diff options
Diffstat (limited to 'vendor/hashbrown-0.13.2/src/map.rs')
-rw-r--r-- | vendor/hashbrown-0.13.2/src/map.rs | 8512 |
1 files changed, 0 insertions, 8512 deletions
diff --git a/vendor/hashbrown-0.13.2/src/map.rs b/vendor/hashbrown-0.13.2/src/map.rs deleted file mode 100644 index e238bf66b..000000000 --- a/vendor/hashbrown-0.13.2/src/map.rs +++ /dev/null @@ -1,8512 +0,0 @@ -use crate::raw::{Allocator, Bucket, Global, RawDrain, RawIntoIter, RawIter, RawTable}; -use crate::{Equivalent, TryReserveError}; -use core::borrow::Borrow; -use core::fmt::{self, Debug}; -use core::hash::{BuildHasher, Hash}; -use core::iter::{FromIterator, FusedIterator}; -use core::marker::PhantomData; -use core::mem; -use core::ops::Index; - -/// Default hasher for `HashMap`. -#[cfg(feature = "ahash")] -pub type DefaultHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>; - -/// Dummy default hasher for `HashMap`. -#[cfg(not(feature = "ahash"))] -pub enum DefaultHashBuilder {} - -/// A hash map implemented with quadratic probing and SIMD lookup. -/// -/// The default hashing algorithm is currently [`AHash`], though this is -/// subject to change at any point in the future. This hash function is very -/// fast for all types of keys, but this algorithm will typically *not* protect -/// against attacks such as HashDoS. -/// -/// The hashing algorithm can be replaced on a per-`HashMap` basis using the -/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many -/// alternative algorithms are available on crates.io, such as the [`fnv`] crate. -/// -/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although -/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`. -/// If you implement these yourself, it is important that the following -/// property holds: -/// -/// ```text -/// k1 == k2 -> hash(k1) == hash(k2) -/// ``` -/// -/// In other words, if two keys are equal, their hashes must be equal. -/// -/// It is a logic error for a key to be modified in such a way that the key's -/// hash, as determined by the [`Hash`] trait, or its equality, as determined by -/// the [`Eq`] trait, changes while it is in the map. This is normally only -/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. -/// -/// It is also a logic error for the [`Hash`] implementation of a key to panic. -/// This is generally only possible if the trait is implemented manually. If a -/// panic does occur then the contents of the `HashMap` may become corrupted and -/// some items may be dropped from the table. -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// // Type inference lets us omit an explicit type signature (which -/// // would be `HashMap<String, String>` in this example). -/// let mut book_reviews = HashMap::new(); -/// -/// // Review some books. -/// book_reviews.insert( -/// "Adventures of Huckleberry Finn".to_string(), -/// "My favorite book.".to_string(), -/// ); -/// book_reviews.insert( -/// "Grimms' Fairy Tales".to_string(), -/// "Masterpiece.".to_string(), -/// ); -/// book_reviews.insert( -/// "Pride and Prejudice".to_string(), -/// "Very enjoyable.".to_string(), -/// ); -/// book_reviews.insert( -/// "The Adventures of Sherlock Holmes".to_string(), -/// "Eye lyked it alot.".to_string(), -/// ); -/// -/// // Check for a specific one. -/// // When collections store owned values (String), they can still be -/// // queried using references (&str). -/// if !book_reviews.contains_key("Les Misérables") { -/// println!("We've got {} reviews, but Les Misérables ain't one.", -/// book_reviews.len()); -/// } -/// -/// // oops, this review has a lot of spelling mistakes, let's delete it. -/// book_reviews.remove("The Adventures of Sherlock Holmes"); -/// -/// // Look up the values associated with some keys. -/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; -/// for &book in &to_find { -/// match book_reviews.get(book) { -/// Some(review) => println!("{}: {}", book, review), -/// None => println!("{} is unreviewed.", book) -/// } -/// } -/// -/// // Look up the value for a key (will panic if the key is not found). -/// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); -/// -/// // Iterate over everything. -/// for (book, review) in &book_reviews { -/// println!("{}: \"{}\"", book, review); -/// } -/// ``` -/// -/// `HashMap` also implements an [`Entry API`](#method.entry), which allows -/// for more complex methods of getting, setting, updating and removing keys and -/// their values: -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// // type inference lets us omit an explicit type signature (which -/// // would be `HashMap<&str, u8>` in this example). -/// let mut player_stats = HashMap::new(); -/// -/// fn random_stat_buff() -> u8 { -/// // could actually return some random value here - let's just return -/// // some fixed value for now -/// 42 -/// } -/// -/// // insert a key only if it doesn't already exist -/// player_stats.entry("health").or_insert(100); -/// -/// // insert a key using a function that provides a new value only if it -/// // doesn't already exist -/// player_stats.entry("defence").or_insert_with(random_stat_buff); -/// -/// // update a key, guarding against the key possibly not being set -/// let stat = player_stats.entry("attack").or_insert(100); -/// *stat += random_stat_buff(); -/// ``` -/// -/// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`]. -/// We must also derive [`PartialEq`]. -/// -/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html -/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html -/// [`PartialEq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html -/// [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html -/// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html -/// [`default`]: #method.default -/// [`with_hasher`]: #method.with_hasher -/// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher -/// [`fnv`]: https://crates.io/crates/fnv -/// [`AHash`]: https://crates.io/crates/ahash -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// #[derive(Hash, Eq, PartialEq, Debug)] -/// struct Viking { -/// name: String, -/// country: String, -/// } -/// -/// impl Viking { -/// /// Creates a new Viking. -/// fn new(name: &str, country: &str) -> Viking { -/// Viking { name: name.to_string(), country: country.to_string() } -/// } -/// } -/// -/// // Use a HashMap to store the vikings' health points. -/// let mut vikings = HashMap::new(); -/// -/// vikings.insert(Viking::new("Einar", "Norway"), 25); -/// vikings.insert(Viking::new("Olaf", "Denmark"), 24); -/// vikings.insert(Viking::new("Harald", "Iceland"), 12); -/// -/// // Use derived implementation to print the status of the vikings. -/// for (viking, health) in &vikings { -/// println!("{:?} has {} hp", viking, health); -/// } -/// ``` -/// -/// A `HashMap` with fixed list of elements can be initialized from an array: -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)] -/// .iter().cloned().collect(); -/// // use the values stored in map -/// ``` -pub struct HashMap<K, V, S = DefaultHashBuilder, A: Allocator + Clone = Global> { - pub(crate) hash_builder: S, - pub(crate) table: RawTable<(K, V), A>, -} - -impl<K: Clone, V: Clone, S: Clone, A: Allocator + Clone> Clone for HashMap<K, V, S, A> { - fn clone(&self) -> Self { - HashMap { - hash_builder: self.hash_builder.clone(), - table: self.table.clone(), - } - } - - fn clone_from(&mut self, source: &Self) { - self.table.clone_from(&source.table); - - // Update hash_builder only if we successfully cloned all elements. - self.hash_builder.clone_from(&source.hash_builder); - } -} - -/// Ensures that a single closure type across uses of this which, in turn prevents multiple -/// instances of any functions like RawTable::reserve from being generated -#[cfg_attr(feature = "inline-more", inline)] -pub(crate) fn make_hasher<Q, V, S>(hash_builder: &S) -> impl Fn(&(Q, V)) -> u64 + '_ -where - Q: Hash, - S: BuildHasher, -{ - move |val| make_hash::<Q, S>(hash_builder, &val.0) -} - -/// Ensures that a single closure type across uses of this which, in turn prevents multiple -/// instances of any functions like RawTable::reserve from being generated -#[cfg_attr(feature = "inline-more", inline)] -fn equivalent_key<Q, K, V>(k: &Q) -> impl Fn(&(K, V)) -> bool + '_ -where - Q: ?Sized + Equivalent<K>, -{ - move |x| k.equivalent(&x.0) -} - -/// Ensures that a single closure type across uses of this which, in turn prevents multiple -/// instances of any functions like RawTable::reserve from being generated -#[cfg_attr(feature = "inline-more", inline)] -fn equivalent<Q, K>(k: &Q) -> impl Fn(&K) -> bool + '_ -where - Q: ?Sized + Equivalent<K>, -{ - move |x| k.equivalent(x) -} - -#[cfg(not(feature = "nightly"))] -#[cfg_attr(feature = "inline-more", inline)] -pub(crate) fn make_hash<Q, S>(hash_builder: &S, val: &Q) -> u64 -where - Q: Hash + ?Sized, - S: BuildHasher, -{ - use core::hash::Hasher; - let mut state = hash_builder.build_hasher(); - val.hash(&mut state); - state.finish() -} - -#[cfg(feature = "nightly")] -#[cfg_attr(feature = "inline-more", inline)] -pub(crate) fn make_hash<Q, S>(hash_builder: &S, val: &Q) -> u64 -where - Q: Hash + ?Sized, - S: BuildHasher, -{ - hash_builder.hash_one(val) -} - -#[cfg(not(feature = "nightly"))] -#[cfg_attr(feature = "inline-more", inline)] -pub(crate) fn make_insert_hash<K, S>(hash_builder: &S, val: &K) -> u64 -where - K: Hash, - S: BuildHasher, -{ - use core::hash::Hasher; - let mut state = hash_builder.build_hasher(); - val.hash(&mut state); - state.finish() -} - -#[cfg(feature = "nightly")] -#[cfg_attr(feature = "inline-more", inline)] -pub(crate) fn make_insert_hash<K, S>(hash_builder: &S, val: &K) -> u64 -where - K: Hash, - S: BuildHasher, -{ - hash_builder.hash_one(val) -} - -#[cfg(feature = "ahash")] -impl<K, V> HashMap<K, V, DefaultHashBuilder> { - /// Creates an empty `HashMap`. - /// - /// The hash map is initially created with a capacity of 0, so it will not allocate until it - /// is first inserted into. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`], for example with - /// [`with_hasher`](HashMap::with_hasher) method. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let mut map: HashMap<&str, i32> = HashMap::new(); - /// assert_eq!(map.len(), 0); - /// assert_eq!(map.capacity(), 0); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn new() -> Self { - Self::default() - } - - /// Creates an empty `HashMap` with the specified capacity. - /// - /// The hash map will be able to hold at least `capacity` elements without - /// reallocating. If `capacity` is 0, the hash map will not allocate. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`], for example with - /// [`with_capacity_and_hasher`](HashMap::with_capacity_and_hasher) method. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10); - /// assert_eq!(map.len(), 0); - /// assert!(map.capacity() >= 10); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn with_capacity(capacity: usize) -> Self { - Self::with_capacity_and_hasher(capacity, DefaultHashBuilder::default()) - } -} - -#[cfg(feature = "ahash")] -impl<K, V, A: Allocator + Clone> HashMap<K, V, DefaultHashBuilder, A> { - /// Creates an empty `HashMap` using the given allocator. - /// - /// The hash map is initially created with a capacity of 0, so it will not allocate until it - /// is first inserted into. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`], for example with - /// [`with_hasher_in`](HashMap::with_hasher_in) method. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// # #[cfg(feature = "bumpalo")] - /// # fn test() { - /// use hashbrown::{HashMap, BumpWrapper}; - /// use bumpalo::Bump; - /// - /// let bump = Bump::new(); - /// let mut map = HashMap::new_in(BumpWrapper(&bump)); - /// - /// // The created HashMap holds none elements - /// assert_eq!(map.len(), 0); - /// - /// // The created HashMap also doesn't allocate memory - /// assert_eq!(map.capacity(), 0); - /// - /// // Now we insert element inside created HashMap - /// map.insert("One", 1); - /// // We can see that the HashMap holds 1 element - /// assert_eq!(map.len(), 1); - /// // And it also allocates some capacity - /// assert!(map.capacity() > 1); - /// # } - /// # fn main() { - /// # #[cfg(feature = "bumpalo")] - /// # test() - /// # } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn new_in(alloc: A) -> Self { - Self::with_hasher_in(DefaultHashBuilder::default(), alloc) - } - - /// Creates an empty `HashMap` with the specified capacity using the given allocator. - /// - /// The hash map will be able to hold at least `capacity` elements without - /// reallocating. If `capacity` is 0, the hash map will not allocate. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`], for example with - /// [`with_capacity_and_hasher_in`](HashMap::with_capacity_and_hasher_in) method. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// # #[cfg(feature = "bumpalo")] - /// # fn test() { - /// use hashbrown::{HashMap, BumpWrapper}; - /// use bumpalo::Bump; - /// - /// let bump = Bump::new(); - /// let mut map = HashMap::with_capacity_in(5, BumpWrapper(&bump)); - /// - /// // The created HashMap holds none elements - /// assert_eq!(map.len(), 0); - /// // But it can hold at least 5 elements without reallocating - /// let empty_map_capacity = map.capacity(); - /// assert!(empty_map_capacity >= 5); - /// - /// // Now we insert some 5 elements inside created HashMap - /// map.insert("One", 1); - /// map.insert("Two", 2); - /// map.insert("Three", 3); - /// map.insert("Four", 4); - /// map.insert("Five", 5); - /// - /// // We can see that the HashMap holds 5 elements - /// assert_eq!(map.len(), 5); - /// // But its capacity isn't changed - /// assert_eq!(map.capacity(), empty_map_capacity) - /// # } - /// # fn main() { - /// # #[cfg(feature = "bumpalo")] - /// # test() - /// # } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { - Self::with_capacity_and_hasher_in(capacity, DefaultHashBuilder::default(), alloc) - } -} - -impl<K, V, S> HashMap<K, V, S> { - /// Creates an empty `HashMap` which will use the given hash builder to hash - /// keys. - /// - /// The hash map is initially created with a capacity of 0, so it will not - /// allocate until it is first inserted into. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`]. - /// - /// The `hash_builder` passed should implement the [`BuildHasher`] trait for - /// the HashMap to be useful, see its documentation for details. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::DefaultHashBuilder; - /// - /// let s = DefaultHashBuilder::default(); - /// let mut map = HashMap::with_hasher(s); - /// assert_eq!(map.len(), 0); - /// assert_eq!(map.capacity(), 0); - /// - /// map.insert(1, 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub const fn with_hasher(hash_builder: S) -> Self { - Self { - hash_builder, - table: RawTable::new(), - } - } - - /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` - /// to hash the keys. - /// - /// The hash map will be able to hold at least `capacity` elements without - /// reallocating. If `capacity` is 0, the hash map will not allocate. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`]. - /// - /// The `hash_builder` passed should implement the [`BuildHasher`] trait for - /// the HashMap to be useful, see its documentation for details. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::DefaultHashBuilder; - /// - /// let s = DefaultHashBuilder::default(); - /// let mut map = HashMap::with_capacity_and_hasher(10, s); - /// assert_eq!(map.len(), 0); - /// assert!(map.capacity() >= 10); - /// - /// map.insert(1, 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self { - Self { - hash_builder, - table: RawTable::with_capacity(capacity), - } - } -} - -impl<K, V, S, A: Allocator + Clone> HashMap<K, V, S, A> { - /// Returns a reference to the underlying allocator. - #[inline] - pub fn allocator(&self) -> &A { - self.table.allocator() - } - - /// Creates an empty `HashMap` which will use the given hash builder to hash - /// keys. It will be allocated with the given allocator. - /// - /// The hash map is initially created with a capacity of 0, so it will not allocate until it - /// is first inserted into. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`]. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::DefaultHashBuilder; - /// - /// let s = DefaultHashBuilder::default(); - /// let mut map = HashMap::with_hasher(s); - /// map.insert(1, 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub const fn with_hasher_in(hash_builder: S, alloc: A) -> Self { - Self { - hash_builder, - table: RawTable::new_in(alloc), - } - } - - /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` - /// to hash the keys. It will be allocated with the given allocator. - /// - /// The hash map will be able to hold at least `capacity` elements without - /// reallocating. If `capacity` is 0, the hash map will not allocate. - /// - /// # HashDoS resistance - /// - /// The `hash_builder` normally use a fixed key by default and that does - /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. - /// Users who require HashDoS resistance should explicitly use - /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] - /// as the hasher when creating a [`HashMap`]. - /// - /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack - /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::DefaultHashBuilder; - /// - /// let s = DefaultHashBuilder::default(); - /// let mut map = HashMap::with_capacity_and_hasher(10, s); - /// map.insert(1, 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn with_capacity_and_hasher_in(capacity: usize, hash_builder: S, alloc: A) -> Self { - Self { - hash_builder, - table: RawTable::with_capacity_in(capacity, alloc), - } - } - - /// Returns a reference to the map's [`BuildHasher`]. - /// - /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::DefaultHashBuilder; - /// - /// let hasher = DefaultHashBuilder::default(); - /// let map: HashMap<i32, i32> = HashMap::with_hasher(hasher); - /// let hasher: &DefaultHashBuilder = map.hasher(); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn hasher(&self) -> &S { - &self.hash_builder - } - - /// Returns the number of elements the map can hold without reallocating. - /// - /// This number is a lower bound; the `HashMap<K, V>` might be able to hold - /// more, but is guaranteed to be able to hold at least this many. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let map: HashMap<i32, i32> = HashMap::with_capacity(100); - /// assert_eq!(map.len(), 0); - /// assert!(map.capacity() >= 100); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn capacity(&self) -> usize { - self.table.capacity() - } - - /// An iterator visiting all keys in arbitrary order. - /// The iterator element type is `&'a K`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// assert_eq!(map.len(), 3); - /// let mut vec: Vec<&str> = Vec::new(); - /// - /// for key in map.keys() { - /// println!("{}", key); - /// vec.push(*key); - /// } - /// - /// // The `Keys` iterator produces keys in arbitrary order, so the - /// // keys must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, ["a", "b", "c"]); - /// - /// assert_eq!(map.len(), 3); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn keys(&self) -> Keys<'_, K, V> { - Keys { inner: self.iter() } - } - - /// An iterator visiting all values in arbitrary order. - /// The iterator element type is `&'a V`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// assert_eq!(map.len(), 3); - /// let mut vec: Vec<i32> = Vec::new(); - /// - /// for val in map.values() { - /// println!("{}", val); - /// vec.push(*val); - /// } - /// - /// // The `Values` iterator produces values in arbitrary order, so the - /// // values must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [1, 2, 3]); - /// - /// assert_eq!(map.len(), 3); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn values(&self) -> Values<'_, K, V> { - Values { inner: self.iter() } - } - - /// An iterator visiting all values mutably in arbitrary order. - /// The iterator element type is `&'a mut V`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// - /// for val in map.values_mut() { - /// *val = *val + 10; - /// } - /// - /// assert_eq!(map.len(), 3); - /// let mut vec: Vec<i32> = Vec::new(); - /// - /// for val in map.values() { - /// println!("{}", val); - /// vec.push(*val); - /// } - /// - /// // The `Values` iterator produces values in arbitrary order, so the - /// // values must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [11, 12, 13]); - /// - /// assert_eq!(map.len(), 3); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { - ValuesMut { - inner: self.iter_mut(), - } - } - - /// An iterator visiting all key-value pairs in arbitrary order. - /// The iterator element type is `(&'a K, &'a V)`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// assert_eq!(map.len(), 3); - /// let mut vec: Vec<(&str, i32)> = Vec::new(); - /// - /// for (key, val) in map.iter() { - /// println!("key: {} val: {}", key, val); - /// vec.push((*key, *val)); - /// } - /// - /// // The `Iter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]); - /// - /// assert_eq!(map.len(), 3); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn iter(&self) -> Iter<'_, K, V> { - // Here we tie the lifetime of self to the iter. - unsafe { - Iter { - inner: self.table.iter(), - marker: PhantomData, - } - } - } - - /// An iterator visiting all key-value pairs in arbitrary order, - /// with mutable references to the values. - /// The iterator element type is `(&'a K, &'a mut V)`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// - /// // Update all values - /// for (_, val) in map.iter_mut() { - /// *val *= 2; - /// } - /// - /// assert_eq!(map.len(), 3); - /// let mut vec: Vec<(&str, i32)> = Vec::new(); - /// - /// for (key, val) in &map { - /// println!("key: {} val: {}", key, val); - /// vec.push((*key, *val)); - /// } - /// - /// // The `Iter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [("a", 2), ("b", 4), ("c", 6)]); - /// - /// assert_eq!(map.len(), 3); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { - // Here we tie the lifetime of self to the iter. - unsafe { - IterMut { - inner: self.table.iter(), - marker: PhantomData, - } - } - } - - #[cfg(test)] - #[cfg_attr(feature = "inline-more", inline)] - fn raw_capacity(&self) -> usize { - self.table.buckets() - } - - /// Returns the number of elements in the map. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut a = HashMap::new(); - /// assert_eq!(a.len(), 0); - /// a.insert(1, "a"); - /// assert_eq!(a.len(), 1); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn len(&self) -> usize { - self.table.len() - } - - /// Returns `true` if the map contains no elements. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut a = HashMap::new(); - /// assert!(a.is_empty()); - /// a.insert(1, "a"); - /// assert!(!a.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn is_empty(&self) -> bool { - self.len() == 0 - } - - /// Clears the map, returning all key-value pairs as an iterator. Keeps the - /// allocated memory for reuse. - /// - /// If the returned iterator is dropped before being fully consumed, it - /// drops the remaining key-value pairs. The returned iterator keeps a - /// mutable borrow on the vector to optimize its implementation. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut a = HashMap::new(); - /// a.insert(1, "a"); - /// a.insert(2, "b"); - /// let capacity_before_drain = a.capacity(); - /// - /// for (k, v) in a.drain().take(1) { - /// assert!(k == 1 || k == 2); - /// assert!(v == "a" || v == "b"); - /// } - /// - /// // As we can see, the map is empty and contains no element. - /// assert!(a.is_empty() && a.len() == 0); - /// // But map capacity is equal to old one. - /// assert_eq!(a.capacity(), capacity_before_drain); - /// - /// let mut a = HashMap::new(); - /// a.insert(1, "a"); - /// a.insert(2, "b"); - /// - /// { // Iterator is dropped without being consumed. - /// let d = a.drain(); - /// } - /// - /// // But the map is empty even if we do not use Drain iterator. - /// assert!(a.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn drain(&mut self) -> Drain<'_, K, V, A> { - Drain { - inner: self.table.drain(), - } - } - - /// Retains only the elements specified by the predicate. Keeps the - /// allocated memory for reuse. - /// - /// In other words, remove all pairs `(k, v)` such that `f(&k, &mut v)` returns `false`. - /// The elements are visited in unsorted (and unspecified) order. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect(); - /// assert_eq!(map.len(), 8); - /// - /// map.retain(|&k, _| k % 2 == 0); - /// - /// // We can see, that the number of elements inside map is changed. - /// assert_eq!(map.len(), 4); - /// - /// let mut vec: Vec<(i32, i32)> = map.iter().map(|(&k, &v)| (k, v)).collect(); - /// vec.sort_unstable(); - /// assert_eq!