summaryrefslogtreecommitdiffstats
path: root/vendor/bstr/src/ext_slice.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/bstr/src/ext_slice.rs')
-rw-r--r--vendor/bstr/src/ext_slice.rs3655
1 files changed, 0 insertions, 3655 deletions
diff --git a/vendor/bstr/src/ext_slice.rs b/vendor/bstr/src/ext_slice.rs
deleted file mode 100644
index 0cc73affc..000000000
--- a/vendor/bstr/src/ext_slice.rs
+++ /dev/null
@@ -1,3655 +0,0 @@
-#[cfg(feature = "std")]
-use std::borrow::Cow;
-#[cfg(feature = "std")]
-use std::ffi::OsStr;
-#[cfg(feature = "std")]
-use std::path::Path;
-
-use core::{iter, ops, ptr, slice, str};
-use memchr::{memchr, memmem, memrchr};
-
-use crate::ascii;
-use crate::bstr::BStr;
-use crate::byteset;
-#[cfg(feature = "std")]
-use crate::ext_vec::ByteVec;
-#[cfg(feature = "unicode")]
-use crate::unicode::{
- whitespace_len_fwd, whitespace_len_rev, GraphemeIndices, Graphemes,
- SentenceIndices, Sentences, WordIndices, Words, WordsWithBreakIndices,
- WordsWithBreaks,
-};
-use crate::utf8::{self, CharIndices, Chars, Utf8Chunks, Utf8Error};
-
-/// A short-hand constructor for building a `&[u8]`.
-///
-/// This idiosyncratic constructor is useful for concisely building byte string
-/// slices. Its primary utility is in conveniently writing byte string literals
-/// in a uniform way. For example, consider this code that does not compile:
-///
-/// ```ignore
-/// let strs = vec![b"a", b"xy"];
-/// ```
-///
-/// The above code doesn't compile because the type of the byte string literal
-/// `b"a"` is `&'static [u8; 1]`, and the type of `b"xy"` is
-/// `&'static [u8; 2]`. Since their types aren't the same, they can't be stored
-/// in the same `Vec`. (This is dissimilar from normal Unicode string slices,
-/// where both `"a"` and `"xy"` have the same type of `&'static str`.)
-///
-/// One way of getting the above code to compile is to convert byte strings to
-/// slices. You might try this:
-///
-/// ```ignore
-/// let strs = vec![&b"a", &b"xy"];
-/// ```
-///
-/// But this just creates values with type `& &'static [u8; 1]` and
-/// `& &'static [u8; 2]`. Instead, you need to force the issue like so:
-///
-/// ```
-/// let strs = vec![&b"a"[..], &b"xy"[..]];
-/// // or
-/// let strs = vec![b"a".as_ref(), b"xy".as_ref()];
-/// ```
-///
-/// But neither of these are particularly convenient to type, especially when
-/// it's something as common as a string literal. Thus, this constructor
-/// permits writing the following instead:
-///
-/// ```
-/// use bstr::B;
-///
-/// let strs = vec![B("a"), B(b"xy")];
-/// ```
-///
-/// Notice that this also lets you mix and match both string literals and byte
-/// string literals. This can be quite convenient!
-#[allow(non_snake_case)]
-#[inline]
-pub fn B<'a, B: ?Sized + AsRef<[u8]>>(bytes: &'a B) -> &'a [u8] {
- bytes.as_ref()
-}
-
-impl ByteSlice for [u8] {
- #[inline]
- fn as_bytes(&self) -> &[u8] {
- self
- }
-
- #[inline]
- fn as_bytes_mut(&mut self) -> &mut [u8] {
- self
- }
-}
-
-/// Ensure that callers cannot implement `ByteSlice` by making an
-/// umplementable trait its super trait.
-pub trait Sealed {}
-impl Sealed for [u8] {}
-
-/// A trait that extends `&[u8]` with string oriented methods.
-pub trait ByteSlice: Sealed {
- /// A method for accessing the raw bytes of this type. This is always a
- /// no-op and callers shouldn't care about it. This only exists for making
- /// the extension trait work.
- #[doc(hidden)]
- fn as_bytes(&self) -> &[u8];
-
- /// A method for accessing the raw bytes of this type, mutably. This is
- /// always a no-op and callers shouldn't care about it. This only exists
- /// for making the extension trait work.
- #[doc(hidden)]
- fn as_bytes_mut(&mut self) -> &mut [u8];
-
- /// Return this byte slice as a `&BStr`.
- ///
- /// Use `&BStr` is useful because of its `fmt::Debug` representation
- /// and various other trait implementations (such as `PartialEq` and
- /// `PartialOrd`). In particular, the `Debug` implementation for `BStr`
- /// shows its bytes as a normal string. For invalid UTF-8, hex escape
- /// sequences are used.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// println!("{:?}", b"foo\xFFbar".as_bstr());
- /// ```
- #[inline]
- fn as_bstr(&self) -> &BStr {
- BStr::new(self.as_bytes())
- }
-
- /// Return this byte slice as a `&mut BStr`.
- ///
- /// Use `&mut BStr` is useful because of its `fmt::Debug` representation
- /// and various other trait implementations (such as `PartialEq` and
- /// `PartialOrd`). In particular, the `Debug` implementation for `BStr`
- /// shows its bytes as a normal string. For invalid UTF-8, hex escape
- /// sequences are used.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut bytes = *b"foo\xFFbar";
- /// println!("{:?}", &mut bytes.as_bstr_mut());
- /// ```
- #[inline]
- fn as_bstr_mut(&mut self) -> &mut BStr {
- BStr::new_mut(self.as_bytes_mut())
- }
-
- /// Create an immutable byte string from an OS string slice.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this returns `None` if the given OS string is not valid UTF-8. (For
- /// example, on Windows, file paths are allowed to be a sequence of
- /// arbitrary 16-bit integers. Not all such sequences can be transcoded to
- /// valid UTF-8.)
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::ffi::OsStr;
- ///
- /// use bstr::{B, ByteSlice};
- ///
- /// let os_str = OsStr::new("foo");
- /// let bs = <[u8]>::from_os_str(os_str).expect("should be valid UTF-8");
- /// assert_eq!(bs, B("foo"));
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn from_os_str(os_str: &OsStr) -> Option<&[u8]> {
- #[cfg(unix)]
- #[inline]
- fn imp(os_str: &OsStr) -> Option<&[u8]> {
- use std::os::unix::ffi::OsStrExt;
-
- Some(os_str.as_bytes())
- }
-
- #[cfg(not(unix))]
- #[inline]
- fn imp(os_str: &OsStr) -> Option<&[u8]> {
- os_str.to_str().map(|s| s.as_bytes())
- }
-
- imp(os_str)
- }
-
- /// Create an immutable byte string from a file path.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this returns `None` if the given path is not valid UTF-8. (For example,
- /// on Windows, file paths are allowed to be a sequence of arbitrary 16-bit
- /// integers. Not all such sequences can be transcoded to valid UTF-8.)
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::path::Path;
- ///
- /// use bstr::{B, ByteSlice};
- ///
- /// let path = Path::new("foo");
- /// let bs = <[u8]>::from_path(path).expect("should be valid UTF-8");
- /// assert_eq!(bs, B("foo"));
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn from_path(path: &Path) -> Option<&[u8]> {
- Self::from_os_str(path.as_os_str())
- }
-
- /// Safely convert this byte string into a `&str` if it's valid UTF-8.
- ///
- /// If this byte string is not valid UTF-8, then an error is returned. The
- /// error returned indicates the first invalid byte found and the length
- /// of the error.
- ///
- /// In cases where a lossy conversion to `&str` is acceptable, then use one
- /// of the [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) or
- /// [`to_str_lossy_into`](trait.ByteSlice.html#method.to_str_lossy_into)
- /// methods.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice, ByteVec};
- ///
- /// # fn example() -> Result<(), bstr::Utf8Error> {
- /// let s = B("☃βツ").to_str()?;
- /// assert_eq!("☃βツ", s);
- ///
- /// let mut bstring = <Vec<u8>>::from("☃βツ");
- /// bstring.push(b'\xFF');
- /// let err = bstring.to_str().unwrap_err();
- /// assert_eq!(8, err.valid_up_to());
- /// # Ok(()) }; example().unwrap()
- /// ```
- #[inline]
- fn to_str(&self) -> Result<&str, Utf8Error> {
- utf8::validate(self.as_bytes()).map(|_| {
- // SAFETY: This is safe because of the guarantees provided by
- // utf8::validate.
- unsafe { str::from_utf8_unchecked(self.as_bytes()) }
- })
- }
-
- /// Unsafely convert this byte string into a `&str`, without checking for
- /// valid UTF-8.
- ///
- /// # Safety
- ///
- /// Callers *must* ensure that this byte string is valid UTF-8 before
- /// calling this method. Converting a byte string into a `&str` that is
- /// not valid UTF-8 is considered undefined behavior.
- ///
- /// This routine is useful in performance sensitive contexts where the
- /// UTF-8 validity of the byte string is already known and it is
- /// undesirable to pay the cost of an additional UTF-8 validation check
- /// that [`to_str`](trait.ByteSlice.html#method.to_str) performs.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// // SAFETY: This is safe because string literals are guaranteed to be
- /// // valid UTF-8 by the Rust compiler.
- /// let s = unsafe { B("☃βツ").to_str_unchecked() };
- /// assert_eq!("☃βツ", s);
- /// ```
- #[inline]
- unsafe fn to_str_unchecked(&self) -> &str {
- str::from_utf8_unchecked(self.as_bytes())
- }
-
- /// Convert this byte string to a valid UTF-8 string by replacing invalid
- /// UTF-8 bytes with the Unicode replacement codepoint (`U+FFFD`).
- ///
- /// If the byte string is already valid UTF-8, then no copying or
- /// allocation is performed and a borrrowed string slice is returned. If
- /// the byte string is not valid UTF-8, then an owned string buffer is
- /// returned with invalid bytes replaced by the replacement codepoint.
- ///
- /// This method uses the "substitution of maximal subparts" (Unicode
- /// Standard, Chapter 3, Section 9) strategy for inserting the replacement
- /// codepoint. Specifically, a replacement codepoint is inserted whenever a
- /// byte is found that cannot possibly lead to a valid code unit sequence.
- /// If there were previous bytes that represented a prefix of a well-formed
- /// code unit sequence, then all of those bytes are substituted with a
- /// single replacement codepoint. The "substitution of maximal subparts"
- /// strategy is the same strategy used by
- /// [W3C's Encoding standard](https://www.w3.org/TR/encoding/).
- /// For a more precise description of the maximal subpart strategy, see
- /// the Unicode Standard, Chapter 3, Section 9. See also
- /// [Public Review Issue #121](http://www.unicode.org/review/pr-121.html).
- ///
- /// N.B. Rust's standard library also appears to use the same strategy,
- /// but it does not appear to be an API guarantee.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::borrow::Cow;
- ///
- /// use bstr::ByteSlice;
- ///
- /// let mut bstring = <Vec<u8>>::from("☃βツ");
- /// assert_eq!(Cow::Borrowed("☃βツ"), bstring.to_str_lossy());
- ///
- /// // Add a byte that makes the sequence invalid.
- /// bstring.push(b'\xFF');
- /// assert_eq!(Cow::Borrowed("☃βツ\u{FFFD}"), bstring.to_str_lossy());
- /// ```
- ///
- /// This demonstrates the "maximal subpart" substitution logic.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// // \x61 is the ASCII codepoint for 'a'.
- /// // \xF1\x80\x80 is a valid 3-byte code unit prefix.
- /// // \xE1\x80 is a valid 2-byte code unit prefix.
- /// // \xC2 is a valid 1-byte code unit prefix.
- /// // \x62 is the ASCII codepoint for 'b'.
- /// //
- /// // In sum, each of the prefixes is replaced by a single replacement
- /// // codepoint since none of the prefixes are properly completed. This
- /// // is in contrast to other strategies that might insert a replacement
- /// // codepoint for every single byte.
- /// let bs = B(b"\x61\xF1\x80\x80\xE1\x80\xC2\x62");
- /// assert_eq!("a\u{FFFD}\u{FFFD}\u{FFFD}b", bs.to_str_lossy());
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_str_lossy(&self) -> Cow<'_, str> {
- match utf8::validate(self.as_bytes()) {
- Ok(()) => {
- // SAFETY: This is safe because of the guarantees provided by
- // utf8::validate.
