diff options
Diffstat (limited to 'vendor/byteorder/src/lib.rs')
-rw-r--r-- | vendor/byteorder/src/lib.rs | 4052 |
1 files changed, 4052 insertions, 0 deletions
diff --git a/vendor/byteorder/src/lib.rs b/vendor/byteorder/src/lib.rs new file mode 100644 index 000000000..cc37cca6a --- /dev/null +++ b/vendor/byteorder/src/lib.rs @@ -0,0 +1,4052 @@ +/*! +This crate provides convenience methods for encoding and decoding numbers in +either [big-endian or little-endian order]. + +The organization of the crate is pretty simple. A trait, [`ByteOrder`], specifies +byte conversion methods for each type of number in Rust (sans numbers that have +a platform dependent size like `usize` and `isize`). Two types, [`BigEndian`] +and [`LittleEndian`] implement these methods. Finally, [`ReadBytesExt`] and +[`WriteBytesExt`] provide convenience methods available to all types that +implement [`Read`] and [`Write`]. + +An alias, [`NetworkEndian`], for [`BigEndian`] is provided to help improve +code clarity. + +An additional alias, [`NativeEndian`], is provided for the endianness of the +local platform. This is convenient when serializing data for use and +conversions are not desired. + +# Examples + +Read unsigned 16 bit big-endian integers from a [`Read`] type: + +```rust +use std::io::Cursor; +use byteorder::{BigEndian, ReadBytesExt}; + +let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +// Note that we use type parameters to indicate which kind of byte order +// we want! +assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +``` + +Write unsigned 16 bit little-endian integers to a [`Write`] type: + +```rust +use byteorder::{LittleEndian, WriteBytesExt}; + +let mut wtr = vec![]; +wtr.write_u16::<LittleEndian>(517).unwrap(); +wtr.write_u16::<LittleEndian>(768).unwrap(); +assert_eq!(wtr, vec![5, 2, 0, 3]); +``` + +# Optional Features + +This crate optionally provides support for 128 bit values (`i128` and `u128`) +when built with the `i128` feature enabled. + +This crate can also be used without the standard library. + +# Alternatives + +Note that as of Rust 1.32, the standard numeric types provide built-in methods +like `to_le_bytes` and `from_le_bytes`, which support some of the same use +cases. + +[big-endian or little-endian order]: https://en.wikipedia.org/wiki/Endianness +[`ByteOrder`]: trait.ByteOrder.html +[`BigEndian`]: enum.BigEndian.html +[`LittleEndian`]: enum.LittleEndian.html +[`ReadBytesExt`]: trait.ReadBytesExt.html +[`WriteBytesExt`]: trait.WriteBytesExt.html +[`NetworkEndian`]: type.NetworkEndian.html +[`NativeEndian`]: type.NativeEndian.html +[`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html +[`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html +*/ + +#![deny(missing_docs)] +#![cfg_attr(not(feature = "std"), no_std)] + +use core::{ + convert::TryInto, fmt::Debug, hash::Hash, ptr::copy_nonoverlapping, slice, +}; + +#[cfg(feature = "std")] +pub use crate::io::{ReadBytesExt, WriteBytesExt}; + +#[cfg(feature = "std")] +mod io; + +#[inline] +fn extend_sign(val: u64, nbytes: usize) -> i64 { + let shift = (8 - nbytes) * 8; + (val << shift) as i64 >> shift +} + +#[inline] +fn extend_sign128(val: u128, nbytes: usize) -> i128 { + let shift = (16 - nbytes) * 8; + (val << shift) as i128 >> shift +} + +#[inline] +fn unextend_sign(val: i64, nbytes: usize) -> u64 { + let shift = (8 - nbytes) * 8; + (val << shift) as u64 >> shift +} + +#[inline] +fn unextend_sign128(val: i128, nbytes: usize) -> u128 { + let shift = (16 - nbytes) * 8; + (val << shift) as u128 >> shift +} + +#[inline] +fn pack_size(n: u64) -> usize { + if n < 1 << 8 { + 1 + } else if n < 1 << 16 { + 2 + } else if n < 1 << 24 { + 3 + } else if n < 1 << 32 { + 4 + } else if n < 1 << 40 { + 5 + } else if n < 1 << 48 { + 6 + } else if n < 1 << 56 { + 7 + } else { + 8 + } +} + +#[inline] +fn pack_size128(n: u128) -> usize { + if n < 1 << 8 { + 1 + } else if n < 1 << 16 { + 2 + } else if n < 1 << 24 { + 3 + } else if n < 1 << 32 { + 4 + } else if n < 1 << 40 { + 5 + } else if n < 1 << 48 { + 6 + } else if n < 1 << 56 { + 7 + } else if n < 1 << 64 { + 8 + } else if n < 1 << 72 { + 9 + } else if n < 1 << 80 { + 10 + } else if n < 1 << 88 { + 11 + } else if n < 1 << 96 { + 12 + } else if n < 1 << 104 { + 13 + } else if n < 1 << 112 { + 14 + } else if n < 1 << 120 { + 15 + } else { + 16 + } +} + +mod private { + /// Sealed stops crates other than byteorder from implementing any traits + /// that use it. + pub trait Sealed {} + impl Sealed for super::LittleEndian {} + impl Sealed for super::BigEndian {} +} + +/// `ByteOrder` describes types that can serialize integers as bytes. +/// +/// Note that `Self` does not appear anywhere in this trait's definition! +/// Therefore, in order to use it, you'll need to use syntax like +/// `T::read_u16(&[0, 1])` where `T` implements `ByteOrder`. +/// +/// This crate provides two types that implement `ByteOrder`: [`BigEndian`] +/// and [`LittleEndian`]. +/// This trait is sealed and cannot be implemented for callers to avoid +/// breaking backwards compatibility when adding new derived traits. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -5_000); +/// assert_eq!(-5_000, BigEndian::read_i16(&buf)); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +/// [`LittleEndian`]: enum.LittleEndian.html +pub trait ByteOrder: + Clone + + Copy + + Debug + + Default + + Eq + + Hash + + Ord + + PartialEq + + PartialOrd + + private::Sealed +{ + /// Reads an unsigned 16 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + fn read_u16(buf: &[u8]) -> u16; + + /// Reads an unsigned 24 bit integer from `buf`, stored in u32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_u24(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u24(&buf)); + /// ``` + fn read_u24(buf: &[u8]) -> u32 { + Self::read_uint(buf, 3) as u32 + } + + /// Reads an unsigned 32 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_u32(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); + /// ``` + fn read_u32(buf: &[u8]) -> u32; + + /// Reads an unsigned 48 bit integer from `buf`, stored in u64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_u48(&mut buf, 1_000_000_000_000); + /// assert_eq!(1_000_000_000_000, LittleEndian::read_u48(&buf)); + /// ``` + fn read_u48(buf: &[u8]) -> u64 { + Self::read_uint(buf, 6) as u64 + } + + /// Reads an unsigned 64 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_u64(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u64(&buf)); + /// ``` + fn read_u64(buf: &[u8]) -> u64; + + /// Reads an unsigned 128 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_u128(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u128(&buf)); + /// ``` + fn read_u128(buf: &[u8]) -> u128; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint(&buf, 3)); + /// ``` + fn read_uint(buf: &[u8], nbytes: usize) -> u64; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 16` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint128(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint128(&buf, 3)); + /// ``` + fn read_uint128(buf: &[u8], nbytes: usize) -> u128; + + /// Writes an unsigned 16 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_u16(&mut buf, 1_000); + /// assert_eq!(1_000, LittleEndian::read_u16(&buf)); + /// ``` + fn write_u16(buf: &mut [u8], n: u16); + + /// Writes an unsigned 24 bit integer `n` to `buf`, stored in u32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_u24(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u24(&buf)); + /// ``` + fn write_u24(buf: &mut [u8], n: u32) { + Self::write_uint(buf, n as u64, 3) + } + + /// Writes an unsigned 32 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_u32(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); + /// ``` + fn write_u32(buf: &mut [u8], n: u32); + + /// Writes an unsigned 48 bit integer `n` to `buf`, stored in u64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_u48(&mut buf, 1_000_000_000_000); + /// assert_eq!