(vec, [(0, 0), (2, 20), (4, 40), (6, 60)]); - /// ``` - pub fn retain<F>(&mut self, mut f: F) - where - F: FnMut(&K, &mut V) -> bool, - { - // Here we only use `iter` as a temporary, preventing use-after-free - unsafe { - for item in self.table.iter() { - let &mut (ref key, ref mut value) = item.as_mut(); - if !f(key, value) { - self.table.erase(item); - } - } - } - } - - /// Drains elements which are true under the given predicate, - /// and returns an iterator over the removed items. - /// - /// In other words, move all pairs `(k, v)` such that `f(&k, &mut v)` returns `true` out - /// into another iterator. - /// - /// Note that `drain_filter` lets you mutate every value in the filter closure, regardless of - /// whether you choose to keep or remove it. - /// - /// When the returned DrainedFilter is dropped, any remaining elements that satisfy - /// the predicate are dropped from the table. - /// - /// It is unspecified how many more elements will be subjected to the closure - /// if a panic occurs in the closure, or a panic occurs while dropping an element, - /// or if the `DrainFilter` value is leaked. - /// - /// Keeps the allocated memory for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect(); - /// - /// let drained: HashMap<i32, i32> = map.drain_filter(|k, _v| k % 2 == 0).collect(); - /// - /// let mut evens = drained.keys().cloned().collect::<Vec<_>>(); - /// let mut odds = map.keys().cloned().collect::<Vec<_>>(); - /// evens.sort(); - /// odds.sort(); - /// - /// assert_eq!(evens, vec![0, 2, 4, 6]); - /// assert_eq!(odds, vec![1, 3, 5, 7]); - /// - /// let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect(); - /// - /// { // Iterator is dropped without being consumed. - /// let d = map.drain_filter(|k, _v| k % 2 != 0); - /// } - /// - /// // But the map lens have been reduced by half - /// // even if we do not use DrainFilter iterator. - /// assert_eq!(map.len(), 4); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn drain_filter<F>(&mut self, f: F) -> DrainFilter<'_, K, V, F, A> - where - F: FnMut(&K, &mut V) -> bool, - { - DrainFilter { - f, - inner: DrainFilterInner { - iter: unsafe { self.table.iter() }, - table: &mut self.table, - }, - } - } - - /// Clears the map, removing all key-value pairs. Keeps the allocated memory - /// for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut a = HashMap::new(); - /// a.insert(1, "a"); - /// let capacity_before_clear = a.capacity(); - /// - /// a.clear(); - /// - /// // Map is empty. - /// assert!(a.is_empty()); - /// // But map capacity is equal to old one. - /// assert_eq!(a.capacity(), capacity_before_clear); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn clear(&mut self) { - self.table.clear(); - } - - /// Creates a consuming iterator visiting all the keys in arbitrary order. - /// The map cannot be used after calling this. - /// The iterator element type is `K`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// - /// let mut vec: Vec<&str> = map.into_keys().collect(); - /// - /// // The `IntoKeys` iterator produces keys in arbitrary order, so the - /// // keys must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, ["a", "b", "c"]); - /// ``` - #[inline] - pub fn into_keys(self) -> IntoKeys<K, V, A> { - IntoKeys { - inner: self.into_iter(), - } - } - - /// Creates a consuming iterator visiting all the values in arbitrary order. - /// The map cannot be used after calling this. - /// The iterator element type is `V`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert("a", 1); - /// map.insert("b", 2); - /// map.insert("c", 3); - /// - /// let mut vec: Vec<i32> = map.into_values().collect(); - /// - /// // The `IntoValues` iterator produces values in arbitrary order, so - /// // the values must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [1, 2, 3]); - /// ``` - #[inline] - pub fn into_values(self) -> IntoValues<K, V, A> { - IntoValues { - inner: self.into_iter(), - } - } -} - -impl<K, V, S, A> HashMap<K, V, S, A> -where - K: Eq + Hash, - S: BuildHasher, - A: Allocator + Clone, -{ - /// Reserves capacity for at least `additional` more elements to be inserted - /// in the `HashMap`. The collection may reserve more space to avoid - /// frequent reallocations. - /// - /// # Panics - /// - /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program - /// in case of allocation error. Use [`try_reserve`](HashMap::try_reserve) instead - /// if you want to handle memory allocation failure. - /// - /// [`isize::MAX`]: https://doc.rust-lang.org/std/primitive.isize.html - /// [`abort`]: https://doc.rust-lang.org/alloc/alloc/fn.handle_alloc_error.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let mut map: HashMap<&str, i32> = HashMap::new(); - /// // Map is empty and doesn't allocate memory - /// assert_eq!(map.capacity(), 0); - /// - /// map.reserve(10); - /// - /// // And now map can hold at least 10 elements - /// assert!(map.capacity() >= 10); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn reserve(&mut self, additional: usize) { - self.table - .reserve(additional, make_hasher::<_, V, S>(&self.hash_builder)); - } - - /// Tries to reserve capacity for at least `additional` more elements to be inserted - /// in the given `HashMap<K,V>`. The collection may reserve more space to avoid - /// frequent reallocations. - /// - /// # Errors - /// - /// If the capacity overflows, or the allocator reports a failure, then an error - /// is returned. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, isize> = HashMap::new(); - /// // Map is empty and doesn't allocate memory - /// assert_eq!(map.capacity(), 0); - /// - /// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?"); - /// - /// // And now map can hold at least 10 elements - /// assert!(map.capacity() >= 10); - /// ``` - /// If the capacity overflows, or the allocator reports a failure, then an error - /// is returned: - /// ``` - /// # fn test() { - /// use hashbrown::HashMap; - /// use hashbrown::TryReserveError; - /// let mut map: HashMap<i32, i32> = HashMap::new(); - /// - /// match map.try_reserve(usize::MAX) { - /// Err(error) => match error { - /// TryReserveError::CapacityOverflow => {} - /// _ => panic!("TryReserveError::AllocError ?"), - /// }, - /// _ => panic!(), - /// } - /// # } - /// # fn main() { - /// # #[cfg(not(miri))] - /// # test() - /// # } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.table - .try_reserve(additional, make_hasher::<_, V, S>(&self.hash_builder)) - } - - /// Shrinks the capacity of the map as much as possible. It will drop - /// down as much as possible while maintaining the internal rules - /// and possibly leaving some space in accordance with the resize policy. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); - /// map.insert(1, 2); - /// map.insert(3, 4); - /// assert!(map.capacity() >= 100); - /// map.shrink_to_fit(); - /// assert!(map.capacity() >= 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn shrink_to_fit(&mut self) { - self.table - .shrink_to(0, make_hasher::<_, V, S>(&self.hash_builder)); - } - - /// Shrinks the capacity of the map with a lower limit. It will drop - /// down no lower than the supplied limit while maintaining the internal rules - /// and possibly leaving some space in accordance with the resize policy. - /// - /// This function does nothing if the current capacity is smaller than the - /// supplied minimum capacity. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); - /// map.insert(1, 2); - /// map.insert(3, 4); - /// assert!(map.capacity() >= 100); - /// map.shrink_to(10); - /// assert!(map.capacity() >= 10); - /// map.shrink_to(0); - /// assert!(map.capacity() >= 2); - /// map.shrink_to(10); - /// assert!(map.capacity() >= 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn shrink_to(&mut self, min_capacity: usize) { - self.table - .shrink_to(min_capacity, make_hasher::<_, V, S>(&self.hash_builder)); - } - - /// Gets the given key's corresponding entry in the map for in-place manipulation. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut letters = HashMap::new(); - /// - /// for ch in "a short treatise on fungi".chars() { - /// let counter = letters.entry(ch).or_insert(0); - /// *counter += 1; - /// } - /// - /// assert_eq!(letters[&'s'], 2); - /// assert_eq!(letters[&'t'], 3); - /// assert_eq!(letters[&'u'], 1); - /// assert_eq!(letters.get(&'y'), None); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A> { - let hash = make_insert_hash::<K, S>(&self.hash_builder, &key); - if let Some(elem) = self.table.find(hash, equivalent_key(&key)) { - Entry::Occupied(OccupiedEntry { - hash, - key: Some(key), - elem, - table: self, - }) - } else { - Entry::Vacant(VacantEntry { - hash, - key, - table: self, - }) - } - } - - /// Gets the given key's corresponding entry by reference in the map for in-place manipulation. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut words: HashMap<String, usize> = HashMap::new(); - /// let source = ["poneyland", "horseyland", "poneyland", "poneyland"]; - /// for (i, &s) in source.iter().enumerate() { - /// let counter = words.entry_ref(s).or_insert(0); - /// *counter += 1; - /// } - /// - /// assert_eq!(words["poneyland"], 3); - /// assert_eq!(words["horseyland"], 1); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn entry_ref<'a, 'b, Q: ?Sized>(&'a mut self, key: &'b Q) -> EntryRef<'a, 'b, K, Q, V, S, A> - where - Q: Hash + Equivalent<K>, - { - let hash = make_hash::<Q, S>(&self.hash_builder, key); - if let Some(elem) = self.table.find(hash, equivalent_key(key)) { - EntryRef::Occupied(OccupiedEntryRef { - hash, - key: Some(KeyOrRef::Borrowed(key)), - elem, - table: self, - }) - } else { - EntryRef::Vacant(VacantEntryRef { - hash, - key: KeyOrRef::Borrowed(key), - table: self, - }) - } - } - - /// Returns a reference to the value corresponding to the key. - /// - /// The key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, "a"); - /// assert_eq!(map.get(&1), Some(&"a")); - /// assert_eq!(map.get(&2), None); - /// ``` - #[inline] - pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> - where - Q: Hash + Equivalent<K>, - { - // Avoid `Option::map` because it bloats LLVM IR. - match self.get_inner(k) { - Some(&(_, ref v)) => Some(v), - None => None, - } - } - - /// Returns the key-value pair corresponding to the supplied key. - /// - /// The supplied key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, "a"); - /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); - /// assert_eq!(map.get_key_value(&2), None); - /// ``` - #[inline] - pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> - where - Q: Hash + Equivalent<K>, - { - // Avoid `Option::map` because it bloats LLVM IR. - match self.get_inner(k) { - Some(&(ref key, ref value)) => Some((key, value)), - None => None, - } - } - - #[inline] - fn get_inner<Q: ?Sized>(&self, k: &Q) -> Option<&(K, V)> - where - Q: Hash + Equivalent<K>, - { - if self.table.is_empty() { - None - } else { - let hash = make_hash::<Q, S>(&self.hash_builder, k); - self.table.get(hash, equivalent_key(k)) - } - } - - /// Returns the key-value pair corresponding to the supplied key, with a mutable reference to value. - /// - /// The supplied key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, "a"); - /// let (k, v) = map.get_key_value_mut(&1).unwrap(); - /// assert_eq!(k, &1); - /// assert_eq!(v, &mut "a"); - /// *v = "b"; - /// assert_eq!(map.get_key_value_mut(&1), Some((&1, &mut "b"))); - /// assert_eq!(map.get_key_value_mut(&2), None); - /// ``` - #[inline] - pub fn get_key_value_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<(&K, &mut V)> - where - Q: Hash + Equivalent<K>, - { - // Avoid `Option::map` because it bloats LLVM IR. - match self.get_inner_mut(k) { - Some(&mut (ref key, ref mut value)) => Some((key, value)), - None => None, - } - } - - /// Returns `true` if the map contains a value for the specified key. - /// - /// The key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, "a"); - /// assert_eq!(map.contains_key(&1), true); - /// assert_eq!(map.contains_key(&2), false); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool - where - Q: Hash + Equivalent<K>, - { - self.get_inner(k).is_some() - } - - /// Returns a mutable reference to the value corresponding to the key. - /// - /// The key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, "a"); - /// if let Some(x) = map.get_mut(&1) { - /// *x = "b"; - /// } - /// assert_eq!(map[&1], "b"); - /// - /// assert_eq!(map.get_mut(&2), None); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> - where - Q: Hash + Equivalent<K>, - { - // Avoid `Option::map` because it bloats LLVM IR. - match self.get_inner_mut(k) { - Some(&mut (_, ref mut v)) => Some(v), - None => None, - } - } - - #[inline] - fn get_inner_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut (K, V)> - where - Q: Hash + Equivalent<K>, - { - if self.table.is_empty() { - None - } else { - let hash = make_hash::<Q, S>(&self.hash_builder, k); - self.table.get_mut(hash, equivalent_key(k)) - } - } - - /// Attempts to get mutable references to `N` values in the map at once. - /// - /// Returns an array of length `N` with the results of each query. For soundness, at most one - /// mutable reference will be returned to any value. `None` will be returned if any of the - /// keys are duplicates or missing. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut libraries = HashMap::new(); - /// libraries.insert("Bodleian Library".to_string(), 1602); - /// libraries.insert("Athenæum".to_string(), 1807); - /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); - /// libraries.insert("Library of Congress".to_string(), 1800); - /// - /// let got = libraries.get_many_mut([ - /// "Athenæum", - /// "Library of Congress", - /// ]); - /// assert_eq!( - /// got, - /// Some([ - /// &mut 1807, - /// &mut 1800, - /// ]), - /// ); - /// - /// // Missing keys result in None - /// let got = libraries.get_many_mut([ - /// "Athenæum", - /// "New York Public Library", - /// ]); - /// assert_eq!(got, None); - /// - /// // Duplicate keys result in None - /// let got = libraries.get_many_mut([ - /// "Athenæum", - /// "Athenæum", - /// ]); - /// assert_eq!(got, None); - /// ``` - pub fn get_many_mut<Q: ?Sized, const N: usize>(&mut self, ks: [&Q; N]) -> Option<[&'_ mut V; N]> - where - Q: Hash + Equivalent<K>, - { - self.get_many_mut_inner(ks).map(|res| res.map(|(_, v)| v)) - } - - /// Attempts to get mutable references to `N` values in the map at once, without validating that - /// the values are unique. - /// - /// Returns an array of length `N` with the results of each query. `None` will be returned if - /// any of the keys are missing. - /// - /// For a safe alternative see [`get_many_mut`](`HashMap::get_many_mut`). - /// - /// # Safety - /// - /// Calling this method with overlapping keys is *[undefined behavior]* even if the resulting - /// references are not used. - /// - /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut libraries = HashMap::new(); - /// libraries.insert("Bodleian Library".to_string(), 1602); - /// libraries.insert("Athenæum".to_string(), 1807); - /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); - /// libraries.insert("Library of Congress".to_string(), 1800); - /// - /// let got = libraries.get_many_mut([ - /// "Athenæum", - /// "Library of Congress", - /// ]); - /// assert_eq!( - /// got, - /// Some([ - /// &mut 1807, - /// &mut 1800, - /// ]), - /// ); - /// - /// // Missing keys result in None - /// let got = libraries.get_many_mut([ - /// "Athenæum", - /// "New York Public Library", - /// ]); - /// assert_eq!(got, None); - /// ``` - pub unsafe fn get_many_unchecked_mut<Q: ?Sized, const N: usize>( - &mut self, - ks: [&Q; N], - ) -> Option<[&'_ mut V; N]> - where - Q: Hash + Equivalent<K>, - { - self.get_many_unchecked_mut_inner(ks) - .map(|res| res.map(|(_, v)| v)) - } - - /// Attempts to get mutable references to `N` values in the map at once, with immutable - /// references to the corresponding keys. - /// - /// Returns an array of length `N` with the results of each query. For soundness, at most one - /// mutable reference will be returned to any value. `None` will be returned if any of the keys - /// are duplicates or missing. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut libraries = HashMap::new(); - /// libraries.insert("Bodleian Library".to_string(), 1602); - /// libraries.insert("Athenæum".to_string(), 1807); - /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); - /// libraries.insert("Library of Congress".to_string(), 1800); - /// - /// let got = libraries.get_many_key_value_mut([ - /// "Bodleian Library", - /// "Herzogin-Anna-Amalia-Bibliothek", - /// ]); - /// assert_eq!( - /// got, - /// Some([ - /// (&"Bodleian Library".to_string(), &mut 1602), - /// (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691), - /// ]), - /// ); - /// // Missing keys result in None - /// let got = libraries.get_many_key_value_mut([ - /// "Bodleian Library", - /// "Gewandhaus", - /// ]); - /// assert_eq!(got, None); - /// - /// // Duplicate keys result in None - /// let got = libraries.get_many_key_value_mut([ - /// "Bodleian Library", - /// "Herzogin-Anna-Amalia-Bibliothek", - /// "Herzogin-Anna-Amalia-Bibliothek", - /// ]); - /// assert_eq!(got, None); - /// ``` - pub fn get_many_key_value_mut<Q: ?Sized, const N: usize>( - &mut self, - ks: [&Q; N], - ) -> Option<[(&'_ K, &'_ mut V); N]> - where - Q: Hash + Equivalent<K>, - { - self.get_many_mut_inner(ks) - .map(|res| res.map(|(k, v)| (&*k, v))) - } - - /// Attempts to get mutable references to `N` values in the map at once, with immutable - /// references to the corresponding keys, without validating that the values are unique. - /// - /// Returns an array of length `N` with the results of each query. `None` will be returned if - /// any of the keys are missing. - /// - /// For a safe alternative see [`get_many_key_value_mut`](`HashMap::get_many_key_value_mut`). - /// - /// # Safety - /// - /// Calling this method with overlapping keys is *[undefined behavior]* even if the resulting - /// references are not used. - /// - /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut libraries = HashMap::new(); - /// libraries.insert("Bodleian Library".to_string(), 1602); - /// libraries.insert("Athenæum".to_string(), 1807); - /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); - /// libraries.insert("Library of Congress".to_string(), 1800); - /// - /// let got = libraries.get_many_key_value_mut([ - /// "Bodleian Library", - /// "Herzogin-Anna-Amalia-Bibliothek", - /// ]); - /// assert_eq!( - /// got, - /// Some([ - /// (&"Bodleian Library".to_string(), &mut 1602), - /// (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691), - /// ]), - /// ); - /// // Missing keys result in None - /// let got = libraries.get_many_key_value_mut([ - /// "Bodleian Library", - /// "Gewandhaus", - /// ]); - /// assert_eq!(got, None); - /// ``` - pub unsafe fn get_many_key_value_unchecked_mut<Q: ?Sized, const N: usize>( - &mut self, - ks: [&Q; N], - ) -> Option<[(&'_ K, &'_ mut V); N]> - where - Q: Hash + Equivalent<K>, - { - self.get_many_unchecked_mut_inner(ks) - .map(|res| res.map(|(k, v)| (&*k, v))) - } - - fn get_many_mut_inner<Q: ?Sized, const N: usize>( - &mut self, - ks: [&Q; N], - ) -> Option<[&'_ mut (K, V); N]> - where - Q: Hash + Equivalent<K>, - { - let hashes = self.build_hashes_inner(ks); - self.table - .get_many_mut(hashes, |i, (k, _)| ks[i].equivalent(k)) - } - - unsafe fn get_many_unchecked_mut_inner<Q: ?Sized, const N: usize>( - &mut self, - ks: [&Q; N], - ) -> Option<[&'_ mut (K, V); N]> - where - Q: Hash + Equivalent<K>, - { - let hashes = self.build_hashes_inner(ks); - self.table - .get_many_unchecked_mut(hashes, |i, (k, _)| ks[i].equivalent(k)) - } - - fn build_hashes_inner<Q: ?Sized, const N: usize>(&self, ks: [&Q; N]) -> [u64; N] - where - Q: Hash + Equivalent<K>, - { - let mut hashes = [0_u64; N]; - for i in 0..N { - hashes[i] = make_hash::<Q, S>(&self.hash_builder, ks[i]); - } - hashes - } - - /// Inserts a key-value pair into the map. - /// - /// If the map did not have this key present, [`None`] is returned. - /// - /// If the map did have this key present, the value is updated, and the old - /// value is returned. The key is not updated, though; this matters for - /// types that can be `==` without being identical. See the [`std::collections`] - /// [module-level documentation] for more. - /// - /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None - /// [`std::collections`]: https://doc.rust-lang.org/std/collections/index.html - /// [module-level documentation]: https://doc.rust-lang.org/std/collections/index.html#insert-and-complex-keys - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// assert_eq!(map.insert(37, "a"), None); - /// assert_eq!(map.is_empty(), false); - /// - /// map.insert(37, "b"); - /// assert_eq!(map.insert(37, "c"), Some("b")); - /// assert_eq!(map[&37], "c"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(&mut self, k: K, v: V) -> Option<V> { - let hash = make_insert_hash::<K, S>(&self.hash_builder, &k); - if let Some((_, item)) = self.table.get_mut(hash, equivalent_key(&k)) { - Some(mem::replace(item, v)) - } else { - self.table - .insert(hash, (k, v), make_hasher::<_, V, S>(&self.hash_builder)); - None - } - } - - /// Insert a key-value pair into the map without checking - /// if the key already exists in the map. - /// - /// Returns a reference to the key and value just inserted. - /// - /// This operation is safe if a key does not exist in the map. - /// - /// However, if a key exists in the map already, the behavior is unspecified: - /// this operation may panic, loop forever, or any following operation with the map - /// may panic, loop forever or return arbitrary result. - /// - /// That said, this operation (and following operations) are guaranteed to - /// not violate memory safety. - /// - /// This operation is faster than regular insert, because it does not perform - /// lookup before insertion. - /// - /// This operation is useful during initial population of the map. - /// For example, when constructing a map from another map, we know - /// that keys are unique. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map1 = HashMap::new(); - /// assert_eq!(map1.insert(1, "a"), None); - /// assert_eq!(map1.insert(2, "b"), None); - /// assert_eq!(map1.insert(3, "c"), None); - /// assert_eq!(map1.len(), 3); - /// - /// let mut map2 = HashMap::new(); - /// - /// for (key, value) in map1.into_iter() { - /// map2.insert_unique_unchecked(key, value); - /// } - /// - /// let (key, value) = map2.insert_unique_unchecked(4, "d"); - /// assert_eq!(key, &4); - /// assert_eq!(value, &mut "d"); - /// *value = "e"; - /// - /// assert_eq!(map2[&1], "a"); - /// assert_eq!(map2[&2], "b"); - /// assert_eq!(map2[&3], "c"); - /// assert_eq!(map2[&4], "e"); - /// assert_eq!(map2.len(), 4); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V) { - let hash = make_insert_hash::<K, S>(&self.hash_builder, &k); - let bucket = self - .table - .insert(hash, (k, v), make_hasher::<_, V, S>(&self.hash_builder)); - let (k_ref, v_ref) = unsafe { bucket.as_mut() }; - (k_ref, v_ref) - } - - /// Tries to insert a key-value pair into the map, and returns - /// a mutable reference to the value in the entry. - /// - /// # Errors - /// - /// If the map already had this key present, nothing is updated, and - /// an error containing the occupied entry and the value is returned. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::OccupiedError; - /// - /// let mut map = HashMap::new(); - /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a"); - /// - /// match map.try_insert(37, "b") { - /// Err(OccupiedError { entry, value }) => { - /// assert_eq!(entry.key(), &37); - /// assert_eq!(entry.get(), &"a"); - /// assert_eq!(value, "b"); - /// } - /// _ => panic!() - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn try_insert( - &mut self, - key: K, - value: V, - ) -> Result<&mut V, OccupiedError<'_, K, V, S, A>> { - match self.entry(key) { - Entry::Occupied(entry) => Err(OccupiedError { entry, value }), - Entry::Vacant(entry) => Ok(entry.insert(value)), - } - } - - /// Removes a key from the map, returning the value at the key if the key - /// was previously in the map. Keeps the allocated memory for reuse. - /// - /// The key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.insert(1, "a"); - /// - /// assert_eq!(map.remove(&1), Some("a")); - /// assert_eq!(map.remove(&1), None); - /// - /// // Now map holds none elements - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> - where - Q: Hash + Equivalent<K>, - { - // Avoid `Option::map` because it bloats LLVM IR. - match self.remove_entry(k) { - Some((_, v)) => Some(v), - None => None, - } - } - - /// Removes a key from the map, returning the stored key and value if the - /// key was previously in the map. Keeps the allocated memory for reuse. - /// - /// The key may be any borrowed form of the map's key type, but - /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for - /// the key type. - /// - /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html - /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.insert(1, "a"); - /// - /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); - /// assert_eq!