diff options
Diffstat (limited to 'vendor/half/src/slice.rs')
-rw-r--r-- | vendor/half/src/slice.rs | 952 |
1 files changed, 952 insertions, 0 deletions
diff --git a/vendor/half/src/slice.rs b/vendor/half/src/slice.rs new file mode 100644 index 000000000..3157e6a35 --- /dev/null +++ b/vendor/half/src/slice.rs @@ -0,0 +1,952 @@ +//! Contains utility functions and traits to convert between slices of [`u16`] bits and [`f16`] or +//! [`bf16`] numbers. +//! +//! The utility [`HalfBitsSliceExt`] sealed extension trait is implemented for `[u16]` slices, +//! while the utility [`HalfFloatSliceExt`] sealed extension trait is implemented for both `[f16]` +//! and `[bf16]` slices. These traits provide efficient conversions and reinterpret casting of +//! larger buffers of floating point values, and are automatically included in the +//! [`prelude`][crate::prelude] module. + +use crate::{bf16, binary16::convert, f16}; +#[cfg(feature = "alloc")] +use alloc::vec::Vec; +use core::slice; + +/// Extensions to `[f16]` and `[bf16]` slices to support conversion and reinterpret operations. +/// +/// This trait is sealed and cannot be implemented outside of this crate. +pub trait HalfFloatSliceExt: private::SealedHalfFloatSlice { + /// Reinterprets a slice of [`f16`] or [`bf16`] numbers as a slice of [`u16`] bits. + /// + /// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory + /// location as `self`. + /// + /// # Examples + /// + /// ```rust + /// # use half::prelude::*; + /// let float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]; + /// let int_buffer = float_buffer.reinterpret_cast(); + /// + /// assert_eq!(int_buffer, [float_buffer[0].to_bits(), float_buffer[1].to_bits(), float_buffer[2].to_bits()]); + /// ``` + fn reinterpret_cast(&self) -> &[u16]; + + /// Reinterprets a mutable slice of [`f16`] or [`bf16`] numbers as a mutable slice of [`u16`]. + /// bits + /// + /// This is a zero-copy operation. The transmuted slice has the same lifetime as the original, + /// which prevents mutating `self` as long as the returned `&mut [u16]` is borrowed. + /// + /// # Examples + /// + /// ```rust + /// # use half::prelude::*; + /// let mut float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]; + /// + /// { + /// let int_buffer = float_buffer.reinterpret_cast_mut(); + /// + /// assert_eq!(int_buffer, [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]); + /// + /// // Mutating the u16 slice will mutating the original + /// int_buffer[0] = 0; + /// } + /// + /// // Note that we need to drop int_buffer before using float_buffer again or we will get a borrow error. + /// assert_eq!(float_buffer, [f16::from_f32(0.), f16::from_f32(2.), f16::from_f32(3.)]); + /// ``` + fn reinterpret_cast_mut(&mut self) -> &mut [u16]; + + /// Converts all of the elements of a `[f32]` slice into [`f16`] or [`bf16`] values in `self`. + /// + /// The length of `src` must be the same as `self`. + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// // Initialize an empty buffer + /// let mut buffer = [0u16; 4]; + /// let buffer = buffer.reinterpret_cast_mut::<f16>(); + /// + /// let float_values = [1., 2., 3., 4.]; + /// + /// // Now convert + /// buffer.convert_from_f32_slice(&float_values); + /// + /// assert_eq!(buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]); + /// ``` + fn convert_from_f32_slice(&mut self, src: &[f32]); + + /// Converts all of the elements of a `[f64]` slice into [`f16`] or [`bf16`] values in `self`. + /// + /// The length of `src` must be the same as `self`. + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// // Initialize an empty buffer + /// let mut buffer = [0u16; 4]; + /// let buffer = buffer.reinterpret_cast_mut::<f16>(); + /// + /// let float_values = [1., 2., 3., 4.]; + /// + /// // Now convert + /// buffer.convert_from_f64_slice(&float_values); + /// + /// assert_eq!