(1_000_000_000_000, LittleEndian::read_u48(&buf)); + /// ``` + fn write_u48(buf: &mut [u8], n: u64) { + Self::write_uint(buf, n as u64, 6) + } + + /// Writes an unsigned 64 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_u64(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u64(&buf)); + /// ``` + fn write_u64(buf: &mut [u8], n: u64); + + /// Writes an unsigned 128 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_u128(&mut buf, 1_000_000); + /// assert_eq!(1_000_000, LittleEndian::read_u128(&buf)); + /// ``` + fn write_u128(buf: &mut [u8], n: u128); + + /// Writes an unsigned integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint(&buf, 3)); + /// ``` + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize); + + /// Writes an unsigned integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 16`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_uint128(&mut buf, 1_000_000, 3); + /// assert_eq!(1_000_000, LittleEndian::read_uint128(&buf, 3)); + /// ``` + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize); + + /// Reads a signed 16 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_i16(&mut buf, -1_000); + /// assert_eq!(-1_000, LittleEndian::read_i16(&buf)); + /// ``` + #[inline] + fn read_i16(buf: &[u8]) -> i16 { + Self::read_u16(buf) as i16 + } + + /// Reads a signed 24 bit integer from `buf`, stored in i32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_i24(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i24(&buf)); + /// ``` + #[inline] + fn read_i24(buf: &[u8]) -> i32 { + Self::read_int(buf, 3) as i32 + } + + /// Reads a signed 32 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_i32(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i32(&buf)); + /// ``` + #[inline] + fn read_i32(buf: &[u8]) -> i32 { + Self::read_u32(buf) as i32 + } + + /// Reads a signed 48 bit integer from `buf`, stored in i64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_i48(&mut buf, -1_000_000_000_000); + /// assert_eq!(-1_000_000_000_000, LittleEndian::read_i48(&buf)); + /// ``` + #[inline] + fn read_i48(buf: &[u8]) -> i64 { + Self::read_int(buf, 6) as i64 + } + + /// Reads a signed 64 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_i64(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i64(&buf)); + /// ``` + #[inline] + fn read_i64(buf: &[u8]) -> i64 { + Self::read_u64(buf) as i64 + } + + /// Reads a signed 128 bit integer from `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_i128(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i128(&buf)); + /// ``` + #[inline] + fn read_i128(buf: &[u8]) -> i128 { + Self::read_u128(buf) as i128 + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int(&buf, 3)); + /// ``` + #[inline] + fn read_int(buf: &[u8], nbytes: usize) -> i64 { + extend_sign(Self::read_uint(buf, nbytes), nbytes) + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// # Panics + /// + /// Panics when `nbytes < 1` or `nbytes > 16` or + /// `buf.len() < nbytes` + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int128(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int128(&buf, 3)); + /// ``` + #[inline] + fn read_int128(buf: &[u8], nbytes: usize) -> i128 { + extend_sign128(Self::read_uint128(buf, nbytes), nbytes) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let e = 2.71828; + /// let mut buf = [0; 4]; + /// LittleEndian::write_f32(&mut buf, e); + /// assert_eq!(e, LittleEndian::read_f32(&buf)); + /// ``` + #[inline] + fn read_f32(buf: &[u8]) -> f32 { + f32::from_bits(Self::read_u32(buf)) + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let phi = 1.6180339887; + /// let mut buf = [0; 8]; + /// LittleEndian::write_f64(&mut buf, phi); + /// assert_eq!(phi, LittleEndian::read_f64(&buf)); + /// ``` + #[inline] + fn read_f64(buf: &[u8]) -> f64 { + f64::from_bits(Self::read_u64(buf)) + } + + /// Writes a signed 16 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 2`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 2]; + /// LittleEndian::write_i16(&mut buf, -1_000); + /// assert_eq!(-1_000, LittleEndian::read_i16(&buf)); + /// ``` + #[inline] + fn write_i16(buf: &mut [u8], n: i16) { + Self::write_u16(buf, n as u16) + } + + /// Writes a signed 24 bit integer `n` to `buf`, stored in i32. + /// + /// # Panics + /// + /// Panics when `buf.len() < 3`. + /// + /// # Examples + /// + /// Write and read 24 bit `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_i24(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i24(&buf)); + /// ``` + #[inline] + fn write_i24(buf: &mut [u8], n: i32) { + Self::write_int(buf, n as i64, 3) + } + + /// Writes a signed 32 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 4]; + /// LittleEndian::write_i32(&mut buf, -1_000_000); + /// assert_eq!(-1_000_000, LittleEndian::read_i32(&buf)); + /// ``` + #[inline] + fn write_i32(buf: &mut [u8], n: i32) { + Self::write_u32(buf, n as u32) + } + + /// Writes a signed 48 bit integer `n` to `buf`, stored in i64. + /// + /// # Panics + /// + /// Panics when `buf.len() < 6`. + /// + /// # Examples + /// + /// Write and read 48 bit `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 6]; + /// LittleEndian::write_i48(&mut buf, -1_000_000_000_000); + /// assert_eq!(-1_000_000_000_000, LittleEndian::read_i48(&buf)); + /// ``` + #[inline] + fn write_i48(buf: &mut [u8], n: i64) { + Self::write_int(buf, n as i64, 6) + } + + /// Writes a signed 64 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 8]; + /// LittleEndian::write_i64(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i64(&buf)); + /// ``` + #[inline] + fn write_i64(buf: &mut [u8], n: i64) { + Self::write_u64(buf, n as u64) + } + + /// Writes a signed 128 bit integer `n` to `buf`. + /// + /// # Panics + /// + /// Panics when `buf.len() < 16`. + /// + /// # Examples + /// + /// Write and read n-byte `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 16]; + /// LittleEndian::write_i128(&mut buf, -1_000_000_000); + /// assert_eq!(-1_000_000_000, LittleEndian::read_i128(&buf)); + /// ``` + #[inline] + fn write_i128(buf: &mut [u8], n: i128) { + Self::write_u128(buf, n as u128) + } + + /// Writes a signed integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read an n-byte number in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int(&buf, 3)); + /// ``` + #[inline] + fn write_int(buf: &mut [u8], n: i64, nbytes: usize) { + Self::write_uint(buf, unextend_sign(n, nbytes), nbytes) + } + + /// Writes a signed integer `n` to `buf` using only `nbytes`. + /// + /// # Panics + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 16`, then + /// this method panics. + /// + /// # Examples + /// + /// Write and read n-length signed numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut buf = [0; 3]; + /// LittleEndian::write_int128(&mut buf, -1_000, 3); + /// assert_eq!(-1_000, LittleEndian::read_int128(&buf, 3)); + /// ``` + #[inline] + fn write_int128(buf: &mut [u8], n: i128, nbytes: usize) { + Self::write_uint128(buf, unextend_sign128(n, nbytes), nbytes) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 4`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let e = 2.71828; + /// let mut buf = [0; 4]; + /// LittleEndian::write_f32(&mut buf, e); + /// assert_eq!(e, LittleEndian::read_f32(&buf)); + /// ``` + #[inline] + fn write_f32(buf: &mut [u8], n: f32) { + Self::write_u32(buf, n.to_bits()) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number. + /// + /// # Panics + /// + /// Panics when `buf.len() < 8`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let phi = 1.6180339887; + /// let mut buf = [0; 8]; + /// LittleEndian::write_f64(&mut buf, phi); + /// assert_eq!