- unsafe {
- Cow::Borrowed(str::from_utf8_unchecked(self.as_bytes()))
- }
- }
- Err(err) => {
- let mut lossy = String::with_capacity(self.as_bytes().len());
- let (valid, after) =
- self.as_bytes().split_at(err.valid_up_to());
- // SAFETY: This is safe because utf8::validate guarantees
- // that all of `valid` is valid UTF-8.
- lossy.push_str(unsafe { str::from_utf8_unchecked(valid) });
- lossy.push_str("\u{FFFD}");
- if let Some(len) = err.error_len() {
- after[len..].to_str_lossy_into(&mut lossy);
- }
- Cow::Owned(lossy)
- }
- }
- }
-
- /// Copy the contents of this byte string into the given owned string
- /// buffer, while replacing invalid UTF-8 code unit sequences with the
- /// Unicode replacement codepoint (`U+FFFD`).
- ///
- /// This method uses the same "substitution of maximal subparts" strategy
- /// for inserting the replacement codepoint as the
- /// [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) method.
- ///
- /// This routine is useful for amortizing allocation. However, unlike
- /// `to_str_lossy`, this routine will _always_ copy the contents of this
- /// byte string into the destination buffer, even if this byte string is
- /// valid UTF-8.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use std::borrow::Cow;
- ///
- /// use bstr::ByteSlice;
- ///
- /// let mut bstring = <Vec<u8>>::from("☃βツ");
- /// // Add a byte that makes the sequence invalid.
- /// bstring.push(b'\xFF');
- ///
- /// let mut dest = String::new();
- /// bstring.to_str_lossy_into(&mut dest);
- /// assert_eq!("☃βツ\u{FFFD}", dest);
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_str_lossy_into(&self, dest: &mut String) {
- let mut bytes = self.as_bytes();
- dest.reserve(bytes.len());
- loop {
- match utf8::validate(bytes) {
- Ok(()) => {
- // SAFETY: This is safe because utf8::validate guarantees
- // that all of `bytes` is valid UTF-8.
- dest.push_str(unsafe { str::from_utf8_unchecked(bytes) });
- break;
- }
- Err(err) => {
- let (valid, after) = bytes.split_at(err.valid_up_to());
- // SAFETY: This is safe because utf8::validate guarantees
- // that all of `valid` is valid UTF-8.
- dest.push_str(unsafe { str::from_utf8_unchecked(valid) });
- dest.push_str("\u{FFFD}");
- match err.error_len() {
- None => break,
- Some(len) => bytes = &after[len..],
- }
- }
- }
- }
- }
-
- /// Create an OS string slice from this byte string.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this returns a UTF-8 decoding error if this byte string is not valid
- /// UTF-8. (For example, on Windows, file paths are allowed to be a
- /// sequence of arbitrary 16-bit integers. There is no obvious mapping from
- /// an arbitrary sequence of 8-bit integers to an arbitrary sequence of
- /// 16-bit integers.)
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let os_str = b"foo".to_os_str().expect("should be valid UTF-8");
- /// assert_eq!(os_str, "foo");
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_os_str(&self) -> Result<&OsStr, Utf8Error> {
- #[cfg(unix)]
- #[inline]
- fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> {
- use std::os::unix::ffi::OsStrExt;
-
- Ok(OsStr::from_bytes(bytes))
- }
-
- #[cfg(not(unix))]
- #[inline]
- fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> {
- bytes.to_str().map(OsStr::new)
- }
-
- imp(self.as_bytes())
- }
-
- /// Lossily create an OS string slice from this byte string.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this will perform a UTF-8 check and lossily convert this byte string
- /// into valid UTF-8 using the Unicode replacement codepoint.
- ///
- /// Note that this can prevent the correct roundtripping of file paths on
- /// non-Unix systems such as Windows, where file paths are an arbitrary
- /// sequence of 16-bit integers.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let os_str = b"foo\xFFbar".to_os_str_lossy();
- /// assert_eq!(os_str.to_string_lossy(), "foo\u{FFFD}bar");
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_os_str_lossy(&self) -> Cow<'_, OsStr> {
- #[cfg(unix)]
- #[inline]
- fn imp(bytes: &[u8]) -> Cow<'_, OsStr> {
- use std::os::unix::ffi::OsStrExt;
-
- Cow::Borrowed(OsStr::from_bytes(bytes))
- }
-
- #[cfg(not(unix))]
- #[inline]
- fn imp(bytes: &[u8]) -> Cow<OsStr> {
- use std::ffi::OsString;
-
- match bytes.to_str_lossy() {
- Cow::Borrowed(x) => Cow::Borrowed(OsStr::new(x)),
- Cow::Owned(x) => Cow::Owned(OsString::from(x)),
- }
- }
-
- imp(self.as_bytes())
- }
-
- /// Create a path slice from this byte string.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this returns a UTF-8 decoding error if this byte string is not valid
- /// UTF-8. (For example, on Windows, file paths are allowed to be a
- /// sequence of arbitrary 16-bit integers. There is no obvious mapping from
- /// an arbitrary sequence of 8-bit integers to an arbitrary sequence of
- /// 16-bit integers.)
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let path = b"foo".to_path().expect("should be valid UTF-8");
- /// assert_eq!(path.as_os_str(), "foo");
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_path(&self) -> Result<&Path, Utf8Error> {
- self.to_os_str().map(Path::new)
- }
-
- /// Lossily create a path slice from this byte string.
- ///
- /// On Unix, this always succeeds and is zero cost. On non-Unix systems,
- /// this will perform a UTF-8 check and lossily convert this byte string
- /// into valid UTF-8 using the Unicode replacement codepoint.
- ///
- /// Note that this can prevent the correct roundtripping of file paths on
- /// non-Unix systems such as Windows, where file paths are an arbitrary
- /// sequence of 16-bit integers.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"foo\xFFbar";
- /// let path = bs.to_path_lossy();
- /// assert_eq!(path.to_string_lossy(), "foo\u{FFFD}bar");
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_path_lossy(&self) -> Cow<'_, Path> {
- use std::path::PathBuf;
-
- match self.to_os_str_lossy() {
- Cow::Borrowed(x) => Cow::Borrowed(Path::new(x)),
- Cow::Owned(x) => Cow::Owned(PathBuf::from(x)),
- }
- }
-
- /// Create a new byte string by repeating this byte string `n` times.
- ///
- /// # Panics
- ///
- /// This function panics if the capacity of the new byte string would
- /// overflow.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert_eq!(b"foo".repeatn(4), B("foofoofoofoo"));
- /// assert_eq!(b"foo".repeatn(0), B(""));
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn repeatn(&self, n: usize) -> Vec<u8> {
- let bs = self.as_bytes();
- let mut dst = vec![0; bs.len() * n];
- for i in 0..n {
- dst[i * bs.len()..(i + 1) * bs.len()].copy_from_slice(bs);
- }
- dst
- }
-
- /// Returns true if and only if this byte string contains the given needle.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert!(b"foo bar".contains_str("foo"));
- /// assert!(b"foo bar".contains_str("bar"));
- /// assert!(!b"foo".contains_str("foobar"));
- /// ```
- #[inline]
- fn contains_str<B: AsRef<[u8]>>(&self, needle: B) -> bool {
- self.find(needle).is_some()
- }
-
- /// Returns true if and only if this byte string has the given prefix.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert!(b"foo bar".starts_with_str("foo"));
- /// assert!(!b"foo bar".starts_with_str("bar"));
- /// assert!(!b"foo".starts_with_str("foobar"));
- /// ```
- #[inline]
- fn starts_with_str<B: AsRef<[u8]>>(&self, prefix: B) -> bool {
- self.as_bytes().starts_with(prefix.as_ref())
- }
-
- /// Returns true if and only if this byte string has the given suffix.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert!(b"foo bar".ends_with_str("bar"));
- /// assert!(!b"foo bar".ends_with_str("foo"));
- /// assert!(!b"bar".ends_with_str("foobar"));
- /// ```
- #[inline]
- fn ends_with_str<B: AsRef<[u8]>>(&self, suffix: B) -> bool {
- self.as_bytes().ends_with(suffix.as_ref())
- }
-
- /// Returns the index of the first occurrence of the given needle.
- ///
- /// The needle may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// Note that if you're are searching for the same needle in many
- /// different small haystacks, it may be faster to initialize a
- /// [`Finder`](struct.Finder.html) once, and reuse it for each search.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo bar baz";
- /// assert_eq!(Some(0), s.find("foo"));
- /// assert_eq!(Some(4), s.find("bar"));
- /// assert_eq!(None, s.find("quux"));
- /// ```
- #[inline]
- fn find<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> {
- Finder::new(needle.as_ref()).find(self.as_bytes())
- }
-
- /// Returns the index of the last occurrence of the given needle.
- ///
- /// The needle may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// Note that if you're are searching for the same needle in many
- /// different small haystacks, it may be faster to initialize a
- /// [`FinderReverse`](struct.FinderReverse.html) once, and reuse it for
- /// each search.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo bar baz";
- /// assert_eq!(Some(0), s.rfind("foo"));
- /// assert_eq!(Some(4), s.rfind("bar"));
- /// assert_eq!(Some(8), s.rfind("ba"));
- /// assert_eq!(None, s.rfind("quux"));
- /// ```
- #[inline]
- fn rfind<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> {
- FinderReverse::new(needle.as_ref()).rfind(self.as_bytes())
- }
-
- /// Returns an iterator of the non-overlapping occurrences of the given
- /// needle. The iterator yields byte offset positions indicating the start
- /// of each match.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo bar foo foo quux foo";
- /// let matches: Vec<usize> = s.find_iter("foo").collect();
- /// assert_eq!(matches, vec![0, 8, 12, 21]);
- /// ```
- ///
- /// An empty string matches at every position, including the position
- /// immediately following the last byte:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let matches: Vec<usize> = b"foo".find_iter("").collect();
- /// assert_eq!(matches, vec![0, 1, 2, 3]);
- ///
- /// let matches: Vec<usize> = b"".find_iter("").collect();
- /// assert_eq!(matches, vec![0]);
- /// ```
- #[inline]
- fn find_iter<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- needle: &'a B,
- ) -> Find<'a> {
- Find::new(self.as_bytes(), needle.as_ref())
- }
-
- /// Returns an iterator of the non-overlapping occurrences of the given
- /// needle in reverse. The iterator yields byte offset positions indicating
- /// the start of each match.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo bar foo foo quux foo";
- /// let matches: Vec<usize> = s.rfind_iter("foo").collect();
- /// assert_eq!(matches, vec![21, 12, 8, 0]);
- /// ```
- ///
- /// An empty string matches at every position, including the position
- /// immediately following the last byte:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let matches: Vec<usize> = b"foo".rfind_iter("").collect();
- /// assert_eq!(matches, vec![3, 2, 1, 0]);
- ///
- /// let matches: Vec<usize> = b"".rfind_iter("").collect();
- /// assert_eq!(matches, vec![0]);
- /// ```
- #[inline]
- fn rfind_iter<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- needle: &'a B,
- ) -> FindReverse<'a> {
- FindReverse::new(self.as_bytes(), needle.as_ref())
- }
-
- /// Returns the index of the first occurrence of the given byte. If the
- /// byte does not occur in this byte string, then `None` is returned.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(Some(10), b"foo bar baz".find_byte(b'z'));
- /// assert_eq!(None, b"foo bar baz".find_byte(b'y'));
- /// ```
- #[inline]
- fn find_byte(&self, byte: u8) -> Option<usize> {
- memchr(byte, self.as_bytes())
- }
-
- /// Returns the index of the last occurrence of the given byte. If the
- /// byte does not occur in this byte string, then `None` is returned.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(Some(10), b"foo bar baz".rfind_byte(b'z'));
- /// assert_eq!(None, b"foo bar baz".rfind_byte(b'y'));
- /// ```
- #[inline]
- fn rfind_byte(&self, byte: u8) -> Option<usize> {
- memrchr(byte, self.as_bytes())
- }
-
- /// Returns the index of the first occurrence of the given codepoint.
- /// If the codepoint does not occur in this byte string, then `None` is
- /// returned.
- ///
- /// Note that if one searches for the replacement codepoint, `\u{FFFD}`,
- /// then only explicit occurrences of that encoding will be found. Invalid
- /// UTF-8 sequences will not be matched.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert_eq!(Some(10), b"foo bar baz".find_char('z'));
- /// assert_eq!(Some(4), B("αβγγδ").find_char('γ'));
- /// assert_eq!(None, b"foo bar baz".find_char('y'));
- /// ```
- #[inline]
- fn find_char(&self, ch: char) -> Option<usize> {
- self.find(ch.encode_utf8(&mut [0; 4]))
- }
-
- /// Returns the index of the last occurrence of the given codepoint.
