _ A A A A]
+ // . . D .
+ //
+ unsafe {
+ self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len);
+ self.copy(dst, src, dst_pre_wrap_len);
+ }
+ }
+ (false, true, false) => {
+ // dst before src, src wraps, dst doesn't wrap
+ //
+ // . . S .
+ // 1 [C C _ _ _ A A B B]
+ // 2 [C C _ _ _ B B B B]
+ // 3 [C C _ _ _ B B C C]
+ // D . . .
+ //
+ unsafe {
+ self.copy(dst, src, src_pre_wrap_len);
+ self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
+ }
+ }
+ (true, true, false) => {
+ // src before dst, src wraps, dst doesn't wrap
+ //
+ // . . S .
+ // 1 [A A B B _ _ _ C C]
+ // 2 [A A A A _ _ _ C C]
+ // 3 [C C A A _ _ _ C C]
+ // D . . .
+ //
+ unsafe {
+ self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len);
+ self.copy(dst, src, src_pre_wrap_len);
+ }
+ }
+ (false, true, true) => {
+ // dst before src, src wraps, dst wraps
+ //
+ // . . . S .
+ // 1 [A B C D _ E F G H]
+ // 2 [A B C D _ E G H H]
+ // 3 [A B C D _ E G H A]
+ // 4 [B C C D _ E G H A]
+ // . . D . .
+ //
+ debug_assert!(dst_pre_wrap_len > src_pre_wrap_len);
+ let delta = dst_pre_wrap_len - src_pre_wrap_len;
+ unsafe {
+ self.copy(dst, src, src_pre_wrap_len);
+ self.copy(dst + src_pre_wrap_len, 0, delta);
+ self.copy(0, delta, len - dst_pre_wrap_len);
+ }
+ }
+ (true, true, true) => {
+ // src before dst, src wraps, dst wraps
+ //
+ // . . S . .
+ // 1 [A B C D _ E F G H]
+ // 2 [A A B D _ E F G H]
+ // 3 [H A B D _ E F G H]
+ // 4 [H A B D _ E F F G]
+ // . . . D .
+ //
+ debug_assert!(src_pre_wrap_len > dst_pre_wrap_len);
+ let delta = src_pre_wrap_len - dst_pre_wrap_len;
+ unsafe {
+ self.copy(delta, 0, len - src_pre_wrap_len);
+ self.copy(0, self.cap() - delta, delta);
+ self.copy(dst, src, dst_pre_wrap_len);
+ }
+ }
+ }
+ }
+
+ /// Copies all values from `src` to `dst`, wrapping around if needed.
+ /// Assumes capacity is sufficient.
+ #[inline]
+ unsafe fn copy_slice(&mut self, dst: usize, src: &[T]) {
+ debug_assert!(src.len() <= self.cap());
+ let head_room = self.cap() - dst;
+ if src.len() <= head_room {
+ unsafe {
+ ptr::copy_nonoverlapping(src.as_ptr(), self.ptr().add(dst), src.len());
+ }
+ } else {
+ let (left, right) = src.split_at(head_room);
+ unsafe {
+ ptr::copy_nonoverlapping(left.as_ptr(), self.ptr().add(dst), left.len());
+ ptr::copy_nonoverlapping(right.as_ptr(), self.ptr(), right.len());
+ }
+ }
+ }
+
+ /// Writes all values from `iter` to `dst`.
+ ///
+ /// # Safety
+ ///
+ /// Assumes no wrapping around happens.
+ /// Assumes capacity is sufficient.
+ #[inline]
+ unsafe fn write_iter(
+ &mut self,
+ dst: usize,
+ iter: impl Iterator<Item = T>,
+ written: &mut usize,
+ ) {
+ iter.enumerate().for_each(|(i, element)| unsafe {
+ self.buffer_write(dst + i, element);
+ *written += 1;
+ });
+ }
+
+ /// Frobs the head and tail sections around to handle the fact that we
+ /// just reallocated. Unsafe because it trusts old_capacity.
+ #[inline]
+ unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) {
+ let new_capacity = self.cap();
+
+ // Move the shortest contiguous section of the ring buffer
+ // T H
+ // [o o o o o o o . ]
+ // T H
+ // A [o o o o o o o . . . . . . . . . ]
+ // H T
+ // [o o . o o o o o ]
+ // T H
+ // B [. . . o o o o o o o . . . . . . ]
+ // H T
+ // [o o o o o . o o ]
+ // H T
+ // C [o o o o o . . . . . . . . . o o ]
+
+ if self.tail <= self.head {
+ // A
+ // Nop
+ } else if self.head < old_capacity - self.tail {
+ // B
+ unsafe {
+ self.copy_nonoverlapping(old_capacity, 0, self.head);
+ }
+ self.head += old_capacity;
+ debug_assert!(self.head > self.tail);
+ } else {
+ // C
+ let new_tail = new_capacity - (old_capacity - self.tail);
+ unsafe {
+ self.copy_nonoverlapping(new_tail, self.tail, old_capacity - self.tail);
+ }
+ self.tail = new_tail;
+ debug_assert!(self.head < self.tail);
+ }
+ debug_assert!(self.head < self.cap());
+ debug_assert!(self.tail < self.cap());
+ debug_assert!(self.cap().count_ones() == 1);
+ }
+}
+
+impl<T> VecDeque<T> {
+ /// Creates an empty deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<u32> = VecDeque::new();
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn new() -> VecDeque<T> {
+ VecDeque::new_in(Global)
+ }
+
+ /// Creates an empty deque with space for at least `capacity` elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn with_capacity(capacity: usize) -> VecDeque<T> {
+ Self::with_capacity_in(capacity, Global)
+ }
+}
+
+impl<T, A: Allocator> VecDeque<T, A> {
+ /// Creates an empty deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<u32> = VecDeque::new();
+ /// ```
+ #[inline]
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn new_in(alloc: A) -> VecDeque<T, A> {
+ VecDeque::with_capacity_in(INITIAL_CAPACITY, alloc)
+ }
+
+ /// Creates an empty deque with space for at least `capacity` elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
+ /// ```
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ pub fn with_capacity_in(capacity: usize, alloc: A) -> VecDeque<T, A> {
+ assert!(capacity < 1_usize << usize::BITS - 1, "capacity overflow");
+ // +1 since the ringbuffer always leaves one space empty
+ let cap = cmp::max(capacity + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
+
+ VecDeque { tail: 0, head: 0, buf: RawVec::with_capacity_in(cap, alloc) }
+ }
+
+ /// Provides a reference to the element at the given index.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(3);
+ /// buf.push_back(4);
+ /// buf.push_back(5);
+ /// assert_eq!(buf.get(1), Some(&4));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn get(&self, index: usize) -> Option<&T> {
+ if index < self.len() {
+ let idx = self.wrap_add(self.tail, index);
+ unsafe { Some(&*self.ptr().add(idx)) }
+ } else {
+ None
+ }
+ }
+
+ /// Provides a mutable reference to the element at the given index.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(3);
+ /// buf.push_back(4);
+ /// buf.push_back(5);
+ /// if let Some(elem) = buf.get_mut(1) {
+ /// *elem = 7;
+ /// }
+ ///
+ /// assert_eq!(buf[1], 7);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
+ if index < self.len() {
+ let idx = self.wrap_add(self.tail, index);
+ unsafe { Some(&mut *self.ptr().add(idx)) }
+ } else {
+ None
+ }
+ }
+
+ /// Swaps elements at indices `i` and `j`.
+ ///
+ /// `i` and `j` may be equal.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Panics
+ ///
+ /// Panics if either index is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(3);
+ /// buf.push_back(4);
+ /// buf.push_back(5);
+ /// assert_eq!(buf, [3, 4, 5]);
+ /// buf.swap(0, 2);
+ /// assert_eq!(buf, [5, 4, 3]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn swap(&mut self, i: usize, j: usize) {
+ assert!(i < self.len());
+ assert!(j < self.len());
+ let ri = self.wrap_add(self.tail, i);
+ let rj = self.wrap_add(self.tail, j);
+ unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) }
+ }
+
+ /// Returns the number of elements the deque can hold without
+ /// reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
+ /// assert!(buf.capacity() >= 10);
+ /// ```
+ #[inline]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn capacity(&self) -> usize {
+ self.cap() - 1
+ }
+
+ /// Reserves the minimum capacity for at least `additional` more elements to be inserted in the
+ /// given deque. Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it requests. Therefore
+ /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
+ /// insertions are expected.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<i32> = [1].into();
+ /// buf.reserve_exact(10);
+ /// assert!(buf.capacity() >= 11);
+ /// ```
+ ///
+ /// [`reserve`]: VecDeque::reserve
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted in the given
+ /// deque. The collection may reserve more space to speculatively avoid frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<i32> = [1].into();
+ /// buf.reserve(10);
+ /// assert!(buf.capacity() >= 11);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn reserve(&mut self, additional: usize) {
+ let old_cap = self.cap();
+ let used_cap = self.len() + 1;
+ let new_cap = used_cap
+ .checked_add(additional)
+ .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
+ .expect("capacity overflow");
+
+ if new_cap > old_cap {
+ self.buf.reserve_exact(used_cap, new_cap - used_cap);
+ unsafe {
+ self.handle_capacity_increase(old_cap);
+ }
+ }
+ }
+
+ /// Tries to reserve the minimum capacity for at least `additional` more elements to
+ /// be inserted in the given deque. After calling `try_reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional` if
+ /// it returns `Ok(())`. Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore, capacity can not be relied upon to be precisely
+ /// minimal. Prefer [`try_reserve`] if future insertions are expected.