(phi, LittleEndian::read_f64(&buf)); + /// ``` + #[inline] + fn write_f64(buf: &mut [u8], n: f64) { + Self::write_u64(buf, n.to_bits()) + } + + /// Reads unsigned 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 2*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u16_into(src: &[u8], dst: &mut [u16]); + + /// Reads unsigned 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u32_into(src: &[u8], dst: &mut [u32]); + + /// Reads unsigned 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u64_into(src: &[u8], dst: &mut [u64]); + + /// Reads unsigned 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 16*dst.len()`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn read_u128_into(src: &[u8], dst: &mut [u128]); + + /// Reads signed 16 bit integers from `src` to `dst`. + /// + /// # Panics + /// + /// Panics when `buf.len() != 2*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0x0f, 0xee]; + /// LittleEndian::write_i16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i16_into(src: &[u8], dst: &mut [i16]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u16, dst.len()) + }; + Self::read_u16_into(src, dst) + } + + /// Reads signed 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i32_into(src: &[u8], dst: &mut [i32]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u32, dst.len()) + }; + Self::read_u32_into(src, dst); + } + + /// Reads signed 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i64_into(src: &[u8], dst: &mut [i64]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u64, dst.len()) + }; + Self::read_u64_into(src, dst); + } + + /// Reads signed 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 16*dst.len()`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_i128_into(src: &[u8], dst: &mut [i128]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u128, dst.len()) + }; + Self::read_u128_into(src, dst); + } + + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_f32_into(src: &[u8], dst: &mut [f32]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u32, dst.len()) + }; + Self::read_u32_into(src, dst); + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f32_into` instead. + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f32_into_unchecked(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + #[deprecated(since = "1.3.0", note = "please use `read_f32_into` instead")] + fn read_f32_into_unchecked(src: &[u8], dst: &mut [f32]) { + Self::read_f32_into(src, dst); + } + + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + fn read_f64_into(src: &[u8], dst: &mut [f64]) { + let dst = unsafe { + slice::from_raw_parts_mut(dst.as_mut_ptr() as *mut u64, dst.len()) + }; + Self::read_u64_into(src, dst); + } + + /// **DEPRECATED**. + /// + /// This method is deprecated. Use `read_f64_into` instead. + /// + /// Reads IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f64_into_unchecked(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + #[inline] + #[deprecated(since = "1.3.0", note = "please use `read_f64_into` instead")] + fn read_f64_into_unchecked(src: &[u8], dst: &mut [f64]) { + Self::read_f64_into(src, dst); + } + + /// Writes unsigned 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 2*src.len()`. + /// + /// # Examples + /// + /// Write and read `u16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u16_into(src: &[u16], dst: &mut [u8]); + + /// Writes unsigned 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 4*src.len()`. + /// + /// # Examples + /// + /// Write and read `u32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u32_into(src: &[u32], dst: &mut [u8]); + + /// Writes unsigned 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 8*src.len()`. + /// + /// # Examples + /// + /// Write and read `u64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u64_into(src: &[u64], dst: &mut [u8]); + + /// Writes unsigned 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 16*src.len()`. + /// + /// # Examples + /// + /// Write and read `u128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_u128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_u128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_u128_into(src: &[u128], dst: &mut [u8]); + + /// Writes signed 8 bit integers from `src` into `dst`. + /// + /// Note that since each `i8` is a single byte, no byte order conversions + /// are used. This method is included because it provides a safe, simple + /// way for the caller to write from a `&[i8]` buffer. (Without this + /// method, the caller would have to either use `unsafe` code or convert + /// each byte to `u8` individually.) + /// + /// # Panics + /// + /// Panics when `buf.len() != src.len()`. + /// + /// # Examples + /// + /// Write and read `i8` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian, ReadBytesExt}; + /// + /// let mut bytes = [0; 4]; + /// let numbers_given = [1, 2, 0xf, 0xe]; + /// LittleEndian::write_i8_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// bytes.as_ref().read_i8_into(&mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i8_into(src: &[i8], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u8, src.len()) + }; + dst.copy_from_slice(src); + } + + /// Writes signed 16 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `buf.len() != 2*src.len()`. + /// + /// # Examples + /// + /// Write and read `i16` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 8]; + /// let numbers_given = [1, 2, 0x0f, 0xee]; + /// LittleEndian::write_i16_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i16_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i16_into(src: &[i16], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u16, src.len()) + }; + Self::write_u16_into(src, dst); + } + + /// Writes signed 32 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 4*src.len()`. + /// + /// # Examples + /// + /// Write and read `i32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i32_into(src: &[i32], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u32, src.len()) + }; + Self::write_u32_into(src, dst); + } + + /// Writes signed 64 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 8*src.len()`. + /// + /// # Examples + /// + /// Write and read `i64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i64_into(src: &[i64], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u64, src.len()) + }; + Self::write_u64_into(src, dst); + } + + /// Writes signed 128 bit integers from `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `dst.len() != 16*src.len()`. + /// + /// # Examples + /// + /// Write and read `i128` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 64]; + /// let numbers_given = [1, 2, 0xf00f, 0xffee]; + /// LittleEndian::write_i128_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0; 4]; + /// LittleEndian::read_i128_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_i128_into(src: &[i128], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u128, src.len()) + }; + Self::write_u128_into(src, dst); + } + + /// Writes IEEE754 single-precision (4 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 4*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f32` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 16]; + /// let numbers_given = [1.0, 2.0, 31.312e31, -11.32e19]; + /// LittleEndian::write_f32_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f32_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_f32_into(src: &[f32], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u32, src.len()) + }; + Self::write_u32_into(src, dst); + } + + /// Writes IEEE754 double-precision (8 bytes) floating point numbers from + /// `src` into `dst`. + /// + /// # Panics + /// + /// Panics when `src.len() != 8*dst.len()`. + /// + /// # Examples + /// + /// Write and read `f64` numbers in little endian order: + /// + /// ```rust + /// use byteorder::{ByteOrder, LittleEndian}; + /// + /// let mut bytes = [0; 32]; + /// let numbers_given = [1.0, 2.0, 31.312e211, -11.32e91]; + /// LittleEndian::write_f64_into(&numbers_given, &mut bytes); + /// + /// let mut numbers_got = [0.0; 4]; + /// LittleEndian::read_f64_into(&bytes, &mut numbers_got); + /// assert_eq!(numbers_given, numbers_got); + /// ``` + fn write_f64_into(src: &[f64], dst: &mut [u8]) { + let src = unsafe { + slice::from_raw_parts(src.as_ptr() as *const u64, src.len()) + }; + Self::write_u64_into(src, dst); + } + + /// Converts the given slice of unsigned 16 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u16(&mut numbers); + /// assert_eq!(numbers, [5u16.to_be(), 65000u16.to_be()]); + /// ``` + fn from_slice_u16(numbers: &mut [u16]); + + /// Converts the given slice of unsigned 32 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u32(&mut numbers); + /// assert_eq!