- /// If the codepoint does not occur in this byte string, then `None` is
- /// returned.
- ///
- /// Note that if one searches for the replacement codepoint, `\u{FFFD}`,
- /// then only explicit occurrences of that encoding will be found. Invalid
- /// UTF-8 sequences will not be matched.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert_eq!(Some(10), b"foo bar baz".rfind_char('z'));
- /// assert_eq!(Some(6), B("αβγγδ").rfind_char('γ'));
- /// assert_eq!(None, b"foo bar baz".rfind_char('y'));
- /// ```
- #[inline]
- fn rfind_char(&self, ch: char) -> Option<usize> {
- self.rfind(ch.encode_utf8(&mut [0; 4]))
- }
-
- /// Returns the index of the first occurrence of any of the bytes in the
- /// provided set.
- ///
- /// The `byteset` may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but
- /// note that passing a `&str` which contains multibyte characters may not
- /// behave as you expect: each byte in the `&str` is treated as an
- /// individual member of the byte set.
- ///
- /// Note that order is irrelevant for the `byteset` parameter, and
- /// duplicate bytes present in its body are ignored.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the set of bytes and the haystack. That is, this
- /// runs in `O(byteset.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(b"foo bar baz".find_byteset(b"zr"), Some(6));
- /// assert_eq!(b"foo baz bar".find_byteset(b"bzr"), Some(4));
- /// assert_eq!(None, b"foo baz bar".find_byteset(b"\t\n"));
- /// ```
- #[inline]
- fn find_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> {
- byteset::find(self.as_bytes(), byteset.as_ref())
- }
-
- /// Returns the index of the first occurrence of a byte that is not a member
- /// of the provided set.
- ///
- /// The `byteset` may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but
- /// note that passing a `&str` which contains multibyte characters may not
- /// behave as you expect: each byte in the `&str` is treated as an
- /// individual member of the byte set.
- ///
- /// Note that order is irrelevant for the `byteset` parameter, and
- /// duplicate bytes present in its body are ignored.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the set of bytes and the haystack. That is, this
- /// runs in `O(byteset.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(b"foo bar baz".find_not_byteset(b"fo "), Some(4));
- /// assert_eq!(b"\t\tbaz bar".find_not_byteset(b" \t\r\n"), Some(2));
- /// assert_eq!(b"foo\nbaz\tbar".find_not_byteset(b"\t\n"), Some(0));
- /// ```
- #[inline]
- fn find_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> {
- byteset::find_not(self.as_bytes(), byteset.as_ref())
- }
-
- /// Returns the index of the last occurrence of any of the bytes in the
- /// provided set.
- ///
- /// The `byteset` may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but
- /// note that passing a `&str` which contains multibyte characters may not
- /// behave as you expect: each byte in the `&str` is treated as an
- /// individual member of the byte set.
- ///
- /// Note that order is irrelevant for the `byteset` parameter, and duplicate
- /// bytes present in its body are ignored.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the set of bytes and the haystack. That is, this
- /// runs in `O(byteset.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(b"foo bar baz".rfind_byteset(b"agb"), Some(9));
- /// assert_eq!(b"foo baz bar".rfind_byteset(b"rabz "), Some(10));
- /// assert_eq!(b"foo baz bar".rfind_byteset(b"\n123"), None);
- /// ```
- #[inline]
- fn rfind_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> {
- byteset::rfind(self.as_bytes(), byteset.as_ref())
- }
-
- /// Returns the index of the last occurrence of a byte that is not a member
- /// of the provided set.
- ///
- /// The `byteset` may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but
- /// note that passing a `&str` which contains multibyte characters may not
- /// behave as you expect: each byte in the `&str` is treated as an
- /// individual member of the byte set.
- ///
- /// Note that order is irrelevant for the `byteset` parameter, and
- /// duplicate bytes present in its body are ignored.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the set of bytes and the haystack. That is, this
- /// runs in `O(byteset.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(b"foo bar baz,\t".rfind_not_byteset(b",\t"), Some(10));
- /// assert_eq!(b"foo baz bar".rfind_not_byteset(b"rabz "), Some(2));
- /// assert_eq!(None, b"foo baz bar".rfind_not_byteset(b"barfoz "));
- /// ```
- #[inline]
- fn rfind_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> {
- byteset::rfind_not(self.as_bytes(), byteset.as_ref())
- }
-
- /// Returns an iterator over the fields in a byte string, separated by
- /// contiguous whitespace.
- ///
- /// # Example
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(" foo\tbar\t\u{2003}\nquux \n");
- /// let fields: Vec<&[u8]> = s.fields().collect();
- /// assert_eq!(fields, vec![B("foo"), B("bar"), B("quux")]);
- /// ```
- ///
- /// A byte string consisting of just whitespace yields no elements:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert_eq!(0, B(" \n\t\u{2003}\n \t").fields().count());
- /// ```
- #[inline]
- fn fields(&self) -> Fields<'_> {
- Fields::new(self.as_bytes())
- }
-
- /// Returns an iterator over the fields in a byte string, separated by
- /// contiguous codepoints satisfying the given predicate.
- ///
- /// If this byte string is not valid UTF-8, then the given closure will
- /// be called with a Unicode replacement codepoint when invalid UTF-8
- /// bytes are seen.
- ///
- /// # Example
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"123foo999999bar1quux123456";
- /// let fields: Vec<&[u8]> = s.fields_with(|c| c.is_numeric()).collect();
- /// assert_eq!(fields, vec![B("foo"), B("bar"), B("quux")]);
- /// ```
- ///
- /// A byte string consisting of all codepoints satisfying the predicate
- /// yields no elements:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(0, b"1911354563".fields_with(|c| c.is_numeric()).count());
- /// ```
- #[inline]
- fn fields_with<F: FnMut(char) -> bool>(&self, f: F) -> FieldsWith<'_, F> {
- FieldsWith::new(self.as_bytes(), f)
- }
-
- /// Returns an iterator over substrings of this byte string, separated
- /// by the given byte string. Each element yielded is guaranteed not to
- /// include the splitter substring.
- ///
- /// The splitter may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"Mary had a little lamb".split_str(" ").collect();
- /// assert_eq!(x, vec![
- /// B("Mary"), B("had"), B("a"), B("little"), B("lamb"),
- /// ]);
- ///
- /// let x: Vec<&[u8]> = b"".split_str("X").collect();
- /// assert_eq!(x, vec![b""]);
- ///
- /// let x: Vec<&[u8]> = b"lionXXtigerXleopard".split_str("X").collect();
- /// assert_eq!(x, vec![B("lion"), B(""), B("tiger"), B("leopard")]);
- ///
- /// let x: Vec<&[u8]> = b"lion::tiger::leopard".split_str("::").collect();
- /// assert_eq!(x, vec![B("lion"), B("tiger"), B("leopard")]);
- /// ```
- ///
- /// If a string contains multiple contiguous separators, you will end up
- /// with empty strings yielded by the iterator:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"||||a||b|c".split_str("|").collect();
- /// assert_eq!(x, vec![
- /// B(""), B(""), B(""), B(""), B("a"), B(""), B("b"), B("c"),
- /// ]);
- ///
- /// let x: Vec<&[u8]> = b"(///)".split_str("/").collect();
- /// assert_eq!(x, vec![B("("), B(""), B(""), B(")")]);
- /// ```
- ///
- /// Separators at the start or end of a string are neighbored by empty
- /// strings.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"010".split_str("0").collect();
- /// assert_eq!(x, vec![B(""), B("1"), B("")]);
- /// ```
- ///
- /// When the empty string is used as a separator, it splits every **byte**
- /// in the byte string, along with the beginning and end of the byte
- /// string.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"rust".split_str("").collect();
- /// assert_eq!(x, vec![
- /// B(""), B("r"), B("u"), B("s"), B("t"), B(""),
- /// ]);
- ///
- /// // Splitting by an empty string is not UTF-8 aware. Elements yielded
- /// // may not be valid UTF-8!
- /// let x: Vec<&[u8]> = B("☃").split_str("").collect();
- /// assert_eq!(x, vec![
- /// B(""), B(b"\xE2"), B(b"\x98"), B(b"\x83"), B(""),
- /// ]);
- /// ```
- ///
- /// Contiguous separators, especially whitespace, can lead to possibly
- /// surprising behavior. For example, this code is correct:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b" a b c".split_str(" ").collect();
- /// assert_eq!(x, vec![
- /// B(""), B(""), B(""), B(""), B("a"), B(""), B("b"), B("c"),
- /// ]);
- /// ```
- ///
- /// It does *not* give you `["a", "b", "c"]`. For that behavior, use
- /// [`fields`](#method.fields) instead.
- #[inline]
- fn split_str<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- splitter: &'a B,
- ) -> Split<'a> {
- Split::new(self.as_bytes(), splitter.as_ref())
- }
-
- /// Returns an iterator over substrings of this byte string, separated by
- /// the given byte string, in reverse. Each element yielded is guaranteed
- /// not to include the splitter substring.
- ///
- /// The splitter may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> =
- /// b"Mary had a little lamb".rsplit_str(" ").collect();
- /// assert_eq!(x, vec![
- /// B("lamb"), B("little"), B("a"), B("had"), B("Mary"),
- /// ]);
- ///
- /// let x: Vec<&[u8]> = b"".rsplit_str("X").collect();
- /// assert_eq!(x, vec![b""]);
- ///
- /// let x: Vec<&[u8]> = b"lionXXtigerXleopard".rsplit_str("X").collect();
- /// assert_eq!(x, vec![B("leopard"), B("tiger"), B(""), B("lion")]);
- ///
- /// let x: Vec<&[u8]> = b"lion::tiger::leopard".rsplit_str("::").collect();
- /// assert_eq!(x, vec![B("leopard"), B("tiger"), B("lion")]);
- /// ```
- ///
- /// If a string contains multiple contiguous separators, you will end up
- /// with empty strings yielded by the iterator:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"||||a||b|c".rsplit_str("|").collect();
- /// assert_eq!(x, vec![
- /// B("c"), B("b"), B(""), B("a"), B(""), B(""), B(""), B(""),
- /// ]);
- ///
- /// let x: Vec<&[u8]> = b"(///)".rsplit_str("/").collect();
- /// assert_eq!(x, vec![B(")"), B(""), B(""), B("(")]);
- /// ```
- ///
- /// Separators at the start or end of a string are neighbored by empty
- /// strings.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"010".rsplit_str("0").collect();
- /// assert_eq!(x, vec![B(""), B("1"), B("")]);
- /// ```
- ///
- /// When the empty string is used as a separator, it splits every **byte**
- /// in the byte string, along with the beginning and end of the byte
- /// string.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b"rust".rsplit_str("").collect();
- /// assert_eq!(x, vec![
- /// B(""), B("t"), B("s"), B("u"), B("r"), B(""),
- /// ]);
- ///
- /// // Splitting by an empty string is not UTF-8 aware. Elements yielded
- /// // may not be valid UTF-8!
- /// let x: Vec<&[u8]> = B("☃").rsplit_str("").collect();
- /// assert_eq!(x, vec![B(""), B(b"\x83"), B(b"\x98"), B(b"\xE2"), B("")]);
- /// ```
- ///
- /// Contiguous separators, especially whitespace, can lead to possibly
- /// surprising behavior. For example, this code is correct:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<&[u8]> = b" a b c".rsplit_str(" ").collect();
- /// assert_eq!(x, vec![
- /// B("c"), B("b"), B(""), B("a"), B(""), B(""), B(""), B(""),
- /// ]);
- /// ```
- ///
- /// It does *not* give you `["a", "b", "c"]`.
- #[inline]
- fn rsplit_str<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- splitter: &'a B,
- ) -> SplitReverse<'a> {
- SplitReverse::new(self.as_bytes(), splitter.as_ref())
- }
-
- /// Returns an iterator of at most `limit` substrings of this byte string,
- /// separated by the given byte string. If `limit` substrings are yielded,
- /// then the last substring will contain the remainder of this byte string.