+ ///
+ /// [`try_reserve`]: VecDeque::try_reserve
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ /// use std::collections::VecDeque;
+ ///
+ /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
+ /// let mut output = VecDeque::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve_exact(data.len())?;
+ ///
+ /// // Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work
+ /// output.extend(data.iter().map(|&val| {
+ /// val * 2 + 5 // very complicated
+ /// }));
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ self.try_reserve(additional)
+ }
+
+ /// Tries to reserve capacity for at least `additional` more elements to be inserted
+ /// in the given deque. The collection may reserve more space to speculatively avoid
+ /// frequent reallocations. After calling `try_reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional` if it returns
+ /// `Ok(())`. Does nothing if capacity is already sufficient.
+ ///
+ /// # Errors
+ ///
+ /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
+ /// is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::TryReserveError;
+ /// use std::collections::VecDeque;
+ ///
+ /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
+ /// let mut output = VecDeque::new();
+ ///
+ /// // Pre-reserve the memory, exiting if we can't
+ /// output.try_reserve(data.len())?;
+ ///
+ /// // Now we know this can't OOM in the middle of our complex work
+ /// output.extend(data.iter().map(|&val| {
+ /// val * 2 + 5 // very complicated
+ /// }));
+ ///
+ /// Ok(output)
+ /// }
+ /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
+ /// ```
+ #[stable(feature = "try_reserve", since = "1.57.0")]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
+ let old_cap = self.cap();
+ let used_cap = self.len() + 1;
+ let new_cap = used_cap
+ .checked_add(additional)
+ .and_then(|needed_cap| needed_cap.checked_next_power_of_two())
+ .ok_or(TryReserveErrorKind::CapacityOverflow)?;
+
+ if new_cap > old_cap {
+ self.buf.try_reserve_exact(used_cap, new_cap - used_cap)?;
+ unsafe {
+ self.handle_capacity_increase(old_cap);
+ }
+ }
+ Ok(())
+ }
+
+ /// Shrinks the capacity of the deque as much as possible.
+ ///
+ /// It will drop down as close as possible to the length but the allocator may still inform the
+ /// deque that there is space for a few more elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::with_capacity(15);
+ /// buf.extend(0..4);
+ /// assert_eq!(buf.capacity(), 15);
+ /// buf.shrink_to_fit();
+ /// assert!(buf.capacity() >= 4);
+ /// ```
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn shrink_to_fit(&mut self) {
+ self.shrink_to(0);
+ }
+
+ /// Shrinks the capacity of the deque with a lower bound.
+ ///
+ /// The capacity will remain at least as large as both the length
+ /// and the supplied value.
+ ///
+ /// If the current capacity is less than the lower limit, this is a no-op.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::with_capacity(15);
+ /// buf.extend(0..4);
+ /// assert_eq!(buf.capacity(), 15);
+ /// buf.shrink_to(6);
+ /// assert!(buf.capacity() >= 6);
+ /// buf.shrink_to(0);
+ /// assert!(buf.capacity() >= 4);
+ /// ```
+ #[stable(feature = "shrink_to", since = "1.56.0")]
+ pub fn shrink_to(&mut self, min_capacity: usize) {
+ let min_capacity = cmp::min(min_capacity, self.capacity());
+ // We don't have to worry about an overflow as neither `self.len()` nor `self.capacity()`
+ // can ever be `usize::MAX`. +1 as the ringbuffer always leaves one space empty.
+ let target_cap = cmp::max(cmp::max(min_capacity, self.len()) + 1, MINIMUM_CAPACITY + 1)
+ .next_power_of_two();
+
+ if target_cap < self.cap() {
+ // There are three cases of interest:
+ // All elements are out of desired bounds
+ // Elements are contiguous, and head is out of desired bounds
+ // Elements are discontiguous, and tail is out of desired bounds
+ //
+ // At all other times, element positions are unaffected.
+ //
+ // Indicates that elements at the head should be moved.
+ let head_outside = self.head == 0 || self.head >= target_cap;
+ // Move elements from out of desired bounds (positions after target_cap)
+ if self.tail >= target_cap && head_outside {
+ // T H
+ // [. . . . . . . . o o o o o o o . ]
+ // T H
+ // [o o o o o o o . ]
+ unsafe {
+ self.copy_nonoverlapping(0, self.tail, self.len());
+ }
+ self.head = self.len();
+ self.tail = 0;
+ } else if self.tail != 0 && self.tail < target_cap && head_outside {
+ // T H
+ // [. . . o o o o o o o . . . . . . ]
+ // H T
+ // [o o . o o o o o ]
+ let len = self.wrap_sub(self.head, target_cap);
+ unsafe {
+ self.copy_nonoverlapping(0, target_cap, len);
+ }
+ self.head = len;
+ debug_assert!(self.head < self.tail);
+ } else if self.tail >= target_cap {
+ // H T
+ // [o o o o o . . . . . . . . . o o ]
+ // H T
+ // [o o o o o . o o ]
+ debug_assert!(self.wrap_sub(self.head, 1) < target_cap);
+ let len = self.cap() - self.tail;
+ let new_tail = target_cap - len;
+ unsafe {
+ self.copy_nonoverlapping(new_tail, self.tail, len);
+ }
+ self.tail = new_tail;
+ debug_assert!(self.head < self.tail);
+ }
+
+ self.buf.shrink_to_fit(target_cap);
+
+ debug_assert!(self.head < self.cap());
+ debug_assert!(self.tail < self.cap());
+ debug_assert!(self.cap().count_ones() == 1);
+ }
+ }
+
+ /// Shortens the deque, keeping the first `len` elements and dropping
+ /// the rest.
+ ///
+ /// If `len` is greater than the deque's current length, this has no
+ /// effect.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(5);
+ /// buf.push_back(10);
+ /// buf.push_back(15);
+ /// assert_eq!(buf, [5, 10, 15]);
+ /// buf.truncate(1);
+ /// assert_eq!(buf, [5]);
+ /// ```
+ #[stable(feature = "deque_extras", since = "1.16.0")]
+ pub fn truncate(&mut self, len: usize) {
+ /// Runs the destructor for all items in the slice when it gets dropped (normally or
+ /// during unwinding).
+ struct Dropper<'a, T>(&'a mut [T]);
+
+ impl<'a, T> Drop for Dropper<'a, T> {
+ fn drop(&mut self) {
+ unsafe {
+ ptr::drop_in_place(self.0);
+ }
+ }
+ }
+
+ // Safe because:
+ //
+ // * Any slice passed to `drop_in_place` is valid; the second case has
+ // `len <= front.len()` and returning on `len > self.len()` ensures
+ // `begin <= back.len()` in the first case
+ // * The head of the VecDeque is moved before calling `drop_in_place`,
+ // so no value is dropped twice if `drop_in_place` panics
+ unsafe {
+ if len > self.len() {
+ return;
+ }
+ let num_dropped = self.len() - len;
+ let (front, back) = self.as_mut_slices();
+ if len > front.len() {
+ let begin = len - front.len();
+ let drop_back = back.get_unchecked_mut(begin..) as *mut _;
+ self.head = self.wrap_sub(self.head, num_dropped);
+ ptr::drop_in_place(drop_back);
+ } else {
+ let drop_back = back as *mut _;
+ let drop_front = front.get_unchecked_mut(len..) as *mut _;
+ self.head = self.wrap_sub(self.head, num_dropped);
+
+ // Make sure the second half is dropped even when a destructor
+ // in the first one panics.
+ let _back_dropper = Dropper(&mut *drop_back);
+ ptr::drop_in_place(drop_front);
+ }
+ }
+ }
+
+ /// Returns a reference to the underlying allocator.
+ #[unstable(feature = "allocator_api", issue = "32838")]
+ #[inline]
+ pub fn allocator(&self) -> &A {
+ self.buf.allocator()
+ }
+
+ /// Returns a front-to-back iterator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(5);
+ /// buf.push_back(3);
+ /// buf.push_back(4);
+ /// let b: &[_] = &[&5, &3, &4];
+ /// let c: Vec<&i32> = buf.iter().collect();
+ /// assert_eq!(&c[..], b);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn iter(&self) -> Iter<'_, T> {
+ Iter::new(unsafe { self.buffer_as_slice() }, self.tail, self.head)
+ }
+
+ /// Returns a front-to-back iterator that returns mutable references.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(5);
+ /// buf.push_back(3);
+ /// buf.push_back(4);
+ /// for num in buf.iter_mut() {
+ /// *num = *num - 2;
+ /// }
+ /// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
+ /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn iter_mut(&mut self) -> IterMut<'_, T> {
+ // SAFETY: The internal `IterMut` safety invariant is established because the
+ // `ring` we create is a dereferenceable slice for lifetime '_.
+ let ring = ptr::slice_from_raw_parts_mut(self.ptr(), self.cap());
+
+ unsafe { IterMut::new(ring, self.tail, self.head, PhantomData) }
+ }
+
+ /// Returns a pair of slices which contain, in order, the contents of the
+ /// deque.
+ ///
+ /// If [`make_contiguous`] was previously called, all elements of the
+ /// deque will be in the first slice and the second slice will be empty.
+ ///
+ /// [`make_contiguous`]: VecDeque::make_contiguous
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque = VecDeque::new();
+ ///
+ /// deque.push_back(0);
+ /// deque.push_back(1);
+ /// deque.push_back(2);
+ ///
+ /// assert_eq!(deque.as_slices(), (&[0, 1, 2][..], &[][..]));
+ ///
+ /// deque.push_front(10);
+ /// deque.push_front(9);
+ ///
+ /// assert_eq!(deque.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
+ /// ```
+ #[inline]
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn as_slices(&self) -> (&[T], &[T]) {
+ // Safety:
+ // - `self.head` and `self.tail` in a ring buffer are always valid indices.
+ // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
+ unsafe {
+ let buf = self.buffer_as_slice();
+ let (front, back) = RingSlices::ring_slices(buf, self.head, self.tail);
+ (MaybeUninit::slice_assume_init_ref(front), MaybeUninit::slice_assume_init_ref(back))
+ }
+ }
+
+ /// Returns a pair of slices which contain, in order, the contents of the
+ /// deque.
+ ///
+ /// If [`make_contiguous`] was previously called, all elements of the
+ /// deque will be in the first slice and the second slice will be empty.
+ ///
+ /// [`make_contiguous`]: VecDeque::make_contiguous
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque = VecDeque::new();
+ ///
+ /// deque.push_back(0);
+ /// deque.push_back(1);
+ ///
+ /// deque.push_front(10);
+ /// deque.push_front(9);
+ ///
+ /// deque.as_mut_slices().0[0] = 42;
+ /// deque.as_mut_slices().1[0] = 24;
+ /// assert_eq!(deque.as_slices(), (&[42, 10][..], &[24, 1][..]));
+ /// ```
+ #[inline]
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
+ // Safety:
+ // - `self.head` and `self.tail` in a ring buffer are always valid indices.
+ // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
+ unsafe {
+ let head = self.head;
+ let tail = self.tail;
+ let buf = self.buffer_as_mut_slice();
+ let (front, back) = RingSlices::ring_slices(buf, head, tail);
+ (MaybeUninit::slice_assume_init_mut(front), MaybeUninit::slice_assume_init_mut(back))
+ }
+ }
+
+ /// Returns the number of elements in the deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque = VecDeque::new();
+ /// assert_eq!(deque.len(), 0);
+ /// deque.push_back(1);
+ /// assert_eq!(deque.len(), 1);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn len(&self) -> usize {
+ count(self.tail, self.head, self.cap())
+ }
+
+ /// Returns `true` if the deque is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque = VecDeque::new();
+ /// assert!(deque.is_empty());
+ /// deque.push_front(1);
+ /// assert!(!deque.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn is_empty(&self) -> bool {
+ self.tail == self.head
+ }
+
+ fn range_tail_head<R>(&self, range: R) -> (usize, usize)
+ where
+ R: RangeBounds<usize>,
+ {
+ let Range { start, end } = slice::range(range, ..self.len());
+ let tail = self.wrap_add(self.tail, start);
+ let head = self.wrap_add(self.tail, end);
+ (tail, head)
+ }
+
+ /// Creates an iterator that covers the specified range in the deque.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<_> = [1, 2, 3].into();
+ /// let range = deque.range(2..).copied().collect::<VecDeque<_>>();
+ /// assert_eq!(range, [3]);
+ ///
+ /// // A full range covers all contents
+ /// let all = deque.range(..);
+ /// assert_eq!(all.len(), 3);
+ /// ```
+ #[inline]
+ #[stable(feature = "deque_range", since = "1.51.0")]
+ pub fn range<R>(&self, range: R) -> Iter<'_, T>
+ where
+ R: RangeBounds<usize>,
+ {
+ let (tail, head) = self.range_tail_head(range);
+ // The shared reference we have in &self is maintained in the '_ of Iter.
+ Iter::new(unsafe { self.buffer_as_slice() }, tail, head)
+ }
+
+ /// Creates an iterator that covers the specified mutable range in the deque.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque: VecDeque<_> = [1, 2, 3].into();
+ /// for v in deque.range_mut(2..) {
+ /// *v *= 2;
+ /// }
+ /// assert_eq!(deque, [1, 2, 6]);
+ ///
+ /// // A full range covers all contents
+ /// for v in deque.range_mut(..) {
+ /// *v *= 2;
+ /// }
+ /// assert_eq!(deque, [2, 4, 12]);
+ /// ```
+ #[inline]
+ #[stable(feature = "deque_range", since = "1.51.0")]
+ pub fn range_mut<R>(&mut self, range: R) -> IterMut<'_, T>
+ where
+ R: RangeBounds<usize>,
+ {
+ let (tail, head) = self.range_tail_head(range);
+
+ // SAFETY: The internal `IterMut` safety invariant is established because the
+ // `ring` we create is a dereferenceable slice for lifetime '_.
+ let ring = ptr::slice_from_raw_parts_mut(self.ptr(), self.cap());
+
+ unsafe { IterMut::new(ring, tail, head, PhantomData) }
+ }
+
+ /// Removes the specified range from the deque in bulk, returning all
+ /// removed elements as an iterator. If the iterator is dropped before
+ /// being fully consumed, it drops the remaining removed elements.
+ ///
+ /// The returned iterator keeps a mutable borrow on the queue to optimize
+ /// its implementation.
+ ///
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the deque.
+ ///
+ /// # Leaking
+ ///
+ /// If the returned iterator goes out of scope without being dropped (due to
+ /// [`mem::forget`], for example), the deque may have lost and leaked
+ /// elements arbitrarily, including elements outside the range.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque: VecDeque<_> = [1, 2, 3].into();
+ /// let drained = deque.drain(2..).collect::<VecDeque<_>>();
+ /// assert_eq!(drained, [3]);
+ /// assert_eq!(deque, [1, 2]);
+ ///
+ /// // A full range clears all contents, like `clear()` does
+ /// deque.drain(..);
+ /// assert!(deque.is_empty());
+ /// ```
+ #[inline]
+ #[stable(feature = "drain", since = "1.6.0")]
+ pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // When the Drain is first created, the source deque is shortened to
+ // make sure no uninitialized or moved-from elements are accessible at
+ // all if the Drain's destructor never gets to run.
+ //
+ // Drain will ptr::read out the values to remove.
+ // When finished, the remaining data will be copied back to cover the hole,
+ // and the head/tail values will be restored correctly.
+ //
+ let (drain_tail, drain_head) = self.range_tail_head(range);
+
+ // The deque's elements are parted into three segments:
+ // * self.tail -> drain_tail
+ // * drain_tail -> drain_head
+ // * drain_head -> self.head
+ //
+ // T = self.tail; H = self.head; t = drain_tail; h = drain_head
+ //
+ // We store drain_tail as self.head, and drain_head and self.head as
+ // after_tail and after_head respectively on the Drain. This also
+ // truncates the effective array such that if the Drain is leaked, we
+ // have forgotten about the potentially moved values after the start of
+ // the drain.
+ //
+ // T t h H
+ // [. . . o o x x o o . . .]
+ //
+ let head = self.head;
+
+ // "forget" about the values after the start of the drain until after
+ // the drain is complete and the Drain destructor is run.
+ self.head = drain_tail;
+
+ let deque = NonNull::from(&mut *self);
+ unsafe {
+ // Crucially, we only create shared references from `self` here and read from
+ // it. We do not write to `self` nor reborrow to a mutable reference.
+ // Hence the raw pointer we created above, for `deque`, remains valid.
+ let ring = self.buffer_as_slice();
+ let iter = Iter::new(ring, drain_tail, drain_head);
+
+ Drain::new(drain_head, head, iter, deque)
+ }
+ }
+
+ /// Clears the deque, removing all values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque = VecDeque::new();
+ /// deque.push_back(1);
+ /// deque.clear();
+ /// assert!(deque.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn clear(&mut self) {
+ self.truncate(0);
+ }
+
+ /// Returns `true` if the deque contains an element equal to the
+ /// given value.
+ ///
+ /// This operation is *O*(*n*).
+ ///
+ /// Note that if you have a sorted `VecDeque`, [`binary_search`] may be faster.