(numbers, [5u32.to_be(), 65000u32.to_be()]); + /// ``` + fn from_slice_u32(numbers: &mut [u32]); + + /// Converts the given slice of unsigned 64 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u64(&mut numbers); + /// assert_eq!(numbers, [5u64.to_be(), 65000u64.to_be()]); + /// ``` + fn from_slice_u64(numbers: &mut [u64]); + + /// Converts the given slice of unsigned 128 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_u128(&mut numbers); + /// assert_eq!(numbers, [5u128.to_be(), 65000u128.to_be()]); + /// ``` + fn from_slice_u128(numbers: &mut [u128]); + + /// Converts the given slice of signed 16 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 6500]; + /// BigEndian::from_slice_i16(&mut numbers); + /// assert_eq!(numbers, [5i16.to_be(), 6500i16.to_be()]); + /// ``` + #[inline] + fn from_slice_i16(src: &mut [i16]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_mut_ptr() as *mut u16, src.len()) + }; + Self::from_slice_u16(src); + } + + /// Converts the given slice of signed 32 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i32(&mut numbers); + /// assert_eq!(numbers, [5i32.to_be(), 65000i32.to_be()]); + /// ``` + #[inline] + fn from_slice_i32(src: &mut [i32]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_mut_ptr() as *mut u32, src.len()) + }; + Self::from_slice_u32(src); + } + + /// Converts the given slice of signed 64 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i64(&mut numbers); + /// assert_eq!(numbers, [5i64.to_be(), 65000i64.to_be()]); + /// ``` + #[inline] + fn from_slice_i64(src: &mut [i64]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_mut_ptr() as *mut u64, src.len()) + }; + Self::from_slice_u64(src); + } + + /// Converts the given slice of signed 128 bit integers to a particular + /// endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + /// + /// # Examples + /// + /// Convert the host platform's endianness to big-endian: + /// + /// ```rust + /// use byteorder::{ByteOrder, BigEndian}; + /// + /// let mut numbers = [5, 65000]; + /// BigEndian::from_slice_i128(&mut numbers); + /// assert_eq!(numbers, [5i128.to_be(), 65000i128.to_be()]); + /// ``` + #[inline] + fn from_slice_i128(src: &mut [i128]) { + let src = unsafe { + slice::from_raw_parts_mut(src.as_mut_ptr() as *mut u128, src.len()) + }; + Self::from_slice_u128(src); + } + + /// Converts the given slice of IEEE754 single-precision (4 bytes) floating + /// point numbers to a particular endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + fn from_slice_f32(numbers: &mut [f32]); + + /// Converts the given slice of IEEE754 double-precision (8 bytes) floating + /// point numbers to a particular endianness. + /// + /// If the endianness matches the endianness of the host platform, then + /// this is a no-op. + fn from_slice_f64(numbers: &mut [f64]); +} + +/// Defines big-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `u32` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 4]; +/// BigEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, BigEndian::read_u32(&buf)); +/// ``` +#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] +pub enum BigEndian {} + +impl Default for BigEndian { + fn default() -> BigEndian { + panic!("BigEndian default") + } +} + +/// A type alias for [`BigEndian`]. +/// +/// [`BigEndian`]: enum.BigEndian.html +pub type BE = BigEndian; + +/// Defines little-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] +pub enum LittleEndian {} + +impl Default for LittleEndian { + fn default() -> LittleEndian { + panic!("LittleEndian default") + } +} + +/// A type alias for [`LittleEndian`]. +/// +/// [`LittleEndian`]: enum.LittleEndian.html +pub type LE = LittleEndian; + +/// Defines network byte order serialization. +/// +/// Network byte order is defined by [RFC 1700][1] to be big-endian, and is +/// referred to in several protocol specifications. This type is an alias of +/// [`BigEndian`]. +/// +/// [1]: https://tools.ietf.org/html/rfc1700 +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// # Examples +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, NetworkEndian, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -5_000); +/// assert_eq!(-5_000, NetworkEndian::read_i16(&buf)); +/// ``` +/// +/// [`BigEndian`]: enum.BigEndian.html +pub type NetworkEndian = BigEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// On this platform, this is an alias for [`LittleEndian`]. +/// +/// [`LittleEndian`]: enum.LittleEndian.html +#[cfg(target_endian = "little")] +pub type NativeEndian = LittleEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +/// +/// On this platform, this is an alias for [`BigEndian`]. +/// +/// [`BigEndian`]: enum.BigEndian.html +#[cfg(target_endian = "big")] +pub type NativeEndian = BigEndian; + +/// Copies $size bytes from a number $n to a &mut [u8] $dst. $ty represents the +/// numeric type of $n and $which must be either to_be or to_le, depending on +/// which endianness one wants to use when writing to $dst. +/// +/// This macro is only safe to call when $ty is a numeric type and $size == +/// size_of::<$ty>() and where $dst is a &mut [u8]. +macro_rules! unsafe_write_num_bytes { + ($ty:ty, $size:expr, $n:expr, $dst:expr, $which:ident) => {{ + assert!($size <= $dst.len()); + unsafe { + // N.B. https://github.com/rust-lang/rust/issues/22776 + let bytes = *(&$n.$which() as *const _ as *const [u8; $size]); + copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); + } + }}; +} + +/// Copies a &[u8] $src into a &mut [<numeric>] $dst for the endianness given +/// by $which (must be either to_be or to_le). +/// +/// This macro is only safe to call when $src and $dst are &[u8] and &mut [u8], +/// respectively. The macro will panic if $src.len() != $size * $dst.len(), +/// where $size represents the size of the integers encoded in $src. +macro_rules! unsafe_read_slice { + ($src:expr, $dst:expr, $size:expr, $which:ident) => {{ + assert_eq!($src.len(), $size * $dst.len()); + + unsafe { + copy_nonoverlapping( + $src.as_ptr(), + $dst.as_mut_ptr() as *mut u8, + $src.len(), + ); + } + for v in $dst.iter_mut() { + *v = v.$which(); + } + }}; +} + +/// Copies a &[$ty] $src into a &mut [u8] $dst, where $ty must be a numeric +/// type. This panics if size_of::<$ty>() * $src.len() != $dst.len(). +/// +/// This macro is only safe to call when $src is a slice of numeric types and +/// $dst is a &mut [u8] and where $ty represents the type of the integers in +/// $src. +macro_rules! unsafe_write_slice_native { + ($src:expr, $dst:expr, $ty:ty) => {{ + let size = core::mem::size_of::<$ty>(); + assert_eq!(size * $src.len(), $dst.len()); + + unsafe { + copy_nonoverlapping( + $src.as_ptr() as *const u8, + $dst.as_mut_ptr(), + $dst.len(), + ); + } + }}; +} + +macro_rules! write_slice { + ($src:expr, $dst:expr, $ty:ty, $size:expr, $write:expr) => {{ + assert!($size == ::core::mem::size_of::<$ty>()); + assert_eq!($size * $src.len(), $dst.len()); + + for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { + $write(chunk, n); + } + }}; +} + +impl ByteOrder for BigEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + u16::from_be_bytes(buf[..2].try_into().unwrap()) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + u32::from_be_bytes(buf[..4].try_into().unwrap()) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + u64::from_be_bytes(buf[..8].try_into().unwrap()) + } + + #[inline] + fn read_u128(buf: &[u8]) -> u128 { + u128::from_be_bytes(buf[..16].try_into().unwrap()) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = 0u64; + let ptr_out = &mut out as *mut u64 as *mut u8; + unsafe { + copy_nonoverlapping( + buf.as_ptr(), + ptr_out.offset((8 - nbytes) as isize), + nbytes, + ); + } + out.to_be() + } + + #[inline] + fn read_uint128(buf: &[u8], nbytes: usize) -> u128 { + assert!(1 <= nbytes && nbytes <= 16 && nbytes <= buf.len()); + let mut out: u128 = 0; + let ptr_out = &mut out as *mut u128 as *mut u8; + unsafe { + copy_nonoverlapping( + buf.as_ptr(), + ptr_out.offset((16 - nbytes) as isize), + nbytes, + ); + } + out.to_be() + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + unsafe_write_num_bytes!