(map.remove(&1), None); - /// - /// // Now map hold none elements - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> - where - Q: Hash + Equivalent<K>, - { - let hash = make_hash::<Q, S>(&self.hash_builder, k); - self.table.remove_entry(hash, equivalent_key(k)) - } -} - -impl<K, V, S, A: Allocator + Clone> HashMap<K, V, S, A> { - /// Creates a raw entry builder for the HashMap. - /// - /// Raw entries provide the lowest level of control for searching and - /// manipulating a map. They must be manually initialized with a hash and - /// then manually searched. After this, insertions into a vacant entry - /// still require an owned key to be provided. - /// - /// Raw entries are useful for such exotic situations as: - /// - /// * Hash memoization - /// * Deferring the creation of an owned key until it is known to be required - /// * Using a search key that doesn't work with the Borrow trait - /// * Using custom comparison logic without newtype wrappers - /// - /// Because raw entries provide much more low-level control, it's much easier - /// to put the HashMap into an inconsistent state which, while memory-safe, - /// will cause the map to produce seemingly random results. Higher-level and - /// more foolproof APIs like `entry` should be preferred when possible. - /// - /// In particular, the hash used to initialized the raw entry must still be - /// consistent with the hash of the key that is ultimately stored in the entry. - /// This is because implementations of HashMap may need to recompute hashes - /// when resizing, at which point only the keys are available. - /// - /// Raw entries give mutable access to the keys. This must not be used - /// to modify how the key would compare or hash, as the map will not re-evaluate - /// where the key should go, meaning the keys may become "lost" if their - /// location does not reflect their state. For instance, if you change a key - /// so that the map now contains keys which compare equal, search may start - /// acting erratically, with two keys randomly masking each other. Implementations - /// are free to assume this doesn't happen (within the limits of memory-safety). - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map = HashMap::new(); - /// map.extend([("a", 100), ("b", 200), ("c", 300)]); - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// // Existing key (insert and update) - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => unreachable!(), - /// RawEntryMut::Occupied(mut view) => { - /// assert_eq!(view.get(), &100); - /// let v = view.get_mut(); - /// let new_v = (*v) * 10; - /// *v = new_v; - /// assert_eq!(view.insert(1111), 1000); - /// } - /// } - /// - /// assert_eq!(map[&"a"], 1111); - /// assert_eq!(map.len(), 3); - /// - /// // Existing key (take) - /// let hash = compute_hash(map.hasher(), &"c"); - /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") { - /// RawEntryMut::Vacant(_) => unreachable!(), - /// RawEntryMut::Occupied(view) => { - /// assert_eq!(view.remove_entry(), ("c", 300)); - /// } - /// } - /// assert_eq!(map.raw_entry().from_key(&"c"), None); - /// assert_eq!(map.len(), 2); - /// - /// // Nonexistent key (insert and update) - /// let key = "d"; - /// let hash = compute_hash(map.hasher(), &key); - /// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { - /// RawEntryMut::Occupied(_) => unreachable!(), - /// RawEntryMut::Vacant(view) => { - /// let (k, value) = view.insert("d", 4000); - /// assert_eq!((*k, *value), ("d", 4000)); - /// *value = 40000; - /// } - /// } - /// assert_eq!(map[&"d"], 40000); - /// assert_eq!(map.len(), 3); - /// - /// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { - /// RawEntryMut::Vacant(_) => unreachable!(), - /// RawEntryMut::Occupied(view) => { - /// assert_eq!(view.remove_entry(), ("d", 40000)); - /// } - /// } - /// assert_eq!(map.get(&"d"), None); - /// assert_eq!(map.len(), 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A> { - RawEntryBuilderMut { map: self } - } - - /// Creates a raw immutable entry builder for the HashMap. - /// - /// Raw entries provide the lowest level of control for searching and - /// manipulating a map. They must be manually initialized with a hash and - /// then manually searched. - /// - /// This is useful for - /// * Hash memoization - /// * Using a search key that doesn't work with the Borrow trait - /// * Using custom comparison logic without newtype wrappers - /// - /// Unless you are in such a situation, higher-level and more foolproof APIs like - /// `get` should be preferred. - /// - /// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.extend([("a", 100), ("b", 200), ("c", 300)]); - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// for k in ["a", "b", "c", "d", "e", "f"] { - /// let hash = compute_hash(map.hasher(), k); - /// let v = map.get(&k).cloned(); - /// let kv = v.as_ref().map(|v| (&k, v)); - /// - /// println!("Key: {} and value: {:?}", k, v); - /// - /// assert_eq!(map.raw_entry().from_key(&k), kv); - /// assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); - /// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A> { - RawEntryBuilder { map: self } - } - - /// Returns a mutable reference to the [`RawTable`] used underneath [`HashMap`]. - /// This function is only available if the `raw` feature of the crate is enabled. - /// - /// # Note - /// - /// Calling this function is safe, but using the raw hash table API may require - /// unsafe functions or blocks. - /// - /// `RawTable` API gives the lowest level of control under the map that can be useful - /// for extending the HashMap's API, but may lead to *[undefined behavior]*. - /// - /// [`HashMap`]: struct.HashMap.html - /// [`RawTable`]: crate::raw::RawTable - /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.extend([("a", 10), ("b", 20), ("c", 30)]); - /// assert_eq!(map.len(), 3); - /// - /// // Let's imagine that we have a value and a hash of the key, but not the key itself. - /// // However, if you want to remove the value from the map by hash and value, and you - /// // know exactly that the value is unique, then you can create a function like this: - /// fn remove_by_hash<K, V, S, F>( - /// map: &mut HashMap<K, V, S>, - /// hash: u64, - /// is_match: F, - /// ) -> Option<(K, V)> - /// where - /// F: Fn(&(K, V)) -> bool, - /// { - /// let raw_table = map.raw_table(); - /// match raw_table.find(hash, is_match) { - /// Some(bucket) => Some(unsafe { raw_table.remove(bucket) }), - /// None => None, - /// } - /// } - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let hash = compute_hash(map.hasher(), "a"); - /// assert_eq!(remove_by_hash(&mut map, hash, |(_, v)| *v == 10), Some(("a", 10))); - /// assert_eq!(map.get(&"a"), None); - /// assert_eq!(map.len(), 2); - /// ``` - #[cfg(feature = "raw")] - #[cfg_attr(feature = "inline-more", inline)] - pub fn raw_table(&mut self) -> &mut RawTable<(K, V), A> { - &mut self.table - } -} - -impl<K, V, S, A> PartialEq for HashMap<K, V, S, A> -where - K: Eq + Hash, - V: PartialEq, - S: BuildHasher, - A: Allocator + Clone, -{ - fn eq(&self, other: &Self) -> bool { - if self.len() != other.len() { - return false; - } - - self.iter() - .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) - } -} - -impl<K, V, S, A> Eq for HashMap<K, V, S, A> -where - K: Eq + Hash, - V: Eq, - S: BuildHasher, - A: Allocator + Clone, -{ -} - -impl<K, V, S, A> Debug for HashMap<K, V, S, A> -where - K: Debug, - V: Debug, - A: Allocator + Clone, -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_map().entries(self.iter()).finish() - } -} - -impl<K, V, S, A> Default for HashMap<K, V, S, A> -where - S: Default, - A: Default + Allocator + Clone, -{ - /// Creates an empty `HashMap<K, V, S, A>`, with the `Default` value for the hasher and allocator. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use std::collections::hash_map::RandomState; - /// - /// // You can specify all types of HashMap, including hasher and allocator. - /// // Created map is empty and don't allocate memory - /// let map: HashMap<u32, String> = Default::default(); - /// assert_eq!(map.capacity(), 0); - /// let map: HashMap<u32, String, RandomState> = HashMap::default(); - /// assert_eq!(map.capacity(), 0); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn default() -> Self { - Self::with_hasher_in(Default::default(), Default::default()) - } -} - -impl<K, Q: ?Sized, V, S, A> Index<&Q> for HashMap<K, V, S, A> -where - K: Eq + Hash, - Q: Hash + Equivalent<K>, - S: BuildHasher, - A: Allocator + Clone, -{ - type Output = V; - - /// Returns a reference to the value corresponding to the supplied key. - /// - /// # Panics - /// - /// Panics if the key is not present in the `HashMap`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let map: HashMap<_, _> = [("a", "One"), ("b", "Two")].into(); - /// - /// assert_eq!(map[&"a"], "One"); - /// assert_eq!(map[&"b"], "Two"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn index(&self, key: &Q) -> &V { - self.get(key).expect("no entry found for key") - } -} - -// The default hasher is used to match the std implementation signature -#[cfg(feature = "ahash")] -impl<K, V, A, const N: usize> From<[(K, V); N]> for HashMap<K, V, DefaultHashBuilder, A> -where - K: Eq + Hash, - A: Default + Allocator + Clone, -{ - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let map1 = HashMap::from([(1, 2), (3, 4)]); - /// let map2: HashMap<_, _> = [(1, 2), (3, 4)].into(); - /// assert_eq!(map1, map2); - /// ``` - fn from(arr: [(K, V); N]) -> Self { - arr.into_iter().collect() - } -} - -/// An iterator over the entries of a `HashMap` in arbitrary order. -/// The iterator element type is `(&'a K, &'a V)`. -/// -/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`iter`]: struct.HashMap.html#method.iter -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut iter = map.iter(); -/// let mut vec = vec![iter.next(), iter.next(), iter.next()]; -/// -/// // The `Iter` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some((&1, &"a")), Some((&2, &"b")), Some((&3, &"c"))]); -/// -/// // It is fused iterator -/// assert_eq!(iter.next(), None); -/// assert_eq!(iter.next(), None); -/// ``` -pub struct Iter<'a, K, V> { - inner: RawIter<(K, V)>, - marker: PhantomData<(&'a K, &'a V)>, -} - -// FIXME(#26925) Remove in favor of `#[derive(Clone)]` -impl<K, V> Clone for Iter<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn clone(&self) -> Self { - Iter { - inner: self.inner.clone(), - marker: PhantomData, - } - } -} - -impl<K: Debug, V: Debug> fmt::Debug for Iter<'_, K, V> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.clone()).finish() - } -} - -/// A mutable iterator over the entries of a `HashMap` in arbitrary order. -/// The iterator element type is `(&'a K, &'a mut V)`. -/// -/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`iter_mut`]: struct.HashMap.html#method.iter_mut -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let mut map: HashMap<_, _> = [(1, "One".to_owned()), (2, "Two".into())].into(); -/// -/// let mut iter = map.iter_mut(); -/// iter.next().map(|(_, v)| v.push_str(" Mississippi")); -/// iter.next().map(|(_, v)| v.push_str(" Mississippi")); -/// -/// // It is fused iterator -/// assert_eq!(iter.next(), None); -/// assert_eq!(iter.next(), None); -/// -/// assert_eq!(map.get(&1).unwrap(), &"One Mississippi".to_owned()); -/// assert_eq!(map.get(&2).unwrap(), &"Two Mississippi".to_owned()); -/// ``` -pub struct IterMut<'a, K, V> { - inner: RawIter<(K, V)>, - // To ensure invariance with respect to V - marker: PhantomData<(&'a K, &'a mut V)>, -} - -// We override the default Send impl which has K: Sync instead of K: Send. Both -// are correct, but this one is more general since it allows keys which -// implement Send but not Sync. -unsafe impl<K: Send, V: Send> Send for IterMut<'_, K, V> {} - -impl<K, V> IterMut<'_, K, V> { - /// Returns a iterator of references over the remaining items. - #[cfg_attr(feature = "inline-more", inline)] - pub(super) fn iter(&self) -> Iter<'_, K, V> { - Iter { - inner: self.inner.clone(), - marker: PhantomData, - } - } -} - -/// An owning iterator over the entries of a `HashMap` in arbitrary order. -/// The iterator element type is `(K, V)`. -/// -/// This `struct` is created by the [`into_iter`] method on [`HashMap`] -/// (provided by the [`IntoIterator`] trait). See its documentation for more. -/// The map cannot be used after calling that method. -/// -/// [`into_iter`]: struct.HashMap.html#method.into_iter -/// [`HashMap`]: struct.HashMap.html -/// [`IntoIterator`]: https://doc.rust-lang.org/core/iter/trait.IntoIterator.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut iter = map.into_iter(); -/// let mut vec = vec![iter.next(), iter.next(), iter.next()]; -/// -/// // The `IntoIter` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some((1, "a")), Some((2, "b")), Some((3, "c"))]); -/// -/// // It is fused iterator -/// assert_eq!(iter.next(), None); -/// assert_eq!(iter.next(), None); -/// ``` -pub struct IntoIter<K, V, A: Allocator + Clone = Global> { - inner: RawIntoIter<(K, V), A>, -} - -impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> { - /// Returns a iterator of references over the remaining items. - #[cfg_attr(feature = "inline-more", inline)] - pub(super) fn iter(&self) -> Iter<'_, K, V> { - Iter { - inner: self.inner.iter(), - marker: PhantomData, - } - } -} - -/// An owning iterator over the keys of a `HashMap` in arbitrary order. -/// The iterator element type is `K`. -/// -/// This `struct` is created by the [`into_keys`] method on [`HashMap`]. -/// See its documentation for more. -/// The map cannot be used after calling that method. -/// -/// [`into_keys`]: struct.HashMap.html#method.into_keys -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut keys = map.into_keys(); -/// let mut vec = vec![keys.next(), keys.next(), keys.next()]; -/// -/// // The `IntoKeys` iterator produces keys in arbitrary order, so the -/// // keys must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some(1), Some(2), Some(3)]); -/// -/// // It is fused iterator -/// assert_eq!(keys.next(), None); -/// assert_eq!(keys.next(), None); -/// ``` -pub struct IntoKeys<K, V, A: Allocator + Clone = Global> { - inner: IntoIter<K, V, A>, -} - -impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> { - type Item = K; - - #[inline] - fn next(&mut self) -> Option<K> { - self.inner.next().map(|(k, _)| k) - } - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} - -impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> { - #[inline] - fn len(&self) -> usize { - self.inner.len() - } -} - -impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {} - -impl<K: Debug, V: Debug, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list() - .entries(self.inner.iter().map(|(k, _)| k)) - .finish() - } -} - -/// An owning iterator over the values of a `HashMap` in arbitrary order. -/// The iterator element type is `V`. -/// -/// This `struct` is created by the [`into_values`] method on [`HashMap`]. -/// See its documentation for more. The map cannot be used after calling that method. -/// -/// [`into_values`]: struct.HashMap.html#method.into_values -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut values = map.into_values(); -/// let mut vec = vec![values.next(), values.next(), values.next()]; -/// -/// // The `IntoValues` iterator produces values in arbitrary order, so -/// // the values must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some("a"), Some("b"), Some("c")]); -/// -/// // It is fused iterator -/// assert_eq!(values.next(), None); -/// assert_eq!(values.next(), None); -/// ``` -pub struct IntoValues<K, V, A: Allocator + Clone = Global> { - inner: IntoIter<K, V, A>, -} - -impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> { - type Item = V; - - #[inline] - fn next(&mut self) -> Option<V> { - self.inner.next().map(|(_, v)| v) - } - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} - -impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> { - #[inline] - fn len(&self) -> usize { - self.inner.len() - } -} - -impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {} - -impl<K, V: Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list() - .entries(self.inner.iter().map(|(_, v)| v)) - .finish() - } -} - -/// An iterator over the keys of a `HashMap` in arbitrary order. -/// The iterator element type is `&'a K`. -/// -/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`keys`]: struct.HashMap.html#method.keys -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut keys = map.keys(); -/// let mut vec = vec![keys.next(), keys.next(), keys.next()]; -/// -/// // The `Keys` iterator produces keys in arbitrary order, so the -/// // keys must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some(&1), Some(&2), Some(&3)]); -/// -/// // It is fused iterator -/// assert_eq!(keys.next(), None); -/// assert_eq!(keys.next(), None); -/// ``` -pub struct Keys<'a, K, V> { - inner: Iter<'a, K, V>, -} - -// FIXME(#26925) Remove in favor of `#[derive(Clone)]` -impl<K, V> Clone for Keys<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn clone(&self) -> Self { - Keys { - inner: self.inner.clone(), - } - } -} - -impl<K: Debug, V> fmt::Debug for Keys<'_, K, V> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.clone()).finish() - } -} - -/// An iterator over the values of a `HashMap` in arbitrary order. -/// The iterator element type is `&'a V`. -/// -/// This `struct` is created by the [`values`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`values`]: struct.HashMap.html#method.values -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut values = map.values(); -/// let mut vec = vec![values.next(), values.next(), values.next()]; -/// -/// // The `Values` iterator produces values in arbitrary order, so the -/// // values must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some(&"a"), Some(&"b"), Some(&"c")]); -/// -/// // It is fused iterator -/// assert_eq!(values.next(), None); -/// assert_eq!(values.next(), None); -/// ``` -pub struct Values<'a, K, V> { - inner: Iter<'a, K, V>, -} - -// FIXME(#26925) Remove in favor of `#[derive(Clone)]` -impl<K, V> Clone for Values<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn clone(&self) -> Self { - Values { - inner: self.inner.clone(), - } - } -} - -impl<K, V: Debug> fmt::Debug for Values<'_, K, V> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.clone()).finish() - } -} - -/// A draining iterator over the entries of a `HashMap` in arbitrary -/// order. The iterator element type is `(K, V)`. -/// -/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`drain`]: struct.HashMap.html#method.drain -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let mut map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut drain_iter = map.drain(); -/// let mut vec = vec![drain_iter.next(), drain_iter.next(), drain_iter.next()]; -/// -/// // The `Drain` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some((1, "a")), Some((2, "b")), Some((3, "c"))]); -/// -/// // It is fused iterator -/// assert_eq!(drain_iter.next(), None); -/// assert_eq!(drain_iter.next(), None); -/// ``` -pub struct Drain<'a, K, V, A: Allocator + Clone = Global> { - inner: RawDrain<'a, (K, V), A>, -} - -impl<K, V, A: Allocator + Clone> Drain<'_, K, V, A> { - /// Returns a iterator of references over the remaining items. - #[cfg_attr(feature = "inline-more", inline)] - pub(super) fn iter(&self) -> Iter<'_, K, V> { - Iter { - inner: self.inner.iter(), - marker: PhantomData, - } - } -} - -/// A draining iterator over entries of a `HashMap` which don't satisfy the predicate -/// `f(&k, &mut v)` in arbitrary order. The iterator element type is `(K, V)`. -/// -/// This `struct` is created by the [`drain_filter`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`drain_filter`]: struct.HashMap.html#method.drain_filter -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let mut map: HashMap<i32, &str> = [(1, "a"), (2, "b"), (3, "c")].into(); -/// -/// let mut drain_filter = map.drain_filter(|k, _v| k % 2 != 0); -/// let mut vec = vec![drain_filter.next(), drain_filter.next()]; -/// -/// // The `DrainFilter` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [Some((1, "a")),Some((3, "c"))]); -/// -/// // It is fused iterator -/// assert_eq!(drain_filter.next(), None); -/// assert_eq!(drain_filter.next(), None); -/// drop(drain_filter); -/// -/// assert_eq!(map.len(), 1); -/// ``` -pub struct DrainFilter<'a, K, V, F, A: Allocator + Clone = Global> -where - F: FnMut(&K, &mut V) -> bool, -{ - f: F, - inner: DrainFilterInner<'a, K, V, A>, -} - -impl<'a, K, V, F, A> Drop for DrainFilter<'a, K, V, F, A> -where - F: FnMut(&K, &mut V) -> bool, - A: Allocator + Clone, -{ - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - while let Some(item) = self.next() { - let guard = ConsumeAllOnDrop(self); - drop(item); - mem::forget(guard); - } - } -} - -pub(super) struct ConsumeAllOnDrop<'a, T: Iterator>(pub &'a mut T); - -impl<T: Iterator> Drop for ConsumeAllOnDrop<'_, T> { - #[cfg_attr(feature = "inline-more", inline)] - fn drop(&mut self) { - self.0.for_each(drop); - } -} - -impl<K, V, F, A> Iterator for DrainFilter<'_, K, V, F, A> -where - F: FnMut(&K, &mut V) -> bool, - A: Allocator + Clone, -{ - type Item = (K, V); - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<Self::Item> { - self.inner.next(&mut self.f) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.inner.iter.size_hint().1) - } -} - -impl<K, V, F> FusedIterator for DrainFilter<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {} - -/// Portions of `DrainFilter` shared with `set::DrainFilter` -pub(super) struct DrainFilterInner<'a, K, V, A: Allocator + Clone> { - pub iter: RawIter<(K, V)>, - pub table: &'a mut RawTable<(K, V), A>, -} - -impl<K, V, A: Allocator + Clone> DrainFilterInner<'_, K, V, A> { - #[cfg_attr(feature = "inline-more", inline)] - pub(super) fn next<F>(&mut self, f: &mut F) -> Option<(K, V)> - where - F: FnMut(&K, &mut V) -> bool, - { - unsafe { - for item in &mut self.iter { - let &mut (ref key, ref mut value) = item.as_mut(); - if f(key, value) { - return Some(self.table.remove(item)); - } - } - } - None - } -} - -/// A mutable iterator over the values of a `HashMap` in arbitrary order. -/// The iterator element type is `&'a mut V`. -/// -/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its -/// documentation for more. -/// -/// [`values_mut`]: struct.HashMap.html#method.values_mut -/// [`HashMap`]: struct.HashMap.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::HashMap; -/// -/// let mut map: HashMap<_, _> = [(1, "One".to_owned()), (2, "Two".into())].into(); -/// -/// let mut values = map.values_mut(); -/// values.next().map(|v| v.push_str(" Mississippi")); -/// values.next().map(|v| v.push_str(" Mississippi")); -/// -/// // It is fused iterator -/// assert_eq!(values.next(), None); -/// assert_eq!(values.next(), None); -/// -/// assert_eq!(map.get(&1).unwrap(), &"One Mississippi".to_owned()); -/// assert_eq!(map.get(&2).unwrap(), &"Two Mississippi".to_owned()); -/// ``` -pub struct ValuesMut<'a, K, V> { - inner: IterMut<'a, K, V>, -} - -/// A builder for computing where in a [`HashMap`] a key-value pair would be stored. -/// -/// See the [`HashMap::raw_entry_mut`] docs for usage examples. -/// -/// [`HashMap::raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{RawEntryBuilderMut, RawEntryMut::Vacant, RawEntryMut::Occupied}; -/// use hashbrown::HashMap; -/// use core::hash::{BuildHasher, Hash}; -/// -/// let mut map = HashMap::new(); -/// map.extend([(1, 11), (2, 12), (3, 13), (4, 14), (5, 15), (6, 16)]); -/// assert_eq!(map.len(), 6); -/// -/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { -/// use core::hash::Hasher; -/// let mut state = hash_builder.build_hasher(); -/// key.hash(&mut state); -/// state.finish() -/// } -/// -/// let builder: RawEntryBuilderMut<_, _, _> = map.raw_entry_mut(); -/// -/// // Existing key -/// match builder.from_key(&6) { -/// Vacant(_) => unreachable!(), -/// Occupied(view) => assert_eq!(view.get(), &16), -/// } -/// -/// for key in 0..12 { -/// let hash = compute_hash(map.hasher(), &key); -/// let value = map.get(&key).cloned(); -/// let key_value = value.as_ref().map(|v| (&key, v)); -/// -/// println!("Key: {} and value: {:?}", key, value); -/// -/// match map.raw_entry_mut().from_key(&key) { -/// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), -/// Vacant(_) => assert_eq!(value, None), -/// } -/// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &key) { -/// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), -/// Vacant(_) => assert_eq!(value, None), -/// } -/// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { -/// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), -/// Vacant(_) => assert_eq!(value, None), -/// } -/// } -/// -/// assert_eq!(map.len(), 6); -/// ``` -pub struct RawEntryBuilderMut<'a, K, V, S, A: Allocator + Clone = Global> { - map: &'a mut HashMap<K, V, S, A>, -} - -/// A view into a single entry in a map, which may either be vacant or occupied. -/// -/// This is a lower-level version of [`Entry`]. -/// -/// This `enum` is constructed through the [`raw_entry_mut`] method on [`HashMap`], -/// then calling one of the methods of that [`RawEntryBuilderMut`]. -/// -/// [`HashMap`]: struct.HashMap.html -/// [`Entry`]: enum.Entry.html -/// [`raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut -/// [`RawEntryBuilderMut`]: struct.RawEntryBuilderMut.html -/// -/// # Examples -/// -/// ``` -/// use core::hash::{BuildHasher, Hash}; -/// use hashbrown::hash_map::{HashMap, RawEntryMut, RawOccupiedEntryMut}; -/// -/// let mut map = HashMap::new(); -/// map.extend([('a', 1), ('b', 2), ('c', 3)]); -/// assert_eq!(map.len(), 3); -/// -/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { -/// use core::hash::Hasher; -/// let mut state = hash_builder.build_hasher(); -/// key.hash(&mut state); -/// state.finish() -/// } -/// -/// // Existing key (insert) -/// let raw: RawEntryMut<_, _, _> = map.raw_entry_mut().from_key(&'a'); -/// let _raw_o: RawOccupiedEntryMut<_, _, _> = raw.insert('a', 10); -/// assert_eq!(map.len(), 3); -/// -/// // Nonexistent key (insert) -/// map.raw_entry_mut().from_key(&'d').insert('d', 40); -/// assert_eq!(map.len(), 4); -/// -/// // Existing key (or_insert) -/// let hash = compute_hash(map.hasher(), &'b'); -/// let kv = map -/// .raw_entry_mut() -/// .from_key_hashed_nocheck(hash, &'b') -/// .or_insert('b', 20); -/// assert_eq!