+ ///
+ /// [`binary_search`]: VecDeque::binary_search
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque: VecDeque<u32> = VecDeque::new();
+ ///
+ /// deque.push_back(0);
+ /// deque.push_back(1);
+ ///
+ /// assert_eq!(deque.contains(&1), true);
+ /// assert_eq!(deque.contains(&10), false);
+ /// ```
+ #[stable(feature = "vec_deque_contains", since = "1.12.0")]
+ pub fn contains(&self, x: &T) -> bool
+ where
+ T: PartialEq<T>,
+ {
+ let (a, b) = self.as_slices();
+ a.contains(x) || b.contains(x)
+ }
+
+ /// Provides a reference to the front element, or `None` if the deque is
+ /// empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// assert_eq!(d.front(), None);
+ ///
+ /// d.push_back(1);
+ /// d.push_back(2);
+ /// assert_eq!(d.front(), Some(&1));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn front(&self) -> Option<&T> {
+ self.get(0)
+ }
+
+ /// Provides a mutable reference to the front element, or `None` if the
+ /// deque is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// assert_eq!(d.front_mut(), None);
+ ///
+ /// d.push_back(1);
+ /// d.push_back(2);
+ /// match d.front_mut() {
+ /// Some(x) => *x = 9,
+ /// None => (),
+ /// }
+ /// assert_eq!(d.front(), Some(&9));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn front_mut(&mut self) -> Option<&mut T> {
+ self.get_mut(0)
+ }
+
+ /// Provides a reference to the back element, or `None` if the deque is
+ /// empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// assert_eq!(d.back(), None);
+ ///
+ /// d.push_back(1);
+ /// d.push_back(2);
+ /// assert_eq!(d.back(), Some(&2));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn back(&self) -> Option<&T> {
+ self.get(self.len().wrapping_sub(1))
+ }
+
+ /// Provides a mutable reference to the back element, or `None` if the
+ /// deque is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// assert_eq!(d.back(), None);
+ ///
+ /// d.push_back(1);
+ /// d.push_back(2);
+ /// match d.back_mut() {
+ /// Some(x) => *x = 9,
+ /// None => (),
+ /// }
+ /// assert_eq!(d.back(), Some(&9));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn back_mut(&mut self) -> Option<&mut T> {
+ self.get_mut(self.len().wrapping_sub(1))
+ }
+
+ /// Removes the first element and returns it, or `None` if the deque is
+ /// empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// d.push_back(1);
+ /// d.push_back(2);
+ ///
+ /// assert_eq!(d.pop_front(), Some(1));
+ /// assert_eq!(d.pop_front(), Some(2));
+ /// assert_eq!(d.pop_front(), None);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop_front(&mut self) -> Option<T> {
+ if self.is_empty() {
+ None
+ } else {
+ let tail = self.tail;
+ self.tail = self.wrap_add(self.tail, 1);
+ unsafe { Some(self.buffer_read(tail)) }
+ }
+ }
+
+ /// Removes the last element from the deque and returns it, or `None` if
+ /// it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// assert_eq!(buf.pop_back(), None);
+ /// buf.push_back(1);
+ /// buf.push_back(3);
+ /// assert_eq!(buf.pop_back(), Some(3));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pop_back(&mut self) -> Option<T> {
+ if self.is_empty() {
+ None
+ } else {
+ self.head = self.wrap_sub(self.head, 1);
+ let head = self.head;
+ unsafe { Some(self.buffer_read(head)) }
+ }
+ }
+
+ /// Prepends an element to the deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut d = VecDeque::new();
+ /// d.push_front(1);
+ /// d.push_front(2);
+ /// assert_eq!(d.front(), Some(&2));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push_front(&mut self, value: T) {
+ if self.is_full() {
+ self.grow();
+ }
+
+ self.tail = self.wrap_sub(self.tail, 1);
+ let tail = self.tail;
+ unsafe {
+ self.buffer_write(tail, value);
+ }
+ }
+
+ /// Appends an element to the back of the deque.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(1);
+ /// buf.push_back(3);
+ /// assert_eq!(3, *buf.back().unwrap());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn push_back(&mut self, value: T) {
+ if self.is_full() {
+ self.grow();
+ }
+
+ let head = self.head;
+ self.head = self.wrap_add(self.head, 1);
+ unsafe { self.buffer_write(head, value) }
+ }
+
+ #[inline]
+ fn is_contiguous(&self) -> bool {
+ // FIXME: Should we consider `head == 0` to mean
+ // that `self` is contiguous?
+ self.tail <= self.head
+ }
+
+ /// Removes an element from anywhere in the deque and returns it,
+ /// replacing it with the first element.
+ ///
+ /// This does not preserve ordering, but is *O*(1).
+ ///
+ /// Returns `None` if `index` is out of bounds.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// assert_eq!(buf.swap_remove_front(0), None);
+ /// buf.push_back(1);
+ /// buf.push_back(2);
+ /// buf.push_back(3);
+ /// assert_eq!(buf, [1, 2, 3]);
+ ///
+ /// assert_eq!(buf.swap_remove_front(2), Some(3));
+ /// assert_eq!(buf, [2, 1]);
+ /// ```
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn swap_remove_front(&mut self, index: usize) -> Option<T> {
+ let length = self.len();
+ if length > 0 && index < length && index != 0 {
+ self.swap(index, 0);
+ } else if index >= length {
+ return None;
+ }
+ self.pop_front()
+ }
+
+ /// Removes an element from anywhere in the deque and returns it,
+ /// replacing it with the last element.
+ ///
+ /// This does not preserve ordering, but is *O*(1).
+ ///
+ /// Returns `None` if `index` is out of bounds.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// assert_eq!(buf.swap_remove_back(0), None);
+ /// buf.push_back(1);
+ /// buf.push_back(2);
+ /// buf.push_back(3);
+ /// assert_eq!(buf, [1, 2, 3]);
+ ///
+ /// assert_eq!(buf.swap_remove_back(0), Some(1));
+ /// assert_eq!(buf, [3, 2]);
+ /// ```
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn swap_remove_back(&mut self, index: usize) -> Option<T> {
+ let length = self.len();
+ if length > 0 && index < length - 1 {
+ self.swap(index, length - 1);
+ } else if index >= length {
+ return None;
+ }
+ self.pop_back()
+ }
+
+ /// Inserts an element at `index` within the deque, shifting all elements
+ /// with indices greater than or equal to `index` towards the back.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index` is greater than deque's length
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut vec_deque = VecDeque::new();
+ /// vec_deque.push_back('a');
+ /// vec_deque.push_back('b');
+ /// vec_deque.push_back('c');
+ /// assert_eq!(vec_deque, &['a', 'b', 'c']);
+ ///
+ /// vec_deque.insert(1, 'd');
+ /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
+ /// ```
+ #[stable(feature = "deque_extras_15", since = "1.5.0")]
+ pub fn insert(&mut self, index: usize, value: T) {
+ assert!(index <= self.len(), "index out of bounds");
+ if self.is_full() {
+ self.grow();
+ }
+
+ // Move the least number of elements in the ring buffer and insert
+ // the given object
+ //
+ // At most len/2 - 1 elements will be moved. O(min(n, n-i))
+ //
+ // There are three main cases:
+ // Elements are contiguous
+ // - special case when tail is 0
+ // Elements are discontiguous and the insert is in the tail section
+ // Elements are discontiguous and the insert is in the head section
+ //
+ // For each of those there are two more cases:
+ // Insert is closer to tail
+ // Insert is closer to head
+ //
+ // Key: H - self.head
+ // T - self.tail
+ // o - Valid element
+ // I - Insertion element
+ // A - The element that should be after the insertion point
+ // M - Indicates element was moved
+
+ let idx = self.wrap_add(self.tail, index);
+
+ let distance_to_tail = index;
+ let distance_to_head = self.len() - index;
+
+ let contiguous = self.is_contiguous();
+
+ match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
+ (true, true, _) if index == 0 => {
+ // push_front
+ //
+ // T
+ // I H
+ // [A o o o o o o . . . . . . . . .]
+ //
+ // H T
+ // [A o o o o o o o . . . . . I]
+ //
+
+ self.tail = self.wrap_sub(self.tail, 1);
+ }
+ (true, true, _) => {
+ unsafe {
+ // contiguous, insert closer to tail:
+ //
+ // T I H
+ // [. . . o o A o o o o . . . . . .]
+ //
+ // T H
+ // [. . o o I A o o o o . . . . . .]
+ // M M
+ //
+ // contiguous, insert closer to tail and tail is 0:
+ //
+ //
+ // T I H
+ // [o o A o o o o . . . . . . . . .]
+ //
+ // H T
+ // [o I A o o o o o . . . . . . . o]
+ // M M
+
+ let new_tail = self.wrap_sub(self.tail, 1);
+
+ self.copy(new_tail, self.tail, 1);
+ // Already moved the tail, so we only copy `index - 1` elements.
+ self.copy(self.tail, self.tail + 1, index - 1);
+
+ self.tail = new_tail;
+ }
+ }
+ (true, false, _) => {
+ unsafe {
+ // contiguous, insert closer to head:
+ //
+ // T I H
+ // [. . . o o o o A o o . . . . . .]
+ //
+ // T H
+ // [. . . o o o o I A o o . . . . .]
+ // M M M
+
+ self.copy(idx + 1, idx, self.head - idx);
+ self.head = self.wrap_add(self.head, 1);
+ }
+ }
+ (false, true, true) => {
+ unsafe {
+ // discontiguous, insert closer to tail, tail section:
+ //
+ // H T I
+ // [o o o o o o . . . . . o o A o o]
+ //
+ // H T
+ // [o o o o o o . . . . o o I A o o]
+ // M M
+
+ self.copy(self.tail - 1, self.tail, index);
+ self.tail -= 1;
+ }
+ }
+ (false, false, true) => {
+ unsafe {
+ // discontiguous, insert closer to head, tail section:
+ //
+ // H T I
+ // [o o . . . . . . . o o o o o A o]
+ //
+ // H T
+ // [o o o . . . . . . o o o o o I A]
+ // M M M M
+
+ // copy elements up to new head
+ self.copy(1, 0, self.head);
+
+ // copy last element into empty spot at bottom of buffer
+ self.copy(0, self.cap() - 1, 1);
+
+ // move elements from idx to end forward not including ^ element
+ self.copy(idx + 1, idx, self.cap() - 1 - idx);
+
+ self.head += 1;
+ }
+ }
+ (false, true, false) if idx == 0 => {
+ unsafe {
+ // discontiguous, insert is closer to tail, head section,
+ // and is at index zero in the internal buffer:
+ //
+ // I H T
+ // [A o o o o o o o o o . . . o o o]
+ //
+ // H T
+ // [A o o o o o o o o o . . o o o I]
+ // M M M
+
+ // copy elements up to new tail
+ self.copy(self.tail - 1, self.tail, self.cap() - self.tail);
+
+ // copy last element into empty spot at bottom of buffer
+ self.copy(self.cap() - 1, 0, 1);
+
+ self.tail -= 1;
+ }
+ }
+ (false, true, false) => {
+ unsafe {
+ // discontiguous, insert closer to tail, head section:
+ //
+ // I H T
+ // [o o o A o o o o o o . . . o o o]
+ //
+ // H T
+ // [o o I A o o o o o o . . o o o o]
+ // M M M M M M
+
+ // copy elements up to new tail
+ self.copy(self.tail - 1, self.tail, self.cap() - self.tail);
+
+ // copy last element into empty spot at bottom of buffer
+ self.copy(self.cap() - 1, 0, 1);
+
+ // move elements from idx-1 to end forward not including ^ element
+ self.copy(0, 1, idx - 1);
+
+ self.tail -= 1;
+ }
+ }
+ (false, false, false) => {
+ unsafe {
+ // discontiguous, insert closer to head, head section:
+ //
+ // I H T
+ // [o o o o A o o . . . . . . o o o]
+ //
+ // H T
+ // [o o o o I A o o . . . . . o o o]
+ // M M M
+
+ self.copy(idx + 1, idx, self.head - idx);
+ self.head += 1;
+ }
+ }
+ }
+
+ // tail might've been changed so we need to recalculate
+ let new_idx = self.wrap_add(self.tail, index);
+ unsafe {
+ self.buffer_write(new_idx, value);
+ }
+ }
+
+ /// Removes and returns the element at `index` from the deque.