(u16, 2, n, buf, to_be); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + unsafe_write_num_bytes!(u32, 4, n, buf, to_be); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + unsafe_write_num_bytes!(u64, 8, n, buf, to_be); + } + + #[inline] + fn write_u128(buf: &mut [u8], n: u128) { + unsafe_write_num_bytes!(u128, 16, n, buf, to_be); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_be() as *const u64 as *const [u8; 8]); + copy_nonoverlapping( + bytes.as_ptr().offset((8 - nbytes) as isize), + buf.as_mut_ptr(), + nbytes, + ); + } + } + + #[inline] + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize) { + assert!(pack_size128(n) <= nbytes && nbytes <= 16); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_be() as *const u128 as *const [u8; 16]); + copy_nonoverlapping( + bytes.as_ptr().offset((16 - nbytes) as isize), + buf.as_mut_ptr(), + nbytes, + ); + } + } + + #[inline] + fn read_u16_into(src: &[u8], dst: &mut [u16]) { + unsafe_read_slice!(src, dst, 2, to_be); + } + + #[inline] + fn read_u32_into(src: &[u8], dst: &mut [u32]) { + unsafe_read_slice!(src, dst, 4, to_be); + } + + #[inline] + fn read_u64_into(src: &[u8], dst: &mut [u64]) { + unsafe_read_slice!(src, dst, 8, to_be); + } + + #[inline] + fn read_u128_into(src: &[u8], dst: &mut [u128]) { + unsafe_read_slice!(src, dst, 16, to_be); + } + + #[inline] + fn write_u16_into(src: &[u16], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + unsafe_write_slice_native!(src, dst, u16); + } else { + write_slice!(src, dst, u16, 2, Self::write_u16); + } + } + + #[inline] + fn write_u32_into(src: &[u32], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + unsafe_write_slice_native!(src, dst, u32); + } else { + write_slice!(src, dst, u32, 4, Self::write_u32); + } + } + + #[inline] + fn write_u64_into(src: &[u64], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + unsafe_write_slice_native!(src, dst, u64); + } else { + write_slice!(src, dst, u64, 8, Self::write_u64); + } + } + + #[inline] + fn write_u128_into(src: &[u128], dst: &mut [u8]) { + if cfg!(target_endian = "big") { + unsafe_write_slice_native!(src, dst, u128); + } else { + write_slice!(src, dst, u128, 16, Self::write_u128); + } + } + + #[inline] + fn from_slice_u16(numbers: &mut [u16]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_u32(numbers: &mut [u32]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_u64(numbers: &mut [u64]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_u128(numbers: &mut [u128]) { + if cfg!(target_endian = "little") { + for n in numbers { + *n = n.to_be(); + } + } + } + + #[inline] + fn from_slice_f32(numbers: &mut [f32]) { + if cfg!(target_endian = "little") { + for n in numbers { + unsafe { + let int = *(n as *const f32 as *const u32); + *n = *(&int.to_be() as *const u32 as *const f32); + } + } + } + } + + #[inline] + fn from_slice_f64(numbers: &mut [f64]) { + if cfg!(target_endian = "little") { + for n in numbers { + unsafe { + let int = *(n as *const f64 as *const u64); + *n = *(&int.to_be() as *const u64 as *const f64); + } + } + } + } +} + +impl ByteOrder for LittleEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + u16::from_le_bytes(buf[..2].try_into().unwrap()) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + u32::from_le_bytes(buf[..4].try_into().unwrap()) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + u64::from_le_bytes(buf[..8].try_into().unwrap()) + } + + #[inline] + fn read_u128(buf: &[u8]) -> u128 { + u128::from_le_bytes(buf[..16].try_into().unwrap()) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = 0u64; + let ptr_out = &mut out as *mut u64 as *mut u8; + unsafe { + copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); + } + out.to_le() + } + + #[inline] + fn read_uint128(buf: &[u8], nbytes: usize) -> u128 { + assert!(1 <= nbytes && nbytes <= 16 && nbytes <= buf.len()); + let mut out: u128 = 0; + let ptr_out = &mut out as *mut u128 as *mut u8; + unsafe { + copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); + } + out.to_le() + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + unsafe_write_num_bytes!(u16, 2, n, buf, to_le); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + unsafe_write_num_bytes!(u32, 4, n, buf, to_le); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + unsafe_write_num_bytes!(u64, 8, n, buf, to_le); + } + + #[inline] + fn write_u128(buf: &mut [u8], n: u128) { + unsafe_write_num_bytes!(u128, 16, n, buf, to_le); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n as u64) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_le() as *const u64 as *const [u8; 8]); + copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); + } + } + + #[inline] + fn write_uint128(buf: &mut [u8], n: u128, nbytes: usize) { + assert!(pack_size128(n as u128) <= nbytes && nbytes <= 16); + assert!(nbytes <= buf.len()); + unsafe { + let bytes = *(&n.to_le() as *const u128 as *const [u8; 16]); + copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); + } + } + + #[inline] + fn read_u16_into(src: &[u8], dst: &mut [u16]) { + unsafe_read_slice!(src, dst, 2, to_le); + } + + #[inline] + fn read_u32_into(src: &[u8], dst: &mut [u32]) { + unsafe_read_slice!(src, dst, 4, to_le); + } + + #[inline] + fn read_u64_into(src: &[u8], dst: &mut [u64]) { + unsafe_read_slice!(src, dst, 8, to_le); + } + + #[inline] + fn read_u128_into(src: &[u8], dst: &mut [u128]) { + unsafe_read_slice!(src, dst, 16, to_le); + } + + #[inline] + fn write_u16_into(src: &[u16], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + unsafe_write_slice_native!(src, dst, u16); + } else { + write_slice!(src, dst, u16, 2, Self::write_u16); + } + } + + #[inline] + fn write_u32_into(src: &[u32], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + unsafe_write_slice_native!(src, dst, u32); + } else { + write_slice!(src, dst, u32, 4, Self::write_u32); + } + } + + #[inline] + fn write_u64_into(src: &[u64], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + unsafe_write_slice_native!(src, dst, u64); + } else { + write_slice!(src, dst, u64, 8, Self::write_u64); + } + } + + #[inline] + fn write_u128_into(src: &[u128], dst: &mut [u8]) { + if cfg!(target_endian = "little") { + unsafe_write_slice_native!(src, dst, u128); + } else { + write_slice!(src, dst, u128, 16, Self::write_u128); + } + } + + #[inline] + fn from_slice_u16(numbers: &mut [u16]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_u32(numbers: &mut [u32]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_u64(numbers: &mut [u64]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_u128(numbers: &mut [u128]) { + if cfg!(target_endian = "big") { + for n in numbers { + *n = n.to_le(); + } + } + } + + #[inline] + fn from_slice_f32(numbers: &mut [f32]) { + if cfg!(target_endian = "big") { + for n in numbers { + unsafe { + let int = *(n as *const f32 as *const u32); + *n = *(&int.to_le() as *const u32 as *const f32); + } + } + } + } + + #[inline] + fn from_slice_f64(numbers: &mut [f64]) { + if cfg!(target_endian = "big") { + for n in numbers { + unsafe { + let int = *(n as *const f64 as *const u64); + *n = *(&int.to_le() as *const u64 as *const f64); + } + } + } + } +} + +#[cfg(test)] +mod test { + use quickcheck::{Arbitrary, Gen, QuickCheck, StdGen, Testable}; + use rand::{thread_rng, Rng}; + + pub const U24_MAX: u32 = 16_777_215; + pub const I24_MAX: i32 = 8_388_607; + pub const U48_MAX: u64 = 281_474_976_710_655; + pub const I48_MAX: i64 = 140_737_488_355_327; + + pub const U64_MAX: u64 = ::core::u64::MAX; + pub const I64_MAX: u64 = ::core::i64::MAX as u64; + + macro_rules! calc_max { + ($max:expr, $bytes:expr) => { + calc_max!($max, $bytes, 8) + }; + ($max:expr, $bytes:expr, $maxbytes:expr) => { + ($max - 1) >> (8 * ($maxbytes - $bytes)) + }; + } + + #[derive(Clone, Debug)] + pub struct Wi128<T>(pub T); + + impl<T: Clone> Wi128<T> { + pub fn clone(&self) -> T { + self.0.clone() + } + } + + impl<T: PartialEq> PartialEq<T> for Wi128<T> { + fn eq(&self, other: &T) -> bool { + self.0.eq(other) + } + } + + impl Arbitrary for Wi128<u128> { + fn arbitrary<G: Gen>(gen: &mut G) -> Wi128<u128> { + let max = calc_max!