(buffer, [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]); + /// ``` + fn convert_from_f64_slice(&mut self, src: &[f64]); + + /// Converts all of the [`f16`] or [`bf16`] elements of `self` into [`f32`] values in `dst`. + /// + /// The length of `src` must be the same as `self`. + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// // Initialize an empty buffer + /// let mut buffer = [0f32; 4]; + /// + /// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]; + /// + /// // Now convert + /// half_values.convert_to_f32_slice(&mut buffer); + /// + /// assert_eq!(buffer, [1., 2., 3., 4.]); + /// ``` + fn convert_to_f32_slice(&self, dst: &mut [f32]); + + /// Converts all of the [`f16`] or [`bf16`] elements of `self` into [`f64`] values in `dst`. + /// + /// The length of `src` must be the same as `self`. + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// // Initialize an empty buffer + /// let mut buffer = [0f64; 4]; + /// + /// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]; + /// + /// // Now convert + /// half_values.convert_to_f64_slice(&mut buffer); + /// + /// assert_eq!(buffer, [1., 2., 3., 4.]); + /// ``` + fn convert_to_f64_slice(&self, dst: &mut [f64]); + + // Because trait is sealed, we can get away with different interfaces between features. + + /// Converts all of the [`f16`] or [`bf16`] elements of `self` into [`f32`] values in a new + /// vector + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// This method is only available with the `std` or `alloc` feature. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]; + /// let vec = half_values.to_f32_vec(); + /// + /// assert_eq!(vec, vec![1., 2., 3., 4.]); + /// ``` + #[cfg(any(feature = "alloc", feature = "std"))] + #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] + fn to_f32_vec(&self) -> Vec<f32>; + + /// Converts all of the [`f16`] or [`bf16`] elements of `self` into [`f64`] values in a new + /// vector. + /// + /// The conversion operation is vectorized over the slice, meaning the conversion may be more + /// efficient than converting individual elements on some hardware that supports SIMD + /// conversions. See [crate documentation](crate) for more information on hardware conversion + /// support. + /// + /// This method is only available with the `std` or `alloc` feature. + /// + /// # Examples + /// ```rust + /// # use half::prelude::*; + /// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]; + /// let vec = half_values.to_f64_vec(); + /// + /// assert_eq!(vec, vec![1., 2., 3., 4.]); + /// ``` + #[cfg(feature = "alloc")] + #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] + fn to_f64_vec(&self) -> Vec<f64>; +} + +/// Extensions to `[u16]` slices to support reinterpret operations. +/// +/// This trait is sealed and cannot be implemented outside of this crate. +pub trait HalfBitsSliceExt: private::SealedHalfBitsSlice { + /// Reinterprets a slice of [`u16`] bits as a slice of [`f16`] or [`bf16`] numbers. + /// + /// `H` is the type to cast to, and must be either the [`f16`] or [`bf16`] type. + /// + /// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory + /// location as `self`. + /// + /// # Examples + /// + /// ```rust + /// # use half::prelude::*; + /// let int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]; + /// let float_buffer: &[f16] = int_buffer.reinterpret_cast(); + /// + /// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]); + /// + /// // You may have to specify the cast type directly if the compiler can't infer the type. + /// // The following is also valid in Rust. + /// let typed_buffer = int_buffer.reinterpret_cast::<f16>(); + /// ``` + fn reinterpret_cast<H>(&self) -> &[H] + where + H: crate::private::SealedHalf; + + /// Reinterprets a mutable slice of [`u16`] bits as a mutable slice of [`f16`] or [`bf16`] + /// numbers. + /// + /// `H` is the type to cast to, and must be either the [`f16`] or [`bf16`] type. + /// + /// This is a zero-copy operation. The transmuted slice has the same lifetime as the original, + /// which prevents mutating `self` as long as the returned `&mut [f16]` is borrowed. + /// + /// # Examples + /// + /// ```rust + /// # use half::prelude::*; + /// let mut int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]; + /// + /// { + /// let float_buffer: &mut [f16] = int_buffer.reinterpret_cast_mut(); + /// + /// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]); + /// + /// // Mutating the f16 slice will mutating the original + /// float_buffer[0] = f16::from_f32(0.); + /// } + /// + /// // Note that we need to drop float_buffer before using int_buffer again or we will get a borrow error. + /// assert_eq!