- ///
- /// The needle may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<_> = b"Mary had a little lamb".splitn_str(3, " ").collect();
- /// assert_eq!(x, vec![B("Mary"), B("had"), B("a little lamb")]);
- ///
- /// let x: Vec<_> = b"".splitn_str(3, "X").collect();
- /// assert_eq!(x, vec![b""]);
- ///
- /// let x: Vec<_> = b"lionXXtigerXleopard".splitn_str(3, "X").collect();
- /// assert_eq!(x, vec![B("lion"), B(""), B("tigerXleopard")]);
- ///
- /// let x: Vec<_> = b"lion::tiger::leopard".splitn_str(2, "::").collect();
- /// assert_eq!(x, vec![B("lion"), B("tiger::leopard")]);
- ///
- /// let x: Vec<_> = b"abcXdef".splitn_str(1, "X").collect();
- /// assert_eq!(x, vec![B("abcXdef")]);
- ///
- /// let x: Vec<_> = b"abcdef".splitn_str(2, "X").collect();
- /// assert_eq!(x, vec![B("abcdef")]);
- ///
- /// let x: Vec<_> = b"abcXdef".splitn_str(0, "X").collect();
- /// assert!(x.is_empty());
- /// ```
- #[inline]
- fn splitn_str<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- limit: usize,
- splitter: &'a B,
- ) -> SplitN<'a> {
- SplitN::new(self.as_bytes(), splitter.as_ref(), limit)
- }
-
- /// Returns an iterator of at most `limit` substrings of this byte string,
- /// separated by the given byte string, in reverse. If `limit` substrings
- /// are yielded, then the last substring will contain the remainder of this
- /// byte string.
- ///
- /// The needle may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let x: Vec<_> =
- /// b"Mary had a little lamb".rsplitn_str(3, " ").collect();
- /// assert_eq!(x, vec![B("lamb"), B("little"), B("Mary had a")]);
- ///
- /// let x: Vec<_> = b"".rsplitn_str(3, "X").collect();
- /// assert_eq!(x, vec![b""]);
- ///
- /// let x: Vec<_> = b"lionXXtigerXleopard".rsplitn_str(3, "X").collect();
- /// assert_eq!(x, vec![B("leopard"), B("tiger"), B("lionX")]);
- ///
- /// let x: Vec<_> = b"lion::tiger::leopard".rsplitn_str(2, "::").collect();
- /// assert_eq!(x, vec![B("leopard"), B("lion::tiger")]);
- ///
- /// let x: Vec<_> = b"abcXdef".rsplitn_str(1, "X").collect();
- /// assert_eq!(x, vec![B("abcXdef")]);
- ///
- /// let x: Vec<_> = b"abcdef".rsplitn_str(2, "X").collect();
- /// assert_eq!(x, vec![B("abcdef")]);
- ///
- /// let x: Vec<_> = b"abcXdef".rsplitn_str(0, "X").collect();
- /// assert!(x.is_empty());
- /// ```
- #[inline]
- fn rsplitn_str<'a, B: ?Sized + AsRef<[u8]>>(
- &'a self,
- limit: usize,
- splitter: &'a B,
- ) -> SplitNReverse<'a> {
- SplitNReverse::new(self.as_bytes(), splitter.as_ref(), limit)
- }
-
- /// Replace all matches of the given needle with the given replacement, and
- /// the result as a new `Vec<u8>`.
- ///
- /// This routine is useful as a convenience. If you need to reuse an
- /// allocation, use [`replace_into`](#method.replace_into) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"this is old".replace("old", "new");
- /// assert_eq!(s, "this is new".as_bytes());
- /// ```
- ///
- /// When the pattern doesn't match:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"this is old".replace("nada nada", "limonada");
- /// assert_eq!(s, "this is old".as_bytes());
- /// ```
- ///
- /// When the needle is an empty string:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo".replace("", "Z");
- /// assert_eq!(s, "ZfZoZoZ".as_bytes());
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn replace<N: AsRef<[u8]>, R: AsRef<[u8]>>(
- &self,
- needle: N,
- replacement: R,
- ) -> Vec<u8> {
- let mut dest = Vec::with_capacity(self.as_bytes().len());
- self.replace_into(needle, replacement, &mut dest);
- dest
- }
-
- /// Replace up to `limit` matches of the given needle with the given
- /// replacement, and the result as a new `Vec<u8>`.
- ///
- /// This routine is useful as a convenience. If you need to reuse an
- /// allocation, use [`replacen_into`](#method.replacen_into) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foofoo".replacen("o", "z", 2);
- /// assert_eq!(s, "fzzfoo".as_bytes());
- /// ```
- ///
- /// When the pattern doesn't match:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foofoo".replacen("a", "z", 2);
- /// assert_eq!(s, "foofoo".as_bytes());
- /// ```
- ///
- /// When the needle is an empty string:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo".replacen("", "Z", 2);
- /// assert_eq!(s, "ZfZoo".as_bytes());
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn replacen<N: AsRef<[u8]>, R: AsRef<[u8]>>(
- &self,
- needle: N,
- replacement: R,
- limit: usize,
- ) -> Vec<u8> {
- let mut dest = Vec::with_capacity(self.as_bytes().len());
- self.replacen_into(needle, replacement, limit, &mut dest);
- dest
- }
-
- /// Replace all matches of the given needle with the given replacement,
- /// and write the result into the provided `Vec<u8>`.
- ///
- /// This does **not** clear `dest` before writing to it.
- ///
- /// This routine is useful for reusing allocation. For a more convenient
- /// API, use [`replace`](#method.replace) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"this is old";
- ///
- /// let mut dest = vec![];
- /// s.replace_into("old", "new", &mut dest);
- /// assert_eq!(dest, "this is new".as_bytes());
- /// ```
- ///
- /// When the pattern doesn't match:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"this is old";
- ///
- /// let mut dest = vec![];
- /// s.replace_into("nada nada", "limonada", &mut dest);
- /// assert_eq!(dest, "this is old".as_bytes());
- /// ```
- ///
- /// When the needle is an empty string:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo";
- ///
- /// let mut dest = vec![];
- /// s.replace_into("", "Z", &mut dest);
- /// assert_eq!(dest, "ZfZoZoZ".as_bytes());
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn replace_into<N: AsRef<[u8]>, R: AsRef<[u8]>>(
- &self,
- needle: N,
- replacement: R,
- dest: &mut Vec<u8>,
- ) {
- let (needle, replacement) = (needle.as_ref(), replacement.as_ref());
-
- let mut last = 0;
- for start in self.find_iter(needle) {
- dest.push_str(&self.as_bytes()[last..start]);
- dest.push_str(replacement);
- last = start + needle.len();
- }
- dest.push_str(&self.as_bytes()[last..]);
- }
-
- /// Replace up to `limit` matches of the given needle with the given
- /// replacement, and write the result into the provided `Vec<u8>`.
- ///
- /// This does **not** clear `dest` before writing to it.
- ///
- /// This routine is useful for reusing allocation. For a more convenient
- /// API, use [`replacen`](#method.replacen) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foofoo";
- ///
- /// let mut dest = vec![];
- /// s.replacen_into("o", "z", 2, &mut dest);
- /// assert_eq!(dest, "fzzfoo".as_bytes());
- /// ```
- ///
- /// When the pattern doesn't match:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foofoo";
- ///
- /// let mut dest = vec![];
- /// s.replacen_into("a", "z", 2, &mut dest);
- /// assert_eq!(dest, "foofoo".as_bytes());
- /// ```
- ///
- /// When the needle is an empty string:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let s = b"foo";
- ///
- /// let mut dest = vec![];
- /// s.replacen_into("", "Z", 2, &mut dest);
- /// assert_eq!(dest, "ZfZoo".as_bytes());
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn replacen_into<N: AsRef<[u8]>, R: AsRef<[u8]>>(
- &self,
- needle: N,
- replacement: R,
- limit: usize,
- dest: &mut Vec<u8>,
- ) {
- let (needle, replacement) = (needle.as_ref(), replacement.as_ref());
-
- let mut last = 0;
- for start in self.find_iter(needle).take(limit) {
- dest.push_str(&self.as_bytes()[last..start]);
- dest.push_str(replacement);
- last = start + needle.len();
- }
- dest.push_str(&self.as_bytes()[last..]);
- }
-
- /// Returns an iterator over the bytes in this byte string.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"foobar";
- /// let bytes: Vec<u8> = bs.bytes().collect();
- /// assert_eq!(bytes, bs);
- /// ```
- #[inline]
- fn bytes(&self) -> Bytes<'_> {
- Bytes { it: self.as_bytes().iter() }
- }
-
- /// Returns an iterator over the Unicode scalar values in this byte string.
- /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint
- /// is yielded instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61";
- /// let chars: Vec<char> = bs.chars().collect();
- /// assert_eq!(vec!['☃', '\u{FFFD}', '𝞃', '\u{FFFD}', 'a'], chars);
- /// ```
- ///
- /// Codepoints can also be iterated over in reverse:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61";
- /// let chars: Vec<char> = bs.chars().rev().collect();
- /// assert_eq!(vec!['a', '\u{FFFD}', '𝞃', '\u{FFFD}', '☃'], chars);
- /// ```
- #[inline]
- fn chars(&self) -> Chars<'_> {
- Chars::new(self.as_bytes())
- }
-
- /// Returns an iterator over the Unicode scalar values in this byte string
- /// along with their starting and ending byte index positions. If invalid
- /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded
- /// instead.
- ///
- /// Note that this is slightly different from the `CharIndices` iterator
- /// provided by the standard library. Aside from working on possibly
- /// invalid UTF-8, this iterator provides both the corresponding starting
- /// and ending byte indices of each codepoint yielded. The ending position
- /// is necessary to slice the original byte string when invalid UTF-8 bytes
- /// are converted into a Unicode replacement codepoint, since a single
- /// replacement codepoint can substitute anywhere from 1 to 3 invalid bytes
- /// (inclusive).
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61";
- /// let chars: Vec<(usize, usize, char)> = bs.char_indices().collect();
- /// assert_eq!(chars, vec![
- /// (0, 3, '☃'),
- /// (3, 4, '\u{FFFD}'),
- /// (4, 8, '𝞃'),
- /// (8, 10, '\u{FFFD}'),
- /// (10, 11, 'a'),
- /// ]);
- /// ```
- ///
- /// Codepoints can also be iterated over in reverse:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61";
- /// let chars: Vec<(usize, usize, char)> = bs
- /// .char_indices()
- /// .rev()
- /// .collect();
- /// assert_eq!(chars, vec![
- /// (10, 11, 'a'),
- /// (8, 10, '\u{FFFD}'),
- /// (4, 8, '𝞃'),
- /// (3, 4, '\u{FFFD}'),
- /// (0, 3, '☃'),
- /// ]);
- /// ```
- #[inline]
- fn char_indices(&self) -> CharIndices<'_> {
- CharIndices::new(self.as_bytes())
- }
-
- /// Iterate over chunks of valid UTF-8.
- ///
- /// The iterator returned yields chunks of valid UTF-8 separated by invalid
- /// UTF-8 bytes, if they exist. Invalid UTF-8 bytes are always 1-3 bytes,
- /// which are determined via the "substitution of maximal subparts"
- /// strategy described in the docs for the
- /// [`ByteSlice::to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy)
- /// method.
- ///
- /// # Examples
- ///
- /// This example shows how to gather all valid and invalid chunks from a
- /// byte slice:
- ///
- /// ```
- /// use bstr::{ByteSlice, Utf8Chunk};
- ///
- /// let bytes = b"foo\xFD\xFEbar\xFF";
- ///
- /// let (mut valid_chunks, mut invalid_chunks) = (vec![], vec![]);
- /// for chunk in bytes.utf8_chunks() {
- /// if !chunk.valid().is_empty() {
- /// valid_chunks.push(chunk.valid());
- /// }
- /// if !chunk.invalid().is_empty() {
- /// invalid_chunks.push(chunk.invalid());
- /// }
- /// }
- ///
- /// assert_eq!(valid_chunks, vec!["foo", "bar"]);
- /// assert_eq!(invalid_chunks, vec![b"\xFD", b"\xFE", b"\xFF"]);
- /// ```
- #[inline]
- fn utf8_chunks(&self) -> Utf8Chunks<'_> {
- Utf8Chunks { bytes: self.as_bytes() }
- }
-
- /// Returns an iterator over the grapheme clusters in this byte string.
- /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint
- /// is yielded instead.
- ///
- /// # Examples
- ///
- /// This example shows how multiple codepoints can combine to form a
- /// single grapheme cluster:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes();
- /// let graphemes: Vec<&str> = bs.graphemes().collect();
- /// assert_eq!(vec!["à̖", "🇺🇸"], graphemes);
- /// ```
- ///
- /// This shows that graphemes can be iterated over in reverse:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes();
- /// let graphemes: Vec<&str> = bs.graphemes().rev().collect();
- /// assert_eq!(vec!["🇺🇸", "à̖"], graphemes);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn graphemes(&self) -> Graphemes<'_> {
- Graphemes::new(self.as_bytes())
- }
-
- /// Returns an iterator over the grapheme clusters in this byte string
- /// along with their starting and ending byte index positions. If invalid
- /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded
- /// instead.