(::core::u128::MAX, gen.size(), 16); + let output = (gen.gen::<u64>() as u128) + | ((gen.gen::<u64>() as u128) << 64); + Wi128(output & (max - 1)) + } + } + + impl Arbitrary for Wi128<i128> { + fn arbitrary<G: Gen>(gen: &mut G) -> Wi128<i128> { + let max = calc_max!(::core::i128::MAX, gen.size(), 16); + let output = (gen.gen::<i64>() as i128) + | ((gen.gen::<i64>() as i128) << 64); + Wi128(output & (max - 1)) + } + } + + pub fn qc_sized<A: Testable>(f: A, size: u64) { + QuickCheck::new() + .gen(StdGen::new(thread_rng(), size as usize)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! qc_byte_order { + ($name:ident, $ty_int:ty, $max:expr, + $bytes:expr, $read:ident, $write:ident) => { + mod $name { + #[allow(unused_imports)] + use super::{qc_sized, Wi128}; + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + BigEndian::$write(&mut buf, n.clone(), $bytes); + n == BigEndian::$read(&buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + LittleEndian::$write(&mut buf, n.clone(), $bytes); + n == LittleEndian::$read(&buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 16]; + NativeEndian::$write(&mut buf, n.clone(), $bytes); + n == NativeEndian::$read(&buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + } + }; + ($name:ident, $ty_int:ty, $max:expr, + $read:ident, $write:ident) => { + mod $name { + #[allow(unused_imports)] + use super::{qc_sized, Wi128}; + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + use core::mem::size_of; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + BigEndian::$write(&mut buf[16 - bytes..], n.clone()); + n == BigEndian::$read(&buf[16 - bytes..]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + LittleEndian::$write(&mut buf[..bytes], n.clone()); + n == LittleEndian::$read(&buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 16]; + NativeEndian::$write(&mut buf[..bytes], n.clone()); + n == NativeEndian::$read(&buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + }; + } + + qc_byte_order!( + prop_u16, + u16, + ::core::u16::MAX as u64, + read_u16, + write_u16 + ); + qc_byte_order!( + prop_i16, + i16, + ::core::i16::MAX as u64, + read_i16, + write_i16 + ); + qc_byte_order!( + prop_u24, + u32, + crate::test::U24_MAX as u64, + read_u24, + write_u24 + ); + qc_byte_order!( + prop_i24, + i32, + crate::test::I24_MAX as u64, + read_i24, + write_i24 + ); + qc_byte_order!( + prop_u32, + u32, + ::core::u32::MAX as u64, + read_u32, + write_u32 + ); + qc_byte_order!( + prop_i32, + i32, + ::core::i32::MAX as u64, + read_i32, + write_i32 + ); + qc_byte_order!( + prop_u48, + u64, + crate::test::U48_MAX as u64, + read_u48, + write_u48 + ); + qc_byte_order!( + prop_i48, + i64, + crate::test::I48_MAX as u64, + read_i48, + write_i48 + ); + qc_byte_order!( + prop_u64, + u64, + ::core::u64::MAX as u64, + read_u64, + write_u64 + ); + qc_byte_order!( + prop_i64, + i64, + ::core::i64::MAX as u64, + read_i64, + write_i64 + ); + qc_byte_order!( + prop_f32, + f32, + ::core::u64::MAX as u64, + read_f32, + write_f32 + ); + qc_byte_order!( + prop_f64, + f64, + ::core::i64::MAX as u64, + read_f64, + write_f64 + ); + + qc_byte_order!(prop_u128, Wi128<u128>, 16 + 1, read_u128, write_u128); + qc_byte_order!(prop_i128, Wi128<i128>, 16 + 1, read_i128, write_i128); + + qc_byte_order!( + prop_uint_1, + u64, + calc_max!(super::U64_MAX, 1), + 1, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_2, + u64, + calc_max!(super::U64_MAX, 2), + 2, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_3, + u64, + calc_max!(super::U64_MAX, 3), + 3, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_4, + u64, + calc_max!(super::U64_MAX, 4), + 4, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_5, + u64, + calc_max!(super::U64_MAX, 5), + 5, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_6, + u64, + calc_max!(super::U64_MAX, 6), + 6, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_7, + u64, + calc_max!(super::U64_MAX, 7), + 7, + read_uint, + write_uint + ); + qc_byte_order!( + prop_uint_8, + u64, + calc_max!(super::U64_MAX, 8), + 8, + read_uint, + write_uint + ); + + qc_byte_order!( + prop_uint128_1, + Wi128<u128>, + 1, + 1, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_2, + Wi128<u128>, + 2, + 2, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_3, + Wi128<u128>, + 3, + 3, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_4, + Wi128<u128>, + 4, + 4, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_5, + Wi128<u128>, + 5, + 5, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_6, + Wi128<u128>, + 6, + 6, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_7, + Wi128<u128>, + 7, + 7, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_8, + Wi128<u128>, + 8, + 8, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_9, + Wi128<u128>, + 9, + 9, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_10, + Wi128<u128>, + 10, + 10, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_11, + Wi128<u128>, + 11, + 11, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_12, + Wi128<u128>, + 12, + 12, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_13, + Wi128<u128>, + 13, + 13, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_14, + Wi128<u128>, + 14, + 14, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_15, + Wi128<u128>, + 15, + 15, + read_uint128, + write_uint128 + ); + qc_byte_order!( + prop_uint128_16, + Wi128<u128>, + 16, + 16, + read_uint128, + write_uint128 + ); + + qc_byte_order!( + prop_int_1, + i64, + calc_max!(super::I64_MAX, 1), + 1, + read_int, + write_int + ); + qc_byte_order!( + prop_int_2, + i64, + calc_max!(super::I64_MAX, 2), + 2, + read_int, + write_int + ); + qc_byte_order!( + prop_int_3, + i64, + calc_max!(super::I64_MAX, 3), + 3, + read_int, + write_int + ); + qc_byte_order!( + prop_int_4, + i64, + calc_max!(super::I64_MAX, 4), + 4, + read_int, + write_int + ); + qc_byte_order!( + prop_int_5, + i64, + calc_max!(super::I64_MAX, 5), + 5, + read_int, + write_int + ); + qc_byte_order!( + prop_int_6, + i64, + calc_max!(super::I64_MAX, 6), + 6, + read_int, + write_int + ); + qc_byte_order!( + prop_int_7, + i64, + calc_max!(super::I64_MAX, 7), + 7, + read_int, + write_int + ); + qc_byte_order!( + prop_int_8, + i64, + calc_max!(super::I64_MAX, 8), + 8, + read_int, + write_int + ); + + qc_byte_order!( + prop_int128_1, + Wi128<i128>, + 1, + 1, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_2, + Wi128<i128>, + 2, + 2, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_3, + Wi128<i128>, + 3, + 3, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_4, + Wi128<i128>, + 4, + 4, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_5, + Wi128<i128>, + 5, + 5, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_6, + Wi128<i128>, + 6, + 6, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_7, + Wi128<i128>, + 7, + 7, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_8, + Wi128<i128>, + 8, + 8, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_9, + Wi128<i128>, + 9, + 9, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_10, + Wi128<i128>, + 10, + 10, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_11, + Wi128<i128>, + 11, + 11, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_12, + Wi128<i128>, + 12, + 12, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_13, + Wi128<i128>, + 13, + 13, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_14, + Wi128<i128>, + 14, + 14, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_15, + Wi128<i128>, + 15, + 15, + read_int128, + write_int128 + ); + qc_byte_order!