+ /// Whichever end is closer to the removal point will be moved to make
+ /// room, and all the affected elements will be moved to new positions.
+ /// Returns `None` if `index` is out of bounds.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(1);
+ /// buf.push_back(2);
+ /// buf.push_back(3);
+ /// assert_eq!(buf, [1, 2, 3]);
+ ///
+ /// assert_eq!(buf.remove(1), Some(2));
+ /// assert_eq!(buf, [1, 3]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn remove(&mut self, index: usize) -> Option<T> {
+ if self.is_empty() || self.len() <= index {
+ return None;
+ }
+
+ // There are three main cases:
+ // Elements are contiguous
+ // Elements are discontiguous and the removal is in the tail section
+ // Elements are discontiguous and the removal is in the head section
+ // - special case when elements are technically contiguous,
+ // but self.head = 0
+ //
+ // For each of those there are two more cases:
+ // Insert is closer to tail
+ // Insert is closer to head
+ //
+ // Key: H - self.head
+ // T - self.tail
+ // o - Valid element
+ // x - Element marked for removal
+ // R - Indicates element that is being removed
+ // M - Indicates element was moved
+
+ let idx = self.wrap_add(self.tail, index);
+
+ let elem = unsafe { Some(self.buffer_read(idx)) };
+
+ let distance_to_tail = index;
+ let distance_to_head = self.len() - index;
+
+ let contiguous = self.is_contiguous();
+
+ match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
+ (true, true, _) => {
+ unsafe {
+ // contiguous, remove closer to tail:
+ //
+ // T R H
+ // [. . . o o x o o o o . . . . . .]
+ //
+ // T H
+ // [. . . . o o o o o o . . . . . .]
+ // M M
+
+ self.copy(self.tail + 1, self.tail, index);
+ self.tail += 1;
+ }
+ }
+ (true, false, _) => {
+ unsafe {
+ // contiguous, remove closer to head:
+ //
+ // T R H
+ // [. . . o o o o x o o . . . . . .]
+ //
+ // T H
+ // [. . . o o o o o o . . . . . . .]
+ // M M
+
+ self.copy(idx, idx + 1, self.head - idx - 1);
+ self.head -= 1;
+ }
+ }
+ (false, true, true) => {
+ unsafe {
+ // discontiguous, remove closer to tail, tail section:
+ //
+ // H T R
+ // [o o o o o o . . . . . o o x o o]
+ //
+ // H T
+ // [o o o o o o . . . . . . o o o o]
+ // M M
+
+ self.copy(self.tail + 1, self.tail, index);
+ self.tail = self.wrap_add(self.tail, 1);
+ }
+ }
+ (false, false, false) => {
+ unsafe {
+ // discontiguous, remove closer to head, head section:
+ //
+ // R H T
+ // [o o o o x o o . . . . . . o o o]
+ //
+ // H T
+ // [o o o o o o . . . . . . . o o o]
+ // M M
+
+ self.copy(idx, idx + 1, self.head - idx - 1);
+ self.head -= 1;
+ }
+ }
+ (false, false, true) => {
+ unsafe {
+ // discontiguous, remove closer to head, tail section:
+ //
+ // H T R
+ // [o o o . . . . . . o o o o o x o]
+ //
+ // H T
+ // [o o . . . . . . . o o o o o o o]
+ // M M M M
+ //
+ // or quasi-discontiguous, remove next to head, tail section:
+ //
+ // H T R
+ // [. . . . . . . . . o o o o o x o]
+ //
+ // T H
+ // [. . . . . . . . . o o o o o o .]
+ // M
+
+ // draw in elements in the tail section
+ self.copy(idx, idx + 1, self.cap() - idx - 1);
+
+ // Prevents underflow.
+ if self.head != 0 {
+ // copy first element into empty spot
+ self.copy(self.cap() - 1, 0, 1);
+
+ // move elements in the head section backwards
+ self.copy(0, 1, self.head - 1);
+ }
+
+ self.head = self.wrap_sub(self.head, 1);
+ }
+ }
+ (false, true, false) => {
+ unsafe {
+ // discontiguous, remove closer to tail, head section:
+ //
+ // R H T
+ // [o o x o o o o o o o . . . o o o]
+ //
+ // H T
+ // [o o o o o o o o o o . . . . o o]
+ // M M M M M
+
+ // draw in elements up to idx
+ self.copy(1, 0, idx);
+
+ // copy last element into empty spot
+ self.copy(0, self.cap() - 1, 1);
+
+ // move elements from tail to end forward, excluding the last one
+ self.copy(self.tail + 1, self.tail, self.cap() - self.tail - 1);
+
+ self.tail = self.wrap_add(self.tail, 1);
+ }
+ }
+ }
+
+ elem
+ }
+
+ /// Splits the deque into two at the given index.
+ ///
+ /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`,
+ /// and the returned deque contains elements `[at, len)`.
+ ///
+ /// Note that the capacity of `self` does not change.
+ ///
+ /// Element at index 0 is the front of the queue.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<_> = [1, 2, 3].into();
+ /// let buf2 = buf.split_off(1);
+ /// assert_eq!(buf, [1]);
+ /// assert_eq!(buf2, [2, 3]);
+ /// ```
+ #[inline]
+ #[must_use = "use `.truncate()` if you don't need the other half"]
+ #[stable(feature = "split_off", since = "1.4.0")]
+ pub fn split_off(&mut self, at: usize) -> Self
+ where
+ A: Clone,
+ {
+ let len = self.len();
+ assert!(at <= len, "`at` out of bounds");
+
+ let other_len = len - at;
+ let mut other = VecDeque::with_capacity_in(other_len, self.allocator().clone());
+
+ unsafe {
+ let (first_half, second_half) = self.as_slices();
+
+ let first_len = first_half.len();
+ let second_len = second_half.len();
+ if at < first_len {
+ // `at` lies in the first half.
+ let amount_in_first = first_len - at;
+
+ ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first);
+
+ // just take all of the second half.
+ ptr::copy_nonoverlapping(
+ second_half.as_ptr(),
+ other.ptr().add(amount_in_first),
+ second_len,
+ );
+ } else {
+ // `at` lies in the second half, need to factor in the elements we skipped
+ // in the first half.
+ let offset = at - first_len;
+ let amount_in_second = second_len - offset;
+ ptr::copy_nonoverlapping(
+ second_half.as_ptr().add(offset),
+ other.ptr(),
+ amount_in_second,
+ );
+ }
+ }
+
+ // Cleanup where the ends of the buffers are
+ self.head = self.wrap_sub(self.head, other_len);
+ other.head = other.wrap_index(other_len);
+
+ other
+ }
+
+ /// Moves all the elements of `other` into `self`, leaving `other` empty.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new number of elements in self overflows a `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<_> = [1, 2].into();
+ /// let mut buf2: VecDeque<_> = [3, 4].into();
+ /// buf.append(&mut buf2);
+ /// assert_eq!(buf, [1, 2, 3, 4]);
+ /// assert_eq!(buf2, []);
+ /// ```
+ #[inline]
+ #[stable(feature = "append", since = "1.4.0")]
+ pub fn append(&mut self, other: &mut Self) {
+ self.reserve(other.len());
+ unsafe {
+ let (left, right) = other.as_slices();
+ self.copy_slice(self.head, left);
+ self.copy_slice(self.wrap_add(self.head, left.len()), right);
+ }
+ // SAFETY: Update pointers after copying to avoid leaving doppelganger
+ // in case of panics.
+ self.head = self.wrap_add(self.head, other.len());
+ // Silently drop values in `other`.
+ other.tail = other.head;
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` for which `f(&e)` returns false.
+ /// This method operates in place, visiting each element exactly once in the
+ /// original order, and preserves the order of the retained elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.extend(1..5);
+ /// buf.retain(|&x| x % 2 == 0);
+ /// assert_eq!(buf, [2, 4]);
+ /// ```
+ ///
+ /// Because the elements are visited exactly once in the original order,
+ /// external state may be used to decide which elements to keep.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.extend(1..6);
+ ///
+ /// let keep = [false, true, true, false, true];
+ /// let mut iter = keep.iter();
+ /// buf.retain(|_| *iter.next().unwrap());
+ /// assert_eq!(buf, [2, 3, 5]);
+ /// ```
+ #[stable(feature = "vec_deque_retain", since = "1.4.0")]
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> bool,
+ {
+ self.retain_mut(|elem| f(elem));
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` for which `f(&e)` returns false.
+ /// This method operates in place, visiting each element exactly once in the
+ /// original order, and preserves the order of the retained elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.extend(1..5);
+ /// buf.retain_mut(|x| if *x % 2 == 0 {
+ /// *x += 1;
+ /// true
+ /// } else {
+ /// false
+ /// });
+ /// assert_eq!(buf, [3, 5]);
+ /// ```
+ #[stable(feature = "vec_retain_mut", since = "1.61.0")]
+ pub fn retain_mut<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ let len = self.len();
+ let mut idx = 0;
+ let mut cur = 0;
+
+ // Stage 1: All values are retained.