(kv, (&mut 'b', &mut 2)); -/// *kv.1 = 20; -/// assert_eq!(map.len(), 4); -/// -/// // Nonexistent key (or_insert) -/// let hash = compute_hash(map.hasher(), &'e'); -/// let kv = map -/// .raw_entry_mut() -/// .from_key_hashed_nocheck(hash, &'e') -/// .or_insert('e', 50); -/// assert_eq!(kv, (&mut 'e', &mut 50)); -/// assert_eq!(map.len(), 5); -/// -/// // Existing key (or_insert_with) -/// let hash = compute_hash(map.hasher(), &'c'); -/// let kv = map -/// .raw_entry_mut() -/// .from_hash(hash, |q| q == &'c') -/// .or_insert_with(|| ('c', 30)); -/// assert_eq!(kv, (&mut 'c', &mut 3)); -/// *kv.1 = 30; -/// assert_eq!(map.len(), 5); -/// -/// // Nonexistent key (or_insert_with) -/// let hash = compute_hash(map.hasher(), &'f'); -/// let kv = map -/// .raw_entry_mut() -/// .from_hash(hash, |q| q == &'f') -/// .or_insert_with(|| ('f', 60)); -/// assert_eq!(kv, (&mut 'f', &mut 60)); -/// assert_eq!(map.len(), 6); -/// -/// println!("Our HashMap: {:?}", map); -/// -/// let mut vec: Vec<_> = map.iter().map(|(&k, &v)| (k, v)).collect(); -/// // The `Iter` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [('a', 10), ('b', 20), ('c', 30), ('d', 40), ('e', 50), ('f', 60)]); -/// ``` -pub enum RawEntryMut<'a, K, V, S, A: Allocator + Clone = Global> { - /// An occupied entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::{hash_map::RawEntryMut, HashMap}; - /// let mut map: HashMap<_, _> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => unreachable!(), - /// RawEntryMut::Occupied(_) => { } - /// } - /// ``` - Occupied(RawOccupiedEntryMut<'a, K, V, S, A>), - /// A vacant entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::{hash_map::RawEntryMut, HashMap}; - /// let mut map: HashMap<&str, i32> = HashMap::new(); - /// - /// match map.raw_entry_mut().from_key("a") { - /// RawEntryMut::Occupied(_) => unreachable!(), - /// RawEntryMut::Vacant(_) => { } - /// } - /// ``` - Vacant(RawVacantEntryMut<'a, K, V, S, A>), -} - -/// A view into an occupied entry in a `HashMap`. -/// It is part of the [`RawEntryMut`] enum. -/// -/// [`RawEntryMut`]: enum.RawEntryMut.html -/// -/// # Examples -/// -/// ``` -/// use core::hash::{BuildHasher, Hash}; -/// use hashbrown::hash_map::{HashMap, RawEntryMut, RawOccupiedEntryMut}; -/// -/// let mut map = HashMap::new(); -/// map.extend([("a", 10), ("b", 20), ("c", 30)]); -/// -/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { -/// use core::hash::Hasher; -/// let mut state = hash_builder.build_hasher(); -/// key.hash(&mut state); -/// state.finish() -/// } -/// -/// let _raw_o: RawOccupiedEntryMut<_, _, _> = map.raw_entry_mut().from_key(&"a").insert("a", 100); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (insert and update) -/// match map.raw_entry_mut().from_key(&"a") { -/// RawEntryMut::Vacant(_) => unreachable!(), -/// RawEntryMut::Occupied(mut view) => { -/// assert_eq!(view.get(), &100); -/// let v = view.get_mut(); -/// let new_v = (*v) * 10; -/// *v = new_v; -/// assert_eq!(view.insert(1111), 1000); -/// } -/// } -/// -/// assert_eq!(map[&"a"], 1111); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (take) -/// let hash = compute_hash(map.hasher(), &"c"); -/// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") { -/// RawEntryMut::Vacant(_) => unreachable!(), -/// RawEntryMut::Occupied(view) => { -/// assert_eq!(view.remove_entry(), ("c", 30)); -/// } -/// } -/// assert_eq!(map.raw_entry().from_key(&"c"), None); -/// assert_eq!(map.len(), 2); -/// -/// let hash = compute_hash(map.hasher(), &"b"); -/// match map.raw_entry_mut().from_hash(hash, |q| *q == "b") { -/// RawEntryMut::Vacant(_) => unreachable!(), -/// RawEntryMut::Occupied(view) => { -/// assert_eq!(view.remove_entry(), ("b", 20)); -/// } -/// } -/// assert_eq!(map.get(&"b"), None); -/// assert_eq!(map.len(), 1); -/// ``` -pub struct RawOccupiedEntryMut<'a, K, V, S, A: Allocator + Clone = Global> { - elem: Bucket<(K, V)>, - table: &'a mut RawTable<(K, V), A>, - hash_builder: &'a S, -} - -unsafe impl<K, V, S, A> Send for RawOccupiedEntryMut<'_, K, V, S, A> -where - K: Send, - V: Send, - S: Send, - A: Send + Allocator + Clone, -{ -} -unsafe impl<K, V, S, A> Sync for RawOccupiedEntryMut<'_, K, V, S, A> -where - K: Sync, - V: Sync, - S: Sync, - A: Sync + Allocator + Clone, -{ -} - -/// A view into a vacant entry in a `HashMap`. -/// It is part of the [`RawEntryMut`] enum. -/// -/// [`RawEntryMut`]: enum.RawEntryMut.html -/// -/// # Examples -/// -/// ``` -/// use core::hash::{BuildHasher, Hash}; -/// use hashbrown::hash_map::{HashMap, RawEntryMut, RawVacantEntryMut}; -/// -/// let mut map = HashMap::<&str, i32>::new(); -/// -/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { -/// use core::hash::Hasher; -/// let mut state = hash_builder.build_hasher(); -/// key.hash(&mut state); -/// state.finish() -/// } -/// -/// let raw_v: RawVacantEntryMut<_, _, _> = match map.raw_entry_mut().from_key(&"a") { -/// RawEntryMut::Vacant(view) => view, -/// RawEntryMut::Occupied(_) => unreachable!(), -/// }; -/// raw_v.insert("a", 10); -/// assert!(map[&"a"] == 10 && map.len() == 1); -/// -/// // Nonexistent key (insert and update) -/// let hash = compute_hash(map.hasher(), &"b"); -/// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"b") { -/// RawEntryMut::Occupied(_) => unreachable!(), -/// RawEntryMut::Vacant(view) => { -/// let (k, value) = view.insert("b", 2); -/// assert_eq!((*k, *value), ("b", 2)); -/// *value = 20; -/// } -/// } -/// assert!(map[&"b"] == 20 && map.len() == 2); -/// -/// let hash = compute_hash(map.hasher(), &"c"); -/// match map.raw_entry_mut().from_hash(hash, |q| *q == "c") { -/// RawEntryMut::Occupied(_) => unreachable!(), -/// RawEntryMut::Vacant(view) => { -/// assert_eq!(view.insert("c", 30), (&mut "c", &mut 30)); -/// } -/// } -/// assert!(map[&"c"] == 30 && map.len() == 3); -/// ``` -pub struct RawVacantEntryMut<'a, K, V, S, A: Allocator + Clone = Global> { - table: &'a mut RawTable<(K, V), A>, - hash_builder: &'a S, -} - -/// A builder for computing where in a [`HashMap`] a key-value pair would be stored. -/// -/// See the [`HashMap::raw_entry`] docs for usage examples. -/// -/// [`HashMap::raw_entry`]: struct.HashMap.html#method.raw_entry -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{HashMap, RawEntryBuilder}; -/// use core::hash::{BuildHasher, Hash}; -/// -/// let mut map = HashMap::new(); -/// map.extend([(1, 10), (2, 20), (3, 30)]); -/// -/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { -/// use core::hash::Hasher; -/// let mut state = hash_builder.build_hasher(); -/// key.hash(&mut state); -/// state.finish() -/// } -/// -/// for k in 0..6 { -/// let hash = compute_hash(map.hasher(), &k); -/// let v = map.get(&k).cloned(); -/// let kv = v.as_ref().map(|v| (&k, v)); -/// -/// println!("Key: {} and value: {:?}", k, v); -/// let builder: RawEntryBuilder<_, _, _> = map.raw_entry(); -/// assert_eq!(builder.from_key(&k), kv); -/// assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); -/// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); -/// } -/// ``` -pub struct RawEntryBuilder<'a, K, V, S, A: Allocator + Clone = Global> { - map: &'a HashMap<K, V, S, A>, -} - -impl<'a, K, V, S, A: Allocator + Clone> RawEntryBuilderMut<'a, K, V, S, A> { - /// Creates a `RawEntryMut` from the given key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let key = "a"; - /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_key(&key); - /// entry.insert(key, 100); - /// assert_eq!(map[&"a"], 100); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::wrong_self_convention)] - pub fn from_key<Q: ?Sized>(self, k: &Q) -> RawEntryMut<'a, K, V, S, A> - where - S: BuildHasher, - Q: Hash + Equivalent<K>, - { - let hash = make_hash::<Q, S>(&self.map.hash_builder, k); - self.from_key_hashed_nocheck(hash, k) - } - - /// Creates a `RawEntryMut` from the given key and its hash. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let key = "a"; - /// let hash = compute_hash(map.hasher(), &key); - /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_key_hashed_nocheck(hash, &key); - /// entry.insert(key, 100); - /// assert_eq!(map[&"a"], 100); - /// ``` - #[inline] - #[allow(clippy::wrong_self_convention)] - pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S, A> - where - Q: Equivalent<K>, - { - self.from_hash(hash, equivalent(k)) - } -} - -impl<'a, K, V, S, A: Allocator + Clone> RawEntryBuilderMut<'a, K, V, S, A> { - /// Creates a `RawEntryMut` from the given hash and matching function. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let key = "a"; - /// let hash = compute_hash(map.hasher(), &key); - /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_hash(hash, |k| k == &key); - /// entry.insert(key, 100); - /// assert_eq!(map[&"a"], 100); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::wrong_self_convention)] - pub fn from_hash<F>(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S, A> - where - for<'b> F: FnMut(&'b K) -> bool, - { - self.search(hash, is_match) - } - - #[cfg_attr(feature = "inline-more", inline)] - fn search<F>(self, hash: u64, mut is_match: F) -> RawEntryMut<'a, K, V, S, A> - where - for<'b> F: FnMut(&'b K) -> bool, - { - match self.map.table.find(hash, |(k, _)| is_match(k)) { - Some(elem) => RawEntryMut::Occupied(RawOccupiedEntryMut { - elem, - table: &mut self.map.table, - hash_builder: &self.map.hash_builder, - }), - None => RawEntryMut::Vacant(RawVacantEntryMut { - table: &mut self.map.table, - hash_builder: &self.map.hash_builder, - }), - } - } -} - -impl<'a, K, V, S, A: Allocator + Clone> RawEntryBuilder<'a, K, V, S, A> { - /// Access an immutable entry by key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// let key = "a"; - /// assert_eq!(map.raw_entry().from_key(&key), Some((&"a", &100))); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::wrong_self_convention)] - pub fn from_key<Q: ?Sized>(self, k: &Q) -> Option<(&'a K, &'a V)> - where - S: BuildHasher, - Q: Hash + Equivalent<K>, - { - let hash = make_hash::<Q, S>(&self.map.hash_builder, k); - self.from_key_hashed_nocheck(hash, k) - } - - /// Access an immutable entry by a key and its hash. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::HashMap; - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// let key = "a"; - /// let hash = compute_hash(map.hasher(), &key); - /// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &key), Some((&"a", &100))); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::wrong_self_convention)] - pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)> - where - Q: Equivalent<K>, - { - self.from_hash(hash, equivalent(k)) - } - - #[cfg_attr(feature = "inline-more", inline)] - fn search<F>(self, hash: u64, mut is_match: F) -> Option<(&'a K, &'a V)> - where - F: FnMut(&K) -> bool, - { - match self.map.table.get(hash, |(k, _)| is_match(k)) { - Some(&(ref key, ref value)) => Some((key, value)), - None => None, - } - } - - /// Access an immutable entry by hash and matching function. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::HashMap; - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// let key = "a"; - /// let hash = compute_hash(map.hasher(), &key); - /// assert_eq!(map.raw_entry().from_hash(hash, |k| k == &key), Some((&"a", &100))); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::wrong_self_convention)] - pub fn from_hash<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> - where - F: FnMut(&K) -> bool, - { - self.search(hash, is_match) - } -} - -impl<'a, K, V, S, A: Allocator + Clone> RawEntryMut<'a, K, V, S, A> { - /// Sets the value of the entry, and returns a RawOccupiedEntryMut. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let entry = map.raw_entry_mut().from_key("horseyland").insert("horseyland", 37); - /// - /// assert_eq!(entry.remove_entry(), ("horseyland", 37)); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, key: K, value: V) -> RawOccupiedEntryMut<'a, K, V, S, A> - where - K: Hash, - S: BuildHasher, - { - match self { - RawEntryMut::Occupied(mut entry) => { - entry.insert(value); - entry - } - RawEntryMut::Vacant(entry) => entry.insert_entry(key, value), - } - } - - /// Ensures a value is in the entry by inserting the default if empty, and returns - /// mutable references to the key and value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3); - /// assert_eq!(map["poneyland"], 3); - /// - /// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2; - /// assert_eq!(map["poneyland"], 6); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V) - where - K: Hash, - S: BuildHasher, - { - match self { - RawEntryMut::Occupied(entry) => entry.into_key_value(), - RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val), - } - } - - /// Ensures a value is in the entry by inserting the result of the default function if empty, - /// and returns mutable references to the key and value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, String> = HashMap::new(); - /// - /// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| { - /// ("poneyland", "hoho".to_string()) - /// }); - /// - /// assert_eq!(map["poneyland"], "hoho".to_string()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert_with<F>(self, default: F) -> (&'a mut K, &'a mut V) - where - F: FnOnce() -> (K, V), - K: Hash, - S: BuildHasher, - { - match self { - RawEntryMut::Occupied(entry) => entry.into_key_value(), - RawEntryMut::Vacant(entry) => { - let (k, v) = default(); - entry.insert(k, v) - } - } - } - - /// Provides in-place mutable access to an occupied entry before any - /// potential inserts into the map. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// map.raw_entry_mut() - /// .from_key("poneyland") - /// .and_modify(|_k, v| { *v += 1 }) - /// .or_insert("poneyland", 42); - /// assert_eq!(map["poneyland"], 42); - /// - /// map.raw_entry_mut() - /// .from_key("poneyland") - /// .and_modify(|_k, v| { *v += 1 }) - /// .or_insert("poneyland", 0); - /// assert_eq!(map["poneyland"], 43); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_modify<F>(self, f: F) -> Self - where - F: FnOnce(&mut K, &mut V), - { - match self { - RawEntryMut::Occupied(mut entry) => { - { - let (k, v) = entry.get_key_value_mut(); - f(k, v); - } - RawEntryMut::Occupied(entry) - } - RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry), - } - } - - /// Provides shared access to the key and owned access to the value of - /// an occupied entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::RawEntryMut; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// let entry = map - /// .raw_entry_mut() - /// .from_key("poneyland") - /// .and_replace_entry_with(|_k, _v| panic!()); - /// - /// match entry { - /// RawEntryMut::Vacant(_) => {}, - /// RawEntryMut::Occupied(_) => panic!(), - /// } - /// - /// map.insert("poneyland", 42); - /// - /// let entry = map - /// .raw_entry_mut() - /// .from_key("poneyland") - /// .and_replace_entry_with(|k, v| { - /// assert_eq!(k, &"poneyland"); - /// assert_eq!(v, 42); - /// Some(v + 1) - /// }); - /// - /// match entry { - /// RawEntryMut::Occupied(e) => { - /// assert_eq!(e.key(), &"poneyland"); - /// assert_eq!(e.get(), &43); - /// }, - /// RawEntryMut::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(map["poneyland"], 43); - /// - /// let entry = map - /// .raw_entry_mut() - /// .from_key("poneyland") - /// .and_replace_entry_with(|_k, _v| None); - /// - /// match entry { - /// RawEntryMut::Vacant(_) => {}, - /// RawEntryMut::Occupied(_) => panic!(), - /// } - /// - /// assert!(!map.contains_key("poneyland")); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_replace_entry_with<F>(self, f: F) -> Self - where - F: FnOnce(&K, V) -> Option<V>, - { - match self { - RawEntryMut::Occupied(entry) => entry.replace_entry_with(f), - RawEntryMut::Vacant(_) => self, - } - } -} - -impl<'a, K, V, S, A: Allocator + Clone> RawOccupiedEntryMut<'a, K, V, S, A> { - /// Gets a reference to the key in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => assert_eq!(o.key(), &"a") - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &K { - unsafe { &self.elem.as_ref().0 } - } - - /// Gets a mutable reference to the key in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// use std::rc::Rc; - /// - /// let key_one = Rc::new("a"); - /// let key_two = Rc::new("a"); - /// - /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); - /// map.insert(key_one.clone(), 10); - /// - /// assert_eq!(map[&key_one], 10); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// match map.raw_entry_mut().from_key(&key_one) { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(mut o) => { - /// *o.key_mut() = key_two.clone(); - /// } - /// } - /// assert_eq!(map[&key_two], 10); - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key_mut(&mut self) -> &mut K { - unsafe { &mut self.elem.as_mut().0 } - } - - /// Converts the entry into a mutable reference to the key in the entry - /// with a lifetime bound to the map itself. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// use std::rc::Rc; - /// - /// let key_one = Rc::new("a"); - /// let key_two = Rc::new("a"); - /// - /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); - /// map.insert(key_one.clone(), 10); - /// - /// assert_eq!(map[&key_one], 10); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// let inside_key: &mut Rc<&str>; - /// - /// match map.raw_entry_mut().from_key(&key_one) { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => inside_key = o.into_key(), - /// } - /// *inside_key = key_two.clone(); - /// - /// assert_eq!(map[&key_two], 10); - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_key(self) -> &'a mut K { - unsafe { &mut self.elem.as_mut().0 } - } - - /// Gets a reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => assert_eq!(o.get(), &100), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get(&self) -> &V { - unsafe { &self.elem.as_ref().1 } - } - - /// Converts the OccupiedEntry into a mutable reference to the value in the entry - /// with a lifetime bound to the map itself. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// let value: &mut u32; - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => value = o.into_mut(), - /// } - /// *value += 900; - /// - /// assert_eq!(map[&"a"], 1000); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_mut(self) -> &'a mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Gets a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(mut o) => *o.get_mut() += 900, - /// } - /// - /// assert_eq!(map[&"a"], 1000); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_mut(&mut self) -> &mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Gets a reference to the key and value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => assert_eq!(o.get_key_value(), (&"a", &100)), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_key_value(&self) -> (&K, &V) { - unsafe { - let &(ref key, ref value) = self.elem.as_ref(); - (key, value) - } - } - - /// Gets a mutable reference to the key and value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// use std::rc::Rc; - /// - /// let key_one = Rc::new("a"); - /// let key_two = Rc::new("a"); - /// - /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); - /// map.insert(key_one.clone(), 10); - /// - /// assert_eq!(map[&key_one], 10); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// match map.raw_entry_mut().from_key(&key_one) { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(mut o) => { - /// let (inside_key, inside_value) = o.get_key_value_mut(); - /// *inside_key = key_two.clone(); - /// *inside_value = 100; - /// } - /// } - /// assert_eq!(map[&key_two], 100); - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { - unsafe { - let &mut (ref mut key, ref mut value) = self.elem.as_mut(); - (key, value) - } - } - - /// Converts the OccupiedEntry into a mutable reference to the key and value in the entry - /// with a lifetime bound to the map itself. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// use std::rc::Rc; - /// - /// let key_one = Rc::new("a"); - /// let key_two = Rc::new("a"); - /// - /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); - /// map.insert(key_one.clone(), 10); - /// - /// assert_eq!(map[&key_one], 10); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// let inside_key: &mut Rc<&str>; - /// let inside_value: &mut u32; - /// match map.raw_entry_mut().from_key(&key_one) { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => { - /// let tuple = o.into_key_value(); - /// inside_key = tuple.0; - /// inside_value = tuple.1; - /// } - /// } - /// *inside_key = key_two.clone(); - /// *inside_value = 100; - /// assert_eq!(map[&key_two], 100); - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_key_value(self) -> (&'a mut K, &'a mut V) { - unsafe { - let &mut (ref mut key, ref mut value) = self.elem.as_mut(); - (key, value) - } - } - - /// Sets the value of the entry, and returns the entry's old value. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(mut o) => assert_eq!(o.insert(1000), 100), - /// } - /// - /// assert_eq!(map[&"a"], 1000); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(&mut self, value: V) -> V { - mem::replace(self.get_mut(), value) - } - - /// Sets the value of the entry, and returns the entry's old value. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// use std::rc::Rc; - /// - /// let key_one = Rc::new("a"); - /// let key_two = Rc::new("a"); - /// - /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); - /// map.insert(key_one.clone(), 10); - /// - /// assert_eq!(map[&key_one], 10); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// match map.raw_entry_mut().from_key(&key_one) { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(mut o) => { - /// let old_key = o.insert_key(key_two.clone()); - /// assert!(Rc::ptr_eq(&old_key, &key_one)); - /// } - /// } - /// assert_eq!(map[&key_two], 10); - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert_key(&mut self, key: K) -> K { - mem::replace(self.key_mut(), key) - } - - /// Takes the value out of the entry, and returns it. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => assert_eq!(o.remove(), 100), - /// } - /// assert_eq!(map.get(&"a"), None); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove(self) -> V { - self.remove_entry().1 - } - - /// Take the ownership of the key and value from the map. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => assert_eq!(o.remove_entry(), ("a", 100)), - /// } - /// assert_eq!(map.get(&"a"), None); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove_entry(self) -> (K, V) { - unsafe { self.table.remove(self.elem) } - } - - /// Provides shared access to the key and owned access to the value of - /// the entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// let raw_entry = match map.raw_entry_mut().from_key(&"a") { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => o.replace_entry_with(|k, v| { - /// assert_eq!(k, &"a"); - /// assert_eq!(v, 100); - /// Some(v + 900) - /// }), - /// }; - /// let raw_entry = match raw_entry { - /// RawEntryMut::Vacant(_) => panic!(), - /// RawEntryMut::Occupied(o) => o.replace_entry_with(|k, v| { - /// assert_eq!(k, &"a"); - /// assert_eq!(v, 1000); - /// None - /// }), - /// }; - /// match raw_entry { - /// RawEntryMut::Vacant(_) => { }, - /// RawEntryMut::Occupied(_) => panic!(), - /// }; - /// assert_eq!(map.get(&"a"), None); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_entry_with<F>(self, f: F) -> RawEntryMut<'a, K, V, S, A> - where - F: FnOnce(&K, V) -> Option<V>, - { - unsafe { - let still_occupied = self - .table - .replace_bucket_with(self.elem.clone(), |(key, value)| { - f(&key, value).map(|new_value| (key, new_value)) - }); - - if still_occupied { - RawEntryMut::Occupied(self) - } else { - RawEntryMut::Vacant(RawVacantEntryMut { - table: self.table, - hash_builder: self.hash_builder, - }) - } - } - } -} - -impl<'a, K, V, S, A: Allocator + Clone> RawVacantEntryMut<'a, K, V, S, A> { - /// Sets the value of the entry with the VacantEntry's key, - /// and returns a mutable reference to it. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// - /// match map.raw_entry_mut().from_key(&"c") { - /// RawEntryMut::Occupied(_) => panic!(), - /// RawEntryMut::Vacant(v) => assert_eq!(v.insert("c", 300), (&mut "c", &mut 300)), - /// } - /// - /// assert_eq!(map[&"c"], 300); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) - where - K: Hash, - S: BuildHasher, - { - let hash = make_insert_hash::<K, S>(self.hash_builder, &key); - self.insert_hashed_nocheck(hash, key, value) - } - - /// Sets the value of the entry with the VacantEntry's key, - /// and returns a mutable reference to it. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// - /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); - /// let key = "c"; - /// let hash = compute_hash(map.hasher(), &key); - /// - /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &key) { - /// RawEntryMut::Occupied(_) => panic!(), - /// RawEntryMut::Vacant(v) => assert_eq!( - /// v.insert_hashed_nocheck(hash, key, 300), - /// (&mut "c", &mut 300) - /// ), - /// } - /// - /// assert_eq!