( + prop_int128_16, + Wi128<i128>, + 16, + 16, + read_int128, + write_int128 + ); + + // Test that all of the byte conversion functions panic when given a + // buffer that is too small. + // + // These tests are critical to ensure safety, otherwise we might end up + // with a buffer overflow. + macro_rules! too_small { + ($name:ident, $maximally_small:expr, $zero:expr, + $read:ident, $write:ident) => { + mod $name { + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut buf = [0; $maximally_small]; + BigEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut buf = [0; $maximally_small]; + LittleEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut buf = [0; $maximally_small]; + NativeEndian::$write(&mut buf, $zero); + } + } + }; + ($name:ident, $maximally_small:expr, $read:ident) => { + mod $name { + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf, $maximally_small + 1); + } + } + }; + } + + too_small!(small_u16, 1, 0, read_u16, write_u16); + too_small!(small_i16, 1, 0, read_i16, write_i16); + too_small!(small_u32, 3, 0, read_u32, write_u32); + too_small!(small_i32, 3, 0, read_i32, write_i32); + too_small!(small_u64, 7, 0, read_u64, write_u64); + too_small!(small_i64, 7, 0, read_i64, write_i64); + too_small!(small_f32, 3, 0.0, read_f32, write_f32); + too_small!(small_f64, 7, 0.0, read_f64, write_f64); + too_small!(small_u128, 15, 0, read_u128, write_u128); + too_small!(small_i128, 15, 0, read_i128, write_i128); + + too_small!(small_uint_1, 1, read_uint); + too_small!(small_uint_2, 2, read_uint); + too_small!(small_uint_3, 3, read_uint); + too_small!(small_uint_4, 4, read_uint); + too_small!(small_uint_5, 5, read_uint); + too_small!(small_uint_6, 6, read_uint); + too_small!(small_uint_7, 7, read_uint); + + too_small!(small_uint128_1, 1, read_uint128); + too_small!(small_uint128_2, 2, read_uint128); + too_small!(small_uint128_3, 3, read_uint128); + too_small!(small_uint128_4, 4, read_uint128); + too_small!(small_uint128_5, 5, read_uint128); + too_small!(small_uint128_6, 6, read_uint128); + too_small!(small_uint128_7, 7, read_uint128); + too_small!(small_uint128_8, 8, read_uint128); + too_small!(small_uint128_9, 9, read_uint128); + too_small!(small_uint128_10, 10, read_uint128); + too_small!(small_uint128_11, 11, read_uint128); + too_small!(small_uint128_12, 12, read_uint128); + too_small!(small_uint128_13, 13, read_uint128); + too_small!(small_uint128_14, 14, read_uint128); + too_small!(small_uint128_15, 15, read_uint128); + + too_small!(small_int_1, 1, read_int); + too_small!(small_int_2, 2, read_int); + too_small!(small_int_3, 3, read_int); + too_small!(small_int_4, 4, read_int); + too_small!(small_int_5, 5, read_int); + too_small!(small_int_6, 6, read_int); + too_small!(small_int_7, 7, read_int); + + too_small!(small_int128_1, 1, read_int128); + too_small!(small_int128_2, 2, read_int128); + too_small!(small_int128_3, 3, read_int128); + too_small!(small_int128_4, 4, read_int128); + too_small!(small_int128_5, 5, read_int128); + too_small!(small_int128_6, 6, read_int128); + too_small!(small_int128_7, 7, read_int128); + too_small!(small_int128_8, 8, read_int128); + too_small!(small_int128_9, 9, read_int128); + too_small!(small_int128_10, 10, read_int128); + too_small!(small_int128_11, 11, read_int128); + too_small!(small_int128_12, 12, read_int128); + too_small!(small_int128_13, 13, read_int128); + too_small!(small_int128_14, 14, read_int128); + too_small!(small_int128_15, 15, read_int128); + + // Test that reading/writing slices enforces the correct lengths. + macro_rules! slice_lengths { + ($name:ident, $read:ident, $write:ident, + $num_bytes:expr, $numbers:expr) => { + mod $name { + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + + #[test] + #[should_panic] + fn read_big_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + BigEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + LittleEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let bytes = [0; $num_bytes]; + let mut numbers = $numbers; + NativeEndian::$read(&bytes, &mut numbers); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + BigEndian::$write(&numbers, &mut bytes); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + LittleEndian::$write(&numbers, &mut bytes); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut bytes = [0; $num_bytes]; + let numbers = $numbers; + NativeEndian::$write(&numbers, &mut bytes); + } + } + }; + } + + slice_lengths!( + slice_len_too_small_u16, + read_u16_into, + write_u16_into, + 3, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_u16, + read_u16_into, + write_u16_into, + 5, + [0, 0] + ); + slice_lengths!( + slice_len_too_small_i16, + read_i16_into, + write_i16_into, + 3, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_i16, + read_i16_into, + write_i16_into, + 5, + [0, 0] + ); + + slice_lengths!( + slice_len_too_small_u32, + read_u32_into, + write_u32_into, + 7, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_u32, + read_u32_into, + write_u32_into, + 9, + [0, 0] + ); + slice_lengths!( + slice_len_too_small_i32, + read_i32_into, + write_i32_into, + 7, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_i32, + read_i32_into, + write_i32_into, + 9, + [0, 0] + ); + + slice_lengths!( + slice_len_too_small_u64, + read_u64_into, + write_u64_into, + 15, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_u64, + read_u64_into, + write_u64_into, + 17, + [0, 0] + ); + slice_lengths!( + slice_len_too_small_i64, + read_i64_into, + write_i64_into, + 15, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_i64, + read_i64_into, + write_i64_into, + 17, + [0, 0] + ); + + slice_lengths!( + slice_len_too_small_u128, + read_u128_into, + write_u128_into, + 31, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_u128, + read_u128_into, + write_u128_into, + 33, + [0, 0] + ); + slice_lengths!( + slice_len_too_small_i128, + read_i128_into, + write_i128_into, + 31, + [0, 0] + ); + slice_lengths!( + slice_len_too_big_i128, + read_i128_into, + write_i128_into, + 33, + [0, 0] + ); + + #[test] + fn uint_bigger_buffer() { + use crate::{ByteOrder, LittleEndian}; + let n = LittleEndian::read_uint(&[1, 2, 3, 4, 5, 6, 7, 8], 5); + assert_eq!(n, 0x05_0403_0201); + } + + #[test] + fn regression173_array_impl() { + use crate::{BigEndian, ByteOrder, LittleEndian}; + + let xs = [0; 100]; + + let x = BigEndian::read_u16(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_u32(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_u64(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_u128(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_i16(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_i32(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_i64(&xs); + assert_eq!(x, 0); + let x = BigEndian::read_i128(&xs); + assert_eq!(x, 0); + + let x = LittleEndian::read_u16(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_u32(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_u64(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_u128(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_i16(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_i32(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_i64(&xs); + assert_eq!(x, 0); + let x = LittleEndian::read_i128(&xs); + assert_eq!(x, 0); + } +} + +#[cfg(test)] +#[cfg(feature = "std")] +mod stdtests { + extern crate quickcheck; + extern crate rand; + + use self::quickcheck::{QuickCheck, StdGen, Testable}; + use self::rand::thread_rng; + + fn qc_unsized<A: Testable>(f: A) { + QuickCheck::new() + .gen(StdGen::new(thread_rng(), 16)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! calc_max { + ($max:expr, $bytes:expr) => { + ($max - 1) >> (8 * (8 - $bytes)) + }; + } + + macro_rules! qc_bytes_ext { + ($name:ident, $ty_int:ty, $max:expr, + $bytes:expr, $read:ident, $write:ident) => { + mod $name { + #[allow(unused_imports)] + use crate::test::{qc_sized, Wi128}; + use crate::{ + BigEndian, LittleEndian, NativeEndian, ReadBytesExt, + WriteBytesExt, + }; + use std::io::Cursor; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n.clone()).unwrap(); + let offset = wtr.len() - $bytes; + let mut rdr = Cursor::new(&mut wtr[offset..]); + n == rdr.$read::<BigEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n.clone()).unwrap(); + let offset = if cfg!(target_endian = "big") { + wtr.len() - $bytes + } else { + 0 + }; + let mut rdr = Cursor::new(&mut wtr[offset..]); + n == rdr.