- ///
- /// # Examples
- ///
- /// This example shows how to get the byte offsets of each individual
- /// grapheme cluster:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes();
- /// let graphemes: Vec<(usize, usize, &str)> =
- /// bs.grapheme_indices().collect();
- /// assert_eq!(vec![(0, 5, "à̖"), (5, 13, "🇺🇸")], graphemes);
- /// ```
- ///
- /// This example shows what happens when invalid UTF-8 is enountered. Note
- /// that the offsets are valid indices into the original string, and do
- /// not necessarily correspond to the length of the `&str` returned!
- ///
- /// ```
- /// use bstr::{ByteSlice, ByteVec};
- ///
- /// let mut bytes = vec![];
- /// bytes.push_str("a\u{0300}\u{0316}");
- /// bytes.push(b'\xFF');
- /// bytes.push_str("\u{1F1FA}\u{1F1F8}");
- ///
- /// let graphemes: Vec<(usize, usize, &str)> =
- /// bytes.grapheme_indices().collect();
- /// assert_eq!(
- /// graphemes,
- /// vec![(0, 5, "à̖"), (5, 6, "\u{FFFD}"), (6, 14, "🇺🇸")]
- /// );
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn grapheme_indices(&self) -> GraphemeIndices<'_> {
- GraphemeIndices::new(self.as_bytes())
- }
-
- /// Returns an iterator over the words in this byte string. If invalid
- /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded
- /// instead.
- ///
- /// This is similar to
- /// [`words_with_breaks`](trait.ByteSlice.html#method.words_with_breaks),
- /// except it only returns elements that contain a "word" character. A word
- /// character is defined by UTS #18 (Annex C) to be the combination of the
- /// `Alphabetic` and `Join_Control` properties, along with the
- /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general
- /// categories.
- ///
- /// Since words are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"#;
- /// let words: Vec<&str> = bs.words().collect();
- /// assert_eq!(words, vec![
- /// "The", "quick", "brown", "fox", "can't",
- /// "jump", "32.3", "feet", "right",
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn words(&self) -> Words<'_> {
- Words::new(self.as_bytes())
- }
-
- /// Returns an iterator over the words in this byte string along with
- /// their starting and ending byte index positions.
- ///
- /// This is similar to
- /// [`words_with_break_indices`](trait.ByteSlice.html#method.words_with_break_indices),
- /// except it only returns elements that contain a "word" character. A word
- /// character is defined by UTS #18 (Annex C) to be the combination of the
- /// `Alphabetic` and `Join_Control` properties, along with the
- /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general
- /// categories.
- ///
- /// Since words are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// This example shows how to get the byte offsets of each individual
- /// word:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"can't jump 32.3 feet";
- /// let words: Vec<(usize, usize, &str)> = bs.word_indices().collect();
- /// assert_eq!(words, vec![
- /// (0, 5, "can't"),
- /// (6, 10, "jump"),
- /// (11, 15, "32.3"),
- /// (16, 20, "feet"),
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn word_indices(&self) -> WordIndices<'_> {
- WordIndices::new(self.as_bytes())
- }
-
- /// Returns an iterator over the words in this byte string, along with
- /// all breaks between the words. Concatenating all elements yielded by
- /// the iterator results in the original string (modulo Unicode replacement
- /// codepoint substitutions if invalid UTF-8 is encountered).
- ///
- /// Since words are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"#;
- /// let words: Vec<&str> = bs.words_with_breaks().collect();
- /// assert_eq!(words, vec![
- /// "The", " ", "quick", " ", "(", "\"", "brown", "\"", ")",
- /// " ", "fox", " ", "can't", " ", "jump", " ", "32.3", " ", "feet",
- /// ",", " ", "right", "?",
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn words_with_breaks(&self) -> WordsWithBreaks<'_> {
- WordsWithBreaks::new(self.as_bytes())
- }
-
- /// Returns an iterator over the words and their byte offsets in this
- /// byte string, along with all breaks between the words. Concatenating
- /// all elements yielded by the iterator results in the original string
- /// (modulo Unicode replacement codepoint substitutions if invalid UTF-8 is
- /// encountered).
- ///
- /// Since words are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// This example shows how to get the byte offsets of each individual
- /// word:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"can't jump 32.3 feet";
- /// let words: Vec<(usize, usize, &str)> =
- /// bs.words_with_break_indices().collect();
- /// assert_eq!(words, vec![
- /// (0, 5, "can't"),
- /// (5, 6, " "),
- /// (6, 10, "jump"),
- /// (10, 11, " "),
- /// (11, 15, "32.3"),
- /// (15, 16, " "),
- /// (16, 20, "feet"),
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn words_with_break_indices(&self) -> WordsWithBreakIndices<'_> {
- WordsWithBreakIndices::new(self.as_bytes())
- }
-
- /// Returns an iterator over the sentences in this byte string.
- ///
- /// Typically, a sentence will include its trailing punctuation and
- /// whitespace. Concatenating all elements yielded by the iterator
- /// results in the original string (modulo Unicode replacement codepoint
- /// substitutions if invalid UTF-8 is encountered).
- ///
- /// Since sentences are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"I want this. Not that. Right now.";
- /// let sentences: Vec<&str> = bs.sentences().collect();
- /// assert_eq!(sentences, vec![
- /// "I want this. ",
- /// "Not that. ",
- /// "Right now.",
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn sentences(&self) -> Sentences<'_> {
- Sentences::new(self.as_bytes())
- }
-
- /// Returns an iterator over the sentences in this byte string along with
- /// their starting and ending byte index positions.
- ///
- /// Typically, a sentence will include its trailing punctuation and
- /// whitespace. Concatenating all elements yielded by the iterator
- /// results in the original string (modulo Unicode replacement codepoint
- /// substitutions if invalid UTF-8 is encountered).
- ///
- /// Since sentences are made up of one or more codepoints, this iterator
- /// yields `&str` elements. When invalid UTF-8 is encountered, replacement
- /// codepoints are [substituted](index.html#handling-of-invalid-utf-8).
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let bs = b"I want this. Not that. Right now.";
- /// let sentences: Vec<(usize, usize, &str)> =
- /// bs.sentence_indices().collect();
- /// assert_eq!(sentences, vec![
- /// (0, 13, "I want this. "),
- /// (13, 23, "Not that. "),
- /// (23, 33, "Right now."),
- /// ]);
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn sentence_indices(&self) -> SentenceIndices<'_> {
- SentenceIndices::new(self.as_bytes())
- }
-
- /// An iterator over all lines in a byte string, without their
- /// terminators.
- ///
- /// For this iterator, the only line terminators recognized are `\r\n` and
- /// `\n`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"\
- /// foo
- ///
- /// bar\r
- /// baz
- ///
- ///
- /// quux";
- /// let lines: Vec<&[u8]> = s.lines().collect();
- /// assert_eq!(lines, vec![
- /// B("foo"), B(""), B("bar"), B("baz"), B(""), B(""), B("quux"),
- /// ]);
- /// ```
- #[inline]
- fn lines(&self) -> Lines<'_> {
- Lines::new(self.as_bytes())
- }
-
- /// An iterator over all lines in a byte string, including their
- /// terminators.
- ///
- /// For this iterator, the only line terminator recognized is `\n`. (Since
- /// line terminators are included, this also handles `\r\n` line endings.)
- ///
- /// Line terminators are only included if they are present in the original
- /// byte string. For example, the last line in a byte string may not end
- /// with a line terminator.
- ///
- /// Concatenating all elements yielded by this iterator is guaranteed to
- /// yield the original byte string.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"\
- /// foo
- ///
- /// bar\r
- /// baz
- ///
- ///
- /// quux";
- /// let lines: Vec<&[u8]> = s.lines_with_terminator().collect();
- /// assert_eq!(lines, vec![
- /// B("foo\n"),
- /// B("\n"),
- /// B("bar\r\n"),
- /// B("baz\n"),
- /// B("\n"),
- /// B("\n"),
- /// B("quux"),
- /// ]);
- /// ```
- #[inline]
- fn lines_with_terminator(&self) -> LinesWithTerminator<'_> {
- LinesWithTerminator::new(self.as_bytes())
- }
-
- /// Return a byte string slice with leading and trailing whitespace
- /// removed.
- ///
- /// Whitespace is defined according to the terms of the `White_Space`
- /// Unicode property.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(" foo\tbar\t\u{2003}\n");
- /// assert_eq!(s.trim(), B("foo\tbar"));
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn trim(&self) -> &[u8] {
- self.trim_start().trim_end()
- }
-
- /// Return a byte string slice with leading whitespace removed.
- ///
- /// Whitespace is defined according to the terms of the `White_Space`
- /// Unicode property.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(" foo\tbar\t\u{2003}\n");
- /// assert_eq!(s.trim_start(), B("foo\tbar\t\u{2003}\n"));
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn trim_start(&self) -> &[u8] {
- let start = whitespace_len_fwd(self.as_bytes());
- &self.as_bytes()[start..]
- }
-
- /// Return a byte string slice with trailing whitespace removed.
- ///
- /// Whitespace is defined according to the terms of the `White_Space`
- /// Unicode property.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(" foo\tbar\t\u{2003}\n");
- /// assert_eq!(s.trim_end(), B(" foo\tbar"));
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn trim_end(&self) -> &[u8] {
- let end = whitespace_len_rev(self.as_bytes());
- &self.as_bytes()[..end]
- }
-
- /// Return a byte string slice with leading and trailing characters
- /// satisfying the given predicate removed.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"123foo5bar789";
- /// assert_eq!(s.trim_with(|c| c.is_numeric()), B("foo5bar"));
- /// ```
- #[inline]
- fn trim_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] {
- self.trim_start_with(&mut trim).trim_end_with(&mut trim)
- }
-
- /// Return a byte string slice with leading characters satisfying the given
- /// predicate removed.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"123foo5bar789";
- /// assert_eq!(s.trim_start_with(|c| c.is_numeric()), B("foo5bar789"));
- /// ```
- #[inline]
- fn trim_start_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] {
- for (s, _, ch) in self.char_indices() {
- if !trim(ch) {
- return &self.as_bytes()[s..];
- }
- }
- b""
- }
-
- /// Return a byte string slice with trailing characters satisfying the
- /// given predicate removed.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = b"123foo5bar789";
- /// assert_eq!(s.trim_end_with(|c| c.is_numeric()), B("123foo5bar"));
- /// ```
- #[inline]
- fn trim_end_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] {
- for (_, e, ch) in self.char_indices().rev() {
- if !trim(ch) {
- return &self.as_bytes()[..e];
- }
- }
- b""
- }
-
- /// Returns a new `Vec<u8>` containing the lowercase equivalent of this
- /// byte string.
- ///
- /// In this case, lowercase is defined according to the `Lowercase` Unicode
- /// property.
- ///
- /// If invalid UTF-8 is seen, or if a character has no lowercase variant,
- /// then it is written to the given buffer unchanged.
- ///
- /// Note that some characters in this byte string may expand into multiple
- /// characters when changing the case, so the number of bytes written to
- /// the given byte string may not be equivalent to the number of bytes in
- /// this byte string.
- ///
- /// If you'd like to reuse an allocation for performance reasons, then use
- /// [`to_lowercase_into`](#method.to_lowercase_into) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("HELLO Β");
- /// assert_eq!("hello β".as_bytes(), s.to_lowercase().as_bytes());
- /// ```
- ///
- /// Scripts without case are not changed:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("农历新年");
- /// assert_eq!("农历新年".as_bytes(), s.to_lowercase().as_bytes());
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ");
- /// assert_eq!(B(b"foo\xFFbar\xE2\x98baz"), s.to_lowercase().as_bytes());
- /// ```
- #[cfg(all(feature = "std", feature = "unicode"))]
- #[inline]
- fn to_lowercase(&self) -> Vec<u8> {
- let mut buf = vec![];
- self.to_lowercase_into(&mut buf);
- buf
- }
-
- /// Writes the lowercase equivalent of this byte string into the given
- /// buffer. The buffer is not cleared before written to.
- ///
- /// In this case, lowercase is defined according to the `Lowercase`
- /// Unicode property.
- ///
- /// If invalid UTF-8 is seen, or if a character has no lowercase variant,
- /// then it is written to the given buffer unchanged.