(int_buffer, [f16::from_f32(0.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]); + /// + /// // You may have to specify the cast type directly if the compiler can't infer the type. + /// // The following is also valid in Rust. + /// let typed_buffer = int_buffer.reinterpret_cast_mut::<f16>(); + /// ``` + fn reinterpret_cast_mut<H>(&mut self) -> &mut [H] + where + H: crate::private::SealedHalf; +} + +mod private { + use crate::{bf16, f16}; + + pub trait SealedHalfFloatSlice {} + impl SealedHalfFloatSlice for [f16] {} + impl SealedHalfFloatSlice for [bf16] {} + + pub trait SealedHalfBitsSlice {} + impl SealedHalfBitsSlice for [u16] {} +} + +impl HalfFloatSliceExt for [f16] { + #[inline] + fn reinterpret_cast(&self) -> &[u16] { + let pointer = self.as_ptr() as *const u16; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts(pointer, length) } + } + + #[inline] + fn reinterpret_cast_mut(&mut self) -> &mut [u16] { + let pointer = self.as_ptr() as *mut u16; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts_mut(pointer, length) } + } + + fn convert_from_f32_slice(&mut self, src: &[f32]) { + assert_eq!( + self.len(), + src.len(), + "destination and source slices have different lengths" + ); + + let mut chunks = src.chunks_exact(4); + let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder + for chunk in &mut chunks { + let vec = convert::f32x4_to_f16x4(chunk); + let dst_idx = chunk_count * 4; + self[dst_idx..dst_idx + 4].copy_from_slice(vec.reinterpret_cast()); + chunk_count += 1; + } + + // Process remainder + if !chunks.remainder().is_empty() { + let mut buf = [0f32; 4]; + buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder()); + let vec = convert::f32x4_to_f16x4(&buf); + let dst_idx = chunk_count * 4; + self[dst_idx..dst_idx + chunks.remainder().len()] + .copy_from_slice(vec[..chunks.remainder().len()].reinterpret_cast()); + } + } + + fn convert_from_f64_slice(&mut self, src: &[f64]) { + assert_eq!( + self.len(), + src.len(), + "destination and source slices have different lengths" + ); + + let mut chunks = src.chunks_exact(4); + let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder + for chunk in &mut chunks { + let vec = convert::f64x4_to_f16x4(chunk); + let dst_idx = chunk_count * 4; + self[dst_idx..dst_idx + 4].copy_from_slice(vec.reinterpret_cast()); + chunk_count += 1; + } + + // Process remainder + if !chunks.remainder().is_empty() { + let mut buf = [0f64; 4]; + buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder()); + let vec = convert::f64x4_to_f16x4(&buf); + let dst_idx = chunk_count * 4; + self[dst_idx..dst_idx + chunks.remainder().len()] + .copy_from_slice(vec[..chunks.remainder().len()].reinterpret_cast()); + } + } + + fn convert_to_f32_slice(&self, dst: &mut [f32]) { + assert_eq!( + self.len(), + dst.len(), + "destination and source slices have different lengths" + ); + + let mut chunks = self.chunks_exact(4); + let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder + for chunk in &mut chunks { + let vec = convert::f16x4_to_f32x4(chunk.reinterpret_cast()); + let dst_idx = chunk_count * 4; + dst[dst_idx..dst_idx + 4].copy_from_slice(&vec); + chunk_count += 1; + } + + // Process remainder + if !chunks.remainder().is_empty() { + let mut buf = [0u16; 4]; + buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder().reinterpret_cast()); + let vec = convert::f16x4_to_f32x4(&buf); + let dst_idx = chunk_count * 4; + dst[dst_idx..dst_idx + chunks.remainder().len()] + .copy_from_slice(&vec[..chunks.remainder().len()]); + } + } + + fn convert_to_f64_slice(&self, dst: &mut [f64]) { + assert_eq!