(map[&"c"], 300); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - #[allow(clippy::shadow_unrelated)] - pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) - where - K: Hash, - S: BuildHasher, - { - let &mut (ref mut k, ref mut v) = self.table.insert_entry( - hash, - (key, value), - make_hasher::<_, V, S>(self.hash_builder), - ); - (k, v) - } - - /// Set the value of an entry with a custom hasher function. - /// - /// # Examples - /// - /// ``` - /// use core::hash::{BuildHasher, Hash}; - /// use hashbrown::hash_map::{HashMap, RawEntryMut}; - /// - /// fn make_hasher<K, S>(hash_builder: &S) -> impl Fn(&K) -> u64 + '_ - /// where - /// K: Hash + ?Sized, - /// S: BuildHasher, - /// { - /// move |key: &K| { - /// use core::hash::Hasher; - /// let mut state = hash_builder.build_hasher(); - /// key.hash(&mut state); - /// state.finish() - /// } - /// } - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let key = "a"; - /// let hash_builder = map.hasher().clone(); - /// let hash = make_hasher(&hash_builder)(&key); - /// - /// match map.raw_entry_mut().from_hash(hash, |q| q == &key) { - /// RawEntryMut::Occupied(_) => panic!(), - /// RawEntryMut::Vacant(v) => assert_eq!( - /// v.insert_with_hasher(hash, key, 100, make_hasher(&hash_builder)), - /// (&mut "a", &mut 100) - /// ), - /// } - /// map.extend([("b", 200), ("c", 300), ("d", 400), ("e", 500), ("f", 600)]); - /// assert_eq!(map[&"a"], 100); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert_with_hasher<H>( - self, - hash: u64, - key: K, - value: V, - hasher: H, - ) -> (&'a mut K, &'a mut V) - where - H: Fn(&K) -> u64, - { - let &mut (ref mut k, ref mut v) = self - .table - .insert_entry(hash, (key, value), |x| hasher(&x.0)); - (k, v) - } - - #[cfg_attr(feature = "inline-more", inline)] - fn insert_entry(self, key: K, value: V) -> RawOccupiedEntryMut<'a, K, V, S, A> - where - K: Hash, - S: BuildHasher, - { - let hash = make_insert_hash::<K, S>(self.hash_builder, &key); - let elem = self.table.insert( - hash, - (key, value), - make_hasher::<_, V, S>(self.hash_builder), - ); - RawOccupiedEntryMut { - elem, - table: self.table, - hash_builder: self.hash_builder, - } - } -} - -impl<K, V, S, A: Allocator + Clone> Debug for RawEntryBuilderMut<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("RawEntryBuilder").finish() - } -} - -impl<K: Debug, V: Debug, S, A: Allocator + Clone> Debug for RawEntryMut<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - match *self { - RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(), - RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(), - } - } -} - -impl<K: Debug, V: Debug, S, A: Allocator + Clone> Debug for RawOccupiedEntryMut<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("RawOccupiedEntryMut") - .field("key", self.key()) - .field("value", self.get()) - .finish() - } -} - -impl<K, V, S, A: Allocator + Clone> Debug for RawVacantEntryMut<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("RawVacantEntryMut").finish() - } -} - -impl<K, V, S, A: Allocator + Clone> Debug for RawEntryBuilder<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("RawEntryBuilder").finish() - } -} - -/// A view into a single entry in a map, which may either be vacant or occupied. -/// -/// This `enum` is constructed from the [`entry`] method on [`HashMap`]. -/// -/// [`HashMap`]: struct.HashMap.html -/// [`entry`]: struct.HashMap.html#method.entry -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{Entry, HashMap, OccupiedEntry}; -/// -/// let mut map = HashMap::new(); -/// map.extend([("a", 10), ("b", 20), ("c", 30)]); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (insert) -/// let entry: Entry<_, _, _> = map.entry("a"); -/// let _raw_o: OccupiedEntry<_, _, _> = entry.insert(1); -/// assert_eq!(map.len(), 3); -/// // Nonexistent key (insert) -/// map.entry("d").insert(4); -/// -/// // Existing key (or_insert) -/// let v = map.entry("b").or_insert(2); -/// assert_eq!(std::mem::replace(v, 2), 20); -/// // Nonexistent key (or_insert) -/// map.entry("e").or_insert(5); -/// -/// // Existing key (or_insert_with) -/// let v = map.entry("c").or_insert_with(|| 3); -/// assert_eq!(std::mem::replace(v, 3), 30); -/// // Nonexistent key (or_insert_with) -/// map.entry("f").or_insert_with(|| 6); -/// -/// println!("Our HashMap: {:?}", map); -/// -/// let mut vec: Vec<_> = map.iter().map(|(&k, &v)| (k, v)).collect(); -/// // The `Iter` iterator produces items in arbitrary order, so the -/// // items must be sorted to test them against a sorted array. -/// vec.sort_unstable(); -/// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3), ("d", 4), ("e", 5), ("f", 6)]); -/// ``` -pub enum Entry<'a, K, V, S, A = Global> -where - A: Allocator + Clone, -{ - /// An occupied entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// let mut map: HashMap<_, _> = [("a", 100), ("b", 200)].into(); - /// - /// match map.entry("a") { - /// Entry::Vacant(_) => unreachable!(), - /// Entry::Occupied(_) => { } - /// } - /// ``` - Occupied(OccupiedEntry<'a, K, V, S, A>), - - /// A vacant entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// let mut map: HashMap<&str, i32> = HashMap::new(); - /// - /// match map.entry("a") { - /// Entry::Occupied(_) => unreachable!(), - /// Entry::Vacant(_) => { } - /// } - /// ``` - Vacant(VacantEntry<'a, K, V, S, A>), -} - -impl<K: Debug, V: Debug, S, A: Allocator + Clone> Debug for Entry<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - match *self { - Entry::Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), - Entry::Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), - } - } -} - -/// A view into an occupied entry in a `HashMap`. -/// It is part of the [`Entry`] enum. -/// -/// [`Entry`]: enum.Entry.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{Entry, HashMap, OccupiedEntry}; -/// -/// let mut map = HashMap::new(); -/// map.extend([("a", 10), ("b", 20), ("c", 30)]); -/// -/// let _entry_o: OccupiedEntry<_, _, _> = map.entry("a").insert(100); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (insert and update) -/// match map.entry("a") { -/// Entry::Vacant(_) => unreachable!(), -/// Entry::Occupied(mut view) => { -/// assert_eq!(view.get(), &100); -/// let v = view.get_mut(); -/// *v *= 10; -/// assert_eq!(view.insert(1111), 1000); -/// } -/// } -/// -/// assert_eq!(map[&"a"], 1111); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (take) -/// match map.entry("c") { -/// Entry::Vacant(_) => unreachable!(), -/// Entry::Occupied(view) => { -/// assert_eq!(view.remove_entry(), ("c", 30)); -/// } -/// } -/// assert_eq!(map.get(&"c"), None); -/// assert_eq!(map.len(), 2); -/// ``` -pub struct OccupiedEntry<'a, K, V, S, A: Allocator + Clone = Global> { - hash: u64, - key: Option<K>, - elem: Bucket<(K, V)>, - table: &'a mut HashMap<K, V, S, A>, -} - -unsafe impl<K, V, S, A> Send for OccupiedEntry<'_, K, V, S, A> -where - K: Send, - V: Send, - S: Send, - A: Send + Allocator + Clone, -{ -} -unsafe impl<K, V, S, A> Sync for OccupiedEntry<'_, K, V, S, A> -where - K: Sync, - V: Sync, - S: Sync, - A: Sync + Allocator + Clone, -{ -} - -impl<K: Debug, V: Debug, S, A: Allocator + Clone> Debug for OccupiedEntry<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("OccupiedEntry") - .field("key", self.key()) - .field("value", self.get()) - .finish() - } -} - -/// A view into a vacant entry in a `HashMap`. -/// It is part of the [`Entry`] enum. -/// -/// [`Entry`]: enum.Entry.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{Entry, HashMap, VacantEntry}; -/// -/// let mut map = HashMap::<&str, i32>::new(); -/// -/// let entry_v: VacantEntry<_, _, _> = match map.entry("a") { -/// Entry::Vacant(view) => view, -/// Entry::Occupied(_) => unreachable!(), -/// }; -/// entry_v.insert(10); -/// assert!(map[&"a"] == 10 && map.len() == 1); -/// -/// // Nonexistent key (insert and update) -/// match map.entry("b") { -/// Entry::Occupied(_) => unreachable!(), -/// Entry::Vacant(view) => { -/// let value = view.insert(2); -/// assert_eq!(*value, 2); -/// *value = 20; -/// } -/// } -/// assert!(map[&"b"] == 20 && map.len() == 2); -/// ``` -pub struct VacantEntry<'a, K, V, S, A: Allocator + Clone = Global> { - hash: u64, - key: K, - table: &'a mut HashMap<K, V, S, A>, -} - -impl<K: Debug, V, S, A: Allocator + Clone> Debug for VacantEntry<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_tuple("VacantEntry").field(self.key()).finish() - } -} - -/// A view into a single entry in a map, which may either be vacant or occupied, -/// with any borrowed form of the map's key type. -/// -/// -/// This `enum` is constructed from the [`entry_ref`] method on [`HashMap`]. -/// -/// [`Hash`] and [`Eq`] on the borrowed form of the map's key type *must* match those -/// for the key type. It also require that key may be constructed from the borrowed -/// form through the [`From`] trait. -/// -/// [`HashMap`]: struct.HashMap.html -/// [`entry_ref`]: struct.HashMap.html#method.entry_ref -/// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html -/// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html -/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{EntryRef, HashMap, OccupiedEntryRef}; -/// -/// let mut map = HashMap::new(); -/// map.extend([("a".to_owned(), 10), ("b".into(), 20), ("c".into(), 30)]); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (insert) -/// let key = String::from("a"); -/// let entry: EntryRef<_, _, _, _> = map.entry_ref(&key); -/// let _raw_o: OccupiedEntryRef<_, _, _, _> = entry.insert(1); -/// assert_eq!(map.len(), 3); -/// // Nonexistent key (insert) -/// map.entry_ref("d").insert(4); -/// -/// // Existing key (or_insert) -/// let v = map.entry_ref("b").or_insert(2); -/// assert_eq!(std::mem::replace(v, 2), 20); -/// // Nonexistent key (or_insert) -/// map.entry_ref("e").or_insert(5); -/// -/// // Existing key (or_insert_with) -/// let v = map.entry_ref("c").or_insert_with(|| 3); -/// assert_eq!(std::mem::replace(v, 3), 30); -/// // Nonexistent key (or_insert_with) -/// map.entry_ref("f").or_insert_with(|| 6); -/// -/// println!("Our HashMap: {:?}", map); -/// -/// for (key, value) in ["a", "b", "c", "d", "e", "f"].into_iter().zip(1..=6) { -/// assert_eq!(map[key], value) -/// } -/// assert_eq!(map.len(), 6); -/// ``` -pub enum EntryRef<'a, 'b, K, Q: ?Sized, V, S, A = Global> -where - A: Allocator + Clone, -{ - /// An occupied entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// let mut map: HashMap<_, _> = [("a".to_owned(), 100), ("b".into(), 200)].into(); - /// - /// match map.entry_ref("a") { - /// EntryRef::Vacant(_) => unreachable!(), - /// EntryRef::Occupied(_) => { } - /// } - /// ``` - Occupied(OccupiedEntryRef<'a, 'b, K, Q, V, S, A>), - - /// A vacant entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// let mut map: HashMap<String, i32> = HashMap::new(); - /// - /// match map.entry_ref("a") { - /// EntryRef::Occupied(_) => unreachable!(), - /// EntryRef::Vacant(_) => { } - /// } - /// ``` - Vacant(VacantEntryRef<'a, 'b, K, Q, V, S, A>), -} - -impl<K: Borrow<Q>, Q: ?Sized + Debug, V: Debug, S, A: Allocator + Clone> Debug - for EntryRef<'_, '_, K, Q, V, S, A> -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - match *self { - EntryRef::Vacant(ref v) => f.debug_tuple("EntryRef").field(v).finish(), - EntryRef::Occupied(ref o) => f.debug_tuple("EntryRef").field(o).finish(), - } - } -} - -enum KeyOrRef<'a, K, Q: ?Sized> { - Borrowed(&'a Q), - Owned(K), -} - -impl<'a, K, Q: ?Sized> KeyOrRef<'a, K, Q> { - fn into_owned(self) -> K - where - K: From<&'a Q>, - { - match self { - Self::Borrowed(borrowed) => borrowed.into(), - Self::Owned(owned) => owned, - } - } -} - -impl<'a, K: Borrow<Q>, Q: ?Sized> AsRef<Q> for KeyOrRef<'a, K, Q> { - fn as_ref(&self) -> &Q { - match self { - Self::Borrowed(borrowed) => borrowed, - Self::Owned(owned) => owned.borrow(), - } - } -} - -/// A view into an occupied entry in a `HashMap`. -/// It is part of the [`EntryRef`] enum. -/// -/// [`EntryRef`]: enum.EntryRef.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{EntryRef, HashMap, OccupiedEntryRef}; -/// -/// let mut map = HashMap::new(); -/// map.extend([("a".to_owned(), 10), ("b".into(), 20), ("c".into(), 30)]); -/// -/// let key = String::from("a"); -/// let _entry_o: OccupiedEntryRef<_, _, _, _> = map.entry_ref(&key).insert(100); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (insert and update) -/// match map.entry_ref("a") { -/// EntryRef::Vacant(_) => unreachable!(), -/// EntryRef::Occupied(mut view) => { -/// assert_eq!(view.get(), &100); -/// let v = view.get_mut(); -/// *v *= 10; -/// assert_eq!(view.insert(1111), 1000); -/// } -/// } -/// -/// assert_eq!(map["a"], 1111); -/// assert_eq!(map.len(), 3); -/// -/// // Existing key (take) -/// match map.entry_ref("c") { -/// EntryRef::Vacant(_) => unreachable!(), -/// EntryRef::Occupied(view) => { -/// assert_eq!(view.remove_entry(), ("c".to_owned(), 30)); -/// } -/// } -/// assert_eq!(map.get("c"), None); -/// assert_eq!(map.len(), 2); -/// ``` -pub struct OccupiedEntryRef<'a, 'b, K, Q: ?Sized, V, S, A: Allocator + Clone = Global> { - hash: u64, - key: Option<KeyOrRef<'b, K, Q>>, - elem: Bucket<(K, V)>, - table: &'a mut HashMap<K, V, S, A>, -} - -unsafe impl<'a, 'b, K, Q, V, S, A> Send for OccupiedEntryRef<'a, 'b, K, Q, V, S, A> -where - K: Send, - Q: Sync + ?Sized, - V: Send, - S: Send, - A: Send + Allocator + Clone, -{ -} -unsafe impl<'a, 'b, K, Q, V, S, A> Sync for OccupiedEntryRef<'a, 'b, K, Q, V, S, A> -where - K: Sync, - Q: Sync + ?Sized, - V: Sync, - S: Sync, - A: Sync + Allocator + Clone, -{ -} - -impl<K: Borrow<Q>, Q: ?Sized + Debug, V: Debug, S, A: Allocator + Clone> Debug - for OccupiedEntryRef<'_, '_, K, Q, V, S, A> -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("OccupiedEntryRef") - .field("key", &self.key()) - .field("value", &self.get()) - .finish() - } -} - -/// A view into a vacant entry in a `HashMap`. -/// It is part of the [`EntryRef`] enum. -/// -/// [`EntryRef`]: enum.EntryRef.html -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{EntryRef, HashMap, VacantEntryRef}; -/// -/// let mut map = HashMap::<String, i32>::new(); -/// -/// let entry_v: VacantEntryRef<_, _, _, _> = match map.entry_ref("a") { -/// EntryRef::Vacant(view) => view, -/// EntryRef::Occupied(_) => unreachable!(), -/// }; -/// entry_v.insert(10); -/// assert!(map["a"] == 10 && map.len() == 1); -/// -/// // Nonexistent key (insert and update) -/// match map.entry_ref("b") { -/// EntryRef::Occupied(_) => unreachable!(), -/// EntryRef::Vacant(view) => { -/// let value = view.insert(2); -/// assert_eq!(*value, 2); -/// *value = 20; -/// } -/// } -/// assert!(map["b"] == 20 && map.len() == 2); -/// ``` -pub struct VacantEntryRef<'a, 'b, K, Q: ?Sized, V, S, A: Allocator + Clone = Global> { - hash: u64, - key: KeyOrRef<'b, K, Q>, - table: &'a mut HashMap<K, V, S, A>, -} - -impl<K: Borrow<Q>, Q: ?Sized + Debug, V, S, A: Allocator + Clone> Debug - for VacantEntryRef<'_, '_, K, Q, V, S, A> -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_tuple("VacantEntryRef").field(&self.key()).finish() - } -} - -/// The error returned by [`try_insert`](HashMap::try_insert) when the key already exists. -/// -/// Contains the occupied entry, and the value that was not inserted. -/// -/// # Examples -/// -/// ``` -/// use hashbrown::hash_map::{HashMap, OccupiedError}; -/// -/// let mut map: HashMap<_, _> = [("a", 10), ("b", 20)].into(); -/// -/// // try_insert method returns mutable reference to the value if keys are vacant, -/// // but if the map did have key present, nothing is updated, and the provided -/// // value is returned inside `Err(_)` variant -/// match map.try_insert("a", 100) { -/// Err(OccupiedError { mut entry, value }) => { -/// assert_eq!(entry.key(), &"a"); -/// assert_eq!(value, 100); -/// assert_eq!(entry.insert(100), 10) -/// } -/// _ => unreachable!(), -/// } -/// assert_eq!(map[&"a"], 100); -/// ``` -pub struct OccupiedError<'a, K, V, S, A: Allocator + Clone = Global> { - /// The entry in the map that was already occupied. - pub entry: OccupiedEntry<'a, K, V, S, A>, - /// The value which was not inserted, because the entry was already occupied. - pub value: V, -} - -impl<K: Debug, V: Debug, S, A: Allocator + Clone> Debug for OccupiedError<'_, K, V, S, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_struct("OccupiedError") - .field("key", self.entry.key()) - .field("old_value", self.entry.get()) - .field("new_value", &self.value) - .finish() - } -} - -impl<'a, K: Debug, V: Debug, S, A: Allocator + Clone> fmt::Display - for OccupiedError<'a, K, V, S, A> -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - write!( - f, - "failed to insert {:?}, key {:?} already exists with value {:?}", - self.value, - self.entry.key(), - self.entry.get(), - ) - } -} - -impl<'a, K, V, S, A: Allocator + Clone> IntoIterator for &'a HashMap<K, V, S, A> { - type Item = (&'a K, &'a V); - type IntoIter = Iter<'a, K, V>; - - /// Creates an iterator over the entries of a `HashMap` in arbitrary order. - /// The iterator element type is `(&'a K, &'a V)`. - /// - /// Return the same `Iter` struct as by the [`iter`] method on [`HashMap`]. - /// - /// [`iter`]: struct.HashMap.html#method.iter - /// [`HashMap`]: struct.HashMap.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let map_one: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); - /// let mut map_two = HashMap::new(); - /// - /// for (key, value) in &map_one { - /// println!("Key: {}, Value: {}", key, value); - /// map_two.insert_unique_unchecked(*key, *value); - /// } - /// - /// assert_eq!(map_one, map_two); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn into_iter(self) -> Iter<'a, K, V> { - self.iter() - } -} - -impl<'a, K, V, S, A: Allocator + Clone> IntoIterator for &'a mut HashMap<K, V, S, A> { - type Item = (&'a K, &'a mut V); - type IntoIter = IterMut<'a, K, V>; - - /// Creates an iterator over the entries of a `HashMap` in arbitrary order - /// with mutable references to the values. The iterator element type is - /// `(&'a K, &'a mut V)`. - /// - /// Return the same `IterMut` struct as by the [`iter_mut`] method on - /// [`HashMap`]. - /// - /// [`iter_mut`]: struct.HashMap.html#method.iter_mut - /// [`HashMap`]: struct.HashMap.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// let mut map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into(); - /// - /// for (key, value) in &mut map { - /// println!("Key: {}, Value: {}", key, value); - /// *value *= 2; - /// } - /// - /// let mut vec = map.iter().collect::<Vec<_>>(); - /// // The `Iter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [(&"a", &2), (&"b", &4), (&"c", &6)]); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn into_iter(self) -> IterMut<'a, K, V> { - self.iter_mut() - } -} - -impl<K, V, S, A: Allocator + Clone> IntoIterator for HashMap<K, V, S, A> { - type Item = (K, V); - type IntoIter = IntoIter<K, V, A>; - - /// Creates a consuming iterator, that is, one that moves each key-value - /// pair out of the map in arbitrary order. The map cannot be used after - /// calling this. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into(); - /// - /// // Not possible with .iter() - /// let mut vec: Vec<(&str, i32)> = map.into_iter().collect(); - /// // The `IntoIter` iterator produces items in arbitrary order, so - /// // the items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn into_iter(self) -> IntoIter<K, V, A> { - IntoIter { - inner: self.table.into_iter(), - } - } -} - -impl<'a, K, V> Iterator for Iter<'a, K, V> { - type Item = (&'a K, &'a V); - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<(&'a K, &'a V)> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.inner.next() { - Some(x) => unsafe { - let r = x.as_ref(); - Some((&r.0, &r.1)) - }, - None => None, - } - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V> ExactSizeIterator for Iter<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} - -impl<K, V> FusedIterator for Iter<'_, K, V> {} - -impl<'a, K, V> Iterator for IterMut<'a, K, V> { - type Item = (&'a K, &'a mut V); - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<(&'a K, &'a mut V)> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.inner.next() { - Some(x) => unsafe { - let r = x.as_mut(); - Some((&r.0, &mut r.1)) - }, - None => None, - } - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V> ExactSizeIterator for IterMut<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V> FusedIterator for IterMut<'_, K, V> {} - -impl<K, V> fmt::Debug for IterMut<'_, K, V> -where - K: fmt::Debug, - V: fmt::Debug, -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.iter()).finish() - } -} - -impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> { - type Item = (K, V); - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<(K, V)> { - self.inner.next() - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {} - -impl<K: Debug, V: Debug, A: Allocator + Clone> fmt::Debug for IntoIter<K, V, A> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.iter()).finish() - } -} - -impl<'a, K, V> Iterator for Keys<'a, K, V> { - type Item = &'a K; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<&'a K> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.inner.next() { - Some((k, _)) => Some(k), - None => None, - } - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V> ExactSizeIterator for Keys<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V> FusedIterator for Keys<'_, K, V> {} - -impl<'a, K, V> Iterator for Values<'a, K, V> { - type Item = &'a V; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<&'a V> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.inner.next() { - Some((_, v)) => Some(v), - None => None, - } - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V> ExactSizeIterator for Values<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V> FusedIterator for Values<'_, K, V> {} - -impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { - type Item = &'a mut V; - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<&'a mut V> { - // Avoid `Option::map` because it bloats LLVM IR. - match self.inner.next() { - Some((_, v)) => Some(v), - None => None, - } - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V> FusedIterator for ValuesMut<'_, K, V> {} - -impl<K, V: Debug> fmt::Debug for ValuesMut<'_, K, V> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list() - .entries(self.inner.iter().map(|(_, val)| val)) - .finish() - } -} - -impl<'a, K, V, A: Allocator + Clone> Iterator for Drain<'a, K, V, A> { - type Item = (K, V); - - #[cfg_attr(feature = "inline-more", inline)] - fn next(&mut self) -> Option<(K, V)> { - self.inner.next() - } - #[cfg_attr(feature = "inline-more", inline)] - fn size_hint(&self) -> (usize, Option<usize>) { - self.inner.size_hint() - } -} -impl<K, V, A: Allocator + Clone> ExactSizeIterator for Drain<'_, K, V, A> { - #[cfg_attr(feature = "inline-more", inline)] - fn len(&self) -> usize { - self.inner.len() - } -} -impl<K, V, A: Allocator + Clone> FusedIterator for Drain<'_, K, V, A> {} - -impl<K, V, A> fmt::Debug for Drain<'_, K, V, A> -where - K: fmt::Debug, - V: fmt::Debug, - A: Allocator + Clone, -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.iter()).finish() - } -} - -impl<'a, K, V, S, A: Allocator + Clone> Entry<'a, K, V, S, A> { - /// Sets the value of the entry, and returns an OccupiedEntry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// let entry = map.entry("horseyland").insert(37); - /// - /// assert_eq!(entry.key(), &"horseyland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, value: V) -> OccupiedEntry<'a, K, V, S, A> - where - K: Hash, - S: BuildHasher, - { - match self { - Entry::Occupied(mut entry) => { - entry.insert(value); - entry - } - Entry::Vacant(entry) => entry.insert_entry(value), - } - } - - /// Ensures a value is in the entry by inserting the default if empty, and returns - /// a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry("poneyland").or_insert(3); - /// assert_eq!(map["poneyland"], 3); - /// - /// // existing key - /// *map.entry("poneyland").or_insert(10) *= 2; - /// assert_eq!(map["poneyland"], 6); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert(self, default: V) -> &'a mut V - where - K: Hash, - S: BuildHasher, - { - match self { - Entry::Occupied(entry) => entry.into_mut(), - Entry::Vacant(entry) => entry.insert(default), - } - } - - /// Ensures a value is in the entry by inserting the result of the default function if empty, - /// and returns a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry("poneyland").or_insert_with(|| 3); - /// assert_eq!(map["poneyland"], 3); - /// - /// // existing key - /// *map.entry("poneyland").or_insert_with(|| 10) *= 2; - /// assert_eq!(map["poneyland"], 6); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V - where - K: Hash, - S: BuildHasher, - { - match self { - Entry::Occupied(entry) => entry.into_mut(), - Entry::Vacant(entry) => entry.insert(default()), - } - } - - /// Ensures a value is in the entry by inserting, if empty, the result of the default function. - /// This method allows for generating key-derived values for insertion by providing the default - /// function a reference to the key that was moved during the `.entry(key)` method call. - /// - /// The reference to the moved key is provided so that cloning or copying the key is - /// unnecessary, unlike with `.or_insert_with(|| ... )`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, usize> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry("poneyland").or_insert_with_key(|key| key.chars().count()); - /// assert_eq!(map["poneyland"], 9); - /// - /// // existing key - /// *map.entry("poneyland").or_insert_with_key(|key| key.chars().count() * 10) *= 2; - /// assert_eq!