summaryrefslogtreecommitdiffstats
path: root/library/panic_unwind/src/gcc.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/panic_unwind/src/gcc.rs')
-rw-r--r--library/panic_unwind/src/gcc.rs351
1 files changed, 351 insertions, 0 deletions
diff --git a/library/panic_unwind/src/gcc.rs b/library/panic_unwind/src/gcc.rs
new file mode 100644
index 000000000..a59659231
--- /dev/null
+++ b/library/panic_unwind/src/gcc.rs
@@ -0,0 +1,351 @@
+//! Implementation of panics backed by libgcc/libunwind (in some form).
+//!
+//! For background on exception handling and stack unwinding please see
+//! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
+//! documents linked from it.
+//! These are also good reads:
+//! * <https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html>
+//! * <https://monoinfinito.wordpress.com/series/exception-handling-in-c/>
+//! * <https://www.airs.com/blog/index.php?s=exception+frames>
+//!
+//! ## A brief summary
+//!
+//! Exception handling happens in two phases: a search phase and a cleanup
+//! phase.
+//!
+//! In both phases the unwinder walks stack frames from top to bottom using
+//! information from the stack frame unwind sections of the current process's
+//! modules ("module" here refers to an OS module, i.e., an executable or a
+//! dynamic library).
+//!
+//! For each stack frame, it invokes the associated "personality routine", whose
+//! address is also stored in the unwind info section.
+//!
+//! In the search phase, the job of a personality routine is to examine
+//! exception object being thrown, and to decide whether it should be caught at
+//! that stack frame. Once the handler frame has been identified, cleanup phase
+//! begins.
+//!
+//! In the cleanup phase, the unwinder invokes each personality routine again.
+//! This time it decides which (if any) cleanup code needs to be run for
+//! the current stack frame. If so, the control is transferred to a special
+//! branch in the function body, the "landing pad", which invokes destructors,
+//! frees memory, etc. At the end of the landing pad, control is transferred
+//! back to the unwinder and unwinding resumes.
+//!
+//! Once stack has been unwound down to the handler frame level, unwinding stops
+//! and the last personality routine transfers control to the catch block.
+
+use alloc::boxed::Box;
+use core::any::Any;
+
+use crate::dwarf::eh::{self, EHAction, EHContext};
+use libc::{c_int, uintptr_t};
+use unwind as uw;
+
+#[repr(C)]
+struct Exception {
+ _uwe: uw::_Unwind_Exception,
+ cause: Box<dyn Any + Send>,
+}
+
+pub unsafe fn panic(data: Box<dyn Any + Send>) -> u32 {
+ let exception = Box::new(Exception {
+ _uwe: uw::_Unwind_Exception {
+ exception_class: rust_exception_class(),
+ exception_cleanup,
+ private: [0; uw::unwinder_private_data_size],
+ },
+ cause: data,
+ });
+ let exception_param = Box::into_raw(exception) as *mut uw::_Unwind_Exception;
+ return uw::_Unwind_RaiseException(exception_param) as u32;
+
+ extern "C" fn exception_cleanup(
+ _unwind_code: uw::_Unwind_Reason_Code,
+ exception: *mut uw::_Unwind_Exception,
+ ) {
+ unsafe {
+ let _: Box<Exception> = Box::from_raw(exception as *mut Exception);
+ super::__rust_drop_panic();
+ }
+ }
+}
+
+pub unsafe fn cleanup(ptr: *mut u8) -> Box<dyn Any + Send> {
+ let exception = ptr as *mut uw::_Unwind_Exception;
+ if (*exception).exception_class != rust_exception_class() {
+ uw::_Unwind_DeleteException(exception);
+ super::__rust_foreign_exception();
+ } else {
+ let exception = Box::from_raw(exception as *mut Exception);
+ exception.cause
+ }
+}
+
+// Rust's exception class identifier. This is used by personality routines to
+// determine whether the exception was thrown by their own runtime.
+fn rust_exception_class() -> uw::_Unwind_Exception_Class {
+ // M O Z \0 R U S T -- vendor, language
+ 0x4d4f5a_00_52555354
+}
+
+// Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister()
+// and TargetLowering::getExceptionSelectorRegister() for each architecture,
+// then mapped to DWARF register numbers via register definition tables
+// (typically <arch>RegisterInfo.td, search for "DwarfRegNum").
+// See also https://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register.