( + self.len(), + dst.len(), + "destination and source slices have different lengths" + ); + + let mut chunks = self.chunks_exact(4); + let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder + for chunk in &mut chunks { + let vec = convert::f16x4_to_f64x4(chunk.reinterpret_cast()); + let dst_idx = chunk_count * 4; + dst[dst_idx..dst_idx + 4].copy_from_slice(&vec); + chunk_count += 1; + } + + // Process remainder + if !chunks.remainder().is_empty() { + let mut buf = [0u16; 4]; + buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder().reinterpret_cast()); + let vec = convert::f16x4_to_f64x4(&buf); + let dst_idx = chunk_count * 4; + dst[dst_idx..dst_idx + chunks.remainder().len()] + .copy_from_slice(&vec[..chunks.remainder().len()]); + } + } + + #[cfg(any(feature = "alloc", feature = "std"))] + #[inline] + fn to_f32_vec(&self) -> Vec<f32> { + let mut vec = Vec::with_capacity(self.len()); + // SAFETY: convert will initialize every value in the vector without reading them, + // so this is safe to do instead of double initialize from resize, and we're setting it to + // same value as capacity. + unsafe { vec.set_len(self.len()) }; + self.convert_to_f32_slice(&mut vec); + vec + } + + #[cfg(any(feature = "alloc", feature = "std"))] + #[inline] + fn to_f64_vec(&self) -> Vec<f64> { + let mut vec = Vec::with_capacity(self.len()); + // SAFETY: convert will initialize every value in the vector without reading them, + // so this is safe to do instead of double initialize from resize, and we're setting it to + // same value as capacity. + unsafe { vec.set_len(self.len()) }; + self.convert_to_f64_slice(&mut vec); + vec + } +} + +impl HalfFloatSliceExt for [bf16] { + #[inline] + fn reinterpret_cast(&self) -> &[u16] { + let pointer = self.as_ptr() as *const u16; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts(pointer, length) } + } + + #[inline] + fn reinterpret_cast_mut(&mut self) -> &mut [u16] { + let pointer = self.as_ptr() as *mut u16; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts_mut(pointer, length) } + } + + fn convert_from_f32_slice(&mut self, src: &[f32]) { + assert_eq!( + self.len(), + src.len(), + "destination and source slices have different lengths" + ); + + // Just use regular loop here until there's any bf16 SIMD support. + for (i, f) in src.iter().enumerate() { + self[i] = bf16::from_f32(*f); + } + } + + fn convert_from_f64_slice(&mut self, src: &[f64]) { + assert_eq!( + self.len(), + src.len(), + "destination and source slices have different lengths" + ); + + // Just use regular loop here until there's any bf16 SIMD support. + for (i, f) in src.iter().enumerate() { + self[i] = bf16::from_f64(*f); + } + } + + fn convert_to_f32_slice(&self, dst: &mut [f32]) { + assert_eq!( + self.len(), + dst.len(), + "destination and source slices have different lengths" + ); + + // Just use regular loop here until there's any bf16 SIMD support. + for (i, f) in self.iter().enumerate() { + dst[i] = f.to_f32(); + } + } + + fn convert_to_f64_slice(&self, dst: &mut [f64]) { + assert_eq!( + self.len(), + dst.len(), + "destination and source slices have different lengths" + ); + + // Just use regular loop here until there's any bf16 SIMD support. + for (i, f) in self.iter().enumerate() { + dst[i] = f.to_f64(); + } + } + + #[cfg(any(feature = "alloc", feature = "std"))] + #[inline] + fn to_f32_vec(&self) -> Vec<f32> { + let mut vec = Vec::with_capacity(self.len()); + // SAFETY: convert will initialize every value in the vector without reading them, + // so this is safe to do instead of double initialize from resize, and we're setting it to + // same value as capacity. + unsafe { vec.set_len(self.len()) }; + self.convert_to_f32_slice(&mut vec); + vec + } + + #[cfg(any(feature = "alloc", feature = "std"))] + #[inline] + fn to_f64_vec(&self) -> Vec<f64> { + let mut vec = Vec::with_capacity(self.len()); + // SAFETY: convert will initialize every value in the vector without reading them, + // so this is safe to do instead of double initialize from resize, and we're setting it to + // same value as capacity. + unsafe { vec.set_len(self.len()) }; + self.convert_to_f64_slice(&mut vec); + vec + } +} + +impl HalfBitsSliceExt for [u16] { + // Since we sealed all the traits involved, these are safe. + #[inline] + fn reinterpret_cast<H>(&self) -> &[H] + where + H: crate::private::SealedHalf, + { + let pointer = self.as_ptr() as *const H; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts(pointer, length) } + } + + #[inline] + fn reinterpret_cast_mut<H>(&mut self) -> &mut [H] + where + H: crate::private::SealedHalf, + { + let pointer = self.as_mut_ptr() as *mut H; + let length = self.len(); + // SAFETY: We are reconstructing full length of original slice, using its same lifetime, + // and the size of elements are identical + unsafe { slice::from_raw_parts_mut(pointer, length) } + } +} + +#[doc(hidden)] +#[deprecated( + since = "1.4.0", + note = "use `HalfBitsSliceExt::reinterpret_cast_mut` instead" +)] +#[inline] +pub fn from_bits_mut(bits: &mut [u16]) -> &mut [f16] { + bits.reinterpret_cast_mut() +} + +#[doc(hidden)] +#[deprecated( + since = "1.4.0", + note = "use `HalfFloatSliceExt::reinterpret_cast_mut` instead" +)] +#[inline] +pub fn to_bits_mut(bits: &mut [f16]) -> &mut [u16] { + bits.reinterpret_cast_mut() +} + +#[doc(hidden)] +#[deprecated( + since = "1.4.0", + note = "use `HalfBitsSliceExt::reinterpret_cast` instead" +)] +#[inline] +pub fn from_bits(bits: &[u16]) -> &[f16] { + bits.reinterpret_cast() +} + +#[doc(hidden)] +#[deprecated( + since = "1.4.0", + note = "use `HalfFloatSliceExt::reinterpret_cast` instead" +)] +#[inline] +pub fn to_bits(bits: &[f16]) -> &[u16] { + bits.reinterpret_cast() +} + +#[allow(clippy::float_cmp)] +#[cfg(test)] +mod test { + use super::{HalfBitsSliceExt, HalfFloatSliceExt}; + use crate::{bf16, f16}; + + #[test] + fn test_slice_conversions_f16() { + let bits = &[ + f16::E.to_bits(), + f16::PI.to_bits(), + f16::EPSILON.to_bits(), + f16::FRAC_1_SQRT_2.to_bits(), + ]; + let numbers = &[f16::E, f16::PI, f16::EPSILON, f16::FRAC_1_SQRT_2]; + + // Convert from bits to numbers + let from_bits = bits.reinterpret_cast::<f16>(); + assert_eq!(from_bits, numbers); + + // Convert from numbers back to bits + let to_bits = from_bits.reinterpret_cast(); + assert_eq!(to_bits, bits); + } + + #[test] + fn test_mutablility_f16() { + let mut bits_array = [f16::PI.to_bits()]; + let bits = &mut bits_array[..]; + + { + // would not compile without these braces + let numbers = bits.reinterpret_cast_mut(); + numbers[0] = f16::E; + } + + assert_eq!(bits, &[f16::E.to_bits()]); + + bits[0] = f16::LN_2.to_bits(); + assert_eq!(bits, &[f16::LN_2.to_bits()]); + } + + #[test] + fn test_slice_conversions_bf16() { + let bits = &[ + bf16::E.to_bits(), + bf16::PI.to_bits(), + bf16::EPSILON.to_bits(), + bf16::FRAC_1_SQRT_2.to_bits(), + ]; + let numbers = &[bf16::E, bf16::PI, bf16::EPSILON, bf16::FRAC_1_SQRT_2]; + + // Convert from bits to numbers + let from_bits = bits.reinterpret_cast::<bf16>(); + assert_eq!(from_bits, numbers); + + // Convert from numbers back to bits + let to_bits = from_bits.reinterpret_cast(); + assert_eq!(to_bits, bits); + } + + #[test] + fn test_mutablility_bf16() { + let mut bits_array = [bf16::PI.to_bits()]; + let bits = &mut bits_array[..]; + + { + // would not compile without these braces + let numbers = bits.reinterpret_cast_mut(); + numbers[0] = bf16::E; + } + + assert_eq!(bits, &[bf16::E.to_bits()]); + + bits[0] = bf16::LN_2.to_bits(); + assert_eq!