- ///
- /// Note that some characters in this byte string may expand into multiple
- /// characters when changing the case, so the number of bytes written to
- /// the given byte string may not be equivalent to the number of bytes in
- /// this byte string.
- ///
- /// If you don't need to amortize allocation and instead prefer
- /// convenience, then use [`to_lowercase`](#method.to_lowercase) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("HELLO Β");
- ///
- /// let mut buf = vec![];
- /// s.to_lowercase_into(&mut buf);
- /// assert_eq!("hello β".as_bytes(), buf.as_bytes());
- /// ```
- ///
- /// Scripts without case are not changed:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("农历新年");
- ///
- /// let mut buf = vec![];
- /// s.to_lowercase_into(&mut buf);
- /// assert_eq!("农历新年".as_bytes(), buf.as_bytes());
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ");
- ///
- /// let mut buf = vec![];
- /// s.to_lowercase_into(&mut buf);
- /// assert_eq!(B(b"foo\xFFbar\xE2\x98baz"), buf.as_bytes());
- /// ```
- #[cfg(all(feature = "std", feature = "unicode"))]
- #[inline]
- fn to_lowercase_into(&self, buf: &mut Vec<u8>) {
- // TODO: This is the best we can do given what std exposes I think.
- // If we roll our own case handling, then we might be able to do this
- // a bit faster. We shouldn't roll our own case handling unless we
- // need to, e.g., for doing caseless matching or case folding.
-
- // TODO(BUG): This doesn't handle any special casing rules.
-
- buf.reserve(self.as_bytes().len());
- for (s, e, ch) in self.char_indices() {
- if ch == '\u{FFFD}' {
- buf.push_str(&self.as_bytes()[s..e]);
- } else if ch.is_ascii() {
- buf.push_char(ch.to_ascii_lowercase());
- } else {
- for upper in ch.to_lowercase() {
- buf.push_char(upper);
- }
- }
- }
- }
-
- /// Returns a new `Vec<u8>` containing the ASCII lowercase equivalent of
- /// this byte string.
- ///
- /// In this case, lowercase is only defined in ASCII letters. Namely, the
- /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged.
- /// In particular, the length of the byte string returned is always
- /// equivalent to the length of this byte string.
- ///
- /// If you'd like to reuse an allocation for performance reasons, then use
- /// [`make_ascii_lowercase`](#method.make_ascii_lowercase) to perform
- /// the conversion in place.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("HELLO Β");
- /// assert_eq!("hello Β".as_bytes(), s.to_ascii_lowercase().as_bytes());
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ");
- /// assert_eq!(s.to_ascii_lowercase(), B(b"foo\xFFbar\xE2\x98baz"));
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_ascii_lowercase(&self) -> Vec<u8> {
- self.as_bytes().to_ascii_lowercase()
- }
-
- /// Convert this byte string to its lowercase ASCII equivalent in place.
- ///
- /// In this case, lowercase is only defined in ASCII letters. Namely, the
- /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged.
- ///
- /// If you don't need to do the conversion in
- /// place and instead prefer convenience, then use
- /// [`to_ascii_lowercase`](#method.to_ascii_lowercase) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("HELLO Β");
- /// s.make_ascii_lowercase();
- /// assert_eq!(s, "hello Β".as_bytes());
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice, ByteVec};
- ///
- /// let mut s = <Vec<u8>>::from_slice(b"FOO\xFFBAR\xE2\x98BAZ");
- /// s.make_ascii_lowercase();
- /// assert_eq!(s, B(b"foo\xFFbar\xE2\x98baz"));
- /// ```
- #[inline]
- fn make_ascii_lowercase(&mut self) {
- self.as_bytes_mut().make_ascii_lowercase();
- }
-
- /// Returns a new `Vec<u8>` containing the uppercase equivalent of this
- /// byte string.
- ///
- /// In this case, uppercase is defined according to the `Uppercase`
- /// Unicode property.
- ///
- /// If invalid UTF-8 is seen, or if a character has no uppercase variant,
- /// then it is written to the given buffer unchanged.
- ///
- /// Note that some characters in this byte string may expand into multiple
- /// characters when changing the case, so the number of bytes written to
- /// the given byte string may not be equivalent to the number of bytes in
- /// this byte string.
- ///
- /// If you'd like to reuse an allocation for performance reasons, then use
- /// [`to_uppercase_into`](#method.to_uppercase_into) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("hello β");
- /// assert_eq!(s.to_uppercase(), B("HELLO Β"));
- /// ```
- ///
- /// Scripts without case are not changed:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("农历新年");
- /// assert_eq!(s.to_uppercase(), B("农历新年"));
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"foo\xFFbar\xE2\x98baz");
- /// assert_eq!(s.to_uppercase(), B(b"FOO\xFFBAR\xE2\x98BAZ"));
- /// ```
- #[cfg(all(feature = "std", feature = "unicode"))]
- #[inline]
- fn to_uppercase(&self) -> Vec<u8> {
- let mut buf = vec![];
- self.to_uppercase_into(&mut buf);
- buf
- }
-
- /// Writes the uppercase equivalent of this byte string into the given
- /// buffer. The buffer is not cleared before written to.
- ///
- /// In this case, uppercase is defined according to the `Uppercase`
- /// Unicode property.
- ///
- /// If invalid UTF-8 is seen, or if a character has no uppercase variant,
- /// then it is written to the given buffer unchanged.
- ///
- /// Note that some characters in this byte string may expand into multiple
- /// characters when changing the case, so the number of bytes written to
- /// the given byte string may not be equivalent to the number of bytes in
- /// this byte string.
- ///
- /// If you don't need to amortize allocation and instead prefer
- /// convenience, then use [`to_uppercase`](#method.to_uppercase) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("hello β");
- ///
- /// let mut buf = vec![];
- /// s.to_uppercase_into(&mut buf);
- /// assert_eq!(buf, B("HELLO Β"));
- /// ```
- ///
- /// Scripts without case are not changed:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("农历新年");
- ///
- /// let mut buf = vec![];
- /// s.to_uppercase_into(&mut buf);
- /// assert_eq!(buf, B("农历新年"));
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"foo\xFFbar\xE2\x98baz");
- ///
- /// let mut buf = vec![];
- /// s.to_uppercase_into(&mut buf);
- /// assert_eq!(buf, B(b"FOO\xFFBAR\xE2\x98BAZ"));
- /// ```
- #[cfg(all(feature = "std", feature = "unicode"))]
- #[inline]
- fn to_uppercase_into(&self, buf: &mut Vec<u8>) {
- // TODO: This is the best we can do given what std exposes I think.
- // If we roll our own case handling, then we might be able to do this
- // a bit faster. We shouldn't roll our own case handling unless we
- // need to, e.g., for doing caseless matching or case folding.
- buf.reserve(self.as_bytes().len());
- for (s, e, ch) in self.char_indices() {
- if ch == '\u{FFFD}' {
- buf.push_str(&self.as_bytes()[s..e]);
- } else if ch.is_ascii() {
- buf.push_char(ch.to_ascii_uppercase());
- } else {
- for upper in ch.to_uppercase() {
- buf.push_char(upper);
- }
- }
- }
- }
-
- /// Returns a new `Vec<u8>` containing the ASCII uppercase equivalent of
- /// this byte string.
- ///
- /// In this case, uppercase is only defined in ASCII letters. Namely, the
- /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged.
- /// In particular, the length of the byte string returned is always
- /// equivalent to the length of this byte string.
- ///
- /// If you'd like to reuse an allocation for performance reasons, then use
- /// [`make_ascii_uppercase`](#method.make_ascii_uppercase) to perform
- /// the conversion in place.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B("hello β");
- /// assert_eq!(s.to_ascii_uppercase(), B("HELLO β"));
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let s = B(b"foo\xFFbar\xE2\x98baz");
- /// assert_eq!(s.to_ascii_uppercase(), B(b"FOO\xFFBAR\xE2\x98BAZ"));
- /// ```
- #[cfg(feature = "std")]
- #[inline]
- fn to_ascii_uppercase(&self) -> Vec<u8> {
- self.as_bytes().to_ascii_uppercase()
- }
-
- /// Convert this byte string to its uppercase ASCII equivalent in place.
- ///
- /// In this case, uppercase is only defined in ASCII letters. Namely, the
- /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged.
- ///
- /// If you don't need to do the conversion in
- /// place and instead prefer convenience, then use
- /// [`to_ascii_uppercase`](#method.to_ascii_uppercase) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let mut s = <Vec<u8>>::from("hello β");
- /// s.make_ascii_uppercase();
- /// assert_eq!(s, B("HELLO β"));
- /// ```
- ///
- /// Invalid UTF-8 remains as is:
- ///
- /// ```
- /// use bstr::{B, ByteSlice, ByteVec};
- ///
- /// let mut s = <Vec<u8>>::from_slice(b"foo\xFFbar\xE2\x98baz");
- /// s.make_ascii_uppercase();
- /// assert_eq!(s, B(b"FOO\xFFBAR\xE2\x98BAZ"));
- /// ```
- #[inline]
- fn make_ascii_uppercase(&mut self) {
- self.as_bytes_mut().make_ascii_uppercase();
- }
-
- /// Reverse the bytes in this string, in place.
- ///
- /// This is not necessarily a well formed operation! For example, if this
- /// byte string contains valid UTF-8 that isn't ASCII, then reversing the
- /// string will likely result in invalid UTF-8 and otherwise non-sensical
- /// content.
- ///
- /// Note that this is equivalent to the generic `[u8]::reverse` method.
- /// This method is provided to permit callers to explicitly differentiate
- /// between reversing bytes, codepoints and graphemes.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("hello");
- /// s.reverse_bytes();
- /// assert_eq!(s, "olleh".as_bytes());
- /// ```
- #[inline]
- fn reverse_bytes(&mut self) {
- self.as_bytes_mut().reverse();
- }
-
- /// Reverse the codepoints in this string, in place.
- ///
- /// If this byte string is valid UTF-8, then its reversal by codepoint
- /// is also guaranteed to be valid UTF-8.
- ///
- /// This operation is equivalent to the following, but without allocating:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("foo☃bar");
- ///
- /// let mut chars: Vec<char> = s.chars().collect();
- /// chars.reverse();
- ///
- /// let reversed: String = chars.into_iter().collect();
- /// assert_eq!(reversed, "rab☃oof");
- /// ```
- ///
- /// Note that this is not necessarily a well formed operation. For example,
- /// if this byte string contains grapheme clusters with more than one
- /// codepoint, then those grapheme clusters will not necessarily be
- /// preserved. If you'd like to preserve grapheme clusters, then use
- /// [`reverse_graphemes`](#method.reverse_graphemes) instead.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("foo☃bar");
- /// s.reverse_chars();
- /// assert_eq!(s, "rab☃oof".as_bytes());
- /// ```
- ///
- /// This example shows that not all reversals lead to a well formed string.
- /// For example, in this case, combining marks are used to put accents over
- /// some letters, and those accent marks must appear after the codepoints
- /// they modify.
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let mut s = <Vec<u8>>::from("résumé");
- /// s.reverse_chars();
- /// assert_eq!(s, B(b"\xCC\x81emus\xCC\x81er"));
- /// ```
- ///
- /// A word of warning: the above example relies on the fact that
- /// `résumé` is in decomposed normal form, which means there are separate
- /// codepoints for the accents above `e`. If it is instead in composed
- /// normal form, then the example works:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let mut s = <Vec<u8>>::from("résumé");
- /// s.reverse_chars();
- /// assert_eq!(s, B("émusér"));
- /// ```
- ///
- /// The point here is to be cautious and not assume that just because
- /// `reverse_chars` works in one case, that it therefore works in all
- /// cases.
- #[inline]
- fn reverse_chars(&mut self) {
- let mut i = 0;
- loop {
- let (_, size) = utf8::decode(&self.as_bytes()[i..]);
- if size == 0 {
- break;
- }
- if size > 1 {
- self.as_bytes_mut()[i..i + size].reverse_bytes();
- }
- i += size;
- }
- self.reverse_bytes();
- }
-
- /// Reverse the graphemes in this string, in place.
- ///
- /// If this byte string is valid UTF-8, then its reversal by grapheme
- /// is also guaranteed to be valid UTF-8.
- ///
- /// This operation is equivalent to the following, but without allocating:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("foo☃bar");
- ///
- /// let mut graphemes: Vec<&str> = s.graphemes().collect();
- /// graphemes.reverse();
- ///
- /// let reversed = graphemes.concat();
- /// assert_eq!(reversed, "rab☃oof");
- /// ```
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("foo☃bar");
- /// s.reverse_graphemes();
- /// assert_eq!(s, "rab☃oof".as_bytes());
- /// ```
- ///
- /// This example shows how this correctly handles grapheme clusters,
- /// unlike `reverse_chars`.