+
+#[cfg(target_arch = "x86")]
+const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX
+
+#[cfg(target_arch = "x86_64")]
+const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX
+
+#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
+const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1
+
+#[cfg(target_arch = "m68k")]
+const UNWIND_DATA_REG: (i32, i32) = (0, 1); // D0, D1
+
+#[cfg(any(target_arch = "mips", target_arch = "mips64"))]
+const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1
+
+#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
+const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4
+
+#[cfg(target_arch = "s390x")]
+const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7
+
+#[cfg(any(target_arch = "sparc", target_arch = "sparc64"))]
+const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1
+
+#[cfg(target_arch = "hexagon")]
+const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
+
+#[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))]
+const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11
+
+// The following code is based on GCC's C and C++ personality routines. For reference, see:
+// https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc
+// https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c
+
+cfg_if::cfg_if! {
+ if #[cfg(all(target_arch = "arm", not(target_os = "ios"), not(target_os = "watchos"), not(target_os = "netbsd")))] {
+ // ARM EHABI personality routine.
+ // https://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf
+ //
+ // iOS uses the default routine instead since it uses SjLj unwinding.
+ #[lang = "eh_personality"]
+ unsafe extern "C" fn rust_eh_personality(state: uw::_Unwind_State,
+ exception_object: *mut uw::_Unwind_Exception,
+ context: *mut uw::_Unwind_Context)
+ -> uw::_Unwind_Reason_Code {
+ let state = state as c_int;
+ let action = state & uw::_US_ACTION_MASK as c_int;
+ let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int {
+ // Backtraces on ARM will call the personality routine with
+ // state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases
+ // we want to continue unwinding the stack, otherwise all our backtraces
+ // would end at __rust_try
+ if state & uw::_US_FORCE_UNWIND as c_int != 0 {
+ return continue_unwind(exception_object, context);
+ }
+ true
+ } else if action == uw::_US_UNWIND_FRAME_STARTING as c_int {
+ false
+ } else if action == uw::_US_UNWIND_FRAME_RESUME as c_int {
+ return continue_unwind(exception_object, context);
+ } else {
+ return uw::_URC_FAILURE;
+ };
+
+ // The DWARF unwinder assumes that _Unwind_Context holds things like the function
+ // and LSDA pointers, however ARM EHABI places them into the exception object.
+ // To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which
+ // take only the context pointer, GCC personality routines stash a pointer to
+ // exception_object in the context, using location reserved for ARM's
+ // "scratch register" (r12).
+ uw::_Unwind_SetGR(context,
+ uw::UNWIND_POINTER_REG,
+ exception_object as uw::_Unwind_Ptr);
+ // ...A more principled approach would be to provide the full definition of ARM's
+ // _Unwind_Context in our libunwind bindings and fetch the required data from there
+ // directly, bypassing DWARF compatibility functions.
+
+ let eh_action = match find_eh_action(context) {
+ Ok(action) => action,
+ Err(_) => return uw::_URC_FAILURE,
+ };
+ if search_phase {
+ match eh_action {
+ EHAction::None |
+ EHAction::Cleanup(_) => return continue_unwind(exception_object, context),
+ EHAction::Catch(_) => {
+ // EHABI requires the personality routine to update the
+ // SP value in the barrier cache of the exception object.
+ (*exception_object).private[5] =
+ uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG);
+ return uw::_URC_HANDLER_FOUND;
+ }
+ EHAction::Terminate => return uw::_URC_FAILURE,
+ }
+ } else {
+ match eh_action {
+ EHAction::None => return continue_unwind(exception_object, context),
+ EHAction::Cleanup(lpad) |
+ EHAction::Catch(lpad) => {
+ uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0,
+ exception_object as uintptr_t);
+ uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
+ uw::_Unwind_SetIP(context, lpad);
+ return uw::_URC_INSTALL_CONTEXT;
+ }
+ EHAction::Terminate => return uw::_URC_FAILURE,
+ }
+ }
+
+ // On ARM EHABI the personality routine is responsible for actually
+ // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
+ unsafe fn continue_unwind(exception_object: *mut uw::_Unwind_Exception,
+ context: *mut uw::_Unwind_Context)
+ -> uw::_Unwind_Reason_Code {
+ if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON {
+ uw::_URC_CONTINUE_UNWIND
+ } else {
+ uw::_URC_FAILURE
+ }
+ }
+ // defined in libgcc
+ extern "C" {
+ fn __gnu_unwind_frame(exception_object: *mut uw::_Unwind_Exception,
+ context: *mut uw::_Unwind_Context)
+ -> uw::_Unwind_Reason_Code;
+ }
+ }
+ } else {
+ // Default personality routine, which is used directly on most targets
+ // and indirectly on Windows x86_64 via SEH.