(bits, &[bf16::LN_2.to_bits()]); + } + + #[test] + fn slice_convert_f16_f32() { + // Exact chunks + let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.]; + let vf16 = [ + f16::from_f32(1.), + f16::from_f32(2.), + f16::from_f32(3.), + f16::from_f32(4.), + f16::from_f32(5.), + f16::from_f32(6.), + f16::from_f32(7.), + f16::from_f32(8.), + ]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; + let vf16 = [ + f16::from_f32(1.), + f16::from_f32(2.), + f16::from_f32(3.), + f16::from_f32(4.), + f16::from_f32(5.), + f16::from_f32(6.), + f16::from_f32(7.), + f16::from_f32(8.), + f16::from_f32(9.), + ]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf32 = [1., 2.]; + let vf16 = [f16::from_f32(1.), f16::from_f32(2.)]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + } + + #[test] + fn slice_convert_bf16_f32() { + // Exact chunks + let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.]; + let vf16 = [ + bf16::from_f32(1.), + bf16::from_f32(2.), + bf16::from_f32(3.), + bf16::from_f32(4.), + bf16::from_f32(5.), + bf16::from_f32(6.), + bf16::from_f32(7.), + bf16::from_f32(8.), + ]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; + let vf16 = [ + bf16::from_f32(1.), + bf16::from_f32(2.), + bf16::from_f32(3.), + bf16::from_f32(4.), + bf16::from_f32(5.), + bf16::from_f32(6.), + bf16::from_f32(7.), + bf16::from_f32(8.), + bf16::from_f32(9.), + ]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf32 = [1., 2.]; + let vf16 = [bf16::from_f32(1.), bf16::from_f32(2.)]; + let mut buf32 = vf32; + let mut buf16 = vf16; + + vf16.convert_to_f32_slice(&mut buf32); + assert_eq!(&vf32, &buf32); + + buf16.convert_from_f32_slice(&vf32); + assert_eq!(&vf16, &buf16); + } + + #[test] + fn slice_convert_f16_f64() { + // Exact chunks + let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.]; + let vf16 = [ + f16::from_f64(1.), + f16::from_f64(2.), + f16::from_f64(3.), + f16::from_f64(4.), + f16::from_f64(5.), + f16::from_f64(6.), + f16::from_f64(7.), + f16::from_f64(8.), + ]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; + let vf16 = [ + f16::from_f64(1.), + f16::from_f64(2.), + f16::from_f64(3.), + f16::from_f64(4.), + f16::from_f64(5.), + f16::from_f64(6.), + f16::from_f64(7.), + f16::from_f64(8.), + f16::from_f64(9.), + ]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf64 = [1., 2.]; + let vf16 = [f16::from_f64(1.), f16::from_f64(2.)]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + } + + #[test] + fn slice_convert_bf16_f64() { + // Exact chunks + let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.]; + let vf16 = [ + bf16::from_f64(1.), + bf16::from_f64(2.), + bf16::from_f64(3.), + bf16::from_f64(4.), + bf16::from_f64(5.), + bf16::from_f64(6.), + bf16::from_f64(7.), + bf16::from_f64(8.), + ]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; + let vf16 = [ + bf16::from_f64(1.), + bf16::from_f64(2.), + bf16::from_f64(3.), + bf16::from_f64(4.), + bf16::from_f64(5.), + bf16::from_f64(6.), + bf16::from_f64(7.), + bf16::from_f64(8.), + bf16::from_f64(9.), + ]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + + // Partial with chunks + let vf64 = [1., 2.]; + let vf16 = [bf16::from_f64(1.), bf16::from_f64(2.)]; + let mut buf64 = vf64; + let mut buf16 = vf16; + + vf16.convert_to_f64_slice(&mut buf64); + assert_eq!(&vf64, &buf64); + + buf16.convert_from_f64_slice(&vf64); + assert_eq!(&vf16, &buf16); + } + + #[test] + #[should_panic] + fn convert_from_f32_slice_len_mismatch_panics() { + let mut slice1 = [f16::ZERO; 3]; + let slice2 = [0f32; 4]; + slice1.convert_from_f32_slice(&slice2); + } + + #[test] + #[should_panic] + fn convert_from_f64_slice_len_mismatch_panics() { + let mut slice1 = [f16::ZERO; 3]; + let slice2 = [0f64; 4]; + slice1.convert_from_f64_slice(&slice2); + } + + #[test] + #[should_panic] + fn convert_to_f32_slice_len_mismatch_panics() { + let slice1 = [f16::ZERO; 3]; + let mut slice2 = [0f32; 4]; + slice1.convert_to_f32_slice(&mut slice2); + } + + #[test] + #[should_panic] + fn convert_to_f64_slice_len_mismatch_panics() { + let slice1 = [f16::ZERO; 3]; + let mut slice2 = [0f64; 4]; + slice1.convert_to_f64_slice(&mut slice2); + } +} |