$read::<NativeEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max); + } + } + }; + ($name:ident, $ty_int:ty, $max:expr, $read:ident, $write:ident) => { + mod $name { + #[allow(unused_imports)] + use crate::test::{qc_sized, Wi128}; + use crate::{ + BigEndian, LittleEndian, NativeEndian, ReadBytesExt, + WriteBytesExt, + }; + use std::io::Cursor; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<BigEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n.clone()).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + }; + } + + qc_bytes_ext!( + prop_ext_u16, + u16, + ::std::u16::MAX as u64, + read_u16, + write_u16 + ); + qc_bytes_ext!( + prop_ext_i16, + i16, + ::std::i16::MAX as u64, + read_i16, + write_i16 + ); + qc_bytes_ext!( + prop_ext_u32, + u32, + ::std::u32::MAX as u64, + read_u32, + write_u32 + ); + qc_bytes_ext!( + prop_ext_i32, + i32, + ::std::i32::MAX as u64, + read_i32, + write_i32 + ); + qc_bytes_ext!( + prop_ext_u64, + u64, + ::std::u64::MAX as u64, + read_u64, + write_u64 + ); + qc_bytes_ext!( + prop_ext_i64, + i64, + ::std::i64::MAX as u64, + read_i64, + write_i64 + ); + qc_bytes_ext!( + prop_ext_f32, + f32, + ::std::u64::MAX as u64, + read_f32, + write_f32 + ); + qc_bytes_ext!( + prop_ext_f64, + f64, + ::std::i64::MAX as u64, + read_f64, + write_f64 + ); + + qc_bytes_ext!(prop_ext_u128, Wi128<u128>, 16 + 1, read_u128, write_u128); + qc_bytes_ext!(prop_ext_i128, Wi128<i128>, 16 + 1, read_i128, write_i128); + + qc_bytes_ext!( + prop_ext_uint_1, + u64, + calc_max!(crate::test::U64_MAX, 1), + 1, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_2, + u64, + calc_max!(crate::test::U64_MAX, 2), + 2, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_3, + u64, + calc_max!(crate::test::U64_MAX, 3), + 3, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_4, + u64, + calc_max!(crate::test::U64_MAX, 4), + 4, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_5, + u64, + calc_max!(crate::test::U64_MAX, 5), + 5, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_6, + u64, + calc_max!(crate::test::U64_MAX, 6), + 6, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_7, + u64, + calc_max!(crate::test::U64_MAX, 7), + 7, + read_uint, + write_u64 + ); + qc_bytes_ext!( + prop_ext_uint_8, + u64, + calc_max!(crate::test::U64_MAX, 8), + 8, + read_uint, + write_u64 + ); + + qc_bytes_ext!( + prop_ext_uint128_1, + Wi128<u128>, + 1, + 1, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_2, + Wi128<u128>, + 2, + 2, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_3, + Wi128<u128>, + 3, + 3, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_4, + Wi128<u128>, + 4, + 4, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_5, + Wi128<u128>, + 5, + 5, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_6, + Wi128<u128>, + 6, + 6, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_7, + Wi128<u128>, + 7, + 7, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_8, + Wi128<u128>, + 8, + 8, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_9, + Wi128<u128>, + 9, + 9, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_10, + Wi128<u128>, + 10, + 10, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_11, + Wi128<u128>, + 11, + 11, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_12, + Wi128<u128>, + 12, + 12, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_13, + Wi128<u128>, + 13, + 13, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_14, + Wi128<u128>, + 14, + 14, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_15, + Wi128<u128>, + 15, + 15, + read_uint128, + write_u128 + ); + qc_bytes_ext!( + prop_ext_uint128_16, + Wi128<u128>, + 16, + 16, + read_uint128, + write_u128 + ); + + qc_bytes_ext!( + prop_ext_int_1, + i64, + calc_max!(crate::test::I64_MAX, 1), + 1, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_2, + i64, + calc_max!(crate::test::I64_MAX, 2), + 2, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_3, + i64, + calc_max!(crate::test::I64_MAX, 3), + 3, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_4, + i64, + calc_max!(crate::test::I64_MAX, 4), + 4, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_5, + i64, + calc_max!(crate::test::I64_MAX, 5), + 5, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_6, + i64, + calc_max!(crate::test::I64_MAX, 6), + 6, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_7, + i64, + calc_max!(crate::test::I64_MAX, 1), + 7, + read_int, + write_i64 + ); + qc_bytes_ext!( + prop_ext_int_8, + i64, + calc_max!(crate::test::I64_MAX, 8), + 8, + read_int, + write_i64 + ); + + qc_bytes_ext!( + prop_ext_int128_1, + Wi128<i128>, + 1, + 1, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_2, + Wi128<i128>, + 2, + 2, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_3, + Wi128<i128>, + 3, + 3, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_4, + Wi128<i128>, + 4, + 4, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_5, + Wi128<i128>, + 5, + 5, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_6, + Wi128<i128>, + 6, + 6, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_7, + Wi128<i128>, + 7, + 7, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_8, + Wi128<i128>, + 8, + 8, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_9, + Wi128<i128>, + 9, + 9, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_10, + Wi128<i128>, + 10, + 10, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_11, + Wi128<i128>, + 11, + 11, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_12, + Wi128<i128>, + 12, + 12, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_13, + Wi128<i128>, + 13, + 13, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_14, + Wi128<i128>, + 14, + 14, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_15, + Wi128<i128>, + 15, + 15, + read_int128, + write_i128 + ); + qc_bytes_ext!( + prop_ext_int128_16, + Wi128<i128>, + 16, + 16, + read_int128, + write_i128 + ); + + // Test slice serialization/deserialization. + macro_rules! qc_slice { + ($name:ident, $ty_int:ty, $read:ident, $write:ident, $zero:expr) => { + mod $name { + use super::qc_unsized; + #[allow(unused_imports)] + use crate::test::Wi128; + use crate::{ + BigEndian, ByteOrder, LittleEndian, NativeEndian, + }; + use core::mem::size_of; + + #[test] + fn big_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = + numbers.into_iter().map(|x| x.clone()).collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + BigEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { + BigEndian::$read(&bytes, &mut got); + } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + + #[test] + fn little_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = + numbers.into_iter().map(|x| x.clone()).collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + LittleEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { + LittleEndian::$read(&bytes, &mut got); + } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + + #[test] + fn native_endian() { + #[allow(unused_unsafe)] + fn prop(numbers: Vec<$ty_int>) -> bool { + let numbers: Vec<_> = + numbers.into_iter().map(|x| x.clone()).collect(); + let num_bytes = size_of::<$ty_int>() * numbers.len(); + let mut bytes = vec![0; num_bytes]; + + NativeEndian::$write(&numbers, &mut bytes); + + let mut got = vec![$zero; numbers.len()]; + unsafe { + NativeEndian::$read(&bytes, &mut got); + } + + numbers == got + } + qc_unsized(prop as fn(_) -> bool); + } + } + }; + } + + qc_slice!(prop_slice_u16, u16, read_u16_into, write_u16_into, 0); + qc_slice!(prop_slice_i16, i16, read_i16_into, write_i16_into, 0); + qc_slice!(prop_slice_u32, u32, read_u32_into, write_u32_into, 0); + qc_slice!(prop_slice_i32, i32, read_i32_into, write_i32_into, 0); + qc_slice!(prop_slice_u64, u64, read_u64_into, write_u64_into, 0); + qc_slice!(prop_slice_i64, i64, read_i64_into, write_i64_into, 0); + qc_slice!( + prop_slice_u128, + Wi128<u128>, + read_u128_into, + write_u128_into, + 0 + ); + qc_slice!( + prop_slice_i128, + Wi128<i128>, + read_i128_into, + write_i128_into, + 0 + ); + + qc_slice!(prop_slice_f32, f32, read_f32_into, write_f32_into, 0.0); + qc_slice!(prop_slice_f64, f64, read_f64_into, write_f64_into, 0.0); +} |