+ while cur < len {
+ if !f(&mut self[cur]) {
+ cur += 1;
+ break;
+ }
+ cur += 1;
+ idx += 1;
+ }
+ // Stage 2: Swap retained value into current idx.
+ while cur < len {
+ if !f(&mut self[cur]) {
+ cur += 1;
+ continue;
+ }
+
+ self.swap(idx, cur);
+ cur += 1;
+ idx += 1;
+ }
+ // Stage 3: Truncate all values after idx.
+ if cur != idx {
+ self.truncate(idx);
+ }
+ }
+
+ // Double the buffer size. This method is inline(never), so we expect it to only
+ // be called in cold paths.
+ // This may panic or abort
+ #[inline(never)]
+ fn grow(&mut self) {
+ // Extend or possibly remove this assertion when valid use-cases for growing the
+ // buffer without it being full emerge
+ debug_assert!(self.is_full());
+ let old_cap = self.cap();
+ self.buf.reserve_exact(old_cap, old_cap);
+ assert!(self.cap() == old_cap * 2);
+ unsafe {
+ self.handle_capacity_increase(old_cap);
+ }
+ debug_assert!(!self.is_full());
+ }
+
+ /// Modifies the deque in-place so that `len()` is equal to `new_len`,
+ /// either by removing excess elements from the back or by appending
+ /// elements generated by calling `generator` to the back.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(5);
+ /// buf.push_back(10);
+ /// buf.push_back(15);
+ /// assert_eq!(buf, [5, 10, 15]);
+ ///
+ /// buf.resize_with(5, Default::default);
+ /// assert_eq!(buf, [5, 10, 15, 0, 0]);
+ ///
+ /// buf.resize_with(2, || unreachable!());
+ /// assert_eq!(buf, [5, 10]);
+ ///
+ /// let mut state = 100;
+ /// buf.resize_with(5, || { state += 1; state });
+ /// assert_eq!(buf, [5, 10, 101, 102, 103]);
+ /// ```
+ #[stable(feature = "vec_resize_with", since = "1.33.0")]
+ pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) {
+ let len = self.len();
+
+ if new_len > len {
+ self.extend(repeat_with(generator).take(new_len - len))
+ } else {
+ self.truncate(new_len);
+ }
+ }
+
+ /// Rearranges the internal storage of this deque so it is one contiguous
+ /// slice, which is then returned.
+ ///
+ /// This method does not allocate and does not change the order of the
+ /// inserted elements. As it returns a mutable slice, this can be used to
+ /// sort a deque.
+ ///
+ /// Once the internal storage is contiguous, the [`as_slices`] and
+ /// [`as_mut_slices`] methods will return the entire contents of the
+ /// deque in a single slice.
+ ///
+ /// [`as_slices`]: VecDeque::as_slices
+ /// [`as_mut_slices`]: VecDeque::as_mut_slices
+ ///
+ /// # Examples
+ ///
+ /// Sorting the content of a deque.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::with_capacity(15);
+ ///
+ /// buf.push_back(2);
+ /// buf.push_back(1);
+ /// buf.push_front(3);
+ ///
+ /// // sorting the deque
+ /// buf.make_contiguous().sort();
+ /// assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_]));
+ ///
+ /// // sorting it in reverse order
+ /// buf.make_contiguous().sort_by(|a, b| b.cmp(a));
+ /// assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_]));
+ /// ```
+ ///
+ /// Getting immutable access to the contiguous slice.
+ ///
+ /// ```rust
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ ///
+ /// buf.push_back(2);
+ /// buf.push_back(1);
+ /// buf.push_front(3);
+ ///
+ /// buf.make_contiguous();
+ /// if let (slice, &[]) = buf.as_slices() {
+ /// // we can now be sure that `slice` contains all elements of the deque,
+ /// // while still having immutable access to `buf`.
+ /// assert_eq!(buf.len(), slice.len());
+ /// assert_eq!(slice, &[3, 2, 1] as &[_]);
+ /// }
+ /// ```
+ #[stable(feature = "deque_make_contiguous", since = "1.48.0")]
+ pub fn make_contiguous(&mut self) -> &mut [T] {
+ if self.is_contiguous() {
+ let tail = self.tail;
+ let head = self.head;
+ // Safety:
+ // - `self.head` and `self.tail` in a ring buffer are always valid indices.
+ // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
+ return unsafe {
+ MaybeUninit::slice_assume_init_mut(
+ RingSlices::ring_slices(self.buffer_as_mut_slice(), head, tail).0,
+ )
+ };
+ }
+
+ let buf = self.buf.ptr();
+ let cap = self.cap();
+ let len = self.len();
+
+ let free = self.tail - self.head;
+ let tail_len = cap - self.tail;
+
+ if free >= tail_len {
+ // there is enough free space to copy the tail in one go,
+ // this means that we first shift the head backwards, and then
+ // copy the tail to the correct position.
+ //
+ // from: DEFGH....ABC
+ // to: ABCDEFGH....
+ unsafe {
+ ptr::copy(buf, buf.add(tail_len), self.head);
+ // ...DEFGH.ABC
+ ptr::copy_nonoverlapping(buf.add(self.tail), buf, tail_len);
+ // ABCDEFGH....
+
+ self.tail = 0;
+ self.head = len;
+ }
+ } else if free > self.head {
+ // FIXME: We currently do not consider ....ABCDEFGH
+ // to be contiguous because `head` would be `0` in this
+ // case. While we probably want to change this it
+ // isn't trivial as a few places expect `is_contiguous`
+ // to mean that we can just slice using `buf[tail..head]`.
+
+ // there is enough free space to copy the head in one go,
+ // this means that we first shift the tail forwards, and then
+ // copy the head to the correct position.
+ //
+ // from: FGH....ABCDE
+ // to: ...ABCDEFGH.
+ unsafe {
+ ptr::copy(buf.add(self.tail), buf.add(self.head), tail_len);
+ // FGHABCDE....
+ ptr::copy_nonoverlapping(buf, buf.add(self.head + tail_len), self.head);
+ // ...ABCDEFGH.
+
+ self.tail = self.head;
+ self.head = self.wrap_add(self.tail, len);
+ }
+ } else {
+ // free is smaller than both head and tail,
+ // this means we have to slowly "swap" the tail and the head.
+ //
+ // from: EFGHI...ABCD or HIJK.ABCDEFG
+ // to: ABCDEFGHI... or ABCDEFGHIJK.
+ let mut left_edge: usize = 0;
+ let mut right_edge: usize = self.tail;
+ unsafe {
+ // The general problem looks like this
+ // GHIJKLM...ABCDEF - before any swaps
+ // ABCDEFM...GHIJKL - after 1 pass of swaps
+ // ABCDEFGHIJM...KL - swap until the left edge reaches the temp store
+ // - then restart the algorithm with a new (smaller) store
+ // Sometimes the temp store is reached when the right edge is at the end
+ // of the buffer - this means we've hit the right order with fewer swaps!
+ // E.g
+ // EF..ABCD
+ // ABCDEF.. - after four only swaps we've finished
+ while left_edge < len && right_edge != cap {
+ let mut right_offset = 0;
+ for i in left_edge..right_edge {
+ right_offset = (i - left_edge) % (cap - right_edge);
+ let src: isize = (right_edge + right_offset) as isize;
+ ptr::swap(buf.add(i), buf.offset(src));
+ }
+ let n_ops = right_edge - left_edge;
+ left_edge += n_ops;
+ right_edge += right_offset + 1;
+ }
+
+ self.tail = 0;
+ self.head = len;
+ }
+ }
+
+ let tail = self.tail;
+ let head = self.head;
+ // Safety:
+ // - `self.head` and `self.tail` in a ring buffer are always valid indices.
+ // - `RingSlices::ring_slices` guarantees that the slices split according to `self.head` and `self.tail` are initialized.
+ unsafe {
+ MaybeUninit::slice_assume_init_mut(
+ RingSlices::ring_slices(self.buffer_as_mut_slice(), head, tail).0,
+ )
+ }
+ }
+
+ /// Rotates the double-ended queue `mid` places to the left.
+ ///
+ /// Equivalently,
+ /// - Rotates item `mid` into the first position.
+ /// - Pops the first `mid` items and pushes them to the end.
+ /// - Rotates `len() - mid` places to the right.
+ ///
+ /// # Panics
+ ///
+ /// If `mid` is greater than `len()`. Note that `mid == len()`
+ /// does _not_ panic and is a no-op rotation.
+ ///
+ /// # Complexity
+ ///
+ /// Takes `*O*(min(mid, len() - mid))` time and no extra space.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<_> = (0..10).collect();
+ ///
+ /// buf.rotate_left(3);
+ /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
+ ///
+ /// for i in 1..10 {
+ /// assert_eq!(i * 3 % 10, buf[0]);
+ /// buf.rotate_left(3);
+ /// }
+ /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
+ /// ```
+ #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
+ pub fn rotate_left(&mut self, mid: usize) {
+ assert!(mid <= self.len());
+ let k = self.len() - mid;
+ if mid <= k {
+ unsafe { self.rotate_left_inner(mid) }
+ } else {
+ unsafe { self.rotate_right_inner(k) }
+ }
+ }
+
+ /// Rotates the double-ended queue `k` places to the right.
+ ///
+ /// Equivalently,
+ /// - Rotates the first item into position `k`.
+ /// - Pops the last `k` items and pushes them to the front.