(map["poneyland"], 18); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert_with_key<F: FnOnce(&K) -> V>(self, default: F) -> &'a mut V - where - K: Hash, - S: BuildHasher, - { - match self { - Entry::Occupied(entry) => entry.into_mut(), - Entry::Vacant(entry) => { - let value = default(entry.key()); - entry.insert(value) - } - } - } - - /// Returns a reference to this entry's key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(3); - /// // existing key - /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); - /// // nonexistent key - /// assert_eq!(map.entry("horseland").key(), &"horseland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &K { - match *self { - Entry::Occupied(ref entry) => entry.key(), - Entry::Vacant(ref entry) => entry.key(), - } - } - - /// Provides in-place mutable access to an occupied entry before any - /// potential inserts into the map. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// map.entry("poneyland") - /// .and_modify(|e| { *e += 1 }) - /// .or_insert(42); - /// assert_eq!(map["poneyland"], 42); - /// - /// map.entry("poneyland") - /// .and_modify(|e| { *e += 1 }) - /// .or_insert(42); - /// assert_eq!(map["poneyland"], 43); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_modify<F>(self, f: F) -> Self - where - F: FnOnce(&mut V), - { - match self { - Entry::Occupied(mut entry) => { - f(entry.get_mut()); - Entry::Occupied(entry) - } - Entry::Vacant(entry) => Entry::Vacant(entry), - } - } - - /// Provides shared access to the key and owned access to the value of - /// an occupied entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// let entry = map - /// .entry("poneyland") - /// .and_replace_entry_with(|_k, _v| panic!()); - /// - /// match entry { - /// Entry::Vacant(e) => { - /// assert_eq!(e.key(), &"poneyland"); - /// } - /// Entry::Occupied(_) => panic!(), - /// } - /// - /// map.insert("poneyland", 42); - /// - /// let entry = map - /// .entry("poneyland") - /// .and_replace_entry_with(|k, v| { - /// assert_eq!(k, &"poneyland"); - /// assert_eq!(v, 42); - /// Some(v + 1) - /// }); - /// - /// match entry { - /// Entry::Occupied(e) => { - /// assert_eq!(e.key(), &"poneyland"); - /// assert_eq!(e.get(), &43); - /// } - /// Entry::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(map["poneyland"], 43); - /// - /// let entry = map - /// .entry("poneyland") - /// .and_replace_entry_with(|_k, _v| None); - /// - /// match entry { - /// Entry::Vacant(e) => assert_eq!(e.key(), &"poneyland"), - /// Entry::Occupied(_) => panic!(), - /// } - /// - /// assert!(!map.contains_key("poneyland")); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_replace_entry_with<F>(self, f: F) -> Self - where - F: FnOnce(&K, V) -> Option<V>, - { - match self { - Entry::Occupied(entry) => entry.replace_entry_with(f), - Entry::Vacant(_) => self, - } - } -} - -impl<'a, K, V: Default, S, A: Allocator + Clone> Entry<'a, K, V, S, A> { - /// Ensures a value is in the entry by inserting the default value if empty, - /// and returns a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, Option<u32>> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry("poneyland").or_default(); - /// assert_eq!(map["poneyland"], None); - /// - /// map.insert("horseland", Some(3)); - /// - /// // existing key - /// assert_eq!(map.entry("horseland").or_default(), &mut Some(3)); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_default(self) -> &'a mut V - where - K: Hash, - S: BuildHasher, - { - match self { - Entry::Occupied(entry) => entry.into_mut(), - Entry::Vacant(entry) => entry.insert(Default::default()), - } - } -} - -impl<'a, K, V, S, A: Allocator + Clone> OccupiedEntry<'a, K, V, S, A> { - /// Gets a reference to the key in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(12); - /// - /// match map.entry("poneyland") { - /// Entry::Vacant(_) => panic!(), - /// Entry::Occupied(entry) => assert_eq!(entry.key(), &"poneyland"), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &K { - unsafe { &self.elem.as_ref().0 } - } - - /// Take the ownership of the key and value from the map. - /// Keeps the allocated memory for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.entry("poneyland").or_insert(12); - /// - /// if let Entry::Occupied(o) = map.entry("poneyland") { - /// // We delete the entry from the map. - /// assert_eq!(o.remove_entry(), ("poneyland", 12)); - /// } - /// - /// assert_eq!(map.contains_key("poneyland"), false); - /// // Now map hold none elements - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove_entry(self) -> (K, V) { - unsafe { self.table.table.remove(self.elem) } - } - - /// Gets a reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(12); - /// - /// match map.entry("poneyland") { - /// Entry::Vacant(_) => panic!(), - /// Entry::Occupied(entry) => assert_eq!(entry.get(), &12), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get(&self) -> &V { - unsafe { &self.elem.as_ref().1 } - } - - /// Gets a mutable reference to the value in the entry. - /// - /// If you need a reference to the `OccupiedEntry` which may outlive the - /// destruction of the `Entry` value, see [`into_mut`]. - /// - /// [`into_mut`]: #method.into_mut - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(12); - /// - /// assert_eq!(map["poneyland"], 12); - /// if let Entry::Occupied(mut o) = map.entry("poneyland") { - /// *o.get_mut() += 10; - /// assert_eq!(*o.get(), 22); - /// - /// // We can use the same Entry multiple times. - /// *o.get_mut() += 2; - /// } - /// - /// assert_eq!(map["poneyland"], 24); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_mut(&mut self) -> &mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Converts the OccupiedEntry into a mutable reference to the value in the entry - /// with a lifetime bound to the map itself. - /// - /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. - /// - /// [`get_mut`]: #method.get_mut - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(12); - /// - /// assert_eq!(map["poneyland"], 12); - /// - /// let value: &mut u32; - /// match map.entry("poneyland") { - /// Entry::Occupied(entry) => value = entry.into_mut(), - /// Entry::Vacant(_) => panic!(), - /// } - /// *value += 10; - /// - /// assert_eq!(map["poneyland"], 22); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_mut(self) -> &'a mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Sets the value of the entry, and returns the entry's old value. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.entry("poneyland").or_insert(12); - /// - /// if let Entry::Occupied(mut o) = map.entry("poneyland") { - /// assert_eq!(o.insert(15), 12); - /// } - /// - /// assert_eq!(map["poneyland"], 15); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(&mut self, value: V) -> V { - mem::replace(self.get_mut(), value) - } - - /// Takes the value out of the entry, and returns it. - /// Keeps the allocated memory for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.entry("poneyland").or_insert(12); - /// - /// if let Entry::Occupied(o) = map.entry("poneyland") { - /// assert_eq!(o.remove(), 12); - /// } - /// - /// assert_eq!(map.contains_key("poneyland"), false); - /// // Now map hold none elements - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove(self) -> V { - self.remove_entry().1 - } - - /// Replaces the entry, returning the old key and value. The new key in the hash map will be - /// the key used to create this entry. - /// - /// # Panics - /// - /// Will panic if this OccupiedEntry was created through [`Entry::insert`]. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// use std::rc::Rc; - /// - /// let mut map: HashMap<Rc<String>, u32> = HashMap::new(); - /// let key_one = Rc::new("Stringthing".to_string()); - /// let key_two = Rc::new("Stringthing".to_string()); - /// - /// map.insert(key_one.clone(), 15); - /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); - /// - /// match map.entry(key_two.clone()) { - /// Entry::Occupied(entry) => { - /// let (old_key, old_value): (Rc<String>, u32) = entry.replace_entry(16); - /// assert!(Rc::ptr_eq(&key_one, &old_key) && old_value == 15); - /// } - /// Entry::Vacant(_) => panic!(), - /// } - /// - /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); - /// assert_eq!(map[&"Stringthing".to_owned()], 16); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_entry(self, value: V) -> (K, V) { - let entry = unsafe { self.elem.as_mut() }; - - let old_key = mem::replace(&mut entry.0, self.key.unwrap()); - let old_value = mem::replace(&mut entry.1, value); - - (old_key, old_value) - } - - /// Replaces the key in the hash map with the key used to create this entry. - /// - /// # Panics - /// - /// Will panic if this OccupiedEntry was created through [`Entry::insert`]. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// use std::rc::Rc; - /// - /// let mut map: HashMap<Rc<String>, usize> = HashMap::with_capacity(6); - /// let mut keys_one: Vec<Rc<String>> = Vec::with_capacity(6); - /// let mut keys_two: Vec<Rc<String>> = Vec::with_capacity(6); - /// - /// for (value, key) in ["a", "b", "c", "d", "e", "f"].into_iter().enumerate() { - /// let rc_key = Rc::new(key.to_owned()); - /// keys_one.push(rc_key.clone()); - /// map.insert(rc_key.clone(), value); - /// keys_two.push(Rc::new(key.to_owned())); - /// } - /// - /// assert!( - /// keys_one.iter().all(|key| Rc::strong_count(key) == 2) - /// && keys_two.iter().all(|key| Rc::strong_count(key) == 1) - /// ); - /// - /// reclaim_memory(&mut map, &keys_two); - /// - /// assert!( - /// keys_one.iter().all(|key| Rc::strong_count(key) == 1) - /// && keys_two.iter().all(|key| Rc::strong_count(key) == 2) - /// ); - /// - /// fn reclaim_memory(map: &mut HashMap<Rc<String>, usize>, keys: &[Rc<String>]) { - /// for key in keys { - /// if let Entry::Occupied(entry) = map.entry(key.clone()) { - /// // Replaces the entry's key with our version of it in `keys`. - /// entry.replace_key(); - /// } - /// } - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_key(self) -> K { - let entry = unsafe { self.elem.as_mut() }; - mem::replace(&mut entry.0, self.key.unwrap()) - } - - /// Provides shared access to the key and owned access to the value of - /// the entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// map.insert("poneyland", 42); - /// - /// let entry = match map.entry("poneyland") { - /// Entry::Occupied(e) => { - /// e.replace_entry_with(|k, v| { - /// assert_eq!(k, &"poneyland"); - /// assert_eq!(v, 42); - /// Some(v + 1) - /// }) - /// } - /// Entry::Vacant(_) => panic!(), - /// }; - /// - /// match entry { - /// Entry::Occupied(e) => { - /// assert_eq!(e.key(), &"poneyland"); - /// assert_eq!(e.get(), &43); - /// } - /// Entry::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(map["poneyland"], 43); - /// - /// let entry = match map.entry("poneyland") { - /// Entry::Occupied(e) => e.replace_entry_with(|_k, _v| None), - /// Entry::Vacant(_) => panic!(), - /// }; - /// - /// match entry { - /// Entry::Vacant(e) => { - /// assert_eq!(e.key(), &"poneyland"); - /// } - /// Entry::Occupied(_) => panic!(), - /// } - /// - /// assert!(!map.contains_key("poneyland")); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_entry_with<F>(self, f: F) -> Entry<'a, K, V, S, A> - where - F: FnOnce(&K, V) -> Option<V>, - { - unsafe { - let mut spare_key = None; - - self.table - .table - .replace_bucket_with(self.elem.clone(), |(key, value)| { - if let Some(new_value) = f(&key, value) { - Some((key, new_value)) - } else { - spare_key = Some(key); - None - } - }); - - if let Some(key) = spare_key { - Entry::Vacant(VacantEntry { - hash: self.hash, - key, - table: self.table, - }) - } else { - Entry::Occupied(self) - } - } - } -} - -impl<'a, K, V, S, A: Allocator + Clone> VacantEntry<'a, K, V, S, A> { - /// Gets a reference to the key that would be used when inserting a value - /// through the `VacantEntry`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &K { - &self.key - } - - /// Take ownership of the key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{Entry, HashMap}; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// match map.entry("poneyland") { - /// Entry::Occupied(_) => panic!(), - /// Entry::Vacant(v) => assert_eq!(v.into_key(), "poneyland"), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_key(self) -> K { - self.key - } - - /// Sets the value of the entry with the VacantEntry's key, - /// and returns a mutable reference to it. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::Entry; - /// - /// let mut map: HashMap<&str, u32> = HashMap::new(); - /// - /// if let Entry::Vacant(o) = map.entry("poneyland") { - /// o.insert(37); - /// } - /// assert_eq!(map["poneyland"], 37); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, value: V) -> &'a mut V - where - K: Hash, - S: BuildHasher, - { - let table = &mut self.table.table; - let entry = table.insert_entry( - self.hash, - (self.key, value), - make_hasher::<_, V, S>(&self.table.hash_builder), - ); - &mut entry.1 - } - - #[cfg_attr(feature = "inline-more", inline)] - pub(crate) fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V, S, A> - where - K: Hash, - S: BuildHasher, - { - let elem = self.table.table.insert( - self.hash, - (self.key, value), - make_hasher::<_, V, S>(&self.table.hash_builder), - ); - OccupiedEntry { - hash: self.hash, - key: None, - elem, - table: self.table, - } - } -} - -impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator + Clone> EntryRef<'a, 'b, K, Q, V, S, A> { - /// Sets the value of the entry, and returns an OccupiedEntryRef. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// let entry = map.entry_ref("horseyland").insert(37); - /// - /// assert_eq!(entry.key(), "horseyland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, value: V) -> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - match self { - EntryRef::Occupied(mut entry) => { - entry.insert(value); - entry - } - EntryRef::Vacant(entry) => entry.insert_entry(value), - } - } - - /// Ensures a value is in the entry by inserting the default if empty, and returns - /// a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry_ref("poneyland").or_insert(3); - /// assert_eq!(map["poneyland"], 3); - /// - /// // existing key - /// *map.entry_ref("poneyland").or_insert(10) *= 2; - /// assert_eq!(map["poneyland"], 6); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert(self, default: V) -> &'a mut V - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - match self { - EntryRef::Occupied(entry) => entry.into_mut(), - EntryRef::Vacant(entry) => entry.insert(default), - } - } - - /// Ensures a value is in the entry by inserting the result of the default function if empty, - /// and returns a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry_ref("poneyland").or_insert_with(|| 3); - /// assert_eq!(map["poneyland"], 3); - /// - /// // existing key - /// *map.entry_ref("poneyland").or_insert_with(|| 10) *= 2; - /// assert_eq!(map["poneyland"], 6); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - match self { - EntryRef::Occupied(entry) => entry.into_mut(), - EntryRef::Vacant(entry) => entry.insert(default()), - } - } - - /// Ensures a value is in the entry by inserting, if empty, the result of the default function. - /// This method allows for generating key-derived values for insertion by providing the default - /// function an access to the borrower form of the key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, usize> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry_ref("poneyland").or_insert_with_key(|key| key.chars().count()); - /// assert_eq!(map["poneyland"], 9); - /// - /// // existing key - /// *map.entry_ref("poneyland").or_insert_with_key(|key| key.chars().count() * 10) *= 2; - /// assert_eq!(map["poneyland"], 18); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_insert_with_key<F: FnOnce(&Q) -> V>(self, default: F) -> &'a mut V - where - K: Hash + Borrow<Q> + From<&'b Q>, - S: BuildHasher, - { - match self { - EntryRef::Occupied(entry) => entry.into_mut(), - EntryRef::Vacant(entry) => { - let value = default(entry.key.as_ref()); - entry.insert(value) - } - } - } - - /// Returns a reference to this entry's key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(3); - /// // existing key - /// assert_eq!(map.entry_ref("poneyland").key(), "poneyland"); - /// // nonexistent key - /// assert_eq!(map.entry_ref("horseland").key(), "horseland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &Q - where - K: Borrow<Q>, - { - match *self { - EntryRef::Occupied(ref entry) => entry.key(), - EntryRef::Vacant(ref entry) => entry.key(), - } - } - - /// Provides in-place mutable access to an occupied entry before any - /// potential inserts into the map. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// - /// map.entry_ref("poneyland") - /// .and_modify(|e| { *e += 1 }) - /// .or_insert(42); - /// assert_eq!(map["poneyland"], 42); - /// - /// map.entry_ref("poneyland") - /// .and_modify(|e| { *e += 1 }) - /// .or_insert(42); - /// assert_eq!(map["poneyland"], 43); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_modify<F>(self, f: F) -> Self - where - F: FnOnce(&mut V), - { - match self { - EntryRef::Occupied(mut entry) => { - f(entry.get_mut()); - EntryRef::Occupied(entry) - } - EntryRef::Vacant(entry) => EntryRef::Vacant(entry), - } - } - - /// Provides shared access to the key and owned access to the value of - /// an occupied entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// - /// let entry = map - /// .entry_ref("poneyland") - /// .and_replace_entry_with(|_k, _v| panic!()); - /// - /// match entry { - /// EntryRef::Vacant(e) => { - /// assert_eq!(e.key(), "poneyland"); - /// } - /// EntryRef::Occupied(_) => panic!(), - /// } - /// - /// map.insert("poneyland".to_string(), 42); - /// - /// let entry = map - /// .entry_ref("poneyland") - /// .and_replace_entry_with(|k, v| { - /// assert_eq!(k, "poneyland"); - /// assert_eq!(v, 42); - /// Some(v + 1) - /// }); - /// - /// match entry { - /// EntryRef::Occupied(e) => { - /// assert_eq!(e.key(), "poneyland"); - /// assert_eq!(e.get(), &43); - /// } - /// EntryRef::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(map["poneyland"], 43); - /// - /// let entry = map - /// .entry_ref("poneyland") - /// .and_replace_entry_with(|_k, _v| None); - /// - /// match entry { - /// EntryRef::Vacant(e) => assert_eq!(e.key(), "poneyland"), - /// EntryRef::Occupied(_) => panic!(), - /// } - /// - /// assert!(!map.contains_key("poneyland")); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn and_replace_entry_with<F>(self, f: F) -> Self - where - F: FnOnce(&Q, V) -> Option<V>, - K: Borrow<Q>, - { - match self { - EntryRef::Occupied(entry) => entry.replace_entry_with(f), - EntryRef::Vacant(_) => self, - } - } -} - -impl<'a, 'b, K, Q: ?Sized, V: Default, S, A: Allocator + Clone> EntryRef<'a, 'b, K, Q, V, S, A> { - /// Ensures a value is in the entry by inserting the default value if empty, - /// and returns a mutable reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, Option<u32>> = HashMap::new(); - /// - /// // nonexistent key - /// map.entry_ref("poneyland").or_default(); - /// assert_eq!(map["poneyland"], None); - /// - /// map.insert("horseland".to_string(), Some(3)); - /// - /// // existing key - /// assert_eq!(map.entry_ref("horseland").or_default(), &mut Some(3)); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn or_default(self) -> &'a mut V - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - match self { - EntryRef::Occupied(entry) => entry.into_mut(), - EntryRef::Vacant(entry) => entry.insert(Default::default()), - } - } -} - -impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator + Clone> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> { - /// Gets a reference to the key in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(12); - /// - /// match map.entry_ref("poneyland") { - /// EntryRef::Vacant(_) => panic!(), - /// EntryRef::Occupied(entry) => assert_eq!(entry.key(), "poneyland"), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &Q - where - K: Borrow<Q>, - { - unsafe { &self.elem.as_ref().0 }.borrow() - } - - /// Take the ownership of the key and value from the map. - /// Keeps the allocated memory for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.entry_ref("poneyland").or_insert(12); - /// - /// if let EntryRef::Occupied(o) = map.entry_ref("poneyland") { - /// // We delete the entry from the map. - /// assert_eq!(o.remove_entry(), ("poneyland".to_owned(), 12)); - /// } - /// - /// assert_eq!(map.contains_key("poneyland"), false); - /// // Now map hold none elements but capacity is equal to the old one - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove_entry(self) -> (K, V) { - unsafe { self.table.table.remove(self.elem) } - } - - /// Gets a reference to the value in the entry. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(12); - /// - /// match map.entry_ref("poneyland") { - /// EntryRef::Vacant(_) => panic!(), - /// EntryRef::Occupied(entry) => assert_eq!(entry.get(), &12), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get(&self) -> &V { - unsafe { &self.elem.as_ref().1 } - } - - /// Gets a mutable reference to the value in the entry. - /// - /// If you need a reference to the `OccupiedEntryRef` which may outlive the - /// destruction of the `EntryRef` value, see [`into_mut`]. - /// - /// [`into_mut`]: #method.into_mut - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(12); - /// - /// assert_eq!(map["poneyland"], 12); - /// if let EntryRef::Occupied(mut o) = map.entry_ref("poneyland") { - /// *o.get_mut() += 10; - /// assert_eq!(*o.get(), 22); - /// - /// // We can use the same Entry multiple times. - /// *o.get_mut() += 2; - /// } - /// - /// assert_eq!(map["poneyland"], 24); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn get_mut(&mut self) -> &mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Converts the OccupiedEntryRef into a mutable reference to the value in the entry - /// with a lifetime bound to the map itself. - /// - /// If you need multiple references to the `OccupiedEntryRef`, see [`get_mut`]. - /// - /// [`get_mut`]: #method.get_mut - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(12); - /// - /// let value: &mut u32; - /// match map.entry_ref("poneyland") { - /// EntryRef::Occupied(entry) => value = entry.into_mut(), - /// EntryRef::Vacant(_) => panic!(), - /// } - /// *value += 10; - /// - /// assert_eq!(map["poneyland"], 22); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_mut(self) -> &'a mut V { - unsafe { &mut self.elem.as_mut().1 } - } - - /// Sets the value of the entry, and returns the entry's old value. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.entry_ref("poneyland").or_insert(12); - /// - /// if let EntryRef::Occupied(mut o) = map.entry_ref("poneyland") { - /// assert_eq!(o.insert(15), 12); - /// } - /// - /// assert_eq!(map["poneyland"], 15); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(&mut self, value: V) -> V { - mem::replace(self.get_mut(), value) - } - - /// Takes the value out of the entry, and returns it. - /// Keeps the allocated memory for reuse. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// // The map is empty - /// assert!(map.is_empty() && map.capacity() == 0); - /// - /// map.entry_ref("poneyland").or_insert(12); - /// - /// if let EntryRef::Occupied(o) = map.entry_ref("poneyland") { - /// assert_eq!(o.remove(), 12); - /// } - /// - /// assert_eq!(map.contains_key("poneyland"), false); - /// // Now map hold none elements but capacity is equal to the old one - /// assert!(map.is_empty()); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn remove(self) -> V { - self.remove_entry().1 - } - - /// Replaces the entry, returning the old key and value. The new key in the hash map will be - /// the key used to create this entry. - /// - /// # Panics - /// - /// Will panic if this OccupiedEntryRef was created through [`EntryRef::insert`]. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// use std::rc::Rc; - /// - /// let mut map: HashMap<Rc<str>, u32> = HashMap::new(); - /// let key: Rc<str> = Rc::from("Stringthing"); - /// - /// map.insert(key.clone(), 15); - /// assert_eq!(Rc::strong_count(&key), 2); - /// - /// match map.entry_ref("Stringthing") { - /// EntryRef::Occupied(entry) => { - /// let (old_key, old_value): (Rc<str>, u32) = entry.replace_entry(16); - /// assert!(Rc::ptr_eq(&key, &old_key) && old_value == 15); - /// } - /// EntryRef::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(Rc::strong_count(&key), 1); - /// assert_eq!(map["Stringthing"], 16); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_entry(self, value: V) -> (K, V) - where - K: From<&'b Q>, - { - let entry = unsafe { self.elem.as_mut() }; - - let old_key = mem::replace(&mut entry.0, self.key.unwrap().into_owned()); - let old_value = mem::replace(&mut entry.1, value); - - (old_key, old_value) - } - - /// Replaces the key in the hash map with the key used to create this entry. - /// - /// # Panics - /// - /// Will panic if this OccupiedEntryRef was created through [`EntryRef::insert`]. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// use std::rc::Rc; - /// - /// let mut map: HashMap<Rc<str>, usize> = HashMap::with_capacity(6); - /// let mut keys: Vec<Rc<str>> = Vec::with_capacity(6); - /// - /// for (value, key) in ["a", "b", "c", "d", "e", "f"].into_iter().enumerate() { - /// let rc_key: Rc<str> = Rc::from(key); - /// keys.push(rc_key.clone()); - /// map.insert(rc_key.clone(), value); - /// } - /// - /// assert!(keys.iter().all(|key| Rc::strong_count(key) == 2)); - /// - /// // It doesn't matter that we kind of use a vector with the same keys, - /// // because all keys will be newly created from the references - /// reclaim_memory(&mut map, &keys); - /// - /// assert!