summaryrefslogtreecommitdiffstats
path: root/library/portable-simd/crates/core_simd/examples/dot_product.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/portable-simd/crates/core_simd/examples/dot_product.rs')
-rw-r--r--library/portable-simd/crates/core_simd/examples/dot_product.rs169
1 files changed, 169 insertions, 0 deletions
diff --git a/library/portable-simd/crates/core_simd/examples/dot_product.rs b/library/portable-simd/crates/core_simd/examples/dot_product.rs
new file mode 100644
index 000000000..391f08f55
--- /dev/null
+++ b/library/portable-simd/crates/core_simd/examples/dot_product.rs
@@ -0,0 +1,169 @@
+// Code taken from the `packed_simd` crate
+// Run this code with `cargo test --example dot_product`
+//use std::iter::zip;
+
+#![feature(array_chunks)]
+#![feature(slice_as_chunks)]
+// Add these imports to use the stdsimd library
+#![feature(portable_simd)]
+use core_simd::simd::*;
+
+// This is your barebones dot product implementation:
+// Take 2 vectors, multiply them element wise and *then*
+// go along the resulting array and add up the result.
+// In the next example we will see if there
+// is any difference to adding and multiplying in tandem.
+pub fn dot_prod_scalar_0(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+
+ a.iter().zip(b.iter()).map(|(a, b)| a * b).sum()
+}
+
+// When dealing with SIMD, it is very important to think about the amount
+// of data movement and when it happens. We're going over simple computation examples here, and yet
+// it is not trivial to understand what may or may not contribute to performance
+// changes. Eventually, you will need tools to inspect the generated assembly and confirm your
+// hypothesis and benchmarks - we will mention them later on.
+// With the use of `fold`, we're doing a multiplication,
+// and then adding it to the sum, one element from both vectors at a time.
+pub fn dot_prod_scalar_1(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+ a.iter()
+ .zip(b.iter())
+ .fold(0.0, |a, zipped| a + zipped.0 * zipped.1)
+}
+
+// We now move on to the SIMD implementations: notice the following constructs:
+// `array_chunks::<4>`: mapping this over the vector will let use construct SIMD vectors
+// `f32x4::from_array`: construct the SIMD vector from a slice
+// `(a * b).reduce_sum()`: Multiply both f32x4 vectors together, and then reduce them.
+// This approach essentially uses SIMD to produce a vector of length N/4 of all the products,
+// and then add those with `sum()`. This is suboptimal.
+// TODO: ASCII diagrams
+pub fn dot_prod_simd_0(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+ // TODO handle remainder when a.len() % 4 != 0
+ a.array_chunks::<4>()
+ .map(|&a| f32x4::from_array(a))
+ .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
+ .map(|(a, b)| (a * b).reduce_sum())
+ .sum()
+}
+
+// There's some simple ways to improve the previous code:
+// 1. Make a `zero` `f32x4` SIMD vector that we will be accumulating into
+// So that there is only one `sum()` reduction when the last `f32x4` has been processed
+// 2. Exploit Fused Multiply Add so that the multiplication, addition and sinking into the reduciton
+// happen in the same step.
+// If the arrays are large, minimizing the data shuffling will lead to great perf.
+// If the arrays are small, handling the remainder elements when the length isn't a multiple of 4
+// Can become a problem.
+pub fn dot_prod_simd_1(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+ // TODO handle remainder when a.len() % 4 != 0
+ a.array_chunks::<4>()
+ .map(|&a| f32x4::from_array(a))
+ .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
+ .fold(f32x4::splat(0.0), |acc, zipped| acc + zipped.0 * zipped.1)
+ .reduce_sum()
+}
+
+// A lot of knowledgeable use of SIMD comes from knowing specific instructions that are
+// available - let's try to use the `mul_add` instruction, which is the fused-multiply-add we were looking for.
+use std_float::StdFloat;
+pub fn dot_prod_simd_2(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+ // TODO handle remainder when a.len() % 4 != 0
+ let mut res = f32x4::splat(0.0);
+ a.array_chunks::<4>()
+ .map(|&a| f32x4::from_array(a))
+ .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
+ .for_each(|(a, b)| {
+ res = a.mul_add(b, res);
+ });
+ res.reduce_sum()
+}
+
+// Finally, we will write the same operation but handling the loop remainder.
+const LANES: usize = 4;
+pub fn dot_prod_simd_3(a: &[f32], b: &[f32]) -> f32 {
+ assert_eq!(a.len(), b.len());
+
+ let (a_extra, a_chunks) = a.as_rchunks();
+ let (b_extra, b_chunks) = b.as_rchunks();
+
+ // These are always true, but for emphasis:
+ assert_eq!(a_chunks.len(), b_chunks.len());
+ assert_eq!(a_extra.len(), b_extra.len());
+
+ let mut sums = [0.0; LANES];
+ for ((x, y), d) in std::iter::zip(a_extra, b_extra).zip(&mut sums) {
+ *d = x * y;
+ }
+
+ let mut sums = f32x4::from_array(sums);
+ std::iter::zip(a_chunks, b_chunks).for_each(|(x, y)| {
+ sums += f32x4::from_array(*x) * f32x4::from_array(*y);
+ });
+
+ sums.reduce_sum()
+}
+
+// Finally, we present an iterator version for handling remainders in a scalar fashion at the end of the loop.
+// Unfortunately, this is allocating 1 `XMM` register on the order of `~len(a)` - we'll see how we can get around it in the
+// next example.
+pub fn dot_prod_simd_4(a: &[f32], b: &[f32]) -> f32 {
+ let mut sum = a
+ .array_chunks::<4>()
+ .map(|&a| f32x4::from_array(a))
+ .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
+ .map(|(a, b)| a * b)
+ .fold(f32x4::splat(0.0), std::ops::Add::add)
+ .reduce_sum();
+ let remain = a.len() - (a.len() % 4);
+ sum += a[remain..]
+ .iter()
+ .zip(&b[remain..])
+ .map(|(a, b)| a * b)
+ .sum::<f32>();
+ sum
+}
+
+// This version allocates a single `XMM` register for accumulation, and the folds don't allocate on top of that.
+// Notice the the use of `mul_add`, which can do a multiply and an add operation ber iteration.
+pub fn dot_prod_simd_5(a: &[f32], b: &[f32]) -> f32 {
+ a.array_chunks::<4>()
+ .map(|&a| f32x4::from_array(a))
+ .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
+ .fold(f32x4::splat(0.), |acc, (a, b)| a.mul_add(b, acc))
+ .reduce_sum()
+}
+
+fn main() {
+ // Empty main to make cargo happy
+}
+
+#[cfg(test)]
+mod tests {
+ #[test]
+ fn smoke_test() {
+ use super::*;
+ let a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
+ let b: Vec<f32> = vec![-8.0, -7.0, -6.0, -5.0, 4.0, 3.0, 2.0, 1.0];
+ let x: Vec<f32> = [0.5; 1003].to_vec();
+ let y: Vec<f32> = [2.0; 1003].to_vec();
+
+ // Basic check
+ assert_eq!(0.0, dot_prod_scalar_0(&a, &b));
+ assert_eq!(0.0, dot_prod_scalar_1(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_0(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_1(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_2(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_3(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_4(&a, &b));
+ assert_eq!(0.0, dot_prod_simd_5(&a, &b));
+
+ // We can handle vectors that are non-multiples of 4
+ assert_eq!(1003.0, dot_prod_simd_3(&x, &y));
+ }
+}