+ /// - Rotates `len() - k` places to the left.
+ ///
+ /// # Panics
+ ///
+ /// If `k` is greater than `len()`. Note that `k == len()`
+ /// does _not_ panic and is a no-op rotation.
+ ///
+ /// # Complexity
+ ///
+ /// Takes `*O*(min(k, len() - k))` time and no extra space.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf: VecDeque<_> = (0..10).collect();
+ ///
+ /// buf.rotate_right(3);
+ /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
+ ///
+ /// for i in 1..10 {
+ /// assert_eq!(0, buf[i * 3 % 10]);
+ /// buf.rotate_right(3);
+ /// }
+ /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
+ /// ```
+ #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
+ pub fn rotate_right(&mut self, k: usize) {
+ assert!(k <= self.len());
+ let mid = self.len() - k;
+ if k <= mid {
+ unsafe { self.rotate_right_inner(k) }
+ } else {
+ unsafe { self.rotate_left_inner(mid) }
+ }
+ }
+
+ // SAFETY: the following two methods require that the rotation amount
+ // be less than half the length of the deque.
+ //
+ // `wrap_copy` requires that `min(x, cap() - x) + copy_len <= cap()`,
+ // but than `min` is never more than half the capacity, regardless of x,
+ // so it's sound to call here because we're calling with something
+ // less than half the length, which is never above half the capacity.
+
+ unsafe fn rotate_left_inner(&mut self, mid: usize) {
+ debug_assert!(mid * 2 <= self.len());
+ unsafe {
+ self.wrap_copy(self.head, self.tail, mid);
+ }
+ self.head = self.wrap_add(self.head, mid);
+ self.tail = self.wrap_add(self.tail, mid);
+ }
+
+ unsafe fn rotate_right_inner(&mut self, k: usize) {
+ debug_assert!(k * 2 <= self.len());
+ self.head = self.wrap_sub(self.head, k);
+ self.tail = self.wrap_sub(self.tail, k);
+ unsafe {
+ self.wrap_copy(self.tail, self.head, k);
+ }
+ }
+
+ /// Binary searches this `VecDeque` for a given element.
+ /// This behaves similarly to [`contains`] if this `VecDeque` is sorted.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. If the value is not found then
+ /// [`Result::Err`] is returned, containing the index where a matching
+ /// element could be inserted while maintaining sorted order.
+ ///
+ /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
+ ///
+ /// [`contains`]: VecDeque::contains
+ /// [`binary_search_by`]: VecDeque::binary_search_by
+ /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
+ /// [`partition_point`]: VecDeque::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements. The first is found, with a
+ /// uniquely determined position; the second and third are not
+ /// found; the fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
+ ///
+ /// assert_eq!(deque.binary_search(&13), Ok(9));
+ /// assert_eq!(deque.binary_search(&4), Err(7));
+ /// assert_eq!(deque.binary_search(&100), Err(13));
+ /// let r = deque.binary_search(&1);
+ /// assert!(matches!(r, Ok(1..=4)));
+ /// ```
+ ///
+ /// If you want to insert an item to a sorted deque, while maintaining
+ /// sort order, consider using [`partition_point`]:
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
+ /// let num = 42;
+ /// let idx = deque.partition_point(|&x| x < num);
+ /// // The above is equivalent to `let idx = deque.binary_search(&num).unwrap_or_else(|x| x);`
+ /// deque.insert(idx, num);
+ /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
+ /// ```
+ #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
+ #[inline]
+ pub fn binary_search(&self, x: &T) -> Result<usize, usize>
+ where
+ T: Ord,
+ {
+ self.binary_search_by(|e| e.cmp(x))
+ }
+
+ /// Binary searches this `VecDeque` with a comparator function.
+ /// This behaves similarly to [`contains`] if this `VecDeque` is sorted.
+ ///
+ /// The comparator function should implement an order consistent
+ /// with the sort order of the deque, returning an order code that
+ /// indicates whether its argument is `Less`, `Equal` or `Greater`
+ /// than the desired target.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. If the value is not found then
+ /// [`Result::Err`] is returned, containing the index where a matching
+ /// element could be inserted while maintaining sorted order.
+ ///
+ /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
+ ///
+ /// [`contains`]: VecDeque::contains
+ /// [`binary_search`]: VecDeque::binary_search
+ /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
+ /// [`partition_point`]: VecDeque::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements. The first is found, with a
+ /// uniquely determined position; the second and third are not
+ /// found; the fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
+ ///
+ /// assert_eq!(deque.binary_search_by(|x| x.cmp(&13)), Ok(9));
+ /// assert_eq!(deque.binary_search_by(|x| x.cmp(&4)), Err(7));
+ /// assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13));
+ /// let r = deque.binary_search_by(|x| x.cmp(&1));
+ /// assert!(matches!(r, Ok(1..=4)));
+ /// ```
+ #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
+ pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
+ where
+ F: FnMut(&'a T) -> Ordering,
+ {
+ let (front, back) = self.as_slices();
+ let cmp_back = back.first().map(|elem| f(elem));
+
+ if let Some(Ordering::Equal) = cmp_back {
+ Ok(front.len())
+ } else if let Some(Ordering::Less) = cmp_back {
+ back.binary_search_by(f).map(|idx| idx + front.len()).map_err(|idx| idx + front.len())
+ } else {
+ front.binary_search_by(f)
+ }
+ }
+
+ /// Binary searches this `VecDeque` with a key extraction function.
+ /// This behaves similarly to [`contains`] if this `VecDeque` is sorted.
+ ///
+ /// Assumes that the deque is sorted by the key, for instance with
+ /// [`make_contiguous().sort_by_key()`] using the same key extraction function.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. If the value is not found then
+ /// [`Result::Err`] is returned, containing the index where a matching
+ /// element could be inserted while maintaining sorted order.
+ ///
+ /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
+ ///
+ /// [`contains`]: VecDeque::contains
+ /// [`make_contiguous().sort_by_key()`]: VecDeque::make_contiguous
+ /// [`binary_search`]: VecDeque::binary_search
+ /// [`binary_search_by`]: VecDeque::binary_search_by
+ /// [`partition_point`]: VecDeque::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements in a slice of pairs sorted by
+ /// their second elements. The first is found, with a uniquely
+ /// determined position; the second and third are not found; the
+ /// fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<_> = [(0, 0), (2, 1), (4, 1), (5, 1),
+ /// (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
+ /// (1, 21), (2, 34), (4, 55)].into();
+ ///
+ /// assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
+ /// assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b), Err(7));
+ /// assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13));
+ /// let r = deque.binary_search_by_key(&1, |&(a, b)| b);
+ /// assert!(matches!(r, Ok(1..=4)));
+ /// ```
+ #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
+ #[inline]
+ pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
+ where
+ F: FnMut(&'a T) -> B,
+ B: Ord,
+ {
+ self.binary_search_by(|k| f(k).cmp(b))
+ }
+
+ /// Returns the index of the partition point according to the given predicate
+ /// (the index of the first element of the second partition).
+ ///
+ /// The deque is assumed to be partitioned according to the given predicate.
+ /// This means that all elements for which the predicate returns true are at the start of the deque
+ /// and all elements for which the predicate returns false are at the end.
+ /// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
+ /// (all odd numbers are at the start, all even at the end).
+ ///
+ /// If the deque is not partitioned, the returned result is unspecified and meaningless,
+ /// as this method performs a kind of binary search.
+ ///
+ /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
+ ///
+ /// [`binary_search`]: VecDeque::binary_search
+ /// [`binary_search_by`]: VecDeque::binary_search_by
+ /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deque: VecDeque<_> = [1, 2, 3, 3, 5, 6, 7].into();
+ /// let i = deque.partition_point(|&x| x < 5);
+ ///
+ /// assert_eq!(i, 4);
+ /// assert!(deque.iter().take(i).all(|&x| x < 5));
+ /// assert!(deque.iter().skip(i).all(|&x| !(x < 5)));
+ /// ```
+ ///
+ /// If you want to insert an item to a sorted deque, while maintaining
+ /// sort order:
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
+ /// let num = 42;
+ /// let idx = deque.partition_point(|&x| x < num);
+ /// deque.insert(idx, num);
+ /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
+ /// ```
+ #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
+ pub fn partition_point<P>(&self, mut pred: P) -> usize
+ where
+ P: FnMut(&T) -> bool,
+ {
+ let (front, back) = self.as_slices();
+
+ if let Some(true) = back.first().map(|v| pred(v)) {
+ back.partition_point(pred) + front.len()
+ } else {
+ front.partition_point(pred)
+ }
+ }
+}
+
+impl<T: Clone, A: Allocator> VecDeque<T, A> {
+ /// Modifies the deque in-place so that `len()` is equal to new_len,
+ /// either by removing excess elements from the back or by appending clones of `value`
+ /// to the back.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let mut buf = VecDeque::new();
+ /// buf.push_back(5);
+ /// buf.push_back(10);
+ /// buf.push_back(15);
+ /// assert_eq!(buf, [5, 10, 15]);
+ ///
+ /// buf.resize(2, 0);
+ /// assert_eq!(buf, [5, 10]);
+ ///
+ /// buf.resize(5, 20);
+ /// assert_eq!(buf, [5, 10, 20, 20, 20]);
+ /// ```
+ #[stable(feature = "deque_extras", since = "1.16.0")]
+ pub fn resize(&mut self, new_len: usize, value: T) {
+ self.resize_with(new_len, || value.clone());
+ }
+}
+
+/// Returns the index in the underlying buffer for a given logical element index.