(keys.iter().all(|key| Rc::strong_count(key) == 1)); - /// - /// fn reclaim_memory(map: &mut HashMap<Rc<str>, usize>, keys: &[Rc<str>]) { - /// for key in keys { - /// if let EntryRef::Occupied(entry) = map.entry_ref(key.as_ref()) { - /// // Replaces the entry's key with our version of it in `keys`. - /// entry.replace_key(); - /// } - /// } - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_key(self) -> K - where - K: From<&'b Q>, - { - let entry = unsafe { self.elem.as_mut() }; - mem::replace(&mut entry.0, self.key.unwrap().into_owned()) - } - - /// Provides shared access to the key and owned access to the value of - /// the entry and allows to replace or remove it based on the - /// value of the returned option. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// map.insert("poneyland".to_string(), 42); - /// - /// let entry = match map.entry_ref("poneyland") { - /// EntryRef::Occupied(e) => { - /// e.replace_entry_with(|k, v| { - /// assert_eq!(k, "poneyland"); - /// assert_eq!(v, 42); - /// Some(v + 1) - /// }) - /// } - /// EntryRef::Vacant(_) => panic!(), - /// }; - /// - /// match entry { - /// EntryRef::Occupied(e) => { - /// assert_eq!(e.key(), "poneyland"); - /// assert_eq!(e.get(), &43); - /// } - /// EntryRef::Vacant(_) => panic!(), - /// } - /// - /// assert_eq!(map["poneyland"], 43); - /// - /// let entry = match map.entry_ref("poneyland") { - /// EntryRef::Occupied(e) => e.replace_entry_with(|_k, _v| None), - /// EntryRef::Vacant(_) => panic!(), - /// }; - /// - /// match entry { - /// EntryRef::Vacant(e) => { - /// assert_eq!(e.key(), "poneyland"); - /// } - /// EntryRef::Occupied(_) => panic!(), - /// } - /// - /// assert!(!map.contains_key("poneyland")); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn replace_entry_with<F>(self, f: F) -> EntryRef<'a, 'b, K, Q, V, S, A> - where - F: FnOnce(&Q, V) -> Option<V>, - K: Borrow<Q>, - { - unsafe { - let mut spare_key = None; - - self.table - .table - .replace_bucket_with(self.elem.clone(), |(key, value)| { - if let Some(new_value) = f(key.borrow(), value) { - Some((key, new_value)) - } else { - spare_key = Some(KeyOrRef::Owned(key)); - None - } - }); - - if let Some(key) = spare_key { - EntryRef::Vacant(VacantEntryRef { - hash: self.hash, - key, - table: self.table, - }) - } else { - EntryRef::Occupied(self) - } - } - } -} - -impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator + Clone> VacantEntryRef<'a, 'b, K, Q, V, S, A> { - /// Gets a reference to the key that would be used when inserting a value - /// through the `VacantEntryRef`. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// let key: &str = "poneyland"; - /// assert_eq!(map.entry_ref(key).key(), "poneyland"); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn key(&self) -> &Q - where - K: Borrow<Q>, - { - self.key.as_ref() - } - - /// Take ownership of the key. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::{EntryRef, HashMap}; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// let key: &str = "poneyland"; - /// - /// match map.entry_ref(key) { - /// EntryRef::Occupied(_) => panic!(), - /// EntryRef::Vacant(v) => assert_eq!(v.into_key(), "poneyland".to_owned()), - /// } - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn into_key(self) -> K - where - K: From<&'b Q>, - { - self.key.into_owned() - } - - /// Sets the value of the entry with the VacantEntryRef's key, - /// and returns a mutable reference to it. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::HashMap; - /// use hashbrown::hash_map::EntryRef; - /// - /// let mut map: HashMap<String, u32> = HashMap::new(); - /// let key: &str = "poneyland"; - /// - /// if let EntryRef::Vacant(o) = map.entry_ref(key) { - /// o.insert(37); - /// } - /// assert_eq!(map["poneyland"], 37); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - pub fn insert(self, value: V) -> &'a mut V - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - let table = &mut self.table.table; - let entry = table.insert_entry( - self.hash, - (self.key.into_owned(), value), - make_hasher::<_, V, S>(&self.table.hash_builder), - ); - &mut entry.1 - } - - #[cfg_attr(feature = "inline-more", inline)] - fn insert_entry(self, value: V) -> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> - where - K: Hash + From<&'b Q>, - S: BuildHasher, - { - let elem = self.table.table.insert( - self.hash, - (self.key.into_owned(), value), - make_hasher::<_, V, S>(&self.table.hash_builder), - ); - OccupiedEntryRef { - hash: self.hash, - key: None, - elem, - table: self.table, - } - } -} - -impl<K, V, S, A> FromIterator<(K, V)> for HashMap<K, V, S, A> -where - K: Eq + Hash, - S: BuildHasher + Default, - A: Default + Allocator + Clone, -{ - #[cfg_attr(feature = "inline-more", inline)] - fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self { - let iter = iter.into_iter(); - let mut map = - Self::with_capacity_and_hasher_in(iter.size_hint().0, S::default(), A::default()); - iter.for_each(|(k, v)| { - map.insert(k, v); - }); - map - } -} - -/// Inserts all new key-values from the iterator and replaces values with existing -/// keys with new values returned from the iterator. -impl<K, V, S, A> Extend<(K, V)> for HashMap<K, V, S, A> -where - K: Eq + Hash, - S: BuildHasher, - A: Allocator + Clone, -{ - /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. - /// Replace values with existing keys with new values returned from the iterator. - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, 100); - /// - /// let some_iter = [(1, 1), (2, 2)].into_iter(); - /// map.extend(some_iter); - /// // Replace values with existing keys with new values returned from the iterator. - /// // So that the map.get(&1) doesn't return Some(&100). - /// assert_eq!(map.get(&1), Some(&1)); - /// - /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; - /// map.extend(some_vec); - /// - /// let some_arr = [(5, 5), (6, 6)]; - /// map.extend(some_arr); - /// let old_map_len = map.len(); - /// - /// // You can also extend from another HashMap - /// let mut new_map = HashMap::new(); - /// new_map.extend(map); - /// assert_eq!(new_map.len(), old_map_len); - /// - /// let mut vec: Vec<_> = new_map.into_iter().collect(); - /// // The `IntoIter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { - // Keys may be already present or show multiple times in the iterator. - // Reserve the entire hint lower bound if the map is empty. - // Otherwise reserve half the hint (rounded up), so the map - // will only resize twice in the worst case. - let iter = iter.into_iter(); - let reserve = if self.is_empty() { - iter.size_hint().0 - } else { - (iter.size_hint().0 + 1) / 2 - }; - self.reserve(reserve); - iter.for_each(move |(k, v)| { - self.insert(k, v); - }); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_one(&mut self, (k, v): (K, V)) { - self.insert(k, v); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_reserve(&mut self, additional: usize) { - // Keys may be already present or show multiple times in the iterator. - // Reserve the entire hint lower bound if the map is empty. - // Otherwise reserve half the hint (rounded up), so the map - // will only resize twice in the worst case. - let reserve = if self.is_empty() { - additional - } else { - (additional + 1) / 2 - }; - self.reserve(reserve); - } -} - -/// Inserts all new key-values from the iterator and replaces values with existing -/// keys with new values returned from the iterator. -impl<'a, K, V, S, A> Extend<(&'a K, &'a V)> for HashMap<K, V, S, A> -where - K: Eq + Hash + Copy, - V: Copy, - S: BuildHasher, - A: Allocator + Clone, -{ - /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. - /// Replace values with existing keys with new values returned from the iterator. - /// The keys and values must implement [`Copy`] trait. - /// - /// [`Copy`]: https://doc.rust-lang.org/core/marker/trait.Copy.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, 100); - /// - /// let arr = [(1, 1), (2, 2)]; - /// let some_iter = arr.iter().map(|(k, v)| (k, v)); - /// map.extend(some_iter); - /// // Replace values with existing keys with new values returned from the iterator. - /// // So that the map.get(&1) doesn't return Some(&100). - /// assert_eq!(map.get(&1), Some(&1)); - /// - /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; - /// map.extend(some_vec.iter().map(|(k, v)| (k, v))); - /// - /// let some_arr = [(5, 5), (6, 6)]; - /// map.extend(some_arr.iter().map(|(k, v)| (k, v))); - /// - /// // You can also extend from another HashMap - /// let mut new_map = HashMap::new(); - /// new_map.extend(&map); - /// assert_eq!(new_map, map); - /// - /// let mut vec: Vec<_> = new_map.into_iter().collect(); - /// // The `IntoIter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) { - self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_one(&mut self, (k, v): (&'a K, &'a V)) { - self.insert(*k, *v); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_reserve(&mut self, additional: usize) { - Extend::<(K, V)>::extend_reserve(self, additional); - } -} - -/// Inserts all new key-values from the iterator and replaces values with existing -/// keys with new values returned from the iterator. -impl<'a, K, V, S, A> Extend<&'a (K, V)> for HashMap<K, V, S, A> -where - K: Eq + Hash + Copy, - V: Copy, - S: BuildHasher, - A: Allocator + Clone, -{ - /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. - /// Replace values with existing keys with new values returned from the iterator. - /// The keys and values must implement [`Copy`] trait. - /// - /// [`Copy`]: https://doc.rust-lang.org/core/marker/trait.Copy.html - /// - /// # Examples - /// - /// ``` - /// use hashbrown::hash_map::HashMap; - /// - /// let mut map = HashMap::new(); - /// map.insert(1, 100); - /// - /// let arr = [(1, 1), (2, 2)]; - /// let some_iter = arr.iter(); - /// map.extend(some_iter); - /// // Replace values with existing keys with new values returned from the iterator. - /// // So that the map.get(&1) doesn't return Some(&100). - /// assert_eq!(map.get(&1), Some(&1)); - /// - /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; - /// map.extend(&some_vec); - /// - /// let some_arr = [(5, 5), (6, 6)]; - /// map.extend(&some_arr); - /// - /// let mut vec: Vec<_> = map.into_iter().collect(); - /// // The `IntoIter` iterator produces items in arbitrary order, so the - /// // items must be sorted to test them against a sorted array. - /// vec.sort_unstable(); - /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); - /// ``` - #[cfg_attr(feature = "inline-more", inline)] - fn extend<T: IntoIterator<Item = &'a (K, V)>>(&mut self, iter: T) { - self.extend(iter.into_iter().map(|&(key, value)| (key, value))); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_one(&mut self, &(k, v): &'a (K, V)) { - self.insert(k, v); - } - - #[inline] - #[cfg(feature = "nightly")] - fn extend_reserve(&mut self, additional: usize) { - Extend::<(K, V)>::extend_reserve(self, additional); - } -} - -#[allow(dead_code)] -fn assert_covariance() { - fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> { - v - } - fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> { - v - } - fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> { - v - } - fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> { - v - } - fn into_iter_key<'new, A: Allocator + Clone>( - v: IntoIter<&'static str, u8, A>, - ) -> IntoIter<&'new str, u8, A> { - v - } - fn into_iter_val<'new, A: Allocator + Clone>( - v: IntoIter<u8, &'static str, A>, - ) -> IntoIter<u8, &'new str, A> { - v - } - fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> { - v - } - fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> { - v - } - fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> { - v - } - fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> { - v - } - fn drain<'new>( - d: Drain<'static, &'static str, &'static str>, - ) -> Drain<'new, &'new str, &'new str> { - d - } -} - -#[cfg(test)] -mod test_map { - use super::DefaultHashBuilder; - use super::Entry::{Occupied, Vacant}; - use super::EntryRef; - use super::{HashMap, RawEntryMut}; - use rand::{rngs::SmallRng, Rng, SeedableRng}; - use std::borrow::ToOwned; - use std::cell::RefCell; - use std::usize; - use std::vec::Vec; - - #[test] - fn test_zero_capacities() { - type HM = HashMap<i32, i32>; - - let m = HM::new(); - assert_eq!(m.capacity(), 0); - - let m = HM::default(); - assert_eq!(m.capacity(), 0); - - let m = HM::with_hasher(DefaultHashBuilder::default()); - assert_eq!(m.capacity(), 0); - - let m = HM::with_capacity(0); - assert_eq!(m.capacity(), 0); - - let m = HM::with_capacity_and_hasher(0, DefaultHashBuilder::default()); - assert_eq!(m.capacity(), 0); - - let mut m = HM::new(); - m.insert(1, 1); - m.insert(2, 2); - m.remove(&1); - m.remove(&2); - m.shrink_to_fit(); - assert_eq!(m.capacity(), 0); - - let mut m = HM::new(); - m.reserve(0); - assert_eq!(m.capacity(), 0); - } - - #[test] - fn test_create_capacity_zero() { - let mut m = HashMap::with_capacity(0); - - assert!(m.insert(1, 1).is_none()); - - assert!(m.contains_key(&1)); - assert!(!m.contains_key(&0)); - } - - #[test] - fn test_insert() { - let mut m = HashMap::new(); - assert_eq!(m.len(), 0); - assert!(m.insert(1, 2).is_none()); - assert_eq!(m.len(), 1); - assert!(m.insert(2, 4).is_none()); - assert_eq!(m.len(), 2); - assert_eq!(*m.get(&1).unwrap(), 2); - assert_eq!(*m.get(&2).unwrap(), 4); - } - - #[test] - fn test_clone() { - let mut m = HashMap::new(); - assert_eq!(m.len(), 0); - assert!(m.insert(1, 2).is_none()); - assert_eq!(m.len(), 1); - assert!(m.insert(2, 4).is_none()); - assert_eq!(m.len(), 2); - #[allow(clippy::redundant_clone)] - let m2 = m.clone(); - assert_eq!(*m2.get(&1).unwrap(), 2); - assert_eq!(*m2.get(&2).unwrap(), 4); - assert_eq!(m2.len(), 2); - } - - #[test] - fn test_clone_from() { - let mut m = HashMap::new(); - let mut m2 = HashMap::new(); - assert_eq!(m.len(), 0); - assert!(m.insert(1, 2).is_none()); - assert_eq!(m.len(), 1); - assert!(m.insert(2, 4).is_none()); - assert_eq!(m.len(), 2); - m2.clone_from(&m); - assert_eq!(*m2.get(&1).unwrap(), 2); - assert_eq!(*m2.get(&2).unwrap(), 4); - assert_eq!(m2.len(), 2); - } - - thread_local! { static DROP_VECTOR: RefCell<Vec<i32>> = RefCell::new(Vec::new()) } - - #[derive(Hash, PartialEq, Eq)] - struct Droppable { - k: usize, - } - - impl Droppable { - fn new(k: usize) -> Droppable { - DROP_VECTOR.with(|slot| { - slot.borrow_mut()[k] += 1; - }); - - Droppable { k } - } - } - - impl Drop for Droppable { - fn drop(&mut self) { - DROP_VECTOR.with(|slot| { - slot.borrow_mut()[self.k] -= 1; - }); - } - } - - impl Clone for Droppable { - fn clone(&self) -> Self { - Droppable::new(self.k) - } - } - - #[test] - fn test_drops() { - DROP_VECTOR.with(|slot| { - *slot.borrow_mut() = vec![0; 200]; - }); - - { - let mut m = HashMap::new(); - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 0); - } - }); - - for i in 0..100 { - let d1 = Droppable::new(i); - let d2 = Droppable::new(i + 100); - m.insert(d1, d2); - } - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 1); - } - }); - - for i in 0..50 { - let k = Droppable::new(i); - let v = m.remove(&k); - - assert!(v.is_some()); - - DROP_VECTOR.with(|v| { - assert_eq!(v.borrow()[i], 1); - assert_eq!(v.borrow()[i + 100], 1); - }); - } - - DROP_VECTOR.with(|v| { - for i in 0..50 { - assert_eq!(v.borrow()[i], 0); - assert_eq!(v.borrow()[i + 100], 0); - } - - for i in 50..100 { - assert_eq!(v.borrow()[i], 1); - assert_eq!(v.borrow()[i + 100], 1); - } - }); - } - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 0); - } - }); - } - - #[test] - fn test_into_iter_drops() { - DROP_VECTOR.with(|v| { - *v.borrow_mut() = vec![0; 200]; - }); - - let hm = { - let mut hm = HashMap::new(); - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 0); - } - }); - - for i in 0..100 { - let d1 = Droppable::new(i); - let d2 = Droppable::new(i + 100); - hm.insert(d1, d2); - } - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 1); - } - }); - - hm - }; - - // By the way, ensure that cloning doesn't screw up the dropping. - drop(hm.clone()); - - { - let mut half = hm.into_iter().take(50); - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 1); - } - }); - - #[allow(clippy::let_underscore_drop)] // kind-of a false positive - for _ in half.by_ref() {} - - DROP_VECTOR.with(|v| { - let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count(); - - let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count(); - - assert_eq!(nk, 50); - assert_eq!(nv, 50); - }); - }; - - DROP_VECTOR.with(|v| { - for i in 0..200 { - assert_eq!(v.borrow()[i], 0); - } - }); - } - - #[test] - fn test_empty_remove() { - let mut m: HashMap<i32, bool> = HashMap::new(); - assert_eq!(m.remove(&0), None); - } - - #[test] - fn test_empty_entry() { - let mut m: HashMap<i32, bool> = HashMap::new(); - match m.entry(0) { - Occupied(_) => panic!(), - Vacant(_) => {} - } - assert!(*m.entry(0).or_insert(true)); - assert_eq!(m.len(), 1); - } - - #[test] - fn test_empty_entry_ref() { - let mut m: HashMap<std::string::String, bool> = HashMap::new(); - match m.entry_ref("poneyland") { - EntryRef::Occupied(_) => panic!(), - EntryRef::Vacant(_) => {} - } - assert!(*m.entry_ref("poneyland").or_insert(true)); - assert_eq!(m.len(), 1); - } - - #[test] - fn test_empty_iter() { - let mut m: HashMap<i32, bool> = HashMap::new(); - assert_eq!(m.drain().next(), None); - assert_eq!(m.keys().next(), None); - assert_eq!(m.values().next(), None); - assert_eq!(m.values_mut().next(), None); - assert_eq!(m.iter().next(), None); - assert_eq!(m.iter_mut().next(), None); - assert_eq!(m.len(), 0); - assert!(m.is_empty()); - assert_eq!(m.into_iter().next(), None); - } - - #[test] - #[cfg_attr(miri, ignore)] // FIXME: takes too long - fn test_lots_of_insertions() { - let mut m = HashMap::new(); - - // Try this a few times to make sure we never screw up the hashmap's - // internal state. - for _ in 0..10 { - assert!(m.is_empty()); - - for i in 1..1001 { - assert!(m.insert(i, i).is_none()); - - for j in 1..=i { - let r = m.get(&j); - assert_eq!(r, Some(&j)); - } - - for j in i + 1..1001 { - let r = m.get(&j); - assert_eq!(r, None); - } - } - - for i in 1001..2001 { - assert!(!m.contains_key(&i)); - } - - // remove forwards - for i in 1..1001 { - assert!(m.remove(&i).is_some()); - - for j in 1..=i { - assert!(!m.contains_key(&j)); - } - - for j in i + 1..1001 { - assert!(m.contains_key(&j)); - } - } - - for i in 1..1001 { - assert!(!m.contains_key(&i)); - } - - for i in 1..1001 { - assert!(m.insert(i, i).is_none()); - } - - // remove backwards - for i in (1..1001).rev() { - assert!(m.remove(&i).is_some()); - - for j in i..1001 { - assert!(!m.contains_key(&j)); - } - - for j in 1..i { - assert!(m.contains_key(&j)); - } - } - } - } - - #[test] - fn test_find_mut() { - let mut m = HashMap::new(); - assert!(m.insert(1, 12).is_none()); - assert!(m.insert(2, 8).is_none()); - assert!(m.insert(5, 14).is_none()); - let new = 100; - match m.get_mut(&5) { - None => panic!(), - Some(x) => *x = new, - } - assert_eq!(m.get(&5), Some(&new)); - } - - #[test] - fn test_insert_overwrite() { - let mut m = HashMap::new(); - assert!(m.insert(1, 2).is_none()); - assert_eq!(*m.get(&1).unwrap(), 2); - assert!(m.insert(1, 3).is_some()); - assert_eq!(*m.get(&1).unwrap(), 3); - } - - #[test] - fn test_insert_conflicts() { - let mut m = HashMap::with_capacity(4); - assert!(m.insert(1, 2).is_none()); - assert!(m.insert(5, 3).is_none()); - assert!(m.insert(9, 4).is_none()); - assert_eq!(*m.get(&9).unwrap(), 4); - assert_eq!(*m.get(&5).unwrap(), 3); - assert_eq!(*m.get(&1).unwrap(), 2); - } - - #[test] - fn test_conflict_remove() { - let mut m = HashMap::with_capacity(4); - assert!(m.insert(1, 2).is_none()); - assert_eq!(*m.get(&1).unwrap(), 2); - assert!(m.insert(5, 3).is_none()); - assert_eq!(*m.get(&1).unwrap(), 2); - assert_eq!(*m.get(&5).unwrap(), 3); - assert!(m.insert(9, 4).is_none()); - assert_eq!(*m.get(&1).unwrap(), 2); - assert_eq!(*m.get(&5).unwrap(), 3); - assert_eq!(*m.get(&9).unwrap(), 4); - assert!(m.remove(&1).is_some()); - assert_eq!(*m.get(&9).unwrap(), 4); - assert_eq!(*m.get(&5).unwrap(), 3); - } - - #[test] - fn test_insert_unique_unchecked() { - let mut map = HashMap::new(); - let (k1, v1) = map.insert_unique_unchecked(10, 11); - assert_eq!((&10, &mut 11), (k1, v1)); - let (k2, v2) = map.insert_unique_unchecked(20, 21); - assert_eq!((&20, &mut 21), (k2, v2)); - assert_eq!(Some(&11), map.get(&10)); - assert_eq!(Some(&21), map.get(&20)); - assert_eq!(None, map.get(&30)); - } - - #[test] - fn test_is_empty() { - let mut m = HashMap::with_capacity(4); - assert!(m.insert(1, 2).is_none()); - assert!(!m.is_empty()); - assert!(m.remove(&1).is_some()); - assert!(m.is_empty()); - } - - #[test] - fn test_remove() { - let mut m = HashMap::new(); - m.insert(1, 2); - assert_eq!(m.remove(&1), Some(2)); - assert_eq!(m.remove(&1), None); - } - - #[test] - fn test_remove_entry() { - let mut m = HashMap::new(); - m.insert(1, 2); - assert_eq!(m.remove_entry(&1), Some((1, 2))); - assert_eq!(m.remove(&1), None); - } - - #[test] - fn test_iterate() { - let mut m = HashMap::with_capacity(4); - for i in 0..32 { - assert!(m.insert(i, i * 2).is_none()); - } - assert_eq!(m.len(), 32); - - let mut observed: u32 = 0; - - for (k, v) in &m { - assert_eq!(*v, *k * 2); - observed |= 1 << *k; - } - assert_eq!(observed, 0xFFFF_FFFF); - } - - #[test] - fn test_keys() { - let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; - let map: HashMap<_, _> = vec.into_iter().collect(); - let keys: Vec<_> = map.keys().copied().collect(); - assert_eq!(keys.len(), 3); - assert!(keys.contains(&1)); - assert!(keys.contains(&2)); - assert!(keys.contains(&3)); - } - - #[test] - fn test_values() { - let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; - let map: HashMap<_, _> = vec.into_iter().collect(); - let values: Vec<_> = map.values().copied().collect(); - assert_eq!(values.len(), 3); - assert!(values.contains(&'a')); - assert!(values.contains(&'b')); - assert!(values.contains(&'c')); - } - - #[test] - fn test_values_mut() { - let vec = vec![(1, 1), (2, 2), (3, 3)]; - let mut map: HashMap<_, _> = vec.into_iter().collect(); - for value in map.values_mut() { - *value *= 2; - } - let values: Vec<_> = map.values().copied().collect(); - assert_eq!(values.len(), 3); - assert!(values.contains(&2)); - assert!(values.contains(&4)); - assert!(values.contains(&6)); - } - - #[test] - fn test_into_keys() { - let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; - let map: HashMap<_, _> = vec.into_iter().collect(); - let keys: Vec<_> = map.into_keys().collect(); - - assert_eq!(keys.len(), 3); - assert!(keys.contains(&1)); - assert!(keys.contains(&2)); - assert!(keys.contains(&3)); - } - - #[test] - fn test_into_values() { - let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; - let map: HashMap<_, _> = vec.into_iter().collect(); - let values: Vec<_> = map.into_values().collect(); - - assert_eq!(values.len(), 3); - assert!(values.contains(&'a')); - assert!(values.contains(&'b')); - assert!(values.contains(&'c')); - } - - #[test] - fn test_find() { - let mut m = HashMap::new(); - assert!(m.get(&1).is_none()); - m.insert(1, 2); - match m.get(&1) { - None => panic!(), - Some(v) => assert_eq!(*v, 2), - } - } - - #[test] - fn test_eq() { - let mut m1 = HashMap::new(); - m1.insert(1, 2); - m1.insert(2, 3); - m1.insert(3, 4); - - let mut m2 = HashMap::new(); - m2.insert(1, 2); - m2.insert(2, 3); - - assert!(m1 != m2); - - m2.insert(3, 4); - - assert_eq!(m1, m2); - } - - #[test] - fn test_show() { - let mut map = HashMap::new(); - let empty: HashMap<i32, i32> = HashMap::new(); - - map.insert(1, 2); - map.insert(3, 4); - - let map_str = format!("{:?}", map); - - assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}"); - assert_eq!(format!("{:?}", empty), "{}"); - } - - #[test] - fn test_expand() { - let mut m = HashMap::new(); - - assert_eq!(m.len(), 0); - assert!(m.is_empty()); - - let mut i = 0; - let old_raw_cap = m.raw_capacity(); - while old_raw_cap == m.raw_capacity() { - m.insert(i, i); - i += 1; - } - - assert_eq!(m.len(), i); - assert!(!m.is_empty()); - } - - #[test] - fn test_behavior_resize_policy() { - let mut m = HashMap::new(); - - assert_eq!(m.len(), 0); - assert_eq!(m.raw_capacity(), 1); - assert!(m.is_empty()); - - m.insert(0, 0); - m.remove(&0); - assert!(m.is_empty()); - let initial_raw_cap = m.raw_capacity(); - m.reserve(initial_raw_cap); - let raw_cap = m.raw_capacity(); - - assert_eq!(raw_cap, initial_raw_cap * 2); - - let mut i = 0; - for _ in 0..raw_cap * 3 / 4 { - m.insert(i, i); - i += 1; - } - // three quarters full - - assert_eq!(m.len(), i); - assert_eq!(m.raw_capacity(), raw_cap); - - for _ in 0..raw_cap / 4 { - m.insert(i, i); - i += 1; - } - // half full - - let new_raw_cap = m.raw_capacity(); - assert_eq!(new_raw_cap, raw_cap * 2); - - for _ in 0..raw_cap / 2 - 1 { - i -= 1; - m.remove(&i); - assert_eq!(m.raw_capacity(), new_raw_cap); - } - // A little more than one quarter full. - m.shrink_to_fit(); - assert_eq!(m.raw_capacity(), raw_cap); - // again, a little more than half full - for _ in 0..raw_cap / 2 { - i -= 1; - m.remove(&i); - } - m.shrink_to_fit(); - - assert_eq!(m.len(), i); - assert!(!m.is_empty()); - assert_eq!(m.raw_capacity(), initial_raw_cap); - } - - #[test] - fn test_reserve_shrink_to_fit() { - let mut m = HashMap::new(); - m.insert(0, 0); - m.remove(&0); - assert!