+ unsafe extern "C" fn rust_eh_personality_impl(version: c_int,
+ actions: uw::_Unwind_Action,
+ _exception_class: uw::_Unwind_Exception_Class,
+ exception_object: *mut uw::_Unwind_Exception,
+ context: *mut uw::_Unwind_Context)
+ -> uw::_Unwind_Reason_Code {
+ if version != 1 {
+ return uw::_URC_FATAL_PHASE1_ERROR;
+ }
+ let eh_action = match find_eh_action(context) {
+ Ok(action) => action,
+ Err(_) => return uw::_URC_FATAL_PHASE1_ERROR,
+ };
+ if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 {
+ match eh_action {
+ EHAction::None |
+ EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND,
+ EHAction::Catch(_) => uw::_URC_HANDLER_FOUND,
+ EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR,
+ }
+ } else {
+ match eh_action {
+ EHAction::None => uw::_URC_CONTINUE_UNWIND,
+ EHAction::Cleanup(lpad) |
+ EHAction::Catch(lpad) => {
+ uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0,
+ exception_object as uintptr_t);
+ uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
+ uw::_Unwind_SetIP(context, lpad);
+ uw::_URC_INSTALL_CONTEXT
+ }
+ EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR,
+ }
+ }
+ }
+
+ cfg_if::cfg_if! {
+ if #[cfg(all(windows, target_arch = "x86_64", target_env = "gnu"))] {
+ // On x86_64 MinGW targets, the unwinding mechanism is SEH however the unwind
+ // handler data (aka LSDA) uses GCC-compatible encoding.
+ #[lang = "eh_personality"]
+ #[allow(nonstandard_style)]
+ unsafe extern "C" fn rust_eh_personality(exceptionRecord: *mut uw::EXCEPTION_RECORD,
+ establisherFrame: uw::LPVOID,
+ contextRecord: *mut uw::CONTEXT,
+ dispatcherContext: *mut uw::DISPATCHER_CONTEXT)
+ -> uw::EXCEPTION_DISPOSITION {
+ uw::_GCC_specific_handler(exceptionRecord,
+ establisherFrame,
+ contextRecord,
+ dispatcherContext,
+ rust_eh_personality_impl)
+ }
+ } else {
+ // The personality routine for most of our targets.
+ #[lang = "eh_personality"]
+ unsafe extern "C" fn rust_eh_personality(version: c_int,
+ actions: uw::_Unwind_Action,
+ exception_class: uw::_Unwind_Exception_Class,
+ exception_object: *mut uw::_Unwind_Exception,
+ context: *mut uw::_Unwind_Context)
+ -> uw::_Unwind_Reason_Code {
+ rust_eh_personality_impl(version,
+ actions,
+ exception_class,
+ exception_object,
+ context)
+ }
+ }
+ }
+ }
+}
+
+unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> {
+ let lsda = uw::_Unwind_GetLanguageSpecificData(context) as *const u8;
+ let mut ip_before_instr: c_int = 0;
+ let ip = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr);
+ let eh_context = EHContext {
+ // The return address points 1 byte past the call instruction,
+ // which could be in the next IP range in LSDA range table.
+ //
+ // `ip = -1` has special meaning, so use wrapping sub to allow for that
+ ip: if ip_before_instr != 0 { ip } else { ip.wrapping_sub(1) },
+ func_start: uw::_Unwind_GetRegionStart(context),
+ get_text_start: &|| uw::_Unwind_GetTextRelBase(context),
+ get_data_start: &|| uw::_Unwind_GetDataRelBase(context),
+ };
+ eh::find_eh_action(lsda, &eh_context)
+}
+
+// Frame unwind info registration
+//
+// Each module's image contains a frame unwind info section (usually
+// ".eh_frame"). When a module is loaded/unloaded into the process, the
+// unwinder must be informed about the location of this section in memory. The
+// methods of achieving that vary by the platform. On some (e.g., Linux), the
+// unwinder can discover unwind info sections on its own (by dynamically
+// enumerating currently loaded modules via the dl_iterate_phdr() API and
+// finding their ".eh_frame" sections); Others, like Windows, require modules
+// to actively register their unwind info sections via unwinder API.
+//
+// This module defines two symbols which are referenced and called from
+// rsbegin.rs to register our information with the GCC runtime. The
+// implementation of stack unwinding is (for now) deferred to libgcc_eh, however
+// Rust crates use these Rust-specific entry points to avoid potential clashes
+// with any GCC runtime.
+#[cfg(all(target_os = "windows", target_arch = "x86", target_env = "gnu"))]
+pub mod eh_frame_registry {
+ extern "C" {
+ fn __register_frame_info(eh_frame_begin: *const u8, object: *mut u8);
+ fn __deregister_frame_info(eh_frame_begin: *const u8, object: *mut u8);
+ }
+
+ #[rustc_std_internal_symbol]
+ pub unsafe extern "C" fn rust_eh_register_frames(eh_frame_begin: *const u8, object: *mut u8) {
+ __register_frame_info(eh_frame_begin, object);
+ }
+
+ #[rustc_std_internal_symbol]
+ pub unsafe extern "C" fn rust_eh_unregister_frames(eh_frame_begin: *const u8, object: *mut u8) {
+ __deregister_frame_info(eh_frame_begin, object);
+ }
+}