+#[inline]
+fn wrap_index(index: usize, size: usize) -> usize {
+ // size is always a power of 2
+ debug_assert!(size.is_power_of_two());
+ index & (size - 1)
+}
+
+/// Calculate the number of elements left to be read in the buffer
+#[inline]
+fn count(tail: usize, head: usize, size: usize) -> usize {
+ // size is always a power of 2
+ (head.wrapping_sub(tail)) & (size - 1)
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: PartialEq, A: Allocator> PartialEq for VecDeque<T, A> {
+ fn eq(&self, other: &Self) -> bool {
+ if self.len() != other.len() {
+ return false;
+ }
+ let (sa, sb) = self.as_slices();
+ let (oa, ob) = other.as_slices();
+ if sa.len() == oa.len() {
+ sa == oa && sb == ob
+ } else if sa.len() < oa.len() {
+ // Always divisible in three sections, for example:
+ // self: [a b c|d e f]
+ // other: [0 1 2 3|4 5]
+ // front = 3, mid = 1,
+ // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5]
+ let front = sa.len();
+ let mid = oa.len() - front;
+
+ let (oa_front, oa_mid) = oa.split_at(front);
+ let (sb_mid, sb_back) = sb.split_at(mid);
+ debug_assert_eq!(sa.len(), oa_front.len());
+ debug_assert_eq!(sb_mid.len(), oa_mid.len());
+ debug_assert_eq!(sb_back.len(), ob.len());
+ sa == oa_front && sb_mid == oa_mid && sb_back == ob
+ } else {
+ let front = oa.len();
+ let mid = sa.len() - front;
+
+ let (sa_front, sa_mid) = sa.split_at(front);
+ let (ob_mid, ob_back) = ob.split_at(mid);
+ debug_assert_eq!(sa_front.len(), oa.len());
+ debug_assert_eq!(sa_mid.len(), ob_mid.len());
+ debug_assert_eq!(sb.len(), ob_back.len());
+ sa_front == oa && sa_mid == ob_mid && sb == ob_back
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Eq, A: Allocator> Eq for VecDeque<T, A> {}
+
+__impl_slice_eq1! { [] VecDeque<T, A>, Vec<U, A>, }
+__impl_slice_eq1! { [] VecDeque<T, A>, &[U], }
+__impl_slice_eq1! { [] VecDeque<T, A>, &mut [U], }
+__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, [U; N], }
+__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &[U; N], }
+__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &mut [U; N], }
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: PartialOrd, A: Allocator> PartialOrd for VecDeque<T, A> {
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ self.iter().partial_cmp(other.iter())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Ord, A: Allocator> Ord for VecDeque<T, A> {
+ #[inline]
+ fn cmp(&self, other: &Self) -> Ordering {
+ self.iter().cmp(other.iter())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Hash, A: Allocator> Hash for VecDeque<T, A> {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ state.write_length_prefix(self.len());
+ // It's not possible to use Hash::hash_slice on slices
+ // returned by as_slices method as their length can vary
+ // in otherwise identical deques.
+ //
+ // Hasher only guarantees equivalence for the exact same
+ // set of calls to its methods.
+ self.iter().for_each(|elem| elem.hash(state));
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> Index<usize> for VecDeque<T, A> {
+ type Output = T;
+
+ #[inline]
+ fn index(&self, index: usize) -> &T {
+ self.get(index).expect("Out of bounds access")
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> IndexMut<usize> for VecDeque<T, A> {
+ #[inline]
+ fn index_mut(&mut self, index: usize) -> &mut T {
+ self.get_mut(index).expect("Out of bounds access")
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T> FromIterator<T> for VecDeque<T> {
+ fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> VecDeque<T> {
+ let iterator = iter.into_iter();
+ let (lower, _) = iterator.size_hint();
+ let mut deq = VecDeque::with_capacity(lower);
+ deq.extend(iterator);
+ deq
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> IntoIterator for VecDeque<T, A> {
+ type Item = T;
+ type IntoIter = IntoIter<T, A>;
+
+ /// Consumes the deque into a front-to-back iterator yielding elements by
+ /// value.
+ fn into_iter(self) -> IntoIter<T, A> {
+ IntoIter::new(self)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, A: Allocator> IntoIterator for &'a VecDeque<T, A> {
+ type Item = &'a T;
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T> {
+ self.iter()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<'a, T, A: Allocator> IntoIterator for &'a mut VecDeque<T, A> {
+ type Item = &'a mut T;
+ type IntoIter = IterMut<'a, T>;
+
+ fn into_iter(self) -> IterMut<'a, T> {
+ self.iter_mut()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T, A: Allocator> Extend<T> for VecDeque<T, A> {
+ fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter());
+ }
+
+ #[inline]
+ fn extend_one(&mut self, elem: T) {
+ self.push_back(elem);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[stable(feature = "extend_ref", since = "1.2.0")]
+impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for VecDeque<T, A> {
+ fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
+ self.spec_extend(iter.into_iter());
+ }
+
+ #[inline]
+ fn extend_one(&mut self, &elem: &T) {
+ self.push_back(elem);
+ }
+
+ #[inline]
+ fn extend_reserve(&mut self, additional: usize) {
+ self.reserve(additional);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for VecDeque<T, A> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_list().entries(self).finish()
+ }
+}
+
+#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
+impl<T, A: Allocator> From<Vec<T, A>> for VecDeque<T, A> {
+ /// Turn a [`Vec<T>`] into a [`VecDeque<T>`].
+ ///
+ /// [`Vec<T>`]: crate::vec::Vec
+ /// [`VecDeque<T>`]: crate::collections::VecDeque
+ ///
+ /// This avoids reallocating where possible, but the conditions for that are
+ /// strict, and subject to change, and so shouldn't be relied upon unless the
+ /// `Vec<T>` came from `From<VecDeque<T>>` and hasn't been reallocated.
+ fn from(mut other: Vec<T, A>) -> Self {
+ let len = other.len();
+ if mem::size_of::<T>() == 0 {
+ // There's no actual allocation for ZSTs to worry about capacity,
+ // but `VecDeque` can't handle as much length as `Vec`.
+ assert!(len < MAXIMUM_ZST_CAPACITY, "capacity overflow");
+ } else {
+ // We need to resize if the capacity is not a power of two, too small or
+ // doesn't have at least one free space. We do this while it's still in
+ // the `Vec` so the items will drop on panic.
+ let min_cap = cmp::max(MINIMUM_CAPACITY, len) + 1;
+ let cap = cmp::max(min_cap, other.capacity()).next_power_of_two();
+ if other.capacity() != cap {
+ other.reserve_exact(cap - len);
+ }
+ }
+
+ unsafe {
+ let (other_buf, len, capacity, alloc) = other.into_raw_parts_with_alloc();
+ let buf = RawVec::from_raw_parts_in(other_buf, capacity, alloc);
+ VecDeque { tail: 0, head: len, buf }
+ }
+ }
+}
+
+#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
+impl<T, A: Allocator> From<VecDeque<T, A>> for Vec<T, A> {
+ /// Turn a [`VecDeque<T>`] into a [`Vec<T>`].
+ ///
+ /// [`Vec<T>`]: crate::vec::Vec
+ /// [`VecDeque<T>`]: crate::collections::VecDeque
+ ///
+ /// This never needs to re-allocate, but does need to do *O*(*n*) data movement if
+ /// the circular buffer doesn't happen to be at the beginning of the allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// // This one is *O*(1).
+ /// let deque: VecDeque<_> = (1..5).collect();
+ /// let ptr = deque.as_slices().0.as_ptr();
+ /// let vec = Vec::from(deque);
+ /// assert_eq!(vec, [1, 2, 3, 4]);
+ /// assert_eq!(vec.as_ptr(), ptr);
+ ///
+ /// // This one needs data rearranging.
+ /// let mut deque: VecDeque<_> = (1..5).collect();
+ /// deque.push_front(9);
+ /// deque.push_front(8);
+ /// let ptr = deque.as_slices().1.as_ptr();
+ /// let vec = Vec::from(deque);
+ /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
+ /// assert_eq!(vec.as_ptr(), ptr);
+ /// ```
+ fn from(mut other: VecDeque<T, A>) -> Self {
+ other.make_contiguous();
+
+ unsafe {
+ let other = ManuallyDrop::new(other);
+ let buf = other.buf.ptr();
+ let len = other.len();
+ let cap = other.cap();
+ let alloc = ptr::read(other.allocator());
+
+ if other.tail != 0 {
+ ptr::copy(buf.add(other.tail), buf, len);
+ }
+ Vec::from_raw_parts_in(buf, len, cap, alloc)
+ }
+ }
+}
+
+#[stable(feature = "std_collections_from_array", since = "1.56.0")]
+impl<T, const N: usize> From<[T; N]> for VecDeque<T> {
+ /// Converts a `[T; N]` into a `VecDeque<T>`.
+ ///
+ /// ```
+ /// use std::collections::VecDeque;
+ ///
+ /// let deq1 = VecDeque::from([1, 2, 3, 4]);
+ /// let deq2: VecDeque<_> = [1, 2, 3, 4].into();
+ /// assert_eq!(deq1, deq2);
+ /// ```
+ fn from(arr: [T; N]) -> Self {
+ let mut deq = VecDeque::with_capacity(N);
+ let arr = ManuallyDrop::new(arr);
+ if mem::size_of::<T>() != 0 {
+ // SAFETY: VecDeque::with_capacity ensures that there is enough capacity.
+ unsafe {
+ ptr::copy_nonoverlapping(arr.as_ptr(), deq.ptr(), N);
+ }
+ }
+ deq.tail = 0;
+ deq.head = N;
+ deq
+ }
+}