(m.capacity() >= m.len()); - for i in 0..128 { - m.insert(i, i); - } - m.reserve(256); - - let usable_cap = m.capacity(); - for i in 128..(128 + 256) { - m.insert(i, i); - assert_eq!(m.capacity(), usable_cap); - } - - for i in 100..(128 + 256) { - assert_eq!(m.remove(&i), Some(i)); - } - m.shrink_to_fit(); - - assert_eq!(m.len(), 100); - assert!(!m.is_empty()); - assert!(m.capacity() >= m.len()); - - for i in 0..100 { - assert_eq!(m.remove(&i), Some(i)); - } - m.shrink_to_fit(); - m.insert(0, 0); - - assert_eq!(m.len(), 1); - assert!(m.capacity() >= m.len()); - assert_eq!(m.remove(&0), Some(0)); - } - - #[test] - fn test_from_iter() { - let xs = [(1, 1), (2, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; - - let map: HashMap<_, _> = xs.iter().copied().collect(); - - for &(k, v) in &xs { - assert_eq!(map.get(&k), Some(&v)); - } - - assert_eq!(map.iter().len(), xs.len() - 1); - } - - #[test] - fn test_size_hint() { - let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; - - let map: HashMap<_, _> = xs.iter().copied().collect(); - - let mut iter = map.iter(); - - for _ in iter.by_ref().take(3) {} - - assert_eq!(iter.size_hint(), (3, Some(3))); - } - - #[test] - fn test_iter_len() { - let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; - - let map: HashMap<_, _> = xs.iter().copied().collect(); - - let mut iter = map.iter(); - - for _ in iter.by_ref().take(3) {} - - assert_eq!(iter.len(), 3); - } - - #[test] - fn test_mut_size_hint() { - let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; - - let mut map: HashMap<_, _> = xs.iter().copied().collect(); - - let mut iter = map.iter_mut(); - - for _ in iter.by_ref().take(3) {} - - assert_eq!(iter.size_hint(), (3, Some(3))); - } - - #[test] - fn test_iter_mut_len() { - let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; - - let mut map: HashMap<_, _> = xs.iter().copied().collect(); - - let mut iter = map.iter_mut(); - - for _ in iter.by_ref().take(3) {} - - assert_eq!(iter.len(), 3); - } - - #[test] - fn test_index() { - let mut map = HashMap::new(); - - map.insert(1, 2); - map.insert(2, 1); - map.insert(3, 4); - - assert_eq!(map[&2], 1); - } - - #[test] - #[should_panic] - fn test_index_nonexistent() { - let mut map = HashMap::new(); - - map.insert(1, 2); - map.insert(2, 1); - map.insert(3, 4); - - #[allow(clippy::no_effect)] // false positive lint - map[&4]; - } - - #[test] - fn test_entry() { - let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; - - let mut map: HashMap<_, _> = xs.iter().copied().collect(); - - // Existing key (insert) - match map.entry(1) { - Vacant(_) => unreachable!(), - Occupied(mut view) => { - assert_eq!(view.get(), &10); - assert_eq!(view.insert(100), 10); - } - } - assert_eq!(map.get(&1).unwrap(), &100); - assert_eq!(map.len(), 6); - - // Existing key (update) - match map.entry(2) { - Vacant(_) => unreachable!(), - Occupied(mut view) => { - let v = view.get_mut(); - let new_v = (*v) * 10; - *v = new_v; - } - } - assert_eq!(map.get(&2).unwrap(), &200); - assert_eq!(map.len(), 6); - - // Existing key (take) - match map.entry(3) { - Vacant(_) => unreachable!(), - Occupied(view) => { - assert_eq!(view.remove(), 30); - } - } - assert_eq!(map.get(&3), None); - assert_eq!(map.len(), 5); - - // Inexistent key (insert) - match map.entry(10) { - Occupied(_) => unreachable!(), - Vacant(view) => { - assert_eq!(*view.insert(1000), 1000); - } - } - assert_eq!(map.get(&10).unwrap(), &1000); - assert_eq!(map.len(), 6); - } - - #[test] - fn test_entry_ref() { - let xs = [ - ("One".to_owned(), 10), - ("Two".to_owned(), 20), - ("Three".to_owned(), 30), - ("Four".to_owned(), 40), - ("Five".to_owned(), 50), - ("Six".to_owned(), 60), - ]; - - let mut map: HashMap<_, _> = xs.iter().cloned().collect(); - - // Existing key (insert) - match map.entry_ref("One") { - EntryRef::Vacant(_) => unreachable!(), - EntryRef::Occupied(mut view) => { - assert_eq!(view.get(), &10); - assert_eq!(view.insert(100), 10); - } - } - assert_eq!(map.get("One").unwrap(), &100); - assert_eq!(map.len(), 6); - - // Existing key (update) - match map.entry_ref("Two") { - EntryRef::Vacant(_) => unreachable!(), - EntryRef::Occupied(mut view) => { - let v = view.get_mut(); - let new_v = (*v) * 10; - *v = new_v; - } - } - assert_eq!(map.get("Two").unwrap(), &200); - assert_eq!(map.len(), 6); - - // Existing key (take) - match map.entry_ref("Three") { - EntryRef::Vacant(_) => unreachable!(), - EntryRef::Occupied(view) => { - assert_eq!(view.remove(), 30); - } - } - assert_eq!(map.get("Three"), None); - assert_eq!(map.len(), 5); - - // Inexistent key (insert) - match map.entry_ref("Ten") { - EntryRef::Occupied(_) => unreachable!(), - EntryRef::Vacant(view) => { - assert_eq!(*view.insert(1000), 1000); - } - } - assert_eq!(map.get("Ten").unwrap(), &1000); - assert_eq!(map.len(), 6); - } - - #[test] - fn test_entry_take_doesnt_corrupt() { - #![allow(deprecated)] //rand - // Test for #19292 - fn check(m: &HashMap<i32, ()>) { - for k in m.keys() { - assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); - } - } - - let mut m = HashMap::new(); - - let mut rng = { - let seed = u64::from_le_bytes(*b"testseed"); - SmallRng::seed_from_u64(seed) - }; - - // Populate the map with some items. - for _ in 0..50 { - let x = rng.gen_range(-10..10); - m.insert(x, ()); - } - - for _ in 0..1000 { - let x = rng.gen_range(-10..10); - match m.entry(x) { - Vacant(_) => {} - Occupied(e) => { - e.remove(); - } - } - - check(&m); - } - } - - #[test] - fn test_entry_ref_take_doesnt_corrupt() { - #![allow(deprecated)] //rand - // Test for #19292 - fn check(m: &HashMap<std::string::String, ()>) { - for k in m.keys() { - assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); - } - } - - let mut m = HashMap::new(); - - let mut rng = { - let seed = u64::from_le_bytes(*b"testseed"); - SmallRng::seed_from_u64(seed) - }; - - // Populate the map with some items. - for _ in 0..50 { - let mut x = std::string::String::with_capacity(1); - x.push(rng.gen_range('a'..='z')); - m.insert(x, ()); - } - - for _ in 0..1000 { - let mut x = std::string::String::with_capacity(1); - x.push(rng.gen_range('a'..='z')); - match m.entry_ref(x.as_str()) { - EntryRef::Vacant(_) => {} - EntryRef::Occupied(e) => { - e.remove(); - } - } - - check(&m); - } - } - - #[test] - fn test_extend_ref_k_ref_v() { - let mut a = HashMap::new(); - a.insert(1, "one"); - let mut b = HashMap::new(); - b.insert(2, "two"); - b.insert(3, "three"); - - a.extend(&b); - - assert_eq!(a.len(), 3); - assert_eq!(a[&1], "one"); - assert_eq!(a[&2], "two"); - assert_eq!(a[&3], "three"); - } - - #[test] - fn test_extend_ref_kv_tuple() { - use std::ops::AddAssign; - let mut a = HashMap::new(); - a.insert(0, 0); - - fn create_arr<T: AddAssign<T> + Copy, const N: usize>(start: T, step: T) -> [(T, T); N] { - let mut outs: [(T, T); N] = [(start, start); N]; - let mut element = step; - outs.iter_mut().skip(1).for_each(|(k, v)| { - *k += element; - *v += element; - element += step; - }); - outs - } - - let for_iter: Vec<_> = (0..100).map(|i| (i, i)).collect(); - let iter = for_iter.iter(); - let vec: Vec<_> = (100..200).map(|i| (i, i)).collect(); - a.extend(iter); - a.extend(&vec); - a.extend(create_arr::<i32, 100>(200, 1)); - - assert_eq!(a.len(), 300); - - for item in 0..300 { - assert_eq!(a[&item], item); - } - } - - #[test] - fn test_capacity_not_less_than_len() { - let mut a = HashMap::new(); - let mut item = 0; - - for _ in 0..116 { - a.insert(item, 0); - item += 1; - } - - assert!(a.capacity() > a.len()); - - let free = a.capacity() - a.len(); - for _ in 0..free { - a.insert(item, 0); - item += 1; - } - - assert_eq!(a.len(), a.capacity()); - - // Insert at capacity should cause allocation. - a.insert(item, 0); - assert!(a.capacity() > a.len()); - } - - #[test] - fn test_occupied_entry_key() { - let mut a = HashMap::new(); - let key = "hello there"; - let value = "value goes here"; - assert!(a.is_empty()); - a.insert(key, value); - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - - match a.entry(key) { - Vacant(_) => panic!(), - Occupied(e) => assert_eq!(key, *e.key()), - } - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - } - - #[test] - fn test_occupied_entry_ref_key() { - let mut a = HashMap::new(); - let key = "hello there"; - let value = "value goes here"; - assert!(a.is_empty()); - a.insert(key.to_owned(), value); - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - - match a.entry_ref(key) { - EntryRef::Vacant(_) => panic!(), - EntryRef::Occupied(e) => assert_eq!(key, e.key()), - } - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - } - - #[test] - fn test_vacant_entry_key() { - let mut a = HashMap::new(); - let key = "hello there"; - let value = "value goes here"; - - assert!(a.is_empty()); - match a.entry(key) { - Occupied(_) => panic!(), - Vacant(e) => { - assert_eq!(key, *e.key()); - e.insert(value); - } - } - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - } - - #[test] - fn test_vacant_entry_ref_key() { - let mut a: HashMap<std::string::String, &str> = HashMap::new(); - let key = "hello there"; - let value = "value goes here"; - - assert!(a.is_empty()); - match a.entry_ref(key) { - EntryRef::Occupied(_) => panic!(), - EntryRef::Vacant(e) => { - assert_eq!(key, e.key()); - e.insert(value); - } - } - assert_eq!(a.len(), 1); - assert_eq!(a[key], value); - } - - #[test] - fn test_occupied_entry_replace_entry_with() { - let mut a = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a.entry(key).insert(value).replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - Occupied(e) => { - assert_eq!(e.key(), &key); - assert_eq!(e.get(), &new_value); - } - Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = match a.entry(key) { - Occupied(e) => e.replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, new_value); - None - }), - Vacant(_) => panic!(), - }; - - match entry { - Vacant(e) => assert_eq!(e.key(), &key), - Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_occupied_entry_ref_replace_entry_with() { - let mut a: HashMap<std::string::String, &str> = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a.entry_ref(key).insert(value).replace_entry_with(|k, v| { - assert_eq!(k, key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - EntryRef::Occupied(e) => { - assert_eq!(e.key(), key); - assert_eq!(e.get(), &new_value); - } - EntryRef::Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = match a.entry_ref(key) { - EntryRef::Occupied(e) => e.replace_entry_with(|k, v| { - assert_eq!(k, key); - assert_eq!(v, new_value); - None - }), - EntryRef::Vacant(_) => panic!(), - }; - - match entry { - EntryRef::Vacant(e) => assert_eq!(e.key(), key), - EntryRef::Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_entry_and_replace_entry_with() { - let mut a = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a.entry(key).and_replace_entry_with(|_, _| panic!()); - - match entry { - Vacant(e) => assert_eq!(e.key(), &key), - Occupied(_) => panic!(), - } - - a.insert(key, value); - - let entry = a.entry(key).and_replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - Occupied(e) => { - assert_eq!(e.key(), &key); - assert_eq!(e.get(), &new_value); - } - Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = a.entry(key).and_replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, new_value); - None - }); - - match entry { - Vacant(e) => assert_eq!(e.key(), &key), - Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_entry_ref_and_replace_entry_with() { - let mut a = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a.entry_ref(key).and_replace_entry_with(|_, _| panic!()); - - match entry { - EntryRef::Vacant(e) => assert_eq!(e.key(), key), - EntryRef::Occupied(_) => panic!(), - } - - a.insert(key.to_owned(), value); - - let entry = a.entry_ref(key).and_replace_entry_with(|k, v| { - assert_eq!(k, key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - EntryRef::Occupied(e) => { - assert_eq!(e.key(), key); - assert_eq!(e.get(), &new_value); - } - EntryRef::Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = a.entry_ref(key).and_replace_entry_with(|k, v| { - assert_eq!(k, key); - assert_eq!(v, new_value); - None - }); - - match entry { - EntryRef::Vacant(e) => assert_eq!(e.key(), key), - EntryRef::Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_raw_occupied_entry_replace_entry_with() { - let mut a = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a - .raw_entry_mut() - .from_key(&key) - .insert(key, value) - .replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - RawEntryMut::Occupied(e) => { - assert_eq!(e.key(), &key); - assert_eq!(e.get(), &new_value); - } - RawEntryMut::Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = match a.raw_entry_mut().from_key(&key) { - RawEntryMut::Occupied(e) => e.replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, new_value); - None - }), - RawEntryMut::Vacant(_) => panic!(), - }; - - match entry { - RawEntryMut::Vacant(_) => {} - RawEntryMut::Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_raw_entry_and_replace_entry_with() { - let mut a = HashMap::new(); - - let key = "a key"; - let value = "an initial value"; - let new_value = "a new value"; - - let entry = a - .raw_entry_mut() - .from_key(&key) - .and_replace_entry_with(|_, _| panic!()); - - match entry { - RawEntryMut::Vacant(_) => {} - RawEntryMut::Occupied(_) => panic!(), - } - - a.insert(key, value); - - let entry = a - .raw_entry_mut() - .from_key(&key) - .and_replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, value); - Some(new_value) - }); - - match entry { - RawEntryMut::Occupied(e) => { - assert_eq!(e.key(), &key); - assert_eq!(e.get(), &new_value); - } - RawEntryMut::Vacant(_) => panic!(), - } - - assert_eq!(a[key], new_value); - assert_eq!(a.len(), 1); - - let entry = a - .raw_entry_mut() - .from_key(&key) - .and_replace_entry_with(|k, v| { - assert_eq!(k, &key); - assert_eq!(v, new_value); - None - }); - - match entry { - RawEntryMut::Vacant(_) => {} - RawEntryMut::Occupied(_) => panic!(), - } - - assert!(!a.contains_key(key)); - assert_eq!(a.len(), 0); - } - - #[test] - fn test_replace_entry_with_doesnt_corrupt() { - #![allow(deprecated)] //rand - // Test for #19292 - fn check(m: &HashMap<i32, ()>) { - for k in m.keys() { - assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); - } - } - - let mut m = HashMap::new(); - - let mut rng = { - let seed = u64::from_le_bytes(*b"testseed"); - SmallRng::seed_from_u64(seed) - }; - - // Populate the map with some items. - for _ in 0..50 { - let x = rng.gen_range(-10..10); - m.insert(x, ()); - } - - for _ in 0..1000 { - let x = rng.gen_range(-10..10); - m.entry(x).and_replace_entry_with(|_, _| None); - check(&m); - } - } - - #[test] - fn test_replace_entry_ref_with_doesnt_corrupt() { - #![allow(deprecated)] //rand - // Test for #19292 - fn check(m: &HashMap<std::string::String, ()>) { - for k in m.keys() { - assert!(m.contains_key(k), "{} is in keys() but not in the map?", k); - } - } - - let mut m = HashMap::new(); - - let mut rng = { - let seed = u64::from_le_bytes(*b"testseed"); - SmallRng::seed_from_u64(seed) - }; - - // Populate the map with some items. - for _ in 0..50 { - let mut x = std::string::String::with_capacity(1); - x.push(rng.gen_range('a'..='z')); - m.insert(x, ()); - } - - for _ in 0..1000 { - let mut x = std::string::String::with_capacity(1); - x.push(rng.gen_range('a'..='z')); - m.entry_ref(x.as_str()).and_replace_entry_with(|_, _| None); - check(&m); - } - } - - #[test] - fn test_retain() { - let mut map: HashMap<i32, i32> = (0..100).map(|x| (x, x * 10)).collect(); - - map.retain(|&k, _| k % 2 == 0); - assert_eq!(map.len(), 50); - assert_eq!(map[&2], 20); - assert_eq!(map[&4], 40); - assert_eq!(map[&6], 60); - } - - #[test] - fn test_drain_filter() { - { - let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x * 10)).collect(); - let drained = map.drain_filter(|&k, _| k % 2 == 0); - let mut out = drained.collect::<Vec<_>>(); - out.sort_unstable(); - assert_eq!(vec![(0, 0), (2, 20), (4, 40), (6, 60)], out); - assert_eq!(map.len(), 4); - } - { - let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x * 10)).collect(); - drop(map.drain_filter(|&k, _| k % 2 == 0)); - assert_eq!(map.len(), 4); - } - } - - #[test] - #[cfg_attr(miri, ignore)] // FIXME: no OOM signalling (https://github.com/rust-lang/miri/issues/613) - fn test_try_reserve() { - use crate::TryReserveError::{AllocError, CapacityOverflow}; - - const MAX_ISIZE: usize = isize::MAX as usize; - - let mut empty_bytes: HashMap<u8, u8> = HashMap::new(); - - if let Err(CapacityOverflow) = empty_bytes.try_reserve(usize::MAX) { - } else { - panic!("usize::MAX should trigger an overflow!"); - } - - if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_ISIZE) { - } else { - panic!("isize::MAX should trigger an overflow!"); - } - - if let Err(AllocError { .. }) = empty_bytes.try_reserve(MAX_ISIZE / 5) { - } else { - // This may succeed if there is enough free memory. Attempt to - // allocate a few more hashmaps to ensure the allocation will fail. - let mut empty_bytes2: HashMap<u8, u8> = HashMap::new(); - let _ = empty_bytes2.try_reserve(MAX_ISIZE / 5); - let mut empty_bytes3: HashMap<u8, u8> = HashMap::new(); - let _ = empty_bytes3.try_reserve(MAX_ISIZE / 5); - let mut empty_bytes4: HashMap<u8, u8> = HashMap::new(); - if let Err(AllocError { .. }) = empty_bytes4.try_reserve(MAX_ISIZE / 5) { - } else { - panic!("isize::MAX / 5 should trigger an OOM!"); - } - } - } - - #[test] - fn test_raw_entry() { - use super::RawEntryMut::{Occupied, Vacant}; - - let xs = [(1_i32, 10_i32), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; - - let mut map: HashMap<_, _> = xs.iter().copied().collect(); - - let compute_hash = |map: &HashMap<i32, i32>, k: i32| -> u64 { - super::make_insert_hash::<i32, _>(map.hasher(), &k) - }; - - // Existing key (insert) - match map.raw_entry_mut().from_key(&1) { - Vacant(_) => unreachable!(), - Occupied(mut view) => { - assert_eq!(view.get(), &10); - assert_eq!(view.insert(100), 10); - } - } - let hash1 = compute_hash(&map, 1); - assert_eq!(map.raw_entry().from_key(&1).unwrap(), (&1, &100)); - assert_eq!( - map.raw_entry().from_hash(hash1, |k| *k == 1).unwrap(), - (&1, &100) - ); - assert_eq!( - map.raw_entry().from_key_hashed_nocheck(hash1, &1).unwrap(), - (&1, &100) - ); - assert_eq!(map.len(), 6); - - // Existing key (update) - match map.raw_entry_mut().from_key(&2) { - Vacant(_) => unreachable!(), - Occupied(mut view) => { - let v = view.get_mut(); - let new_v = (*v) * 10; - *v = new_v; - } - } - let hash2 = compute_hash(&map, 2); - assert_eq!(map.raw_entry().from_key(&2).unwrap(), (&2, &200)); - assert_eq!( - map.raw_entry().from_hash(hash2, |k| *k == 2).unwrap(), - (&2, &200) - ); - assert_eq!( - map.raw_entry().from_key_hashed_nocheck(hash2, &2).unwrap(), - (&2, &200) - ); - assert_eq!(map.len(), 6); - - // Existing key (take) - let hash3 = compute_hash(&map, 3); - match map.raw_entry_mut().from_key_hashed_nocheck(hash3, &3) { - Vacant(_) => unreachable!(), - Occupied(view) => { - assert_eq!(view.remove_entry(), (3, 30)); - } - } - assert_eq!(map.raw_entry().from_key(&3), None); - assert_eq!(map.raw_entry().from_hash(hash3, |k| *k == 3), None); - assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash3, &3), None); - assert_eq!(map.len(), 5); - - // Nonexistent key (insert) - match map.raw_entry_mut().from_key(&10) { - Occupied(_) => unreachable!(), - Vacant(view) => { - assert_eq!(view.insert(10, 1000), (&mut 10, &mut 1000)); - } - } - assert_eq!(map.raw_entry().from_key(&10).unwrap(), (&10, &1000)); - assert_eq!(map.len(), 6); - - // Ensure all lookup methods produce equivalent results. - for k in 0..12 { - let hash = compute_hash(&map, k); - let v = map.get(&k).copied(); - let kv = v.as_ref().map(|v| (&k, v)); - - assert_eq!(map.raw_entry().from_key(&k), kv); - assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); - assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); - - match map.raw_entry_mut().from_key(&k) { - Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), - Vacant(_) => assert_eq!(v, None), - } - match map.raw_entry_mut().from_key_hashed_nocheck(hash, &k) { - Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), - Vacant(_) => assert_eq!(v, None), - } - match map.raw_entry_mut().from_hash(hash, |q| *q == k) { - Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), - Vacant(_) => assert_eq!(v, None), - } - } - } - - #[test] - fn test_key_without_hash_impl() { - #[derive(Debug)] - struct IntWrapper(u64); - - let mut m: HashMap<IntWrapper, (), ()> = HashMap::default(); - { - assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_none()); - } - { - let vacant_entry = match m.raw_entry_mut().from_hash(0, |k| k.0 == 0) { - RawEntryMut::Occupied(..) => panic!("Found entry for key 0"), - RawEntryMut::Vacant(e) => e, - }; - vacant_entry.insert_with_hasher(0, IntWrapper(0), (), |k| k.0); - } - { - assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_some()); - assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_none()); - assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); - } - { - let vacant_entry = match m.raw_entry_mut().from_hash(1, |k| k.0 == 1) { - RawEntryMut::Occupied(..) => panic!("Found entry for key 1"), - RawEntryMut::Vacant(e) => e, - }; - vacant_entry.insert_with_hasher(1, IntWrapper(1), (), |k| k.0); - } - { - assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_some()); - assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_some()); - assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); - } - { - let occupied_entry = match m.raw_entry_mut().from_hash(0, |k| k.0 == 0) { - RawEntryMut::Occupied(e) => e, - RawEntryMut::Vacant(..) => panic!("Couldn't find entry for key 0"), - }; - occupied_entry.remove(); - } - assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_none()); - assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_some()); - assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); - } - - #[test] - #[cfg(feature = "raw")] - fn test_into_iter_refresh() { - #[cfg(miri)] - const N: usize = 32; - #[cfg(not(miri))] - const N: usize = 128; - - let mut rng = rand::thread_rng(); - for n in 0..N { - let mut map = HashMap::new(); - for i in 0..n { - assert!(map.insert(i, 2 * i).is_none()); - } - let hash_builder = map.hasher().clone(); - - let mut it = unsafe { map.table.iter() }; - assert_eq!(it.len(), n); - - let mut i = 0; - let mut left = n; - let mut removed = Vec::new(); - loop { - // occasionally remove some elements - if i < n && rng.gen_bool(0.1) { - let hash_value = super::make_insert_hash(&hash_builder, &i); - - unsafe { - let e = map.table.find(hash_value, |q| q.0.eq(&i)); - if let Some(e) = e { - it.reflect_remove(&e); - let t = map.table.remove(e); - removed.push(t); - left -= 1; - } else { - assert!(removed.contains(&(i, 2 * i)), "{} not in {:?}", i, removed); - let e = map.table.insert( - hash_value, - (i, 2 * i), - super::make_hasher::<_, usize, _>(&hash_builder), - ); - it.reflect_insert(&e); - if let Some(p) = removed.iter().position(|e| e == &(i, 2 * i)) { - removed.swap_remove(p); - } - left += 1; - } - } - } - - let e = it.next(); - if e.is_none() { - break; - } - assert!(i < n); - let t = unsafe { e.unwrap().as_ref() }; - assert!(!removed.contains(t)); - let (key, value) = t; - assert_eq!(*value, 2 * key); - i += 1; - } - assert!(i <= n); - - // just for safety: - assert_eq!(map.table.len(), left); - } - } - - #[test] - fn test_const_with_hasher() { - use core::hash::BuildHasher; - use std::collections::hash_map::DefaultHasher; - - #[derive(Clone)] - struct MyHasher; - impl BuildHasher for MyHasher { - type Hasher = DefaultHasher; - - fn build_hasher(&self) -> DefaultHasher { - DefaultHasher::new() - } - } - - const EMPTY_MAP: HashMap<u32, std::string::String, MyHasher> = - HashMap::with_hasher(MyHasher); - - let mut map = EMPTY_MAP; - map.insert(17, "seventeen".to_owned()); - assert_eq!("seventeen", map[&17]); - } - - #[test] - fn test_get_each_mut() { - let mut map = HashMap::new(); - map.insert("foo".to_owned(), 0); - map.insert("bar".to_owned(), 10); - map.insert("baz".to_owned(), 20); - map.insert("qux".to_owned(), 30); - - let xs = map.get_many_mut(["foo", "qux"]); - assert_eq!(xs, Some([&mut 0, &mut 30])); - - let xs = map.get_many_mut(["foo", "dud"]); - assert_eq!(xs, None); - - let xs = map.get_many_mut(["foo", "foo"]); - assert_eq!(xs, None); - - let ys = map.get_many_key_value_mut(["bar", "baz"]); - assert_eq!( - ys, - Some([(&"bar".to_owned(), &mut 10), (&"baz".to_owned(), &mut 20),]), - ); - - let ys = map.get_many_key_value_mut(["bar", "dip"]); - assert_eq!(ys, None); - - let ys = map.get_many_key_value_mut(["baz", "baz"]); - assert_eq!(ys, None); - } - - #[test] - #[should_panic = "panic in drop"] - fn test_clone_from_double_drop() { - #[derive(Clone)] - struct CheckedDrop { - panic_in_drop: bool, - dropped: bool, - } - impl Drop for CheckedDrop { - fn drop(&mut self) { - if self.panic_in_drop { - self.dropped = true; - panic!("panic in drop"); - } - if self.dropped { - panic!("double drop"); - } - self.dropped = true; - } - } - const DISARMED: CheckedDrop = CheckedDrop { - panic_in_drop: false, - dropped: false, - }; - const ARMED: CheckedDrop = CheckedDrop { - panic_in_drop: true, - dropped: false, - }; - - let mut map1 = HashMap::new(); - map1.insert(1, DISARMED); - map1.insert(2, DISARMED); - map1.insert(3, DISARMED); - map1.insert(4, DISARMED); - - let mut map2 = HashMap::new(); - map2.insert(1, DISARMED); - map2.insert(2, ARMED); - map2.insert(3, DISARMED); - map2.insert(4, DISARMED); - - map2.clone_from(&map1); - } -} |