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// let mut s = <Vec<u8>>::from("résumé");
- /// s.reverse_graphemes();
- /// assert_eq!(s, "émusér".as_bytes());
- /// ```
- #[cfg(feature = "unicode")]
- #[inline]
- fn reverse_graphemes(&mut self) {
- use crate::unicode::decode_grapheme;
-
- let mut i = 0;
- loop {
- let (_, size) = decode_grapheme(&self.as_bytes()[i..]);
- if size == 0 {
- break;
- }
- if size > 1 {
- self.as_bytes_mut()[i..i + size].reverse_bytes();
- }
- i += size;
- }
- self.reverse_bytes();
- }
-
- /// Returns true if and only if every byte in this byte string is ASCII.
- ///
- /// ASCII is an encoding that defines 128 codepoints. A byte corresponds to
- /// an ASCII codepoint if and only if it is in the inclusive range
- /// `[0, 127]`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert!(B("abc").is_ascii());
- /// assert!(!B("☃βツ").is_ascii());
- /// assert!(!B(b"\xFF").is_ascii());
- /// ```
- #[inline]
- fn is_ascii(&self) -> bool {
- ascii::first_non_ascii_byte(self.as_bytes()) == self.as_bytes().len()
- }
-
- /// Returns true if and only if the entire byte string is valid UTF-8.
- ///
- /// If you need location information about where a byte string's first
- /// invalid UTF-8 byte is, then use the [`to_str`](#method.to_str) method.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// assert!(B("abc").is_utf8());
- /// assert!(B("☃βツ").is_utf8());
- /// // invalid bytes
- /// assert!(!B(b"abc\xFF").is_utf8());
- /// // surrogate encoding
- /// assert!(!B(b"\xED\xA0\x80").is_utf8());
- /// // incomplete sequence
- /// assert!(!B(b"\xF0\x9D\x9Ca").is_utf8());
- /// // overlong sequence
- /// assert!(!B(b"\xF0\x82\x82\xAC").is_utf8());
- /// ```
- #[inline]
- fn is_utf8(&self) -> bool {
- utf8::validate(self.as_bytes()).is_ok()
- }
-
- /// Returns the last byte in this byte string, if it's non-empty. If this
- /// byte string is empty, this returns `None`.
- ///
- /// Note that this is like the generic `[u8]::last`, except this returns
- /// the byte by value instead of a reference to the byte.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::ByteSlice;
- ///
- /// assert_eq!(Some(b'z'), b"baz".last_byte());
- /// assert_eq!(None, b"".last_byte());
- /// ```
- #[inline]
- fn last_byte(&self) -> Option<u8> {
- let bytes = self.as_bytes();
- bytes.get(bytes.len().saturating_sub(1)).map(|&b| b)
- }
-
- /// Returns the index of the first non-ASCII byte in this byte string (if
- /// any such indices exist). Specifically, it returns the index of the
- /// first byte with a value greater than or equal to `0x80`.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::{ByteSlice, B};
- ///
- /// assert_eq!(Some(3), b"abc\xff".find_non_ascii_byte());
- /// assert_eq!(None, b"abcde".find_non_ascii_byte());
- /// assert_eq!(Some(0), B("😀").find_non_ascii_byte());
- /// ```
- #[inline]
- fn find_non_ascii_byte(&self) -> Option<usize> {
- let index = ascii::first_non_ascii_byte(self.as_bytes());
- if index == self.as_bytes().len() {
- None
- } else {
- Some(index)
- }
- }
-
- /// Copies elements from one part of the slice to another part of itself,
- /// where the parts may be overlapping.
- ///
- /// `src` is the range within this byte string to copy from, while `dest`
- /// is the starting index of the range within this byte string to copy to.
- /// The length indicated by `src` must be less than or equal to the number
- /// of bytes from `dest` to the end of the byte string.
- ///
- /// # Panics
- ///
- /// Panics if either range is out of bounds, or if `src` is too big to fit
- /// into `dest`, or if the end of `src` is before the start.
- ///
- /// # Examples
- ///
- /// Copying four bytes within a byte string:
- ///
- /// ```
- /// use bstr::{B, ByteSlice};
- ///
- /// let mut buf = *b"Hello, World!";
- /// let s = &mut buf;
- /// s.copy_within_str(1..5, 8);
- /// assert_eq!(s, B("Hello, Wello!"));
- /// ```
- #[inline]
- fn copy_within_str<R>(&mut self, src: R, dest: usize)
- where
- R: ops::RangeBounds<usize>,
- {
- // TODO: Deprecate this once slice::copy_within stabilizes.
- let src_start = match src.start_bound() {
- ops::Bound::Included(&n) => n,
- ops::Bound::Excluded(&n) => {
- n.checked_add(1).expect("attempted to index slice beyond max")
- }
- ops::Bound::Unbounded => 0,
- };
- let src_end = match src.end_bound() {
- ops::Bound::Included(&n) => {
- n.checked_add(1).expect("attempted to index slice beyond max")
- }
- ops::Bound::Excluded(&n) => n,
- ops::Bound::Unbounded => self.as_bytes().len(),
- };
- assert!(src_start <= src_end, "src end is before src start");
- assert!(src_end <= self.as_bytes().len(), "src is out of bounds");
- let count = src_end - src_start;
- assert!(
- dest <= self.as_bytes().len() - count,
- "dest is out of bounds",
- );
-
- // SAFETY: This is safe because we use ptr::copy to handle overlapping
- // copies, and is also safe because we've checked all the bounds above.
- // Finally, we are only dealing with u8 data, which is Copy, which
- // means we can copy without worrying about ownership/destructors.
- unsafe {
- ptr::copy(
- self.as_bytes().get_unchecked(src_start),
- self.as_bytes_mut().get_unchecked_mut(dest),
- count,
- );
- }
- }
-}
-
-/// A single substring searcher fixed to a particular needle.
-///
-/// The purpose of this type is to permit callers to construct a substring
-/// searcher that can be used to search haystacks without the overhead of
-/// constructing the searcher in the first place. This is a somewhat niche
-/// concern when it's necessary to re-use the same needle to search multiple
-/// different haystacks with as little overhead as possible. In general, using
-/// [`ByteSlice::find`](trait.ByteSlice.html#method.find)
-/// or
-/// [`ByteSlice::find_iter`](trait.ByteSlice.html#method.find_iter)
-/// is good enough, but `Finder` is useful when you can meaningfully observe
-/// searcher construction time in a profile.
-///
-/// When the `std` feature is enabled, then this type has an `into_owned`
-/// version which permits building a `Finder` that is not connected to the
-/// lifetime of its needle.
-#[derive(Clone, Debug)]
-pub struct Finder<'a>(memmem::Finder<'a>);
-
-impl<'a> Finder<'a> {
- /// Create a new finder for the given needle.
- #[inline]
- pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> Finder<'a> {
- Finder(memmem::Finder::new(needle.as_ref()))
- }
-
- /// Convert this finder into its owned variant, such that it no longer
- /// borrows the needle.
- ///
- /// If this is already an owned finder, then this is a no-op. Otherwise,
- /// this copies the needle.
- ///
- /// This is only available when the `std` feature is enabled.
- #[cfg(feature = "std")]
- #[inline]
- pub fn into_owned(self) -> Finder<'static> {
- Finder(self.0.into_owned())
- }
-
- /// Returns the needle that this finder searches for.
- ///
- /// Note that the lifetime of the needle returned is tied to the lifetime
- /// of the finder, and may be shorter than the `'a` lifetime. Namely, a
- /// finder's needle can be either borrowed or owned, so the lifetime of the
- /// needle returned must necessarily be the shorter of the two.
- #[inline]
- pub fn needle(&self) -> &[u8] {
- self.0.needle()
- }
-
- /// Returns the index of the first occurrence of this needle in the given
- /// haystack.
- ///
- /// The haystack may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::Finder;
- ///
- /// let haystack = "foo bar baz";
- /// assert_eq!(Some(0), Finder::new("foo").find(haystack));
- /// assert_eq!(Some(4), Finder::new("bar").find(haystack));
- /// assert_eq!(None, Finder::new("quux").find(haystack));
- /// ```
- #[inline]
- pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
- self.0.find(haystack.as_ref())
- }
-}
-
-/// A single substring reverse searcher fixed to a particular needle.
-///
-/// The purpose of this type is to permit callers to construct a substring
-/// searcher that can be used to search haystacks without the overhead of
-/// constructing the searcher in the first place. This is a somewhat niche
-/// concern when it's necessary to re-use the same needle to search multiple
-/// different haystacks with as little overhead as possible. In general, using
-/// [`ByteSlice::rfind`](trait.ByteSlice.html#method.rfind)
-/// or
-/// [`ByteSlice::rfind_iter`](trait.ByteSlice.html#method.rfind_iter)
-/// is good enough, but `FinderReverse` is useful when you can meaningfully
-/// observe searcher construction time in a profile.
-///
-/// When the `std` feature is enabled, then this type has an `into_owned`
-/// version which permits building a `FinderReverse` that is not connected to
-/// the lifetime of its needle.
-#[derive(Clone, Debug)]
-pub struct FinderReverse<'a>(memmem::FinderRev<'a>);
-
-impl<'a> FinderReverse<'a> {
- /// Create a new reverse finder for the given needle.
- #[inline]
- pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> FinderReverse<'a> {
- FinderReverse(memmem::FinderRev::new(needle.as_ref()))
- }
-
- /// Convert this finder into its owned variant, such that it no longer
- /// borrows the needle.
- ///
- /// If this is already an owned finder, then this is a no-op. Otherwise,
- /// this copies the needle.
- ///
- /// This is only available when the `std` feature is enabled.
- #[cfg(feature = "std")]
- #[inline]
- pub fn into_owned(self) -> FinderReverse<'static> {
- FinderReverse(self.0.into_owned())
- }
-
- /// Returns the needle that this finder searches for.
- ///
- /// Note that the lifetime of the needle returned is tied to the lifetime
- /// of this finder, and may be shorter than the `'a` lifetime. Namely,
- /// a finder's needle can be either borrowed or owned, so the lifetime of
- /// the needle returned must necessarily be the shorter of the two.
- #[inline]
- pub fn needle(&self) -> &[u8] {
- self.0.needle()
- }
-
- /// Returns the index of the last occurrence of this needle in the given
- /// haystack.
- ///
- /// The haystack may be any type that can be cheaply converted into a
- /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
- ///
- /// # Complexity
- ///
- /// This routine is guaranteed to have worst case linear time complexity
- /// with respect to both the needle and the haystack. That is, this runs
- /// in `O(needle.len() + haystack.len())` time.
- ///
- /// This routine is also guaranteed to have worst case constant space
- /// complexity.
- ///
- /// # Examples
- ///
- /// Basic usage:
- ///
- /// ```
- /// use bstr::FinderReverse;
- ///
- /// let haystack = "foo bar baz";
- /// assert_eq!(Some(0), FinderReverse::new("foo").rfind(haystack));
- /// assert_eq!(Some(4), FinderReverse::new("bar").rfind(haystack));
- /// assert_eq!(None, FinderReverse::new("quux").rfind(haystack));
- /// ```
- #[inline]
- pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
- self.0.rfind(haystack.as_ref())
- }
-}
-
-/// An iterator over non-overlapping substring matches.
-///
-/// Matches are reported by the byte offset at which they begin.
-///
-/// `'a` is the shorter of two lifetimes: the byte string being searched or the
-/// byte string being looked for.
-#[derive(Debug)]
-pub struct Find<'a> {
- it: memmem::FindIter<'a, 'a>,
- haystack: &'a [u8],
- needle: &'a [u8],
-}
-
-impl<'a> Find<'a> {
- fn new(haystack: &'a [u8], needle: &'a [u8]) -> Find<'a> {
- Find { it: memmem::find_iter(haystack, needle), haystack, needle }
- }
-}
-
-impl<'a> Iterator for Find<'a> {
- type Item = usize;
-
- #[inline]
- fn next(&mut self) -> Option<usize> {
- self.it.next()
- }
-}
-
-/// An iterator over non-overlapping substring matches in reverse.
-///
-/// Matches are reported by the byte offset at which they begin.
-///
-/// `'a` is the shorter of two lifetimes: the byte string being searched or the
-/// byte string being looked for.
-#[derive(Debug)]
-pub struct FindReverse<'a> {
- it: memmem::FindRevIter<'a, 'a>,
- haystack: &'a [u8],
- needle: &'a [u8],
-}
-
-impl<'a> FindReverse<'a> {
- fn new(haystack: &'a [u8], needle: &'a [u8]) -> FindReverse<'a> {
- FindReverse {
- it: memmem::rfind_iter(haystack, needle),
- haystack,
- needle,
- }
- }
-
- fn haystack(&self) -> &'a [u8] {
- self.haystack
- }
-
- fn needle(&self) -> &[u8] {
- self.needle
- }
-}
-
-impl<'a> Iterator for FindReverse<'a> {
- type Item = usize;
-
- #[inline]
- fn next(&mut self) -> Option<usize> {
- self.it.next()
- }
-}
-
-/// An iterator over the bytes in a byte string.
-///
-/// `'a` is the lifetime of the byte string being traversed.
-#[derive(Clone, Debug)]
-pub struct Bytes<'a> {
- it: slice::Iter<'a, u8>,
-}
-
-impl<'a> Bytes<'a> {
- /// Views the remaining underlying data as a subslice of the original data.
- /// This has the same lifetime as the original slice,
- /// and so the iterator can continue to be used while this exists.
- #[inline]
- pub fn as_slice(&self) -> &'a [u8] {
- self.it.as_slice()
- }
-}
-
-impl<'a> Iterator for Bytes<'a> {
- type Item = u8;
-
- #[inline]
- fn next(&mut self) -> Option<u8> {
- self.it.next().map(|&b| b)
- }
-
- #[inline]
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.it.size_hint()
- }
-}
-
-impl<'a> DoubleEndedIterator for Bytes<'a> {
- #[inline]
- fn next_back(&mut self) -> Option<u8> {
- self.it.next_back().map(|&b| b)
- }
-}
-
-impl<'a> ExactSizeIterator for Bytes<'a> {
- #[inline]
- fn len(&self) -> usize {
- self.it.len()
- }
-}
-
-impl<'a> iter::FusedIterator for Bytes<'a> {}
-
-/// An iterator over the fields in a byte string, separated by whitespace.
-///
-/// This iterator splits on contiguous runs of whitespace, such that the fields
-/// in `foo\t\t\n \nbar` are `foo` and `bar`.
-///
-/// `'a` is the lifetime of the byte string being split.
-#[derive(Debug)]
-pub struct Fields<'a> {
- it: FieldsWith<'a, fn(char) -> bool>,
-}
-
-impl<'a> Fields<'a> {
- fn new(bytes: &'a [u8]) -> Fields<'a> {
- Fields { it: bytes.fields_with(|ch| ch.is_whitespace()) }
- }
-}
-
-impl<'a> Iterator for Fields<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- self.it.next()
- }
-}
-
-/// An iterator over fields in the byte string, separated by a predicate over
-/// codepoints.
-///
-/// This iterator splits a byte string based on its predicate function such
-/// that the elements returned are separated by contiguous runs of codepoints
-/// for which the predicate returns true.
-///
-/// `'a` is the lifetime of the byte string being split, while `F` is the type
-/// of the predicate, i.e., `FnMut(char) -> bool`.
-#[derive(Debug)]
-pub struct FieldsWith<'a, F> {
- f: F,
- bytes: &'a [u8],
- chars: CharIndices<'a>,
-}
-
-impl<'a, F: FnMut(char) -> bool> FieldsWith<'a, F> {
- fn new(bytes: &'a [u8], f: F) -> FieldsWith<'a, F> {
- FieldsWith { f, bytes, chars: bytes.char_indices() }
- }
-}
-
-impl<'a, F: FnMut(char) -> bool> Iterator for FieldsWith<'a, F> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- let (start, mut end);
- loop {
- match self.chars.next() {
- None => return None,
- Some((s, e, ch)) => {
- if !(self.f)(ch) {
- start = s;
- end = e;
- break;
- }
- }
- }
- }
- while let Some((_, e, ch)) = self.chars.next() {
- if (self.f)(ch) {
- break;
- }
- end = e;
- }
- Some(&self.bytes[start..end])
- }
-}
-
-/// An iterator over substrings in a byte string, split by a separator.
-///
-/// `'a` is the lifetime of the byte string being split.
-#[derive(Debug)]
-pub struct Split<'a> {
- finder: Find<'a>,
- /// The end position of the previous match of our splitter. The element
- /// we yield corresponds to the substring starting at `last` up to the
- /// beginning of the next match of the splitter.
- last: usize,
- /// Only set when iteration is complete. A corner case here is when a
- /// splitter is matched at the end of the haystack. At that point, we still
- /// need to yield an empty string following it.
- done: bool,
-}
-
-impl<'a> Split<'a> {
- fn new(haystack: &'a [u8], splitter: &'a [u8]) -> Split<'a> {
- let finder = haystack.find_iter(splitter);
- Split { finder, last: 0, done: false }
- }
-}
-
-impl<'a> Iterator for Split<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- let haystack = self.finder.haystack;
- match self.finder.next() {
- Some(start) => {
- let next = &haystack[self.last..start];
- self.last = start + self.finder.needle.len();
- Some(next)
- }
- None => {
- if self.last >= haystack.len() {
- if !self.done {
- self.done = true;
- Some(b"")
- } else {
- None
- }
- } else {
- let s = &haystack[self.last..];
- self.last = haystack.len();
- self.done = true;
- Some(s)
- }
- }
- }
- }
-}
-
-/// An iterator over substrings in a byte string, split by a separator, in
-/// reverse.
-///
-/// `'a` is the lifetime of the byte string being split, while `F` is the type
-/// of the predicate, i.e., `FnMut(char) -> bool`.
-#[derive(Debug)]
-pub struct SplitReverse<'a> {
- finder: FindReverse<'a>,
- /// The end position of the previous match of our splitter. The element
- /// we yield corresponds to the substring starting at `last` up to the
- /// beginning of the next match of the splitter.
- last: usize,
- /// Only set when iteration is complete. A corner case here is when a
- /// splitter is matched at the end of the haystack. At that point, we still
- /// need to yield an empty string following it.
- done: bool,
-}
-
-impl<'a> SplitReverse<'a> {
- fn new(haystack: &'a [u8], splitter: &'a [u8]) -> SplitReverse<'a> {
- let finder = haystack.rfind_iter(splitter);
- SplitReverse { finder, last: haystack.len(), done: false }
- }
-}
-
-impl<'a> Iterator for SplitReverse<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- let haystack = self.finder.haystack();
- match self.finder.next() {
- Some(start) => {
- let nlen = self.finder.needle().len();
- let next = &haystack[start + nlen..self.last];
- self.last = start;
- Some(next)
- }
- None => {
- if self.last == 0 {
- if !self.done {
- self.done = true;
- Some(b"")
- } else {
- None
- }
- } else {
- let s = &haystack[..self.last];
- self.last = 0;
- self.done = true;
- Some(s)
- }
- }
- }
- }
-}
-
-/// An iterator over at most `n` substrings in a byte string, split by a
-/// separator.
-///
-/// `'a` is the lifetime of the byte string being split, while `F` is the type
-/// of the predicate, i.e., `FnMut(char) -> bool`.
-#[derive(Debug)]
-pub struct SplitN<'a> {
- split: Split<'a>,
- limit: usize,
- count: usize,
-}
-
-impl<'a> SplitN<'a> {
- fn new(
- haystack: &'a [u8],
- splitter: &'a [u8],
- limit: usize,
- ) -> SplitN<'a> {
- let split = haystack.split_str(splitter);
- SplitN { split, limit, count: 0 }
- }
-}
-
-impl<'a> Iterator for SplitN<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- self.count += 1;
- if self.count > self.limit || self.split.done {
- None
- } else if self.count == self.limit {
- Some(&self.split.finder.haystack[self.split.last..])
- } else {
- self.split.next()
- }
- }
-}
-
-/// An iterator over at most `n` substrings in a byte string, split by a
-/// separator, in reverse.
-///
-/// `'a` is the lifetime of the byte string being split, while `F` is the type
-/// of the predicate, i.e., `FnMut(char) -> bool`.
-#[derive(Debug)]
-pub struct SplitNReverse<'a> {
- split: SplitReverse<'a>,
- limit: usize,
- count: usize,
-}
-
-impl<'a> SplitNReverse<'a> {
- fn new(
- haystack: &'a [u8],
- splitter: &'a [u8],
- limit: usize,
- ) -> SplitNReverse<'a> {
- let split = haystack.rsplit_str(splitter);
- SplitNReverse { split, limit, count: 0 }
- }
-}
-
-impl<'a> Iterator for SplitNReverse<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- self.count += 1;
- if self.count > self.limit || self.split.done {
- None
- } else if self.count == self.limit {
- Some(&self.split.finder.haystack()[..self.split.last])
- } else {
- self.split.next()
- }
- }
-}
-
-/// An iterator over all lines in a byte string, without their terminators.
-///
-/// For this iterator, the only line terminators recognized are `\r\n` and
-/// `\n`.
-///
-/// `'a` is the lifetime of the byte string being iterated over.
-pub struct Lines<'a> {
- it: LinesWithTerminator<'a>,
-}
-
-impl<'a> Lines<'a> {
- fn new(bytes: &'a [u8]) -> Lines<'a> {
- Lines { it: LinesWithTerminator::new(bytes) }
- }
-}
-
-impl<'a> Iterator for Lines<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- let mut line = self.it.next()?;
- if line.last_byte() == Some(b'\n') {
- line = &line[..line.len() - 1];
- if line.last_byte() == Some(b'\r') {
- line = &line[..line.len() - 1];
- }
- }
- Some(line)
- }
-}
-
-/// An iterator over all lines in a byte string, including their terminators.
-///
-/// For this iterator, the only line terminator recognized is `\n`. (Since
-/// line terminators are included, this also handles `\r\n` line endings.)
-///
-/// Line terminators are only included if they are present in the original
-/// byte string. For example, the last line in a byte string may not end with
-/// a line terminator.
-///
-/// Concatenating all elements yielded by this iterator is guaranteed to yield
-/// the original byte string.
-///
-/// `'a` is the lifetime of the byte string being iterated over.
-pub struct LinesWithTerminator<'a> {
- bytes: &'a [u8],
-}
-
-impl<'a> LinesWithTerminator<'a> {
- fn new(bytes: &'a [u8]) -> LinesWithTerminator<'a> {
- LinesWithTerminator { bytes }
- }
-}
-
-impl<'a> Iterator for LinesWithTerminator<'a> {
- type Item = &'a [u8];
-
- #[inline]
- fn next(&mut self) -> Option<&'a [u8]> {
- match self.bytes.find_byte(b'\n') {
- None if self.bytes.is_empty() => None,
- None => {
- let line = self.bytes;
- self.bytes = b"";
- Some(line)
- }
- Some(end) => {
- let line = &self.bytes[..end + 1];
- self.bytes = &self.bytes[end + 1..];
- Some(line)
- }
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use crate::ext_slice::{ByteSlice, B};
- use crate::tests::LOSSY_TESTS;
-
- #[test]
- fn to_str_lossy() {
- for (i, &(expected, input)) in LOSSY_TESTS.iter().enumerate() {
- let got = B(input).to_str_lossy();
- assert_eq!(
- expected.as_bytes(),
- got.as_bytes(),
- "to_str_lossy(ith: {:?}, given: {:?})",
- i,
- input,
- );
-
- let mut got = String::new();
- B(input).to_str_lossy_into(&mut got);
- assert_eq!(
- expected.as_bytes(),
- got.as_bytes(),
- "to_str_lossy_into",
- );
-
- let got = String::from_utf8_lossy(input);
- assert_eq!(expected.as_bytes(), got.as_bytes(), "std");
- }
- }
-
- #[test]
- #[should_panic]
- fn copy_within_fail1() {
- let mut buf = *b"foobar";
- let s = &mut buf;
- s.copy_within_str(0..2, 5);
- }
-
- #[test]
- #[should_panic]
- fn copy_within_fail2() {
- let mut buf = *b"foobar";
- let s = &mut buf;
- s.copy_within_str(3..2, 0);
- }
-
- #[test]
- #[should_panic]
- fn copy_within_fail3() {
- let mut buf = *b"foobar";
- let s = &mut buf;
- s.copy_within_str(5..7, 0);
- }
-
- #[test]
- #[should_panic]
- fn copy_within_fail4() {
- let mut buf = *b"foobar";
- let s = &mut buf;
- s.copy_within_str(0..1, 6);
- }
-}